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C O N D E N S E D  M A T T E R  P H Y S I C S

Predictive relation for the -relaxation time of a  
coarse-grained polymer melt under steady shear
Andrea Giuntoli1,2*†, Francesco Puosi3, Dino Leporini3,4, Francis W. Starr2, Jack F. Douglas1*

We examine the influence of steady shear on structural relaxation in a simulated coarse-grained unentangled 
polymer melt over a wide range of temperature and shear rates. Shear is found to progressively suppress the 
-relaxation process observed in the intermediate scattering function, leading ultimately to a purely inertially 
dominated -relaxation at high shear rates, a trend similar to increasing temperature. On the basis of a scaling 
argument emphasizing dynamic heterogeneity in cooled liquids and its alteration under material deformation, 
we deduce and validate a parameter-free scaling relation for both the structural relaxation time  from the inter-
mediate scattering function and the “stretching exponent”  quantifying the extent of dynamic heterogeneity 
over the entire range of temperatures and shear rates that we can simulate.

INTRODUCTION
Glass-forming liquids are often subjected to shear deformation and 
flow during their processing, leading to substantial changes in their 
relaxation dynamics in comparison to unsheared materials at equi-
librium. Many measurements (1–4) and simulations (5–7) have shown 
that the structural relaxation time and effective viscosity of deformed 
complex fluids can decrease following material deformation, some-
times by orders of magnitude. Measurements have also shown that the 
relaxation dynamics of deformed glassy materials tend to recover to 
their equilibrium properties after long “aging” times (8), suggesting 
some sort of structural and dynamical recovery of the material. Despite 
the abundant experimental literature, there is limited understanding of 
these changes in dynamics from a theoretical perspective. This situa-
tion is perhaps not unexpected, since there is not even a consensus 
about the origin of the dynamics of glass-forming liquids under equi-
librium conditions.

In the present work, we address the essential phenomenology of 
a model glass-forming polymer melt subjected to steady shear in the 
liquid regime at temperatures below the onset temperature TA, where 
non-Arrhenius -relaxation becomes prevalent (9). We restrict our 
attention to relatively short chains to avoid complications arising 
from chain entanglement. First, we characterize the slowing down 
of the -relaxation through the study of the -relaxation time      

0    as a 
function of temperature in the absence of shear.      

0    was determined in 
a standard fashion from the intermediate scattering function Fself(q0, 
t) at a scale q0 corresponding to the intermolecular distance, as de-
termined by the primary peak of the static structure factor S(q). These 
equilibrium data are compared to the relaxation time       (   ̇ , T)  of the 
fluid after the material has settled into a steady state (i.e., shear transients 
are not considered in the present work). We find that the -relaxation 
component of Fself(q0, t) becomes progressively suppressed with in-
creasing     ̇  , ultimately merging with the inertial fast -relaxation pro-
cess. The -relaxation component of Fself(q0, t) at fixed T is insensitive 

to    ̇   . Specifically, the -relaxation time  decreases with increasing   
  ̇  , ultimately merging with the -relaxation time, and  follows a uni-
versal scaling relation as a function of a reduced stress, with apparently 
no adjustable parameters for both polymeric and small-molecule 
glass-forming liquids. The stretching exponent  of the -relaxation in 
Fself(q0, t) also shows a general transition from a diffusion-dominated 
regime to an inertially dominated ballistic regime and can be de-
scribed by its own reduced variable description. In the context of the 
critical phenomena of fluids near their critical point for phase sepa-
ration, it is well known that shear causes a progressive breakdown 
of transient particle clusters arising in connection with the incipient 
phase separation process, so that the lifetime of these transient clus-
ters becomes independent of the average cluster size, as measured 
by the correlation length  for density and composition fluctuations 
in one and two component phase separation processes (10, 11). This 
mechanism of shear thinning is probably very common in complex 
fluids exhibiting dynamic self-association, and we may likewise ex-
pect large changes in the stress relaxation time  of glass-forming 
liquids under steady shear deformation to be accompanied by the 
breakdown of dynamical immobile particle clusters under steady shear 
that should occur generally in this broad class of fluids (12, 13). Cor-
respondingly, our analysis of shear thinning in our model polymeric 
glass-forming liquid is based on the working hypothesis that shear 
thinning in glass-forming liquids arises from the breakdown of im-
mobile particle clusters under flow rather than from an alteration of 
the activation energy as in the conventional Eyring model for relax-
ation in deformed fluids (3). Previous work has shown that the life-
time of the immobile clusters in both polymeric and nonpolymeric 
liquids can be identified with the structural relaxation time extracted 
from the intermediate scattering function under equilibrium condi-
tions (12, 13), and the present work shows that this interpretation 
extends to our fluid under steady shear.

Our modeling of the reduction in  under steady shear in terms 
of the breakdown of dynamic clusters of immobile particles accords 
with the mechanism of the reduction in the order parameter relaxation 
time under steady shear in critical fluids, which is one of the few com-
plex fluids for which there is a rigorous, and extensively experimentally 
validated, theory of the nonlinear rheology of a real complex fluid (10, 11). 
Nonetheless, our modeling of the shear thinning in glass-forming liquids 
is just a working model of a complex phenomenon for which there 
is no rigorous theory, even in the absence of shear deformation.
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RESULTS
The effective shear viscosity , defined during the steady state as   =  
 /    ̇  , is reported in the main panel of Fig. 1. The effective  measured 
during shear approaches the equilibrium  in the limit of low     ̇  . With 
increasing     ̇  , shear thinning occurs as the viscosity drops by orders of 
magnitude and the T dependence decreases up to the point where it is 
not appreciable for high shear rates.

Shear thinning is a common phenomenon in complex fluids (14) 
in which the structural organization of the fluid is broken down un-
der shear. The shear thinning of solutions of self-assembled actin and 
tubulin molecules provides a protypical example of this phenomenon 
(15). As noted before, previous work has identified growing dynamical 
clusters of immobile particles forming in our model glass-forming 
liquid (12), so this interpretation of shear thinning in terms of “de-
polymerization” under flow seems plausible also for glass-forming 
liquids (we do not refer here to the breaking of chemical bonds, but 
rather to the transient associative bonds between molecules, as normally 
encountered in systems undergoing supramolecular assembly). We 
adopt this dynamic heterogeneity perspective below in our quantification 
of the shear-thinning effect that we observe.

