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Abstract
Poisson processes are widely used to model the occurrence of similar and independent
events. However they turn out to be an inadequate tool to describe a sequence of (possi-
bly differently) interacting events. Many phenomena can be modelled instead by Hawkes
processes. In this paper we aim at quantifying how much a Hawkes process departs from a
Poisson one with respect to different aspects, namely, the behaviour of the stochastic inten-
sity at jump times, the cumulative intensity and the interarrival times distribution. We show
how the behaviour of Hawkes processes with respect to these three aspects may be very
irregular. Therefore, we believe that developing a single measure describing them is not
efficient, and that, instead, the departure from a Poisson process with respect to any differ-
ent aspect should be separately quantified, by means of as many different measures. Key
to defining these measures will be the stochastic intensity and the integrated intensity of a
Hawkes process, whose properties are therefore analysed before introducing the measures.
Such quantities can be also used to detect mistakes in parameters estimation.
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Mathematics Subject Classification (2010) 60K99 · 60E99 · 65C50

1 Introduction

A Poisson process models, by means of the unordered vector of its jump times, the occur-
rence of similar and independent events. This means that the jumps of a Poisson process
are in a sense unexpected and the Poisson process, despite its mathematical tractability, is
an inadequate tool when we believe that some connection exists among events; in particular
when some events are caused by some previous events and it becomes therefore possible to
predict or even to prevent them.
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A widespread tool for modelling this kind of phenomenon is through the use of Hawkes
processes.

The name Hawkes processes is due to the seminal work (Hawkes 1971), setting the the-
oretical basis for the study of self-exciting processes (see also Daley and Vere-Jones 2008;
Bacry et al. 2015 and references therein), that were actually already used in engineering
and reliability theory (see e.g. Rangan and Grace 1988 and references therein). Currently
Hawkes processes are applied in a number of fields: in geology, to earthquakes or volcanic
eruptions, in biology, to population growth, spread of infections, neuronal activity, in com-
puter science or social sciences, to networks and social interactions, and in finance, to order
book dynamics, defaults and so on (see e.g. Zhuang et al. 2002; Reynaud-Bouret et al. 2013;
Delattre et al. 2016; Hawkes 2018).

The main feature of this class of processes is that they exhibit self-excitation behaviour,
that is the jump intensity increases immediately after each jump. It is reasonable to require
that such a self-excitation effect is limited in time and decays as time elapses. It is also
reasonable and very frequent in the above applications, assuming the decay to have an expo-
nential form. This features correspond to a specific expression of the stochastic intensity in
the exponential Hawkes model, that will be our main object of investigation:

λ̄t = λ0 + α
∑

Ti<t

e−β(t−Ti ),

where t ∈ R+ denotes time, Ti the random time of the i-th jump and λ0, α, β are deter-
ministic, constant and positive parameters. The exponential Hawkes model also benefits of
a particular mathematical tractability, mainly due to its Markov property.

We are interested in quantitatively describing this stochastic intensity and further char-
acteristics, with the aim of distinguishing between Hawkes and Poisson processes. Towards
achieving this aim, we present and study a variety of measures, quantifying the shift between
the two processes.

In general, there are three possible scenarios, that would have to be separately discussed.
We may deal with measuring:

– discrepancy between a Hawkes process and a Poisson one;
– discrepancy between a Hawkes process and a process not having a specific or a known

law;
– discrepancy between a Poisson process and a process not having a specific or a known

law.

In the present paper, we focus on the first situation.
Knowing how far a process is from a Poisson process may be of interest due to many

aspects: from a theoretical point of view, for problems of model choice, or from a decision-
making perspective, if we think for example that a cost is associated with jumps. A large
distance from a Poisson process corresponds to the fact that a system is very sensitive to
past shocks (or there is a contagion among them) and/or it is scarcely resilient to shocks.

The measures we define will also be helpful in detecting inaccuracies in parameters
estimation. It may happen, in fact, that the estimated parameters provide no evidence against
the hypothesis that a process is Poisson. We specifically refer to the case when α is close to
the “critical” value 0.

By definition, a Hawkes process with α = 0 is a Poisson process.
From data, instead, it is not easy to establish whether α = 0 is the true value of the

parameter, therefore it is important studying the behaviour of the process, in terms of its
distance from a Poisson process, when α ≈ 0.
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In fact, if it is not exactly α = 0, the parameter β too has an effect on such a distance.
On the other hand, we can state that, as β −→ +∞, the Hawkes process tends to a

Poisson one, but there are not results quantifying their similarity, for finite values of β.
Indeed, just the parameters α, β provide a first quantification of the distance between

Hawkes and Poisson processes: they respectively measure instantaneous impact and persis-
tence of each jump and, (together with λ0) allow us to write and compute the intensity, that
completely describe the process, also dynamically.

Intuitively, when α is very small and β is very large, we expect to deal with a process
that is close to a Poisson one. If β is fixed, the larger α, the farther the process is from a
Poisson; viceversa, if α is fixed, the larger β, the closer the process is to a Poisson one.

In the other cases, a variety of not “ordered” situations may present, each one depending
on the interaction of those particular values of α, β (and possibly λ0).

In fact, the two parameters in themselves do not provide a sufficient information, we
are rather interested in their total effect; therefore we need a function combining them. The
intensity already describes such a global effect, but it depends on time; instead we need a
more synthetic quantity.

However, since the difference between Hawkes and Poisson processes is complex and
does not involve only one aspect, we illustrate several measures, each one quantifying the
Hawkes–Poisson distance with respect to a different characteristic feature.

The paper is structured as follows: in Section 2, we recall basic notation and results on
Hawkes processes. Section 3 is devoted to study some properties both of stochastic intensity
and integrated intensity; these theoretical properties justify the definition, in Section 4, of
two measures respectively based on stochastic intensity and integrated intensity, namely
the dispersion Mdisp of the values of the intensity just before jump times and the relative
difference M� between the integrated intensities of a Hawkes and of a Poisson process.
Again in Section 4, we define further measures, derived from another relevant feature of
Hawkes processes, that is the frequency distribution of inter-arrival times. Section 5 contains
numerical examples and an application to data. Section 6 concludes.

2 Notation and Basic Results

Definition 1 A simple counting process N = {Nt }t≥0 with natural filtration F =
σ(Ns, 0 ≤ s ≤ t) is a Hawkes process if it has a stochastic intensity λ̄ given by

λ̄t = λ0 +
∫ t

0
Φ(t − s)dNs, (1)

where λ0 ∈ [0,+∞) is constant, and the kernel Φ ≥ 0 is a deterministic function, locally
integrable on R+, wrt the Lebesgue measure.

Conventionally, we set N0 = 0, while we denote by {Tn}n∈N the random jump times of
N .

In particular, we consider an exponential decay of self-excitation. Hence the intensity
can be written as

λ̄t = λ0 + α
∑

Ti<t

e−β(t−Ti );

note that λ̄ turns out to be a càglàd process.
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Remark 1 In order to deal with a process with a finite number of jumps on limited intervals,
we set α < β. Otherwise, the excitation effect would overcome the decay and the process
would be explosive. For processes on R, the condition α < β is equivalent to stationar-
ity. However, when the process starts at λ0 from t = 0, then α < β implies asymptotic
stationarity.

