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Abstract
A recent trend in algorithm design consists of
augmenting classic data structures with machine
learning models, which are better suited to reveal
and exploit patterns and trends in the input data
so to achieve outstanding practical improvements
in space occupancy and time efficiency. This is
especially known in the context of indexing data
structures where, despite few attempts in evalu-
ating their asymptotic efficiency, theoretical re-
sults are yet missing in showing that learned in-
dexes are provably better than classic indexes,
such as B+-trees and their variants. In this paper,
we present the first mathematically-grounded an-
swer to this open problem. We obtain this re-
sult by discovering and exploiting a link between
the original problem and a mean exit time prob-
lem over a proper stochastic process which, we
show, is related to the space and time occupancy
of those learned indexes. Our general result is
then specialised to five well-known distributions:
Uniform, Lognormal, Pareto, Exponential, and
Gamma; and it is corroborated in precision and
robustness by a large set of experiments.

1. Introduction
Very recently, the unexpected combination of data struc-
tures and Machine Learning (ML) has led to the develop-
ment of a new area of algorithmic research, called learned
data structures. The key design idea consists of aug-
menting — and sometimes even replacing — classic build-
ing blocks of data structures, such as arrays, trees or hash
tables, with ML models, which are better suited to reveal
and exploit patterns and trends in the input data. This fea-
ture, orchestrated with proper algorithms, has led to out-
standing practical improvements in space occupancy and
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time efficiency over a plethora of problems and applica-
tions, such as databases, search engines, operating systems,
sorting algorithms (Ferragina & Vinciguerra, 2020a).

The most successful example of the interplay between data
structures and machine learning is the indexable dictionary
problem, which asks to store a set S of n keys over a uni-
verse U (e.g. reals, integers, etc.) in an index structure that
efficiently supports the following query operations:

• member(x) = TRUE if x ∈ S, FALSE otherwise;

• predecessor(x) = max{y ∈ S | y < x};
• range(x, y) = S ∩ [x, y].

For this problem, many learned data structures (or learned
indexes, as they are called in this case) have been proposed.
Examples include the ones in (Ao et al., 2011; Kraska et al.,
2018; Galakatos et al., 2019; Ding et al., 2020; Ferragina &
Vinciguerra, 2020b) and others surveyed in (Ferragina &
Vinciguerra, 2020a). The common idea is that indexes are
models that can be trained to map keys to their location in
the sorted S, and this mapping is enough to implement the
above queries.

To clarify, let us denote by rank(x) the primitive that re-
turns, for any key x ∈ U , the number of keys in S which are
smaller than x, and let A be the array storing the keys of S
in sorted order. Then, member(x) can be implemented by
checking whether A[rank(x)] = x; predecessor(x) con-
sists of returning A[rank(x) − 1]; and range(x, y) con-
sists of scanning the array A from position rank(x) up to
the first key larger than y. Given rank , we reformulate
the indexable dictionary problem as a supervised learn-
ing task over a dataset of points {(x, rank(x))}x∈S in
which we look for a model f : U → {0, . . . , n − 1} map-
ping keys to their position in A that minimises the error
|f(x) − rank(x)| over all x ∈ U . The possible presence
of an error imposes also the design of proper algorithms
that subsequently correct f(x) to get the exact rank(x),
and thus answer correctly the query on x. As an example,
we can use a binary search in A in a neighbourhood of size
err = maxx∈U |f(x) − rank(x)| around the approximate
position f(x). An illustrative example is given in Figure 1.

We observe that this has been a significant breakthrough
in the design of indexes, because the resulting learned data
structure answers queries in O(log err) time plus the cost
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Figure 1. A set S of ten keys stored in a sorted arrayA and the cor-
responding set of points D = {(x, rank(x))}x∈S in the Carte-
sian plane. The linear model f , computed using ordinary least
squares on D, estimates that x = 49 is in position r = bf(x)c =
4, but the true rank of x is 6 (hence err = 2). We can fix the error
incurred by f via a binary search on A[r − err , r + err ].

of computing f , and this might be independent of the num-
ber of keys in S. However, we have to notice that although
f could be made as much sophisticate as needed to min-
imise the error, there is a non-negligible side-effect on the
overall efficiency of the learned index: the more complex
is f , the worse is the query time efficiency and its space oc-
cupancy. Consequently, it is not so obvious whether classic
index structures, such as B-trees and their variants (Vitter,
2001), are better or worse than a learned index.