To describe relaxation in our system under shear, we consider 
the self-part of the intermediate scattering function

   F  self  ( q  0  , t) = 〈   1 ─ N     ∑ 
j=1

  
N

   exp {− iq · [ r  j  (t) −   r  j  (0)] }〉  (1)

for all the systems, where q0 ≃ 7.14 is the value at which the maximum 
of the static structure factor is observed. Following previous protocols 
(7), only q vectors in the yz plane orthogonal to the direction of the 
shear are considered.

Fig. 2 shows the intermediate scattering functions at the lowest 
temperature investigated for all shear rates. It is apparent that with 
increasing shear rate, the -relaxation is suppressed, the -relaxation 
time decreases, and, eventually, the - and fast -relaxations merge 

for high shear rates, similarly to the effect achieved by increasing T. 
Similar results have been observed before in two-dimensional (2D) 
(6) and 3D (7) model atomic liquids. To quantify these results, we 
fit our data to a two-step relaxation function, successfully used to 
describe Fself in thin films and bulk materials at equilibrium (16)

   F  self  ( q  0  , t ) = (1 −  A    ) e   − (t/   f  )      f     +  A     e   − (t/     )       (2)

In qualitative accord with Eq. 2, the mode coupling theory like-
wise indicates (17) an additive contribution of a fast -relaxation, 
with a T-independent -relaxation time, and -relaxation process, 
whose relaxation time is strongly dependent on T and whose ampli-
tude is independent of T above the “glass transition” of this model, 
Tg. Correspondingly, we tentatively take f and f to be fixed and 
determine -relaxation time , A, and stretching exponent  as 
function of T and     ̇  . The equilibrium, zero shear reference case is dis-
cussed in the Supplementary Materials.

We find that the values of the parameters f and f of the initial 
“fast” relaxation process (see Fig. 2) can be fixed to f = 0.3 and f = 
1.3, respectively, defining the fast -relaxation time as the exponent f 
quantifying the nonexponential nature of the fast relaxation process. 
The “mode amplitude” parameter A shows a relatively weak T and    ̇    
dependence for the parameter range studied in the present work, and, 
correspondingly, we fix A to equal A = 0.7, except at the lowest tem-
perature T = 0.43, where this parameter increases to a somewhat larger 
value, A = 0.73. The accuracy of the fit is not appreciably reduced in 
the T range investigated by fixing the three parameters (f, f, and A). 
The lines in Fig. 2 are the fit of Eq. 2 to the data (circles) for all shear 
rates. From the fits of Eq. 2 to the simulation data, values of  and  
can be derived for all T and     ̇  . It is apparent from Fig. 2 that the  
contribution to Fself(q0, t) becomes increasingly “suppressed” with in-
creasing     ̇  , an effect superficially similar to increasing the temperature 
of the fluid [see the Supplementary Materials for an extended discus-
sion of the effect of varying T on Fself(q0, t)]. In particular, we observe 
that  becomes progressively reduced by     ̇  , reaching the value      

0  ( T  A  )  
(the value of      

0    at equilibrium at T = TA, where TA ≈ 0.7 for this model) 
at a characteristic shear rate      ̇   c   ≃ 1  0   −1  . Previous work defined  as   
   

0  (T =  T  A  )  at equilibrium (18). For the present model, we find      
0  ( T  A   ) =  

2.12 , or ≈2 ps in laboratory units.      ̇   c    is slightly T dependent and can 
be roughly estimated from the relaxation time data shown in the inset 
of Fig. 1. Below, we use these values of      ̇   c    to estimate a corresponding 
critical steady-state stress of the system     c   = (    ̇   c  )  (see the inset of 
Fig. 5 in the Materials and Methods section), which plays an impor-
tant role in our reduced variable description of       (   ̇ ) . For     ̇  >     ̇   c   , the 
-relaxation process appears to merge with the -relaxation process 
when       (   ̇ )  obtains a value on the order of the “fast” relaxation time, 
f, a time scale on the order of a picosecond in laboratory units.

We now show that the changes in       (   ̇ )  and  (   ̇ )  follow an appar-
ently universal scaling behavior, and these quantities can be scaled 
onto master curves involving a reduced shear rate covering the full 
range of T and     ̇   where there are no fitted adjustable parameters. The 
behavior of the relaxation time is similar to that of the effective vis-
cosity, with an initial T-dependent plateau followed by a decrease 
with increasing     ̇   up to the point where the T dependence vanishes 
and the  value is comparable with the fast -relaxation time.

We draw upon basic scaling theory, symmetry arguments, and 
previous modeling of the shear rate dependence of the structural 
relaxation in sheared near-critical fluids to develop an approximant 
for the shear rate dependence of the structural relaxation time       (  ̇  )  of 
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Fig. 1. Shear rate dependence of viscosity and structural relaxation time. Main 
panel: Effective viscosity of all systems derived as   =  /   ̇   , where  is the steady-
state value of the stress reported in the inset of Fig. 5. The drop in viscosity  with 
increasing    ̇    is a signal of shear thinning for this model. A strong temperature de-
pendence is observed for low shear rate, while it is not apparent for shear rates    ̇    
values higher then    ̇   = 1 0   −1  . Lines are a guide for the eye. Inset: -Relaxation 
times of the systems derived from Fself(q0, t), as indicated in Fig. 2 and Eq. 2 and as-
sociated discussion.
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glass-forming liquids. First, we note  is invariant to the choice of 
the direction of shear so that       (  ̇  )  must be an even function of    ̇   . 
A natural first guess would be to assume that       (  ̇  )  is an analytic 
function of     ̇  , so that       (   ̇ )  would then be described by a series of even 
powers of     ̇  . Previous space shuttle measurements on the shear thin-
ning of Xe near its critical point (4) provide some additional guid-
ance regarding the form of this expansion, and the theory of shear 
thinning in fluids near their critical point gives us some physical and 
mathematical insights into how to model the shear thinning in glass- 
forming liquids (10). In particular, measurements on sheared near- 
critical Xe have indicated that the shear viscosity under steady shear 
is better described as a function of  ∣    ̇       (  ̇   = 0)∣  rather than even 
powers of the dimensionless shear rate,     ̇       (   ̇  = 0) . Correspondingly, 
we adopt the assumption that       (   ̇ )  is a function of  ∣    ̇       (  ̇   = 0 ) ∣ , on 
the basis of a presumed physical analogy between shear thinning in 
critical fluids and glass-forming fluids discussed below.