Given Ft−, we know exactly when the jumps before t occurred and, to indicate that they
are no longer random, we name them tn rather than Tn. GivenFt−, we are able to reconstruct
the path realized by the intensity up to t−, and we call λt the intensity process conditional
to Ft−. In particular λt is such that

P(Nt+dt − Nt = 1|Ft−) = λtdt + o(dt), (2)

i.e.

λt ≡ lim
dt→0

1

dt
P (Nt+dt − Nt = 1|Ft−)

and
λt = E[λ̄t |Ft−] = λ0 + α

∑

ti<t

e−β(t−ti ).

We recall some formulas that will be used or generalized in the following.
For notational simplicity, since we will deal with absolutely continuous distributions, we

will write the probability densities as P(T = t) instead of P(T ∈ [t, t + dt)). Reference
(Rangan and Grace 1988) provides an expression for the conditional density

P(T2 = t2|T1 = t1)

= lim
dt2→0

1

dt2
P (jump in [t2, t2 + dt2)|T1 = t1, no jumps in (t1, t2))

P (no jumps in (t1, t2)|T1 = t1)

= λt2 exp

(
−
∫ t2

t1

λsds

)
. (3)

By recursively applying (3), the finite-dimensional distribution of the process can be
computed as

P(T1 = t1, ..., Tn = tn) = λt1 · · · λtn exp

(
−
∫ tn

0
λtdt

)
,

and, by changing variables, the distribution of the first n inter-arrival times,

P(T1 = s1, T2 − T1 = s2, ..., Tn − Tn−1 = sn) =
λs1 · · · λs1+···+sn exp

(
−
∫ s1+···+sn

0
λtdt

)
.

In parallel with the intensity (conditional or stochastic), a cumulative or integrated
intensity is defined as

�(t) =
∫ t

0
λsds

(or �̄(t) = ∫ t0 λ̄sds). See Daley and Vere-Jones (2008), Karr (1991), and Rasmussen (2011).
We recall two relevant properties of �(t):

– �(t) can be seen as the expected number of jumps of the process N on [0, t].
In case of stationarity,

�(t)

t
= E[λ̄t ] = λ0

1 − α
β

.
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– �(ti−1, ti ) ≡ �(ti) − �(ti−1), i ∈ N, are the inter-arrival times of a standard Poisson
process.

3 Analytical and Distributional Properties of Stochastic Intensity and
of the Integrated Intensity

As mentioned above, the first important difference between a (homogeneous) Poisson pro-
cess and a Hawkes process concerns the characterization in terms of the jump intensity: a
constant for the first one, a collection of random variables with distribution depending on
the process itself, in the second case.

The intensity of a Hawkes process has also a specific form, highlighting the main differ-
ence of behaviour of such a process with respect to a Poisson one, that is self-excitation, i.e.
the occurrence of a jump increases the probability of further jumps.

In the literature, in particular in the reliability field, the intensity also has a key role in
describing dynamic dependence properties among events.

Therefore we believe that those aspects of diversity of a process from a Poisson one,
that concern dependence among jumps, may be well described and measured at first by
quantities derived from the intensity.

We start this section by studying some properties of the distribution of the intensity of a
Hawkes process, in particular of the distribution of the intensity just before jumps.

First of all, we recall a recursive formula for λt : let Ft− be given and, in particular, tn be
the time of the last jump before t . Then

λt = λ0 + (λtn − λ0 + α)e−β(t−tn) (4)

(see Foschi et al. 2019).

Remark 2 We notice that applying (4) does not require the knowledge of Ft−. For comput-
ing λt , it is sufficient to know the value of λtn and that tn is the time of the last jump before t .
Therefore, given λtn , the process after tn is independent of the history of the process before
tn

3.1 Intensity Values Just Before a Jump Time

Let Tn denote the random time of the n-th jump, λ̄Tn the intensity immediately before the n-
th jump and En

t the event {no jumps in (Tn, Tn + t)} and let λ̄Tn be given. Then an analogue
of Eq. 4 holds for the stochastic intensity as well:

λ̄Tn+t |En
t

= λ0 + (λ̄Tn − λ0 + α)e−βt (5)

Remark 3 Equation 5 can be generalized to compute λ̄τ+t |E , with τ a given time instant,
not necessarily a jump time, and E a suitable event (see Foschi et al. 2019).

By Eq. 5 and Remark 2, it follows that

P(λ̄Tn = 	n|λ̄Tn−1 = 	n−1, ..., λ̄T2 = 	2) = P(λ̄Tn = 	n|λ̄Tn−1 = 	n−1),

that is

Lemma 1 The process {λ̄Tn}n∈N is markovian.
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By Lemma 1, we can prove

Theorem 1 The following recursive formula holds:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

P(λ̄Tn = 	n) =
∫ λ0+(n−2)α

λ0

	n

(
	n − λ0

	n−1 − λ0 + α

) λ0
β

exp
(

	n−α−	n−1
β

)
P(λ̄Tn−1 = 	n−1)d	n−1

P(λ̄T2 = 	2) = 	2

(
	2−λ0

α

) λ0
β
exp
(

	2−α−λ0
β

)
(6)

Proof As a first step, we compute the distribution of λ̄T2 , partitioning wrt the variable T1,
i.e.

P(λ̄T2 = 	2) =
∫ +∞

0
P(λ̄T2 = 	2|T1 = t1)P (T1 = t1)dt1. (7)

It can be easily obtained that P(T1 = t1) = λ0e
−λ0t1 .

By changing variable,

P(λ̄T2 = 	2|T1 = t1) = P(λ0 + αe−β(T2−t1) = 	2|T1 = t1)

can be traced back to the (conditional) jump time distribution in Eq. 3:

P

(
T2 = t1 − 1

β
log

(
	2 − λ0

α

) ∣∣∣T1 = t1

)
= 	2 exp

(
−
∫ t1+σ1

t1

λτ dτ

)
,

where σ1 = − 1
β
log
(

	2−λ0
α

)
.

For τ ∈ (t1, t1 + σ1), λτ = (λt1 − λ0 + α)e−β(τ−t1) + λ0, that is, for s ∈ (0, σ1),
λs+t1 = αe−βs + λ0; hence
∫ t1+σ1

t1

λτ dτ =
∫ σ1

0
(αe−βs + λ0)dτ = −λ0

β
log

(
	2 − λ0

α

)
− α

β

(
	2 − λ0

α
− 1

)
.

Therefore, by substituting in Eq. 7,

P(λ̄T2 = 	2) =
∫ +∞

0
	2 exp

(
λ0

β
log

(
	2 − λ0

α

)
+ α

β

(
	2 − λ0

α
− 1

))
λ0e

−λ0t1dt1

= 	2

(
	2 − λ0

α

) λ0
β

exp

(
	2 − λ0 − α

β

)∫ +∞

0
λ0e

−λ0t1dt1.