State-of-the-art learned indexes. Starting from the
premises above, a significant flow of research has inves-
tigated the trade-off among the complexity of the model f ,
the time to compute and correct the prediction f(x), and
the space needed to store f . Ao et al. (2011) used simple
least-squares linear regression. Kraska et al. (2018) pro-
posed a fixed hierarchy of ML models and found that lin-
ear regression models were the most effective ones. Other
researchers improved these results by proposing dynamic
learned indexes based on a Piecewise Linear Approxima-
tion (PLA) with a guaranteed maximum error ε ≥ 1 (in
practice, ε is of the order of hundreds or thousands). In par-
ticular, Galakatos et al. (2019) orchestrated the segments
composing the PLA with a classic B+-tree, while Ferragina
& Vinciguerra (2020b) introduced sophisticated and theo-
retically more efficient recursive schemes based on optimal
PLAs, i.e. PLAs with the minimum number of segments.

In practice, learned indexes are fast and occupy a space
which is up to several orders of magnitude smaller than
classic data structures on several synthetic and real datasets
(Kraska et al., 2018; Galakatos et al., 2019; Kipf et al.,
2019; Ding et al., 2020; Kipf et al., 2020; Ferragina & Vin-
ciguerra, 2020b). However, it is not yet known whether
these learned indexes are provably better than classic data
structures. In fact, the only known mathematical relation
that ties the number n of input keys, the error ε and the
size s of the PLA-model (i.e. the number of its segments)
is s ≤ n/2ε (see Ferragina & Vinciguerra, 2020b). This
shows that a learned index is never worse than a B-tree
with fan-out B (just take ε = Θ(B)), but it does not theo-
retically ensure that it is provably more succinct than it.

As a consequence, learned indexes can be fully recognised
as more efficient substitutes of classic data structures only
if research corroborates with solid mathematical grounds
also their excellent performance in space, currently exper-
imented only on some specific datasets. This amounts to
explain from a theoretical perspective their “several orders
of magnitude smaller” space occupancy, which in turn con-
sists of showing a dependence in the space complexity be-
tween n and s of the form s = O(n/εc), with c > 1.

Our contribution. We make the first step towards ex-
plaining why learned indexes are so effective with respect
to traditional indexes.

We obtain this result by considering the gaps between con-
secutive keys in the input S, taken in sorted order, and
assuming that they are drawn according to a given dis-
tribution. This corresponds to the general and realistic
scenario of time series data. Then, since the PLA-model
at the core of a learned index consists of a sequence of
s segments which are at most ε-away from the points
{(x, rank(x))}x∈S , we turn the problem of determining s
into a Mean Exit Time (MET) problem over a stochastic
process which estimates how many gaps i have to be drawn
from the given distribution until the resulting point (xi, i) is
farther than ε from a segment with a properly defined slope.
Now, since this is a fixed slope whereas the algorithm used
in Ferragina & Vinciguerra (2020b) (and due to O’Rourke,
1981) computes the “best” slope, namely the one that in-
duces the longest segment, our result on MET provides a
lower bound to the average length of the segments com-
puted by the above (optimal) algorithm, and thus an upper
bound to their number s and to the space taken by the index.

Surprisingly, we show that for any gap distribution with
finite variance, the average segment length scales at least
quadratically with εwhich, in turns, means that s decreases
as O(n/ε2). Specifically, the average segment length is
proved to be κε2, for a constant κ = µ2/σ2 that depends
only on the mean µ and the variance σ2 of the gap distri-
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bution (Theorems 1–3). We then strengthen this result by
showing that the upper bound on s = O(n/ε2) holds al-
most surely (Theorem 4). Additionally, we specialise The-
orem 1 to five well-known distributions (Corollary 1). Fi-
nally, we perform a thorough set of experiments corrobo-
rating that our theoretical achievements are highly precise.