The dynamical renormalization group (RG) theory of shear thin-
ning in critical fluids indicates that the reduction in the “order pa-
rameter relaxation time” , the viscoelastic relaxation time describing 
the lifetime of dynamic particle clusters associated with incipient phase 
separation, can be understood from the progressive breakdown of 
these clusters under steady shear (10, 11). In the absence of steady 
shear deformation, the shear viscosity and normal stresses of the 
near-critical fluid diverge as a power of the correlation length  de-
scribing the average size of the dynamic particle clusters, where the 
precise power relating the zero-shear viscosity  (   ̇ )  to , and also the 
shear thinning exponent describing reduction in  under shear are 
both precisely predicted by the dynamical RG theory. Physically, the 
infinite order ϵ-expansion shear thinning exponent for the shear vis-
cosity can be exactly understood to arise physically from the break-
down of the critical clusters under flow (11), so that the shear viscosity 
of critical fluids is completely independent of shear rate at high shear 
rates (10), i.e., the critical clusters are completely disintegrated at high 

shear rates. Below, we estimate the shear thinning exponent describing 
the dependence of       (   ̇ )  on shear rate based on the assumption that 
the dynamic clusters of immobile particles in cooled liquids (12, 13) 
are likewise progressively broken down with increasing shear rate, so 
that       (   ̇ )  is likewise independent of       (   ̇  = 0)  in the limit of high 
shear rate. Our model of shear thinning in glass-forming liquids is 
then predicated on the hypothesis that the dynamic clusters of im-
mobile clusters of chain segments (12, 13) are the fundamental struc-
tural elements in glass-forming liquids responsible for the growth of 
the viscosity upon cooling.

The next step in our scaling argument requires a specification of 
the general functional form       (  ̇  )  that is applicable for any steady 
shear rate between the low shear rate limit of the equilibrium glass- 
forming liquid and the high shear limit, where the dynamic heterogeneity 
is presumably suppressed, and relaxation correspondingly accelerated. 
The RG theory takes a general “crossover” form in the leading-order 
calculation of many properties of condensed materials transitioning 
between limiting behaviors (or fixed points of the renormalization 
scheme). We adopt this crossover form as natural functional form 
where the limiting behaviors are the homogeneous fluid and the dy-
namically heterogeneous fluid exhibiting large transient clusters of 
immobile particle tending to increase the fluid viscosity as in near-critical 
fluids. In particular, we adopt the functional form (19)

        (   ̇  ) =     
0   
{

     1 ────────────  
 [1 + ( ∣  ̇       0  ∣   

φ
  /     * )]   

−
 
   
}

   { 1 + a + O(    2 )}   (3a)

   = [ ∣   ̇      0  ∣   
φ
  /     * ] / [1 + ( ∣  ̇       0  ∣   

φ
  /     * )]  (3b)

where a is a small constant calculated from the RG theory,      
0   ≡      

(   ̇  = 0) , and * is a constant describing the rate of crossover between 
the zero shear and high shear rate limiting scaling behavior. On the 
basis of the physical arguments given above, we also specify the 
“crossover exponent”  to equal 1. Further, in our initial work, we 
are interested in just the leading-order scaling behavior of       (   ̇ ) , so 
we adopt the simplified crossover equation

        (   ̇  ) ≈     
0   
{

     1 ────────────  
 [1 + (∣  ̇       0  ∣/     * )]   

−
 
   
}

     (4)

in an attempt to reduce our simulation estimates of       (   ̇ )  to a nearly 
universal reduced variable description. The prediction of the depen-
dence of       (   ̇ )  on     ̇   requires some means of specifying the shear thin-
ning exponent  and *, and we invoke a physical model of the influence 
of shear on glass-forming liquids based on the well-studied example of 
shear thinning in near critical liquids. In particular, we observe that 
there is only one choice of the exponent  (i.e.,  = 1) that is compat-
ible with       (   ̇ )  in Eq. 4 becoming independent of      

0    in the limit of 
high shear rates. The liquid in this high shear rate limit is presumed 
to be dynamically homogeneous, in the sense that the immobile 
clusters are broken down by shear. Note that both Eqs. 3 and 4 cor-
respond to the Carreau-Yasuda class of functions that are often used 
phenomenologically to describe the shear dependence of the viscosity 
in complex fluids (20), but our motivation for invoking this relation 
based on RG theory crossover scaling is different from conventional 
arguments for this equation.

An acceptable scaling expression for       (   ̇ )  must also address the 
fact that the relaxation time cannot become arbitrarily small at high 
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Fig. 2. Intermediate scattering function over a range of shear rates showing 
the suppression of the -relaxation process. The self-part of the intermediate 
scattering function is reported for all    ̇    for the temperature T = 0.43. The brown 
curve labeled as    ̇   = 0  is the reference equilibrium system before shearing. Circles 
are simulation data, and lines are fits to Eq. 2, with the fitted constants f = 0.3, f = 
1.3, and A = 0.73. The dashed black line indicates the onset of a plateau following 
the initial fast decay, corresponding to the limit value of the intermediate scatter-
ing function in the limit of infinite -relaxation time. The height of the plateau is 
0.73, coinciding with the value of the estimated A parameter for this T.
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shear rates, and this requires an additional modification of our scal-
ing form for       (   ̇ ) . In particular, we see in our simulations that       (   ̇ )  
decreases progressively with shear until the - and fast -relaxation 
processes merge at some “critical” shear rate. This means that       (   ̇ )  
must approach  at high shear rates,       (   ̇  → ∞) =     

∞  =       , where 
 is a temperature-insensitive time on the order of 1 ps in laboratory 
units. To account for this limiting behavior, we then revise our expres-
sion to the simple form

    
     (   ̇  ) −     

∞ 
 ─ 

    
0   −     

∞ 
   =   1 ───────────  

[1 + (∣  ̇       0  ∣/     * )]
    (5)

We find that our data best fit Eq. 5 by taking      
∞  = 0.5 . Since our 

dimensionless time unit is on the order of 1 ps, and  for our model 
glass-forming liquids and glass-forming liquids in general is on the 
order of 1 ps (21), then      

∞   has the same order of magnitude as . 
More generally, this characteristic time probably has a weak tempera-
ture dependence (as in the case of ), but this small variation is un-
essential in our data reduction below, as this only affects the data 
points at the extremely high shear rates. An analysis of the robustness 
of the data collapse as a function of      

∞  = 0.5 ± 0.1  is shown in the 
Supplementary Materials.