Since
∫ +∞
0 λ0e

−λ0t1dt1 = 1, the second statement in the thesis is obtained.
In order to compute P(λ̄Tn = 	n), we apply the total probabilities formula with the

partition defined by the variable λ̄Tn−1 , i.e.

P(λ̄Tn = 	n) =
∫ λ0+α(n−2)

λ0

P(λ̄Tn = 	n|λ̄Tn−1 = 	n−1)P (λ̄Tn−1 = 	n−1)d	n−1, (8)

where the integration limits are set in view of Foschi et al. (2019), Proposition 1.
Since λ̄Tn = λ0 + (λ̄Tn−1 − λ0 + α)e−β(Tn−Tn−1),

P(λ̄Tn = 	n|λ̄Tn−1 = 	n−1) = P

(
Tn − Tn−1 = − 1

β
log

(
	n − λ0

	n−1 − λ0 + α

) ∣∣∣λ̄Tn−1 = 	n−1

)
,
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that, by Foschi et al. (2019), Proposition 2, and by some algebra, can be written as

P(λ̄Tn = 	n|λ̄Tn−1 = 	n−1) = 	n exp

(
	n − 	n−1 − α

β

)(
	n − λ0

	n−1 − λ0 − α

) λ0
β

. (9)

By substituting in Eq. 8, the thesis is proven.

Remark 4 Notice that, by definition, λ̄T1 = λT1 is the intensity immediately before the first
jump and therefore it coincides with λ0, i.e.

P(λ̄T1 = 	1) =
{
1 if 	1 = λ0
0 if 	1 	= λ0

In view of this fact, P(λ̄T2 = 	2) can be read as 	2

(
	2−λ0

	1−λ0+α

) λ0
β
exp
(

	2−α−	1
β

)
.

Corollary 1 For n ∈ N, n ≥ 2, P(λ̄Tn = 	n) =
(

n−1∏

i=2

∫ λ0+(i−1)α

λ0

d	i

)⎡

⎣
n∏

i=2

	i

(
	i − λ0

	i−1 − λ0 + α

) λ0
β

exp

(
	i − α − 	i−1

β

)⎤

⎦ . (10)

Proof By the total probabilities formula and in view of Lemma 1,

P(λ̄Tn = 	n) =
∫ λ0+(n−2)α

λ0

d	n−1 · · ·
∫ λ0+2α

λ0

d	3

∫ λ0+α

λ0

d	2P(λ̄Tn = 	n|λ̄Tn−1 = 	n−1)

·P(λ̄Tn−1 = 	n−1|λ̄Tn−2 = 	n−2) · · · P(λ̄T3 = 	3|λ̄T2 = 	2)P (λ̄T2 = 	2).

The thesis follows by Remark 4 and Eq. 9.

Remark 5 This result is particularly useful and of straight application: in fact, recursively
writing the distribution of λ̄Tn allows us to easily implement it. Furthermore, e.g. in Reliabil-
ity, the function λ̄t can be interpreted as an analogue of the instantaneous wear of a system
(see e.g. Cha and Finkelstein 2012), causing the failure of that system when it exceeds a
certain (deterministic) threshold. By applying (6) or (10), we are now able to compute the
probability of reaching such a threshold. Similarly the (stochastic) integrated intensity �̄(t)

can be used to represent the cumulative wear of a system up to time t and an analogue of
Eqs. 6 or 10 can be applied to it.

Step-Wise Convexity of λt For any t ∈ R \ {t1, t2, . . . }, λt is infinitely many times
differentiable. In particular,

dλt

dt
= −αβ

∑

ti<t

e−β(t−ti ) < 0,
d2λt

dt2
= αβ2

∑

ti<t

e−β(t−ti ) > 0,

that is λt is decreasing in the intervals between two jumps and dλt

dt
is negative but increasing,

meaning that it is decreasing in absolute value.
In a neighbourhood of two consecutive jumps times, we have

lim
t→t+j−1

dλt

dt
= −αβ

∑

ti≤tj−1

e−β(tj−1−ti ), lim
t→t−j

dλt

dt
= e−β(tj −tj−1) lim

t→t+j−1

dλt

dt
,
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lim
t→t+j

dλt

dt
= −αβ

∑

ti≤tj

e−β(tj −ti ) = lim
t→t−j

dλt

dt
− αβ,

lim
t→t−j

dλt

dt
= −αβ

∑

ti<tj

e−β(tj −ti ) = −αβe−β(tj −tj−1)
∑

ti≤tj−1

e−β(tj−1−ti ).

Hence limt→t+j
dλt

dt
< limt→t−j

dλt

dt
, that implies that, after the jump, the slope is still

negative but more pronounced than before.

3.2 Jumps’ Concentration Impact on Intensity and Integrated Intensity

Unlike for Poisson and mixed Poisson processes, for Hawkes processes, the observation of
the exact configuration of jumps (e.g. till time t) has a greater information content than the
observation of the number of jumps occurred till time t .

This fact and the non-homogeneous concentration of jumps are traits distinguishing a
Hawkes process from a Poisson one.

In this subsection, we aim at showing how a different position or a non-homogeneous
concentration may affect the intensity and the integrated intensity.

Let us fix δ > 0, k,m ∈ N with m > k, and define λ
(k)
(n+m)δ as the intensity at time

(n+m)δ conditional on the fact that on [nδ, (n+m)δ) a jump was registered on k different
intervals of length δ, and on m − k intervals there were no jumps. Given k, a bigger value
of m would indicate that the k jumps can possibly be less concentrated, while for given m a
higher value of k means that on the same time period [nδ, (n + m)δ) more jumps occurred.
One would expect that, given k, λ(k)

(n+m)δ is non-increasing in m, because the impact of each

jump had more time to decay, while, for a given m, λ
(k)
(n+m)δ is increasing in k. However

this last fact turns out not to be necessarily true, because it depends on how the k intervals,
where the jumps occurred, are distributed among the m ones.

To prove this fact, we split k as k′ + k′′, where k′ is the number of consecutive jumps
occurring on the time interval [(n+m−k′)δ, (n+m)δ), i.e. just before the observation time
(n+m)δ, and k′′ is the number of jumps distributed in some way on the remaining n−k′−1
intervals. Note that, by construction, we have no jumps on [(n+m−k′−1)δ, (n+m−k′)δ).

We then show that, when k increases in such a way that k′ decreases and k′′ increases,
we can find configurations such that λ(k)

(n+m)δ is not increasing.
In fact, for a given m, we make an increase of k by some amount h. Let h = h′′ −h′ > 0,

where h′ is the decrease in the number of recent consecutive jumps, so that k′ passes to
k′ − h′, and h′′ is the increment of k′′. We have to account for the following constraints:
h ≤ k′, 1 ≤ h′ ≤ m − k − 1. Then we compare the two conditional intensities λ

(k+h)
(n+m)δ

and λ
(k)
(n+m)δ . We point out that we represent by k a same number of jumps, but not the same

jumps for both intensities. The term λ
(k+h)
(n+m)δ − λ

(k)
(n+m)δ may be negative and its minimum

value is attained when the h′ jumps are the last ones of the k′ ones and the h′′ are positioned
starting from the k′ − h′ + 2-th place.