This leads us to conclude that learned indexes are prov-
ably better than classic indexing data structures not only in
time efficiency but also in space occupancy, and thus they
constitute a robust and effective indexing choice for mod-
ern applications on big data, where space compression and
query efficiency are mandatory.

As an illustrative example, let us consider the case of an
external-memory setting with pages of B keys (typically B
is of the order of thousands). Here, a classic B+-tree takes
Θ(n/B) space and supports queries in O(logB n) I/Os.
Given our result, the PGM-index1 of Ferragina & Vin-
ciguerra (2020b) answers queries as fast as a B+-tree while
improving its space to O(n/B2) (see Corollary 2).

In the concluding section, we will comment on some chal-
lenging issues that our analysis raises and that deserve fur-
ther study and experimentation.

2. Preliminaries
We model the sorted input keys x0, x1, . . . as a stream gen-
erating the gaps g1, g2, . . . between consecutive keys so
that the ith input key is xi =

∑i
j=1 gj (for convenience, we

fix x0 = 0). We assume that the sequence gaps {gi}i∈N is a
realisation of a random process {Gi}i∈N, where theGis are
positive independent and identically distributed (iid) ran-
dom variables with probability density function (pdf) fG,
mean E[Gi] = µ and variance Var[Gi] = σ2. Then, we
define the random variables modelling the cumulative sum
as Xi =

∑i
j=1Gj (for i = 1, 2, . . . ) and fix X0 = 0.

In this setting, our problem is to find a linear model that
approximates the points (0, 0), (X1, 1), (X2, 2), . . . in the
Cartesian plane within a given maximum error ε ≥ 1, mea-
sured along the y-axis.

Now, let us consider the two parallel lines y = mx ± ε,
for an m to be chosen later, and the strip S of height 2ε
between them, i.e. S = {(x, y) | mx− ε < y < mx+ ε}.
As motivated in Section 1, among all the possible choices
of the linear model (i.e. values of m), we want the one that
maximises |S|. Hence, we are interested in the slope m
that maximises the smallest i such that the corresponding
point (Xi, i) is outside S. Formally, we are interested in
maximising the following random variable:

i∗ = min{i ∈ N | (Xi∗ , i
∗) /∈ S}. (1)

1https://pgm.di.unipi.it

Since i∗ is a random variable, we will find its expected
value over different realisations of the sequence {Xi}i∈N
as a function of ε,m, µ, σ2. An example of a realisation is
depicted in Figure 2a.

3. Main Results
We recall that the value of i∗ depends on the choice of the
slope m and the objective of the algorithm is to maximise
the expected value of i∗. Our main result is that, in a suit-
able limit, this maximum is achieved when m = 1/µ, and
in this case the number of keys covered scales as Θ(ε2).

More precisely, we can prove the following theorems and
corollaries characterising i∗ on general or specific distribu-
tions of the gaps between consecutive keys in S.

Theorem 1. Given any ε ≥ 1 and a sorted set S of n input
keys, suppose that the gaps between consecutive keys in S
are a realisation of a random process consisting of posi-
tive, independent and identically distributed random vari-
ables with mean µ and variance σ2. Then, if ε is sufficiently
larger than σ/µ, the expected number of keys covered by a
segment with slope m = 1/µ and maximum error ε is

µ2

σ2
ε2.

The following theorem shows that a segment with slope
m = 1/µ is on average the best possible choice in terms of
the number of ε-approximated keys.

Theorem 2. Under the assumptions of Theorem 1, the
largest expected number of keys covered by a segment with
maximum error ε is achieved for the slope 1/µ.

The variance of the length of the segment with slope m =
1/µ can also be written in closed-form.