Many previous theoretical and experimental studies have fit shear 
relaxation data to the functional form of Eq. 4 or 5 or the more general 
Carreau-Yasuda functional form where  is commonly taken to equal 2 
and the constant of proportionality in the reduced shear rate is taken 
as an adjustable “nonuniversal” constant [see table 1.7 of Tanner’s 
Engineering Rheology (22)]. Correspondingly, we have found that we 
can fit our       (   ̇ )  data rather well following this procedure, where we 
find that * is an empirical constant whose significance was at first 
obscure to us. Previous experimental studies have introduced a re-
duced variable of the observed shear thinning that we have found to 
provide insight into *. In particular, previous experimental investi-
gations (23, 24) of  (   ̇ )  of some glass-forming polymeric liquids indi-
cated that  (   ̇ )  could be expressed in terms of a nearly universal function 
of a dimensionless shear rate defined by the ratio of the shear stress of 
the fluid in its reference zero shear Newtonian state,     N   = (   ̇  = 0)  
  ̇  , to a critical stress c signaling the onset of “elastic turbulence” where 
a sharp change in the “fluidity” of the melt and flow instabilities in 
polymer melt extrusion measurements are observed. The utilization 
of a physical condition for defining a reduced shear rate offers an at-
tractive method for making our expression for       (   ̇ )  more predictive, 
since if we could determine *, there would be no free parameters in 
our expression for       (   ̇ ) . We next consider a reduced stress description 
of our structural relaxation time data to specify the undetermined pa-
rameter * in Eq. 5.

Within the RG scaling scheme discussed above, it is natural to 
define a dimensionless shear stress by a quantity that delineates an 
approach to a strong coupling scaling regime, and we follow former 
experimental practice in how we identify our reduced stress variable 
to obtain a unified description of the shear dependence of       (   ̇ )  at 
different T and     ̇  . In particular, (23, 24) have identified a critical shear 
stress based on the observation of a transition to unstable fluid flow, 
and this stress was used to define a reduced shear stress. Correspond-
ingly, we identify the condition at which  merges with  as corre-
sponding to this flow instability condition, because this condition 
implies that the relaxation of the fluid by momentum diffusion (shear 
viscosity) has been essentially suppressed, so that the fluid can be 
viewed as roughly equivalent to an inviscid fluid from a modeling 

standpoint. “Turbulent” or “chaotic” flow is a common phenomenon 
in the flow of fluids having a low viscosity, and even if there is no 
exact theory of this ubiquitous phenomenon, this general tendency 
can be qualitatively understood from recent computational investi-
gations of particle motion in idealized inviscid fluids, where con-
vincing numerical evidence is presented that the motion of a solid 
body through an incompressible, inviscid fluid, moving irrotation-
ally and otherwise at rest, is inherently chaotic (25). On the basis of 
previous experimental practice and physical argument just stated 
for identifying the approach of  to  with the critical condition for 
unstable flow, we define our reduced stress R by N/c.This critical 
stress can be estimated both by simulation and experiment, at least 
through extrapolation. The -relaxation time of the unsheared ma-
terial is on the order of 1 ps in the Fself(q0, t) data discussed above [ 
is on the general order of 1 ps for molecular liquids (21)] and in 
measurements (26), so      

0    also becomes on this order of magnitude 
when T approaches the onset temperature TA for non-Arrhenius 
relaxation (18). If we define the critical shear rate     ̇    c    by the condition 
at which       (T,   ̇  )  equals       ( T  A  ,    ̇  = 0 ) ∼ O(1  0   −12  s) , we can estimate 
a critical shear stress     c   = (   ̇    c  )  from either simulated and mea-
sured  (  ̇  )  curves (see inset of Fig. 5 in Materials and Methods). 
Consistent with this criterion, previous experimental studies have 
identified a characteristic temperature (“pole temperature”) where 
polymer fluids appear to lose their cohesive nature and then flows 
with little resistance, a temperature that has been estimated for many 
polymers (27). To further specify an appropriate stress variable that is 
defined in terms of experimentally and computationally measurable 
properties, we also need an estimate of the relation between  (  ̇   =  
0, T ) ≡    0    and the structural relaxation time . For this estimate, we 
assume the validity of the Maxwell relation 0 = G for the fluid at 
equilibrium, where G is the experimentally measured shear modu-
lus Gg in a high frequency shear relaxation measurement, and  is 
the shear stress relaxation time. In a glass-forming liquid at low tem-
peratures, G corresponds to the “glassy modulus” and  to the relaxation 
time, but in the simple fluid regime, where appreciable chain diffu-
sion occurs on the relaxation time of the fluid, G corresponds to the 
Rouse or entanglement modulus and the relaxation time corresponds 
to the Rouse or “terminal” relaxation time of the polymer melt, re-
spectively. Our focus on  in the present paper allows us to focus on 
the influence of shear on the segmental relaxation time, which is not 
sensitive to either molecular mass or large-scale polymer relaxation 
associated with large scale chain diffusion. We may then reasonably 
take G in the Maxwell relation to correspond to the glassy modulus 
and the relaxation time  to correspond to the segmental relaxation 
time, which is of the order of . Recent work has shown that Gg of 
the glass-forming material should not be identified with the infinite 
frequency shear modulus G∞, but rather with an intermediate time 
“plateau” in the shear relaxation function corresponding to the glassy 
relaxation process, in analogy with A in the decay of the intermediate 
scattering function (see Eq. 2) (28). Consistent with our proposed data 
reduction in our       (  ̇  )  data, the observed (28) high frequency modulus 
Gg has previously been used for the effective data reduction in shear 
thinning measurements on the shear viscosity of soda-lime-silica 
glasses (29). We note that the shear viscosity of polymeric glass-forming 
liquids inherently involves diffusion and relaxation processes at the 
scale of the polymer, so the viscosity of the polymer fluid should be 
much more sensitive to the polymer massthan  and it is not clear 
that the reduced shear rate deduced above for  should apply to the 
shear viscosity of polymer melts under steady shear. The -relaxation 

 on A
pril 27, 2020

http://advances.sciencem
ag.org/

D
ow

nloaded from
 

http://advances.sciencemag.org/


Giuntoli et al., Sci. Adv. 2020; 6 : eaaz0777     24 April 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

5 of 9

time is a probe of dynamics at a segmental scale and is an inherently 
simpler quantity than the shear viscosity, diffusion coefficient, nor-
mal stresses, and other polymer melt transport properties.