Then a sufficient condition guaranteeing that λ
(k)
(n+m)δ be increasing in k, regardless of

the allocation (k′, k′′), is
h−1∑

i=0

e−βδ(k′−i) −
h′+h−1∑

i=0

e−βδ(m−i) < 0,
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which is equivalent to

e−βδk′
(1 − eβδh) − e−βδm(1 − eβδ(h+h′)) > 0,

or also to

h <
1

βδ
log

(
1 − eβδ(m−k′)

1 − eβδ(m−k′−h′)

)
− βδh′.

While the intensity value may be affected by the jumps configuration even in opposition
to a greater number of jumps, as concerns the integrated intensity, we choose to analyse the
impact on � of a different concentration of the same number of jumps on a fixed interval
I = [a, b).

Proposition 1 Let k ≥ 2 be the number of jumps occurred in a fixed interval I . The sparser
the configuration of such jumps, the smaller the generated �(I) ≡ �(a, b).

Proof We consider the value of λ̄a is given and distinguish two cases:

– k equidistant jumps on I ;
– k jumps in [a, a + δ), with δ ∈ (0, b − a).

In view of the arbitrariness of I , the case “k jumps in [b − δ, b)” is analogous.

We compute the cumulative intensity in the two cases, respectively �eq(I ) and �δ(I).
Equidistant jumps on I means that the jumps have occurred at times a + j b−a

k
, for

j = 0, ..., k − 1.
In view of Eq. 4, this fact allows us to write

�eq(I ) =
k−1∑

i=0

∫ b−a
k

0

(
λ0 + (λ̄

a+i b−a
k

− λ0 + α)e−βτ
)

dτ

The integrand can be simplified as follows:

λ0 + (λ̄a − λ0)e
−β(τ+i b−a

k
) + α

i−1∑

j=0

e−β(τ+j b−a
k

) =

λ0 + (λ̄a − λ0)e
−βτ e−βi b−a

k + αe−βτ 1 − e−βi b−a
k

1 − e−β b−a
k

.

By integrating wrt τ on
[
0, b−a

k

)
, we obtain

λ0
b − a

k
+
[
(λ̄a − λ0)e

−βi b−a
k + α

1 − e−βi b−a
k

1 − e−β b−a
k

]∫ b−a
k

0
e−βτ dτ =

λ0
b − a

k
+ 1

β
(1 − e−β b−a

k )

[
(λ̄a − λ0)e

−βi b−a
k + α

1 − e−βi b−a
k

1 − e−β b−a
k

]
.

Therefore, we can compute �eq(I ) as

k−1∑

i=0

λ0
b − a

k
+

k−1∑

i=0

λ̄a − λ0

β
(1 − e−β b−a

k )e−βi b−a
k +

k−1∑

i=0

α

β
−

k−1∑

i=0

α

β
e−βi b−a

k ,
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finally obtaining

�eq(I ) = λ0(b − a) + 1

β
(λ̄a − λ0)(1 − e−β(b−a)) + α

β

(
k − 1 − e−β(b−a)

1 − e− β
k
(b−a)

)
. (11)

Let us split �δ(I) = �eq(a, a + δ)+�decay(a + δ, b), by supposing that the k jumps are
equidistant on the interval [a, a + δ), so that we can apply (11) to compute �eq(a, a + δ),
while �decay is the integrated intensity on the interval [a + δ, b) without jumps.

�eq(a, a + δ) = λ0δ + 1

β
(λ̄a − λ0)(1 − e−βδ) + α

β

(
k − 1 − e−βδ

1 − e− β
k
δ

)
.

By recursively apply (4) (see also Foschi et al. 2019),

λ̄a+δ = λ0 + (λ̄a − λ0)e
−βδ + α

k∑

j=1

e−βj δ
k

= λ0 + (λ̄a − λ0)e
−βδ + αe−β δ

k
1 − e−βδ

1 − e−β δ
k

and, for τ ∈ [0, b − a − δ),

λ̄a+δ+τ = λ0 + (λ̄a+δ − λ0)e
−βτ ;

hence

�decay(a + δ, b) =
∫ b−a−δ

0
λ̄a+δ+τ dτ = λ0(b − a − δ) + 1

β
(1− e−β(b−a−δ))(λ̄a+δ − λ0)

= λ0(b − a − δ) + 1

β
(1 − e−β(b−a−δ))

(
(λ̄a − λ0)e

−βδ + αe−β δ
k
1 − e−βδ

1 − e−β δ
k

)
.

By summing up the two terms, we obtain

�δ(I) = λ0(b−a)+ 1

β
(λ̄a −λ0)(1−e−β(b−a))+ α

β
k− α

β

1 − e−βδ

1 − e− β
k
δ
(1−e−βδ +e−β(b−a−δ+ δ

k
)).

At first, we want to check that, for any δ ∈ (0, b − a), �δ(I) ≥ �eq(I ). At this aim, we
compute

�δ(I) − �eq(I ) = α

β

[
1 − e−β(b−a)

1 − e− β
k
(b−a)

− 1 − e−βδ

1 − e− β
k
δ

(
1 − e− β

k
δ + e−β( b−a+δ

k
−δ)
)]

.

We obtain that �δ(I) − �eq(I ) > 0, ∀α, β > 0, when (b − a − δ)(k + 1) > 0; this last
condition is satisfied ∀δ ∈ (0, b − a) and ∀k ∈ N.

Actually the same kind of condition guarantees that

�δ(I) ≥ �η(I) ∀η, δ ∈ (0, b − a), η ≥ δ.

In fact, �δ(I) − �η(I) =
α

β

[
1 − e−βη

1 − e− β
k
η

(
1 − e− β

k
η + e−β(

b−a+η
k

−η)
)

− 1 − e−βδ

1 − e− β
k
δ

(
1 − e− β

k
δ + e−β( b−a+δ

k
−δ)
)]

,

that is positive ∀α, β > 0, when (k + 1)(η − δ) > 0. Since this last condition is satisfied
∀η > δ and ∀k ∈ N, the thesis is proven.
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4 Non-poissonianity Measures

This section is devoted to the definition of three kinds of measures and to illustrating their
specific properties and aims.

Our measures naturally apply to single paths, that we may observe in real situations.
However, they can be computed as well on samples of simulated paths of a process. This
allows us to quantify how much a Hawkes process with given parameters is far from a Pois-
son process (even if no data are available) and also provides us with confidence intervals for
the different measures, that are useful to possibly compare the values of measures computed
on a sample with the theoretical ones.

We introduce the following notation:

Definition 2 Given λ0, α, β > 0, with α < β, we denote by N(λ0,α,β) the exponential

Hawkes process with parameters (λ0, α, β) and by H(λ0,α,β) =
(
H

(λ0,α,β)
h

)

h=1,...,d
a set of

d realizations of N(λ0,α,β).

4.1 Intensity-BasedMeasure

By definition, the intensity of a Poisson process is a deterministic constant λ0, i.e. a
degenerate random variable, that therefore has a standard deviation equal to zero.