Theorem 3. Under the assumptions of Theorem 1, the vari-
ance of the number of keys covered by a segment with slope
1/µ and maximum error ε is

2

3

µ4

σ4
ε4.

By instantiating some common probability distributions in
Theorem 1, it follows the next key corollary.

Corollary 1. Under the assumptions of Theorem 1, the ex-
pected number of keys covered by a segment is:

• 3 (a+b)2

(b−a)2 ε
2 if the gaps are iid and uniformly distributed

with minimum a and maximum b.

• α(α− 2)ε2 if the gaps are iid and Pareto (power law)
distributed with minimum value k > 0 and shape pa-
rameter α > 2.

https://pgm.di.unipi.it
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Figure 2. An example of random walk (a) and the corresponding transformed random walk (b).

• ε2/(eσ2 − 1) if the gaps are iid and lognormally dis-
tributed with mean µ and variance σ2.

• ε2 if the gaps are iid and exponentially distributed
with rate λ > 0.

• kε2 if the gaps are iid and gamma distributed with
shape parameter k > 0 and scale parameter θ > 0.

Finally, we can show that the number of segments s which
have slope m = 1/µ and guarantee a maximum error ε on
a stream of length n is very concentrated around Θ(n/ε2).

Theorem 4. Under the assumptions of Theorem 1, the
number of segments s needed to cover a stream of length
n with error at most ε converges almost surely to

σ2

µ2

n

ε2
,

and the relative standard deviation of s converges to zero
as 1/

√
n when n→∞.

In the following, given this last result, we will say that the
number of segments s is O(n/ε2) “with high probability”
(Motwani & Raghavan, 1995).

The above theorems are based on the assumption that gaps
are independent and identically distributed. In applications
this condition might not be true and thus it is important to
assess whether our results hold, even in some asymptotic
regime, when gaps are autocorrelated. The proofs of our
theorems rely on Central Limit Theorem (CLT), whose do-
main of validity includes also dependent random variables.
For example, if the time series of gaps is weakly stationary,

CLT holds (Hamilton, 1994) and our theorems can be ex-
tended accordingly. More generally, one can expand even
further the class of time series where CLT holds by using
the concept of strong mixing (or α-mixing, see Billingsley,
1995) which, broadly speaking, means that gaps temporally
distant from one another are nearly independent.

In summary, when autocorrelation of gaps are not extreme,
we expect our theorems to continue to hold. Further details
and a version of the theorems with extended hypotheses
will be given in the journal version of the paper.

3.1. Proof of Theorem 1

Let us consider the Cartesian plane introduced in Section 2.
By swapping abscissas and ordinates of the plane, the equa-
tion of the two parallel lines becomes y = (x ± ε)/m (x
and y are the new coordinates), and the sequence of points
becomes {(i,Xi)}i∈N. This sequence describes a discrete-
time random walk with iid increments Gi = Xi − Xi−1.
The main idea of the proof is to determine the Mean Exit
Time (MET) of the random walk out of the strip delimited
by the two lines above, i.e. the mean of

i∗ = min

{
i ∈ N

∣∣∣ Xi >
i

m
+

ε

m
∨ Xi <

i

m
− ε

m

}
.

(2)

To simplify the analysis, we consider the following trans-
formed random walk, where we use the equality Xi =∑i
j=1Gj and set Wj = Gj − 1/m:

Zi = Xi −
i

m
=

i∑
j=1

(
Gj −

1

m

)
=

i∑
j=1

Wj .
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The objective (2) can be thus rewritten as

i∗ = min {i ∈ N | Zi > ε/m ∨ Zi < −ε/m} ,

which is the exit time of the transformed random walk
{Zi}i∈N whose increments Wj are iid with mean E[Wj ] =
E[Gj−1/m] = µ−1/m, variance Var[Wj ] = Var[Gj ] =
σ2 and pdf fW (w) = fG(w + 1/m).

An example of this transformed random walk is depicted in
Figure 2b above.