Now, we have defined our reduced stress variable

     R   =    N   /    c   ≈  G  g    ̇       0   /    c        (6)

assuming the validity of the Maxwell equation for the equilibrium 
fluid (as noted above), the identification of the shear stress relax-
ation time  with the segmental relaxation time  obtained from the 
intermediate scattering function (6, 12, 24), and the definition noted 
above of the critical stress c in terms of the magnitude of the critical 
strain rate      ̇   c    at which the - and -relaxations merge. The parameter 
* of Eq. 5 is then identified with the ratio c/Gg. Eq. 5, in conjunc-
tion with the approximate relation of Eq. 6, then provides a predictive 
relation for       (   ̇ , T)  without any adjustable parameters. We show the 
comparison of Eq. 5 to our simulation data in Fig. 3. Here, we have 
estimated Gg(T) from      

0    based on the former calculations of Puosi 
and Leporini (28). We observe that Eq. 5 describes our       (   ̇ )  data very 
well over the entire accessible range of     ̇   and T.

It is also notable that the shear thinning that we observe, and its 
physical interpretation of the breakdown of self-assembled struc-
tures under flow, seem to be broadly consistent with observations on 
naturally occurring complex fluids exhibiting thermally reversible 
self-assembly (actin, tubulin, etc.) (15). All these fluids exhibit a sim-
ilar “shear thinning” at high shear rates with a shear-thinning expo-
nent near −1 in the limit of high shear rates, defining a hydrodynamic 
limit of flow instability, i.e., the flow shear stress becomes essentially 
indeterminant (15). We note that the shear thinning that we observe 
apparently has little to do with the polymeric nature of fluid but rather 
derives from the emergent dynamic heterogeneity of the cooled glass- 

forming liquid as these fluids are cooled. This is evidenced by the 
essential disappearance of the shear thinning upon raising the tem-
perature toward the onset for non-Arrhenius relaxation TA and by 
the observation of a very similar shear thinning in binary Lennard- 
Jones (LJ) fluids introduced to model metallic glass materials (see 
the Supplementary Materials). We view the polymeric nature of our 
glass-forming liquid as a convenient way to suppress any tendency 
toward crystallization so that dynamic heterogeneity occurs as an 
equilibrium phenomenon. The dynamics of crystallizing glass-forming 
materials, such as the binary LJ liquid, is complicated by equilibrium 
“aging” phenomena associated with the metastable nature of the su-
percooled state, yet this class of glass-forming liquids seems to exhib-
it a similar dynamics to our model polymeric glass-forming liquid.

By a similar reasoning to Eqs. 5 and 6, we may also deduce an ap-
proximate reduced variable description for the stretching exponent 
 (   ̇ )  of the intermediate scattering function based on the same physi-
cal picture of a breakdown of immobile clusters under shear. Stukalin 
and co-workers (30) have shown that the  exponent for stress relax-
ation in solutions in which there are growing dynamic clusters can be 
exactly described by a sigmoidal variation between 1 at high tempera-
tures to a value that saturates near 1/3 at lower temperatures, when 
the clusters have fully grown to large dimensions and persist for very 
long times. Since increasing shear has an effect on the immobile clusters 
that is similar to increasing temperature, we may generally anticipate 
a sigmoidal variation of  with shear rate as well. This expectation is 
again based on assumption that the decay of the intermediate scatter-
ing function and the structural relaxation time are physically closely 
related, a common, but unproven, assumption that explains why  is 
designated the “structural relaxation time.” At any rate, simulations 
by Riggleman and co-workers (3, 31), although for a different mode 
of deformation, have indicated a general tendency of  to increase 
under deformation, consistent with our cluster breakdown interpre-
tation of the variation of  with applied shear. For our system,  in-
creases monotonically with increasing     ̇   from a low shear rate value 
near 0 near 2/3 at     ̇  = 0  up to a high shear rate value ∞ that is larger 
than unity. ∞ apparently approaches a limiting value around 1.45 for 
large     ̇  , a value that is close to f for the fast -relaxation process. Here, 
we have further evidence that the -relaxation process is being sup-
pressed at high shear rates, where the overall relaxation progressively 
becomes more like the -relaxation process seen only at short times in 
the quiescent fluid. A shortcoming of the equilibrium polymer model 
of stress relaxation for glass-forming liquids is that this model does 
not account for the fact that the immobile particle clusters form ran-
domly branched polymers, which makes the low-temperature value 
of the  exponent somewhat larger in this type of dynamically hetero-
geneous fluid (32). Moreover, this model of a fluid exhibiting dynamic 
clustering corresponds to particles in two states at any given time: par-
ticles in polymeric clusters or undergoing Brownian motion in their 
“mobile” or “unassociated” particle state, so the short time dynamics 
in the equilibrium polymerization model is Brownian rather than in-
ertial. Despite the quantitative disparities of the solution chain assem-
bly model and the immobile clustering process observed in simulations 
of glass-forming liquids, the overall trend that we see in the shear de-
pendence of  is qualitatively consistent with the expected behavior 
arising from immobile particle cluster breakdown under shear in glass- 
forming liquids, along with the contributing factor of the emergence 
of relaxation dominated by inertia at high shear rates. In particular, 
the transition from 0 to ∞ is consistent with a transition between 
diffusion-dominated relaxation to a predominantly inertially dominated 
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Fig. 3. Reduced variable description of -relaxation time and stretching exponent 
 as a function of dimensionless shear rate. Main panel: Relaxation times       (  ̇  )  in 
the inset of Fig. 1 collapse onto a near reduced variable description after normaliz-
ing the y axis by the limiting values      ∞   and      0    and using the reduced variable N/c 
for the x axis. Details of this data reduction are described in the text. The data then 
comply with the crossover function of Eq. 5. N/c involves the ratio Gg/c, which 
ranges between 6.75 and 4.5 in the temperature range investigated. Note that the 
exponent of the power law −1 is robust, as even a change of the exponent by a few 
percent worsens the agreement with the data. Inset: Collapse of the  (  ̇  )  stretching 
exponents onto an approximate master curve after normalizing by a T-dependent 
shear rate     ̇       .
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relaxation regime where the -relaxation is entirely suppressed. For 
each temperature, we then consider the characteristic shear      ̇       for which   
(   ̇  ) −     0  _ 
    ∞  −     0 