As we illustrated above, for a Hawkes process N(λ0,α,β), both {λ̄t }t∈R+ and {λ̄Tn}n∈N are
stochastic processes.

We aim at quantifying how much the intensity values are dispersed with respect to a
constant. In order to do that, we consider the frequency distribution of {λ̄Tn}n∈N. To obtain
the values of {λ̄Tn}n∈N, we need to know (or to estimate) the parameters of the Hawkes
process; we can alternatively directly estimate the empirical intensity from data with any
known method.

Since the intensity of a Poisson process should attain only one value, under this aspect,
the distance of a Hawkes process from a Poisson process can be expressed by the dispersion
Mdisp of the values attained by λ̄Tn for n ∈ N. Namely

Definition 3 Given a realization H of the Hawkes process N(λ0,α,β), let j be the number of
its jumps and 	n denote, for n = 1, . . . , j , the realizations of λ̄Tn on the path H . By setting
	0 = λ̄T0 ≡ λ0,

Mdisp = 1

j + 1

j∑

i=0

(	i − 	̄)2, 	̄ = 1

j + 1

j∑

i=0

	i .

Notice that the dispersion, computed as the sample standard deviation, is meant with
respect to the mean value of the λ̄Tn ’s and not with respect to the “Poisson part” of the
Hawkes intensity, λ0.

This measure allows us to get the general idea of how much the intensity values are
far from λ0, but it does not explicitly quantify this distance. Specifically, Mdisp allows us
to compare a Hawkes process with any Poisson process, regardless of its intensity, i.e. it
answers the more general question whether a Poisson process exists fitting well with the
observed phenomenon. In fact, the values of λ̄Tn may be concentrated around a λ̂ much
larger than λ0: the process cannot be approximated with a Poisson process with intensity
λ0, but it may be close to a different Poisson process (the one with intensity λ̂). Otherwise,
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the values of λ̄Tn may be in average closer to λ0, but too sparse, so that neither the Poisson
process with intensity λ0 nor any Poisson process are a good model for the observed process.

Mdisp is susceptible to large fluctuations of the values of λ̄Tn , i.e.Mdisp is large even if
λ̄Tn ≈ λ0 for a high percentage of observations and few times λ̄Tn attains very large values.

In other words,Mdisp is more susceptible to the presence of large values of λ̄Tn −λ0 than
to the number of observations leading to a large λ̄Tn − λ0. For this reason, in some cases,
it is discordant with the other measures; or rather we should say that, while other measures
quantify an effect (e.g. the expected number of extra-Poisson jumps), which may even be
quite weak,Mdisp catches the strength of a potential cause of the effect.

4.2 Integrated Intensity-BasedMeasure

Another measure of the departure of a process from a Poisson process can be derived by
the integral of the “non-Poisson” term of intensity. In particular, in the case of a Hawkes
process, the non-Poisson term coincides with the self-excitation term of the intensity. In
order to compute this quantity, we need to fix a time horizon T and consider the process for
t ∈ [0, T ].

�(T ) − T λ0 captures the mean excess of jumps of a Hawkes process with parameters
(λ0, α, β) with respect to a Poisson process with intensity λ0. However, in order to make
this quantity independent of the time horizon T and of the baseline intensity λ0, we divide
it by T λ0 obtaining

M�(N(λ0,α,β)) = �(T ) − T λ0

T λ0
.

Hence, along an observed pathH , the expected number of non-Poisson jumps isM�(H)

times the expected number of Poisson jumps.
�(T ) is computed by applying its definition, as the integral of the conditional intensity

λt on [0, T ].
In view of its theoretical properties, we expect thatM�:

– can detect the different behaviour of a Hawkes process from a Poisson process in those
limit cases, when α is very small or β is very large, when commonly we conclude that
the Hawkes process is very similar or tends to a Poisson, or quantify such a similarity;

– is sensitive to clusters, that are a distinguishing feature of a Hawkes process.

We consider only the case of a non-explosive process, i.e. α < β. Theoretically, for a
fixed α

β
,M� is not affected by λ0. In fact, if we could assume stationarity,M� = β

β−α
−1,

regardless of the realized path of the process.
This fact may result counterintuitive, since one could expect that the larger the ratio α

λ0
(representing the jump impact on the intensity relatively to the baseline part λ0), the larger
the distance of the Hawkes process from the Poisson one. However, the closed formula for
M� in terms of α, β is not accurate when stationarity is not guaranteed, as it happens for
processes on the half line. Also this measure, when computed on a Poisson process, would
be equal to 0.

4.3 Measures Based on Inter-Arrival Times Frequency Distribution

It is known that inter-arrival times of a Poisson process are i.i.d. exponential r.v.’s. Inter-
arrival times of a Hawkes process are not independent nor identically distributed (see Foschi
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et al. 2019, Proposition 2). We are interested however in studying how the values of the inter-
arrival times are distributed with respect to the data generated by an exponential distribution
with a given parameter.

We would like to provide a synthetic and more precise quantification than the information
given by a quantile-quantile plot, by measuring the intersection between the hypographs
of the frequency distribution of the inter-arrival times and of the exponential density of
parameter λ0.

Definition 4 Given a realization H of the process N(λ0,α,β),

M0∩(H) = 1 −
∫ +∞

0
min(f (x), λ0e

−λ0x)dx,

where f is the empirical frequency distribution of the inter-arrival times of H .

Remark 6
∫ +∞
0 min(f (x), λ0e

−λ0x)dx is the area of the intersection between the
hypographs of the two functions f (x) and λ0e

−λ0x (see Fig. 1). Since the integral of a
probability density function as well as the one of a relative frequency distribution is 1,
M0∩ ∈ [0, 1].

Remark 7 When N is a Poisson process with intensity λ0, theoretically, for any realiza-
tion H (that has an infinite number of jumps) M0∩(H) = 0, and we fix this value as our
benchmark. In practice, simulated paths or observed realizations of a process necessarily
have a finite number of jumps, and the equality M0∩(H) = 0 holds only as the limit when
the number of jumps j tends to infinity. The convergence to 0 is due to the fact that, when
j → +∞, the empirical density converges to the true theoretical density λ0e

−λ0x .

In order to implement the computation of M0∩, an operational definition is needed. We
denote by a, b respectively the minimum and the maximum observed inter-arrival time. It
is not restrictive considering a = 0. We fix ε > 0, suitably small with respect to the length
b − a, e.g. ε = 10−4.

M0∩(H) = 1 −
bε−1�∑

i=1

min

⎛

⎝1
j

j∑

h=1

1(ε(i−1),εi](xh), e
−λ0εi(eλ0ε − 1)

⎞

⎠ ,

where {x1, . . . , xj } are the inter-arrival times of the path H and e−λ0εi (eλ0ε − 1) =∫ εi
ε(i−1) λ0e

−λ0xdx.
We expect that, the stronger the self-excitation effect, the higher the number of inter-

arrival times not following an exponential law, and therefore the smaller the intersection of
the hypograph of their distribution with the one of an exponential distribution. Since M0∩
compares the frequency distribution of the inter-arrival times with the exponential density
with parameter λ0, it quantifies the distance of the Hawkes process from its “baseline”
Poisson process.