Let T (z0) = E[i∗ | Z0 = z0] be the MET if the random
walk {Zi}i∈N starts from z0. In our case, it starts from
z0 = y0 − 0/m = 0 (since y0 = 0). It is well known
(Masoliver et al., 2005; Redner, 2001) that T (z) satisfies
the Fredholm integral equation of the second kind T (z0) =

1 +
∫ ε/m
−ε/m fW (z− z0)T (z) dz, which for our problem can

be rewritten as

T (z0) = 1 +

∫ ε/m

−ε/m
fG

(
z − z0 +

1

m

)
T (z) dz. (3)

While solving exactly the integral equation (3) is in gen-
eral impossible, it is possible to give a general limiting re-
sult when ε is sufficiently large. More specifically, when
m = 1/µ, the transformed random walk Zi has increments
with zero mean and variance equal to σ2, and the bound-
aries of the strip are at±εµ. When σ � εµ or equivalently
ε � σ/µ, the Central Limit Theorem tells us that the dis-
tribution of the position of the random walker is Normal
because many steps are necessary to reach the boundary.
In this case, the transformed random walk converges to a
Brownian motion (or Wiener process) in continuous time
(Gardiner, 1985).2

Now, it is well known (Gardiner, 1985) that for a driftless
Wiener process the MET out of an interval [−δ/2, δ/2] is

T (x) =
(δ/2)2 − x2

σ2
, (4)

where x ∈ [−δ/2, δ/2] is the value of the process at the
initial time. In our case, x = 0 and δ = 2ε/m = 2εµ, thus
we finally have the statement of the theorem.

3.2. Proof of Theorem 2

Using an approach similar to the one in Section 3.1, we
notice that, if m 6= 1/µ, the transformed random walk
Zi = Xi − 1/m =

∑i
j=1Wj has increments with mean

d ≡ E[Wj ] = µ − 1/m and variance σ2 (see the previous
section). For large ε the process converges to a Brownian
motion with drift. The MET out of an interval [−δ/2, δ/2]

2A mathematical more precise but equivalent statement can be
done using the Donsker’s theorem (Billingsley, 1999).

for a Brownian motion with drift coefficient d 6= 0 and dif-
fusion rate σ can be proved to be

T (0) =
δ

2d

[
edδ/σ

2

+ e−dδ/σ
2 − 2

edδ/σ2 − e−dδ/σ2

]
.

Clearly, by taking the limit d → 0 (i.e. µ → 1/m), one
obtains Equation 4. As in the proof of Theorem 1, we have
δ = 2ε/m, thus substituting it in the equation above we get

T (0) =
ε

md
tanh

(
εd

mσ2

)
.

It is easy to see that the maximum of T (0) is achieved for
d = 0, i.e. when m = 1/µ, which is exactly the setting
considered in Theorem 1.

3.3. Proof of Theorem 3

Following Gardiner (1985, Equation 5.2.156), the second
moment T2(x) of the exit time of a Brownian motion with
diffusion rate σ starting at x is the solution of the partial
differential equation

−2T (x) =
σ2

2
∂2x T2(x),

where T (x) is the MET out of an interval [−δ/2, δ/2] (see
Equation 4), with boundary conditions T2(±δ/2) = 0.
Solving for T2(x), we get

T2(x) =
x4 − 2δ2x2/3 + 5δ4/16

3σ4
.

Setting x = 0 and δ = 2ε/m = 2εµ, we find that the
second moment of the exit time starting at x = 0 is

T2(0) =
5

3

µ4

σ4
ε4,

thus

T2(0)− [T (0)]2 =
2

3

µ4

σ4
ε4.

3.4. Proof of Theorem 4

Consider a process that starts a new segment j + 1 as soon
as the current one j cannot cover more than i∗j keys without
exceeding the error ε (see Equation 2). We define the total
number of segments s on a stream of length n as

s(n) = sup{k ≥ 1 | Sk ≤ n},

where Sk = i∗1 + i∗2 + · · ·+ i∗k.