   = 0.5 , the midpoint of the transition between the two regimes. 
     ̇       decreases with decreasing T, going from 0.077 at T = 0.55 to 0.013 
at T = 0.43. Introducing the reduced variable     ̇  /     ̇       described above, 
we find that we can achieve a collapse of all of our  data, as shown in 
the inset of Fig. 3. In particular,  (   ̇ )  can be described phenomenolog-
ically by the simple sigmoidal function corresponding to the function 
 in Eq. 3b

    (  ̇   ) −     0  ─ 
    ∞  −     0 

   =   
   ̇  /    ̇       ─ 1 +    ̇  /    ̇      

        (7)

Our scaling expression for       (   ̇ , T)  is based on the hypothesis that 
the growth of      

0    upon cooling is associated with the growth of stress- 
bearing and persistent clusters of immobile polymer segments in 
cooled liquids. We are not as confident about the universality of this 
data reduction in  (   ̇ )  as our       (   ̇ )  data because the determination of 
the crossover shear rate      ̇       relies on curve fitting, rather than on a 
predicted criterion based on a physical argument. We also do not 
presently see a fundamental reason why the magnitude of ∞ should 
generally equal 1.5 for all liquids. Nonetheless, this cross-function 
should provide a good means of quantifying this crossover from a 
purely correlative perspective.

Previous simulation studies by Starr et al. (12) have shown that 
fractal dynamic particle clusters of relatively immobile polymer seg-
ments exist in our coarse-grained polymer model and that the lifetime 
of those clusters is proportional to      0    to an excellent approximation. 
Weitz and co-workers and Tracht and co-workers have also empha-
sized the importance of such immobile particle clusters for under-
standing stress relaxation in glass-forming liquids (33, 34). Riggleman 
and co-workers have further shown that immobile clusters exist in the 
glassy state, where they persist for extremely long time scales (35). Ev-
idence for immobile particle clustering can also be inferred from nano-
scale imaging of the interface of polymeric and metallic glass-forming 
materials (36). We note that our interpretation of the reduction in the 
relaxation time through the breakdown of immobile particle clusters 
is consistent with the recent comprehensive experimental studies by 
Ediger and co-workers (2), where it is emphasized that a wide range of 
measurements indicate that the application of stress accelerates mo-
bility in immobile regions in the material much more than the mobile 
regions, as evidenced by the increase in  under deformation suffi-
cient to cause flow. Correspondingly, we next check our hypothesis 
that the variation of       (   ̇ )  and the  exponent is linked to immobile 
particle clusters by directly calculating how the cluster size is altered 
under flow.

Starr et al. (12) define an autocorrelation function defining the 
persistence of the immobile particles in their “caged” state, and this 
method was also used in a recent work on metallic glass-forming liquids 
(13), where similar results were obtained. We follow these previous 
works in our definition of the immobile particles and then determine 
how the application of shear alters the persistence time of the immo-
bile particle clusters and how this time relates to       (   ̇ , T) . Figure 4 shows 
the fraction of caged particles as a function of    ̇   . See Starr et al. (12) 
for a detailed discussion. In the present work, we confine our atten-
tion to the yz plane to be consistent with our analysis of Fself(q0, t) to 
consider how     ̇   alters the caged fraction C(t) at the relatively low tem-
perature T = 0.43.

Consistent with the equilibrium analysis of the lifetime of the 
immobile clusters under variable temperature conditions (12), the 
decay time is comparable to the structural relaxation time  derived 
from the intermediate scattering function, becoming shorter with in-
creasing     ̇  . In Fig. 4, we also show two snapshots representative of the 
behavior of the clusters of immobile particles. The 10% less mobile 
particles of the system [a rough estimate of the fraction of caged par-
ticles, see Figure 23 of (12)] in a time       (   ̇ )  are highlighted for the sys-
tem at equilibrium and at the highest     ̇  . Different clusters of neighbor 
particles (chosen with a cutoff radius of rc = 1.46) have a different 
color. It is apparent that while the equilibrium system shows larger 
immobile particle clusters, they are indeed progressively broken down 
into smaller and more spatially heterogeneous clusters with increas-
ing     ̇  , an effect comparable with an increasing T at equilibrium.

Of course, the mobile particles also play an important role in 
glass-forming liquids at equilibrium (12) as these particle determine 
the rate at which particle exchange between their mobile and immo-
bile states, and string-like motion has been observed in experimen-
tal systems under shear (15, 14). A more detailed analysis of the 
string-like motion associated with the most mobile particles under 
shear will be presented in future works (see Discussion).

DISCUSSION
Given the practical importance of material deformation and flow on 
the processing and performance of glass-forming polymer materials, 
there have naturally been numerous experimental and computational 
studies of how relaxation and transport processes in glass-forming 
materials are influenced by molecular and thermodynamic proper-
ties and flow conditions. There is an extended scientific literature on 
this topic, recently reviewed by Hebert et al. (37), who summarize the 
findings of numerous experimental and computational studies. The 

Fig. 4. Time dependence of the fraction C(t) of caged particles confined by 
neighbors for T=0.43 and variable    ̇   . The decay time for the fraction of caged 
particles is comparable to the shear-dependent relaxation time shown in Fig. 2. 
The inversion point at t = 1 is due to the definition of the caged fraction and the 
decreasing dynamical heterogeneity for higher    ̇   . The two snapshots use larger, 
colored spheres to highlight the less mobile particles measured after t =  at equi-
librium and for the highest    ̇   , respectively. The colors correspond to the size of 
the clusters of neighbor immobile particles. The large clusters in the equilibrium 
system (blue beads in the top right snapshot) are broken down and spatially dis-
persed under high    ̇   . More quantitatively, the average cluster sizes for the two 
snapshots are 4.0 and 2.4, respectively.