This kind of measure is also suitable to be extended to the case when we don’t know λ0
or we aim at comparing the Hawkes process with a general Poisson process. In other words,
M0∩ can be adapted to measure how much the Poisson best fitting with data is actually
well fitting. In this case, we estimate the parameter λ̂ of the exponential best fitting with
the inter-arrival times and, as above, we measure the intersection between the hypograph of
the frequency distribution of the inter-arrival times and the one of the exponential density
of parameter λ̂. We defineM∩ analogously toM0∩:
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Definition 5 Given a realization H of the process N(λ0,α,β),

M∩(H) = 1 −
∫ +∞

0
min(f (x), λ̂e−λ̂x)dx,

where f is the empirical frequency distribution of the inter-arrival times of H .

Remark 8 If H is a realization of a Poisson process with intensity λ0, λ̂ is very close to λ0
and thereforeM∩(H) is approximatively equal toM0∩(H).

If H is a realization of a Poisson process with intensity λ 	= λ0 and λ̂ is the maximum
likelihood estimator (MLE) of λ, the exponential density with parameter λ̂ is the closest one
to the empirical density of the inter-arrival times; thus M0∩(H) ≥ M∩(H). In particular,
as j → +∞,M∩(H) tends to 0, whileM0∩(H) does not.

If, finally, H is a realization of a Hawkes process with parameters (λ0, α, β), since
∀ t > 0, λt > λ0, the jumps of H are more frequent than the ones of a Poisson process with
intensity λ0 and therefore λ̂ > λ0. Even if the inter-arrival times have no more an exponen-
tial distribution, among the exponential densities, the one with parameter λ̂ is the closest
one to the empirical density of the inter-arrival times, and thereforeM0∩(H) ≥ M∩(H).

5 Simulations Results and Comparisons

In this section, we illustrate by means of some examples the impact of different sets of
parameters (λ0, α, β) on the four measuresMdisp, M�, M0∩, M∩(H) defined above.

Intuitively a small α and a large β make the distances small; still we are interested
in quantify it, in order to establish whether a Poisson process can be used to fit the data
generated by N(λ0,α,β) and possibly the error due to the approximation.

When α and β are both small or both large, we have no more general results to quantify
the discrepancy of the Hawkes process from a Poisson one.

We provide examples of processes whose different behaviours may be explained by our
measures.

Fig. 1 Intersection between the hypographs of an exponential density of parameter λ0 (dashed line) and the
frequency distribution graph of inter-arrival times of the simulated path H

(20,0.2,0.3)
1 (solid line). On the x

axis are reported the values of the inter-arrival times, on the y axis the relative frequencies
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Since the difference from a Poisson process concerns several aspects, we expect that any
trait has repercussions on a different measure and therefore that the four measures are not
necessarily concordant.

For each processN(λ0,α,β) with given parameters, we simulate d = 2500 pathsH(λ0,α,β),
on a time interval [0, T ], T = m̄δ. δ > 0 is a scale parameter, allowing us, in the
applications, to express the time horizon T in the desired unit of measurement. We fix
δ = 4.96 · 10−5. For different processes, instead, we choose different m̄, in order to avoid
realizations H(λ0,α,β) with too few jumps. For each H(λ0,α,β), we compute the mean values
of the four measures and their standard deviations, as reported in Table 1.

As a first result, applying each measure M to simulated paths provides us with an esti-
mateM(H (λ0,α,β)) = 1

d

∑d
h=1M(H

(λ0,α,β)
h ) of the theoretical discrepancyM(N(λ0,α,β))

between N(λ0,α,β) and a Poisson process.

Description of Table 1 In Table 1, we highlight some groups of processes.
In a first group, we fix λ0 = 3, β = 15 and vary α. As we can expect, as α increases,

all the measures increase. In particular, the increase of Mdisp is a consequence both of
wider intervals for the values of λ̄Tn ’s and of the fact that λ̄Tn ’s are less concentrated around
the modal value, that is very close to λ0. This means that, for small α’s the sequence
{λ̄Tn}n=1,...,j exhibits small and dense fluctuations, that become larger and less dense as α

increases; furthermore for small α’s, {λ̄Tn}n=1,...,j comes back very often very close to λ0.
This behaviour has also an impact on M�: a {λ̄Tn}n=1,...,j with small and dense fluctua-
tions, often coming back to λ0 has a hypograph with a smaller area, leading to a smallM�.
Also the measures M0∩, M∩ show that the processes are far from Poisson processes. We
notice that, in the first two cases, λ̂ is not significantly different from λ0 and this implies that
alsoM0∩ andM∩ are not significantly different. In the last two cases, λ̂ > λ0 significantly
and this implies thatM0∩ > M∩; but stillM∩ is significantly greater than 0.

A wider case record can be observed in the second group of simulated processes, where
we fix λ0 = 20, α = 0.2 and vary β. As β increases, Mdisp, M� and M0∩ decrease.
However, we notice that the decreasing trend of M0∩ is significant only for small values of
β.

For β = 0.3, {λ̄Tn}n=1,...,j increases in a first period and then has fluctuations of a small
amplitude with respect to the range of its values. Such range narrows as β increases, but,
in the meanwhile, the relative amplitude of fluctuations and their frequency increases, until
{λ̄Tn}n=1,...,n̄ often takes values very close to λ0 (see also Fig. 2).

As concernsM∩, when β is large enough to cause a quick decay of the intensity towards
λ0, λ̂ is not significantly different from λ0 and therefore M∩ is not significantly different
from M0∩. When β is small (we refer here to the case β = 0.3), we obtain M0∩ > M∩;
furthermoreM∩(H (20,0.2,0.3)) < M∩(H (20,0.2,β)), β = 3, 20, 100.

The same trend can be observed in the other groups of processes, H(20,1,β), H (300,0.2,β),
H(300,1,β) respectively.

Finally, the last two groups in the table show how, even with a very small α (or α small
with respect to λ0), the measures are able to reveal that the processes are not Poisson.

Description of Table 2 Within each group, the values of M� are not significantly dif-
ferent. This feature is consistent with the theoretical formula M� = (

β
α

− 1)−1, where
M� only depends on the ratio α

β
. The values also are close to the theoretical ones:

M�(N(λ0,α,100α)) = 0.0101, while M�(N(λ0,α,3α)) = 0.5, that is in the confidence inter-
vals ofM�(H(λ0,α,3α)) for the most part of the simulated processes, namely the ones with
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Table 1 The table summarizes the results obtained from the simulation of d = 2500 paths for each Hawkes
process N(λ0,α,β) with parameters λ0, α, β (reported in the first column)

λ0, α, β Mdisp M� M0∩ λ̂ M∩ α
β

α
λ0

α

λ̂
m̄

3, 0.2, 15 0.0642 0.0134 0.8051 3.02 0.8044 0.0133 0.0667 0.0663 107

(0.0029) (0.0003) (0.0067) (0.08) (0.009)

3, 1, 15 0.3413 0.0686 0.799 3.09 0.7961 0.0667 0.3333 0.3238 107

(0.0168) (0.0018) (0.007) (0.08) (0.0096)