We notice that {s(n)}n≥0 is a renewal counting process
of non-negative integer random variables i∗1, . . . , i

∗
k, which

are independent due to the lack of memory of the random
walk. Let E[i∗j ] = 1/λ and Var[i∗j ] = ς2. It is well known
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(see Embrechts et al., 1997, §2.5.2) that E[s(n)] = λn +
O(1) as n → ∞, Var[s(n)] = ς2λ3n + o(n) as n → ∞,
and that s(n)/n

a.s.−−→ λ. In our case (see Theorems 1 and 3),
it holds

1

λ
=
µ2

σ2
ε2 and ς2 =

2

3

µ4

σ4
ε4,

hence s(n)/n
a.s.−−→ λ = (σ/(µ ε))2. Finally, the following

ratio converges to zero as n→∞:√
Var[s(n)]

E[s(n)]
→
√
ς2λ

n
=

√
2

3

µε

σ

1√
n
.

4. Some Implications
We now mention some key implications of Theorems 1
and 4 that go beyond the realm of learned indexes. The
computation of a Piecewise Linear Approximation (PLA)
has indeed gathered attention in many other fields, such
as computational geometry, time series approximation, im-
age processing, database, geographic information systems,
machine learning, etc., with a variety of error definitions,
constraints, and proposed algorithms (see e.g. O’Rourke,
1981; Keogh et al., 2001; Elmeleegy et al., 2009; Chen
& Wang, 2013; Xie et al., 2014, and refs therein). Theo-
rem 4 can eventually give an estimate of the number of seg-
ments computed by those algorithms when they are given
a dataset satisfying the assumptions of Theorem 1. In par-
ticular, taking as a reference the linear time algorithm for
computing the optimal (i.e. minimum-sized) PLA P with
maximum error ε, that we could trace back to O’Rourke
(1981), we have that the number of segments composing P
is bounded above by O(nσ2/(µε)2) with high probability
(by Theorem 4).

In light of our new results, we can strengthen the solution
of Ferragina & Vinciguerra (2020b) to the indexable dictio-
nary problem by showing that their PGM-index achieves
the same query time complexity of a B+-tree, but within
an improved space occupancy of O(n/B2) (versus the
Θ(n/B) space of a B+-tree).

Corollary 2. Let S and n be as in Theorem 1. There exists
a data structure on S, the PGM-index, that uses O(n/B2)
space with high probability, and answers rank, member-
ship and predecessor queries in optimal O(logB n) I/Os,
whereB is block size of the external-memory model. Range
queries are answered in extra (optimal) O(K) time and
O(K/B) I/Os, where K is the number of keys satisfying
the range query.

Proof. Since the PGM-index is built on the s segments
computed by the optimal algorithm of O’Rourke (1981),
then the minimality of s and Theorem 4 imply that s =
O(n/ε2) with high probability (by Theorem 4). Substitut-
ing this bound into Theorem 1 of Ferragina & Vinciguerra
(2020b) and setting ε = Θ(B) the claim follows.

5. Experiments
We start with an experiment aimed at validating our main
result (Theorem 1).3 We generated 107 random streams
of gaps for each of the following distributions: Uniform,
Pareto, Lognormal, Exponential/Gamma. For each gener-
ated stream S, we picked an integer ε in the range [1, 28],
which contains the values that were shown to be most ef-
fective in practice for the learned index of Ferragina &
Vinciguerra (2020b). Then, we ran the following PLA-
algorithms with arguments ε and S:

MET. The algorithm that fixes the slope of a segment to
1/µ and stops when the next point of S is outside the
strip of size 2ε, see Equation 1. This corresponds to
the random process we used to prove Theorem 1.

OPT. The algorithm that constructs the optimal PLA-
model (O’Rourke, 1981) used in the PGM-index
of Ferragina & Vinciguerra (2020b). This algorithm
computes the segment (of any slope and intercept) that
ε-approximate the longest prefix of S.