 on A
pril 27, 2020

http://advances.sciencem
ag.org/

D
ow

nloaded from
 

http://advances.sciencemag.org/


Giuntoli et al., Sci. Adv. 2020; 6 : eaaz0777     24 April 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

7 of 9

measurements summarized in this work indicate, under constant 
strain rate conditions and for temperatures 10 K to 20 K below Tg, that 
the relaxation time in the postyield regime decreases with an apparent 
power law behavior, with an exponent close, but slightly below, −1. A 
corresponding reduction in the relaxation exponent  with strain rate 
was also observed. For example, Hebert and co-workers indicate a 
shear thinning exponent of about −0.8 to −0.9 for cross-linked poly-
mers slightly below Tg, which compares well with our simulations at a 
much higher shear rate and at a temperature above Tg. For example, a 
log-log plot of our raw data of  as a function of     ̇   at the lowest tem-
perature simulated (T = 0.43) indicates a power law dependence with a 
slope of −0.79 ± 0.03 (see the Supplementary Materials for graphical 
illustration of this finding). The dynamic mean field theory of Schweizer 
and co-workers (38) also indicates an effective power law having an 
exponent with similar magnitude (≈0.86) for shear thinning flow 
when the results are analyzed in a similar fashion. We note that the 
model of Schweizer and co-workers (38) and its antecedent mean-field 
model by Eyring, emphasizing changes on the activation energy for 
relaxation under material deformation, cannot address changes in  
since this class of models assumes that glassy materials are perfectly 
homogeneous.

There has apparently been no previous attempt to obtain a uni-
versal reduced variable description of       (  ̇  , T)  in simulated glass- 
forming liquids, as we have obtained in the present paper. Previous 
experimental studies on inorganic (4) and polymeric liquids (23, 24) 
have introduced reduced variable descriptions of the shear viscosity 
that are close in spirit to our simulation findings, however. Our       (   ̇ )  
data reduction is based on fluid properties that may be determined 
either by experiment or simulation, so it should be possible to test 
our crossover expression directly with experimental measurements 
of intermediate scattering function or other measurement of seg-
mental relaxation in polymeric or small-molecule liquids. We also 
gain qualitative insight into previous experiments into the shear rate 
dependence of segmental relaxation in glassy polymer materials 
(1, 2). The small variability in the apparent inverse power law scaling 
with shear rate probably derives from the fact that power law scaling 
in Eq. 5 is only approached asymptotically at extremely large strain 
rates. We then suggest that the somewhat smaller exponents, sometimes 
reported in glass-forming liquids and also seen in measurements on 
sheared self-assembled protein solutions (15), are probably a conse-
quence of this type of crossover effect (see the Supplementary Materials).

We briefly comment on modeling changes of  based on the as-
sumption of high shear limit corresponding to a quasi-static deforma-
tion of the material in the limit of zero temperature. Our simulations 
indicate that the dynamics in the high shear limit approaches a state 
that is more similar to a gas than a zero-temperature solid. For our 
highest shear rates, the structural relaxation time is reduced by steady 
shear to a point that the material can no longer support any shear 
stresses at any frequency and particle motions become nearly ballistic 
rather than caged by surrounding particles (see the Supplementary 
Materials where the near ballistic nature of molecular displacements 
are indicated at high shear rates). At extremely high shear rates, but 
lower than the “critical” value at which       (   ̇  ) ≃       , thermally activat-
ed transport remains important and an increasing shear rate plays a 
role in reducing the structural relaxation time that is similar to in-
creasing temperature. There is though no perfect equivalence between 
varying shear rate and temperature, since shear rate and temperature 
have different influence on the modes amplitude A (see the Supple-
mentary Materials). Moreover, the potential energy landscape be-

comes fundamentally altered when shear is imposed so that drawing 
an equivalence of the material under steady shear to a material at 
equilibrium cannot be possible beyond the weak deformation case.

This lack of equivalence between strain rate and temperature has 
also been demonstrated in the four-point density correlation analysis 
where anisotropy in transport is indicated in the steadily strained ma-
terial (6). The two-point density correlation as well as the static and 
dynamic structure factors are insensitive to this shear-induced an-
isotropy, and we view this as roughly supporting the idea of a shear 
rate–dependent effective temperature in a mean field sense. At any rate, 
relaxation in sheared glass-forming liquids remains an activated process, 
and increasing the shear rate progressively suppresses -relaxation 
processes mediated by diffusion in favor of inertial relaxation pro-
cesses and the same general trends arise when we raise the tempera-
ture of the fluid toward its liquid-vapor critical point.

In summary, we find a predictive relation for the structural re-
laxation time under shear       (   ̇ , T)  with no adjustable parameters that 
takes into account the      

0    and viscoelastic modulus Gg of the liquid at 
equilibrium. The theoretical framework adopted is consistent with the 
idea that the clusters of immobile particles relevant for the dynamics 
of supercooled liquids at low temperatures are broken down under 
shear (37). It should be appreciated that clusters of highly immobile 
particles that also arise in cooled liquids are implicated in understand-
ing the rate of molecular diffusion and relaxation processes, and those 
clusters have been emphasized by Onuki and co-workers (39) in un-
derstanding shear thinning of model glass-forming liquids.

Mobile particles involving collective particle exchange have been 
shown to be highly correlated with changes of the activation free en-
ergy of diffusion and relaxation so that these clusters must also influ-
ence  through their effect on the rate at which the immobile particle 
exchange with the surrounding fluid particles. It is this type of change 
in the activation free energy under deformation that is envisioned in 
the Eyring model, and evidence indicates that this type of model has 
merits at low degrees of deformation before the material exhibits “yield” 
and a transition to material flow. It is anticipated that this distinct 
type of dynamic heterogeneity (12) plays an important role in un-
derstanding shear banding, plastic instabilities, and other instabilities, 
brought about by the progressive conversion of immobile particles 
into mobile particles through the application of shear. This idea is 
supported by experimental reports of increases in mobility by many 
orders of magnitude in shear bands (40) and modeling indicating 
that shear banding occurs from the deformation-induced emergence 
of regions of transiently high mobility in the glass-forming liquid 
(41). Simulation observations of large-scale rearrangements of rela-
tively mobile particles undergoing cooperative rearrangements in 
metallic glass materials undergoing plastic deformation (42), and an 
observed quantitative relation in molecular dynamics simulations 
between the extent of string-like collective motion and the activation 
energy of Johari-Goldstein -relaxation process in metallic glasses, 
a relaxation process highly correlated with the occurrence of plastic 
deformation and brittleness of metallic glasses (43), further support 
this possibility. The emergence and significance of the mobile parti-
cle clusters under strong shear conditions have been emphasized by 
Tanaka and co-workers (6), on the basis of a four-point density cor-
relation analysis in which the corresponding cooperative motions 
are found to be more prevalent than for Fself(q0, t). There have also 
been experimental (14) and simulation (44) reports of the appearance 
of string-like organization of particles in colloids and molecular fluids 
at high rates of     ̇  . Preliminary results for our sheared fluid indicate 
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that string-like collective motion is also suppressed under steady shear 
up to critical shear rates close to      ̇   c   , comparable to an increase in tem-
perature (18). For     ̇  ⩾     ̇   c   , however, we find that the string-like col-
lective motion is enhanced again. We plan to investigate the impact 
of the mobile particle clusters on the evolution of stress in sheared 
fluids and under physical aging conditions in future work.