3, 5, 15 2.86 0.4537 0.7279 4.09 0.6783 0.3333 1.667 0.2479 107

(0.22) (0.0172) (0.0095) (0.16) (0.0179)

20, 0.2, 0.3 8.4914 1.6 0.4104 52.13 0.2085 0.6667 0.01 0.0038 106

(0.797) (0.083) (0.0092) (2.66) (0.0111)

20, 0.2, 3 0.3928 0.71 0.2874 21.36 0.2825 0.0667 0.01 0.0094 3·106
(0.0161) (0.0013) (0.006) (0.4) (0.0069)

20, 0.2, 20 0.1427 0.0101 0.2982 20.17 0.2976 0.01 0.01 0.0099 106

(0.0039) (0.0002) (0.0062) (0.36) (0.0069)

20, 0.2, 100 0.0633 0.002 0.2998 20.02 0.2997 0.002 0.01 0.001 3·106
(0.0019) (3.7·10−5) (0.0064) (0.37) (0.0071)

20, 1, 3 2.7667 0.4985 0.2653 29.98 0.2075 0.3333 0.05 0.0333 3·106
(0.143 ) (0.0113) (0.0042) (0.68) (0.0061)

20, 1, 20 0.1427 0.052 0.2927 21.00 0.2898 0.05 0.05 0.04806 3·106
(0.0039) (0.001) (0.0061) (0.39) (0.0071)

20, 1, 100 0.3194 0.01 0.2993 20.08 0.299 0.01 0.05 0.0498 3·106
(0.0097) (0.0002) (0.0064) (0.36) (0.0071)

300, 0.2, 0.3 120.5367 0.9602 0.2665 588.27 0.0757 0.6667 0.0007 0.0003 3·105
(3.0703) (0.0197) (0.0072) (11.59) (0.0027)

300, 0.2, 3 2.6757 0.0696 0.0854 320.89 0.0798 0.0667 0.0007 0.0006 3·105
(0.1149) (0.0011) (0.0042) (4.98) (0.0042)

300, 0.2, 20 0.5635 0.01 0.0831 303.06 0.0825 0.01 0.0007 0.0007 3·105
(0.0241) (0.0002) (0.0044) (4.6) (0.0045)

300, 0.2, 100 0.2454 0.002 0.0831 300.64 0.0829 0.002 0.0007 0.0007 3·105
(0.0064) (2.9·10−5) (0.0044) (4.48) (0.0044)

300, 1, 3 19.7375 0.4834 0.1672 445.24 0.0714 0.3333 0.0033 0.0022 3·105
(0.985) (0.0089) (0.0066) (8.14) (0.0034)

300, 1, 20 2.9438 0.0524 0.0843 315.54 0.0807 0.05 0.0033 0.0032 3·105
(0.1292) (0.0008) (0.0042) (4.87) (0.0043)

300, 1, 100 1.236 0.0101 0.0831 302.87 0.0826 0.01 0.0033 0.0033 3·105
(0.0317) (0.0002) (0.0044) (4.55) (0.0044)

20, 0.002, 0.3 0.0252 0.0063 0.4817 20.13 0.481 0.0067 0.0001 9.9·10−5 106

(0.0015) (0.0002) (0.0123) (0.65) (0.0152)

20, 0.002, 3 0.0037 0.0007 0.4833 20.02 0.4832 0.0007 0.0001 9.9·10−5 106

(0.0002) 2·10−5 (0.012) (0.63) (0.0148)

20, 0.02, 0.3 0.2705 0.066 0.4648 21.36 0.4578 0.0667 0.001 0.0009 106

(0.0163) (0.0022) (0.0117) (0.7) (0.0145)
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Table 1 (continued)

λ0, α, β Mdisp M� M0∩ λ̂ M∩ α
β

α
λ0

α

λ̂
m̄

20, 0.02, 3 0.0373 0.0067 0.4814 20.15 0.4806 0.0067 0.001 0.001 106

(0.0025) (0.0002) (0.0121) (0.64) (0.0149)

In the others columns are reported the mean of the measures Mdisp, M�, M0∩, M∩ and, before this last
one, the mean of the λ̂. The standard errors of each measure are reported on the line below within brackets.
m̄ is the number of trials in each path for generating jumps

α = 1, 5, 100. Again within the group with α
β

= 1
3 , for the ones with λ0 = 300, we obtain

not significantly different values of M0∩. The values of M∩ are quite close each other, but
display an increasing trend wrt α or β, while the values ofMdisp are strongly different and
increasing wrt α or β. This means that, as α increases, the amplitude of the fluctuations of
{λ̄Tn}n=1,...,j increases too. However the larger amplitude is balanced by a faster decay, i.e.
by a higher frequency of the fluctuations, making the area of the hypograph of {λ̄Tn}n=1,...,j
almost constant.

The use of the simulated paths has however a further application, to check whether, in
the cases when a parameters’ estimation is needed, the estimated values are correct.

In fact, apart from M∩, whose computation is completely based on data and does not
involve the parameters, the measures depend on the values of λ0, α, β.

As an example, in Table 3 we show how the measures may be biased, when a wrong
value is assigned to a parameter.

Description of Table 3 The corresponding values of the measures are significantly dif-

ferent from the values of the same measures computed on H(λ̂0,α̂,β̂) (for some of them,
see Table 1). This inconsistency informs us that (λ̂0, α̂, β̂) is not a correct estimate of the
parameters of the generating process.

We notice that, even if the wrong value of α, α̂, is very small (close to 0), the values of
the measures are still significantly different from 0, meaning that they lead us to the correct
conclusion that the process is not Poisson, when instead the parameters’ estimate does not
give us such an evidence. We also remark thatMdisp is not affected by a misspecification of
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Fig. 2 The figure summarizes the behaviour of λ̄Tn for paths respectively generated by N(20,0.2,β), β =
0.3, 3, 20, 100. The figures on the left column are the plots of λ̄Tn with respect to the jump index n. The
figures on the right column represent for any β = 0.3, 3, 20, 100, the frequencies of values of λ̄Tn
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Table 2 In this table, we report the results for two groups of processes; within each group, we vary the
parameters keeping the ratio α

β
constant

λ0, α, β Mdisp M� M0∩ λ̂ M∩ α
β

α
λ0

α

λ̂
n̄

20, 0.2, 20 0.1427 0.0101 0.2982 20.17 0.2976 0.01 0.01 0.0099 106

(0.0039) (0.0002) (0.0062) (0.36) (0.0069)

20, 1, 100 0.3194 0.01 0.2993 20.08 0.299 0.01 0.05 0.0498 3·106
(0.0097) (0.0002) (0.0064) (0.36) (0.0071)

300, 0.2, 20 0.5635 0.01 0.0831 303.06 0.0825 0.01 0.0007 0.0007 3·105
(0.0241) (0.0002) (0.0044) (4.6) (0.0045)

300, 1, 100 1.236 0.0101 0.0831 302.87 0.0826 0.01 0.0033 0.0033 3·105
(0.0317) (0.0002) (0.0044) (4.55) (0.0044)