Our first experiment analysed the length of the segments
computed by each of the previous two algorithms, that is,
the index of the first key that causes the algorithm to stop
because the (vertical) distance of the point from the seg-
ment is larger than ε. We plot in Figure 3 (next page) the
mean and the standard deviation of these segment lengths.
The figure shows that the theoretical mean segment length
computed according to Corollary 1 (hence the formula
(µ2/σ2) ε2), depicted as a solid black line, accurately de-
scribes the experimented algorithm MET, depicted as red
points, over all tested distributions. Moreover, the standard
deviation of the exit time, depicted as a shaded red region,
follows the corresponding bound proved in Theorem 3 and
depicted as two dashed black lines in each plot. So our
theoretical analysis of Theorem 1 is tight.

Not surprisingly, the plots show also that OPT performs
better than MET. This is because MET fixes the slope of
a segment to 1/µ, while OPT adapts optimally to each se-
quence of points given in input. Thus it is more robust to
outliers and hence can find longer segments.

Overall this first experiment entails that learned indexes
(and, in particular, the learned index based on an optimal
use of linear models, see Ferragina & Vinciguerra, 2020b),
use a space that decreases as fast as O(n/ε2), where n is
the number of keys in the dataset and ε is the maximum
error admitted by the learned index (Corollary 2).

3The code to reproduce the experiments is available at
https://github.com/gvinciguerra/Learned-
indexes-effectiveness. The experiments were run on an
Intel Xeon Gold 6132 CPU.

https://github.com/gvinciguerra/Learned-indexes-effectiveness
https://github.com/gvinciguerra/Learned-indexes-effectiveness
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Figure 3. We consider four gap distributions — Uniform, Pareto, Lognormal, and Gamma — with various parameter settings. We plot the
formula (µ2/σ2) ε2 given in Theorem 1 with a solid black line and the Mean Exit Time (MET) of the experimented random walk with
red points. The figure shows that they overlap, thus the formula stated in Theorem 1 is an accurate prediction of the experimented MET.
The figure also shows the performance of the algorithm OPT with green points. The shaded regions represent the standard deviation.
The improvement of OPT with respect to MET is evident and thus it shows that OPT is more robust to outliers.
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Figure 4. Three plots for three different settings of the ratio σ/µ for the distributions: Pareto, Gamma and Lognormal. We plot the
relative error between the formula (µ2/σ2) ε2 of Theorem 1 and the experimented MET. Notice how the fat-tail of the distributions
affects the accuracy of the formula with respect to MET, as commented in the text.

Distribution Parameters 1/µ Avg. slope range

Uniform a = 0, b = 1 2 [2.000, 2.002]
Uniform a = 0, b = 10 0.2 [0.200, 0.200]
Uniform a = 10, b = 100 0.018 [0.018, 0.018]

Pareto k = 2, α = 2.5 0.3 [0.300, 0.301]
Pareto k = 3, α = 3 0.222 [0.222, 0.222]
Pareto k = 4, α = 3.5 0.179 [0.179, 0.179]

Lognormal µ = 1, σ = 0.5 0.325 [0.325, 0.325]
Lognormal µ = 1, σ = 0.75 0.278 [0.278, 0.278]
Lognormal µ = 1, σ = 1 0.223 [0.223, 0.224]

Exponential λ = 1 1 [1.000, 1.003]
Gamma θ = 3, k = 2 0.167 [0.167, 0.167]
Gamma θ = 6, k = 3 0.056 [0.056, 0.056]

Table 1. We show the range of slopes determined by algorithm
OPT in the experiments of Figure 3. We notice that those ranges
are centred and close to 1/µ, which is the theoretical slope that
maximises the MET of the random walk depicted in Figure 2a.

The second experiment analysed the slopes found by OPT
over the sequence of points generated according to the pre-
vious experiment, and averaged over ε. We compared them
to the fixed slope 1/µ of MET. Table 1 clearly shows that
these slopes are centred around 1/µ, thus confirming the
result of Theorem 2 that 1/µ is the best slope on average.