As a final point, we note that care must be taken in inferring change 
of the shear viscosity based on estimates of the relaxation time       (   ̇ , T) . 
Although we may expect  (   ̇ )  to be reasonably estimated by a Max-
well model of a viscoelastic fluid,  (   ̇  ) ≈  G  g   (   ̇ , T) , the effective high- 
frequency modulus Gg can also be expected to depend on     ̇  , since the 
application of shear alters the cohesive interaction strength of the flu-
id. Consistent with this expectation, we find that  (   ̇ )  can be described 
by a reduced shear rate expression, but where the shear thinning expo-
nent is closer in magnitude to 2/3 rather than 1. We will report on this 
phenomenon, along with the dependence of variation of the first and 
second normal stresses (N1 and N2) under shear deformation, in a sep-
arate publication.

MATERIALS AND METHODS
We model polymers as fully flexible linear chains of beads linked 
by harmonic springs. Each chain has M = 20 monomer, far below 
the entaglement regime. Nc = 500 chains are simulated for each sys-
tem, for a total of N = 10,000 monomers. Nonbonded monomers 
belonging to the same or different chains interact with a truncated 
LJ potential

   U   LJ (r ) =  [  (         *  ─ r   )     
12

  − 2   (         *  ─ r   )     
6

  ] +  U  cut    (8)

up to rcut = 2.5, * = 21/6 is the position of the potential minimum with 
depth . The value of the constant Ucut is chosen to ensure ULJ(r) = 0 
at r ≥ rc = 2.5 . Bonded monomers interact with a harmonic poten-

tial Ub(r) = k(r − r0)2 with k = 555.5 /2 and r0 = 0.97 . Henceforth, 
all quantities are expressed in terms of reduced LJ units, i.e.,  = 1, 
 = 1, with unit monomer mass and Boltzmann constant. The reduced 
units can be mapped onto physical units relevant to generic nonequi-
librium fluids, by taking molecular dynamics (MD) time, length, and 
energy units as corresponding roughly to about 2 ps, 0.5 nm, and 
3.7 kJ/mol, respectively. MD simulations were carried out with the 
LAMMPS (large-scale atomic/molecular massively parallel simulator) 
code (http://lammps.sandia.gov). The systems were initially equil-
ibrated in the NPT ensemble (constant number of particles N, pressure 
P and temperature T) using a Nose-Hoover thermostat and barostat 
with 〈P〉 = 0 to allow full correlation loss of the end-to-end vector of 
the polymer chains. After equilibration, shear deformation was ap-
plied to the simulation box at fixed shear rate in the xy plane. Periodic 
boundary conditions are used during the NPT equilibration. A range 
of temperatures from T = 0.43 to T = 0.55 and a range of shear rates 
from     ̇  = 1 0   −5   to     ̇  = 1  0   0   were explored. Twelve independent replicas of 
each state were considered to ensure suitable statistical average.

Deformation protocol
Simple shear is performed in the xy plane at fixed rate     ̇  . The deforma-
tion is performed at constant volume. The SLLOD equations of mo-
tion are used along with the thermostat, and Lees-Edwards boundary 
conditions are applied. The microscopic stress xy is considered as a 
function of the total strain   =    ̇ t  and defined as the average value of 
the per-monomer stress    xy  i   

   σ  xy   =   1 ─ N    ∑ 
i=1

  
N

     σ xy  i    (9)

where the per-monomer stress in the atomic representation is

   σ xy  i   =   1 ─ 2v    ∑ 
j≠i

      r  xij    F  yij    (10)

where Fxkl and rxkl are the x components of the force between the kth 
and the lth monomer and their separation, respectively, and v is the 
average per-monomer volume, i.e., v = L3/N, where L is the box size.

The main panel of Fig. 5 reports the typical stress loading curve 
for our systems during shear. The stress along the plane of shearing 
xy initially increases with increasing strain for small deformations. 
After reaching a maximum value (the yield strength), it then drops 
to a lower value (strain softening) and remains constant. The prop-
erties of the stress overshoot are widely studied and present a rich 
phenomenology (38), but this interesting transient effect is not the 
focus of the present paper. We focus on the steady-state flow regime 
that develops after the overshoot. Every system under study is initial-
ly deformed up to total strain  = 102, beyond the overshoot that is 
observed around  ∼ O(1) for all temperatures and shear rates studied. 
The inset of Fig. 5 shows the steady-state stress value for all the T and 
    ̇   investigated. All results shown in the Results are taken in the steady-
state regime, starting from the end of this initial deformation.

SUPPLEMENTARY MATERIALS
Supplementary materials for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/17/eaaz0777/DC1
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Fig. 5. Shear stress versus total strain should approach steady flow limiting 
behavior. Main panel: Typical loading curve of the shear stress as a function of 
total strain for the system at T = 0.55,    ̇   = 1 0   −1  . An overshoot of the stress is ob-
served after an initial linear increase, with a maximum around  = 2.6. After the 
stress drops, a steady flow regime is observed where the system is stationary and a 
quasi-equilibrium condition is established. Inset: Value of the steady-state stress 
for all T and    ̇    considered. A strong T dependence is observed for low    ̇   , while it 
disappears for shear rates higher than    ̇   = 1 0   −1  . Lines are a guide for the eye. Sim-
ilar results were found for an LJ binary glass-forming mixture (7).
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