The third experiment was devoted to studying the accuracy
of the approximation to the mean exit time provided by
the formula (µ2/σ2) ε2 under the assumption “with ε suf-
ficiently larger than σ/µ” present in the statement of Theo-
rem 1. To this end, we properly set the distribution param-
eters to obtain a ratio σ/µ in {0.15, 1.5, 15}. We plot in
Figure 4 the relative error between the experimented MET
(i.e. the empirical mean segment length) and the formula
above, as ε grows from 1 to 28. For the left plot, we no-
tice that for all the distributions the relative error converges
soon to 0 (here, the ratio σ/µ is very small compared to
ε). In the middle plot, the convergence is fast for Gamma
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Figure 5. The solid line is the average and the shaded region is the
standard deviation of s/n over 104 streams for four distributions,
where s is the number of segments computed by MET for a stream
of length n. The dashed line depicts the limit stated in Theorem 4
to which the experimental values clearly converge to.

and Lognormal distributions, but it is slower for Pareto be-
cause α = 2.202 generates a very fat tail that slows down
extremely the convergence of the Central Limit Theorem.
This is a well-known fact (see e.g. Feller, 1970) since the
third moment diverges and the region where the Gaussian
approximation holds grows extremely slowly with the num-
ber of steps of the walk. This effect is even more evident
in the rightmost plot where all the three distributions have
very fat tails. Overall, Figure 4 confirms that ε does not
need to be “too much larger” than σ/µ to get convergence
to the predicted mean exit time, as stated in Theorem 1.

The fourth experiment, reported in Figure 5, considered
streams of increasing length n (up to 106) that follow the
gap distributions of the first column of Figure 3. For each
part of a stream, we computed with the MET algorithm the
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Figure 6. The average length of a segment computed by OPT on
two real datasets exhibit a superlinear growth in ε.

s segments that approximate that stream with error ε = 50.
By repeating the experiment 104 times, we computed the
average and the standard deviation of s/n. Figure 5 shows
that for a large n the distribution of s/n concentrates on
λ = (σ/(µ ε))2, with a speed that is faster for smaller
µε/σ, as predicted by Theorem 4.

Figure 6 shows the results of our final experiment, which
measured the average segment length of OPT on real-
world datasets of 200 million elements from Kipf et al.
(2019). The books dataset represents book sale popularity
from Amazon, while fb contains Facebook user IDs. Even
though these datasets do not satisfy the assumption of The-
orem 1, the fitted curves show a superlinear growth in ε.
This suggests that the ε1+O(1) growth established in our
analysis may also be valid on datasets that do not strictly
follow the assumption on iid gaps. However, as stated at
the end of Section 3, future research is needed to shed more
light on this issue.

6. Conclusions
In this paper, we have provided the first theoretical analysis
of learned indexes, thus offering mathematical grounds to
their known excellent practical performance. Our theoreti-
cal results have been corroborated in precision and robust-
ness by a large set of experiments. Our paper leaves open
a series of interesting theoretical questions, some of them
are sketched here.

The first one concerns the main result stated in Theorem 1.
It holds under the condition that “ε is sufficiently larger
than σ/µ”, therefore it is natural to ask whether this condi-
tion can be waived, thus making the theorem stronger, and
whether/how we can bound the error made by the approx-
imation with Brownian motion for finite and not too large

values for εµ/σ.

A second question asks to provide a formal analysis of the
distribution of the segment lengths found by the optimal
algorithm (OPT) proposed by O’Rourke (1981). We know
that they are longer than MET and thus grow on average as
Ω((µε/σ)2), but how much are they longer than what it is
stated asymptotically in this Ω-bound?

As a final question, and in the light of the plots in Figure 6,
we ask what changes in Theorems 1 and 2 if we relax the iid
assumption on the distribution of the gaps. We argue that
the bounds should still hold in their superlinear growth, in
the same vein as it happens with weakly correlated vari-
ables in the Central Limit Theorem (see e.g. Feller, 1970).
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