3, 5, 15 2.86 0.4537 0.7279 4.09 0.6783 0.3333 1.667 0.2479 107

(0.22) (0.0172) (0.0095) (0.16) (0.0179)

20, 1, 3 2.7667 0.4985 0.2653 29.98 0.2075 0.3333 0.05 0.0333 3·106
(0.143) (0.0113) (0.0042) (0.68) (0.0061)

300, 1, 100 1.236 0.0101 0.0831 302.87 0.0826 0.01 0.0033 0.0033 3·105
(0.0317) (0.0002) (0.0044) (4.55) (0.0044)

300, 100, 300 111.72 0.4898 0.1768 441.01 0.086 0.3333 0.3333 0.2268 3·105
(3.67) (0.0097) (0.0072) (8.72) (0.0043)

300, 500, 1500 287.52 0.4547 0.1815 409.32 0.1199 0.3333 1.6667 1.2215 3·105
(13.35) (0.0093) (0.0074) (8.39) (0.0063)

300, 1000, 3000 453.55 0.4356 0.1706 382.09 0.1273 0.3333 3.3333 2.6171 3·105
(27.26) (0.0101) (0.0081) (9.13) (0.0076)

λ0, whileM0∩ is not affected by a misspecification of α. The value M̃disp deriving from the

misspecified α̂ is such that
M̃disp
Mdisp

= α̂
α
. As to M̃0∩, it attains its minimum value, coinciding

withM∩, for λ̂0 = λ̂.

5.1 An Application to Data

We consider the sequence of jump times filtered out (see Foschi et al. 2019) from the dataset
of the five minutes prices of the assets JPM, from 3/1/2006 to 31/7/2013. On a time horizon
T = 7.53, corresponding to m̄ = 151791, we obtain a record of 816 jump times, that can
be described by an exponential Hawkes process. In Foschi et al. (2019) a procedure for
parameters’ estimation is also developed, providing us with the values λ̂0 = 53.27, α̂ =
4.72, β̂ = 9.14. As mentioned, our first goal in computing Mdisp, M�, M0∩, M∩ is
quantifying the discrepancy between a Poisson process and the sample H generated by the
process N(53.27,4.72,9.14) with respect to different aspects. We obtain

Mdisp(H) = 21.3905, M�(H) = 1.0347,

M0∩(H) = 0.3823, λ̂ = 108.6039, M∩(H) = 0.3295.

However, such measures allow us to achieve another important conclusion. We simu-
late, with the same m̄ = 151791, d = 2500 paths H(53.27,4.72,9.14) of the Hawkes process
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Table 3 On the 2500 simulated
paths H(20,0.2,0.3) of the Hawkes
process N(20,0.2,0.3), we compute
the measures as before, but
supposing the parameters assume
different values λ̂0, α̂, β̂,
reported in the first column

Misspecified parameter(s) M̃disp M̃� M̃0∩

λ̂0 = 25 8.4914 1.2824 0.3493

(0.7973) (0.0667) (0.0083)

λ̂0 = 50 8.4914 0.64 0.2119

(0.7973) (0.033) (0.008)

λ̂0 = 52.127 8.4914 0.615 0.2091

(0.7973) (0.032) (0.0088)

λ̂0 = 70 8.4914 0.458 0.2168

(0.7973) (0.023) (0.0148)

α̂ = 0.02 0.8491 0.1603 0.4104

(0.0797) (0.0083) (0.0092)

α̂ = 0.002 0.0849 0.016 0.4104

(0.0079) (0.0008) (0.0092)

α̂ = 1 42.4571 8.015 0.4104

(3.9865) (0.4167) (0.0092)

β̂ = 0.45 5.2996 1.0984 0.4104

(0.5477) (0.0568) (0.0092)

β̂ = 3 0.86 0.1724 0.4104

(0.0832) (0.0088) (0.0092)

λ̂0 = 25 4.2457 0.4612 0.3493

α̂ = 0.1 (0.3987) (0.033) (0.0083)

N(53.27,4.72,9.14) and compute

Mdisp(H
(53.27,4.72,9.14)) = 17.0054 (2.4148), M�(H(53.27,4.72,9.14)) = 1.0459 (0.0755),

M0∩(H (53.27,4.72,9.14)) = 0.3813 (0.0098),

λ̂ = 111.5729 (3.1366), M∩(H (53.27,4.72,9.14)) = 0.2853 (0.0159).

We can now check whether the discrepancies obtained from the data are consistent with
the reference values obtained from simulated paths. In this case, all the M(H)’s are not
significantly different from the M(H (53.27,4.72,9.14))’s and therefore we find a further con-
firmation of the fact that an exponential Hawkes model is well describing the data in H and
that the parameters λ̂0 = 53.27, α̂ = 4.72, β̂ = 9.14 are correctly estimated.

6 Concluding Remarks

After having theoretically studied the effect of jumps and their configurations on conditional
or stochastic intensity and integrated intensity, we defined different measures, quantify-
ing the distance between a Hawkes and a Poisson process. Since the difference between a
Hawkes and a Poisson process is a complex matter and concerns several aspects, we need
different measures, each one quantifying a different trait and having its own advantages and
disadvantages. All our measures are designed to be applied to a dataset or to a single path
generated by a stochastic process. The only exception isM�, that, under some hypotheses,
allows us to measure the theoretical discrepancy between a Hawkes data generating pro-
cess N(λ0,α,β) and a Poisson process with intensity λ0. On the other hand,M� allows us to
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compare N(λ0,α,β) only to the Poisson process with intensity λ0 and not to a general Poisson
process or to the best fitting Poisson process, likeM0∩.

Mdisp instead quantifies the discrepancy between H(λ0,α,β) and a Poisson process in
general; however, its computation requires the knowledge of (λ0, α, β) and availability of
data.

Unlike the other measures, M∩ is computed only from the data: it does not require the
knowledge of (λ0, α, β) and it quantifies the discrepancy of H(λ0,α,β) from the best fitting
Poisson process. This also means that, for a given path H generated by N(λ0,α,β) (with f

the frequency distribution of the inter-arrival times of H ), in the case when we don’t know
λ0 and its estimate is λ̂0 ≥ λ0,

M∩(H) = min
λ̂0≥λ0

(
1 −
∫ +∞

0
min(f (x), λ̂0e

−λ̂0x)dx

)
= min

λ̂0≥λ0

M̃0∩(H).

The fact that M∩ can be computed only from data has both advantages and disadvan-
tages. A negative aspect of M∩ is that its accuracy depends on the sample size and on the
precision ε. However, on the other hand, the main advantage of M∩ is that M∩ is insen-
sitive to parameters’ misspecification and therefore it provides the most reliable criterion,
when both Mdisp and M� are small, for deciding whether H is generated by a Hawkes
process or by a Poisson.

Furthermore, since M∩ is not affected by the values of (λ0, α, β), it can be used to
detect a misspecification of the parameters: in fact, it may happen, e.g. when the estimated
α̂ is very small, that the misspecified values of Mdisp(H) and M�(H), with H , gener-
ated byN(λ0,α,β), are not significantly different fromMdisp(H

(λ0,α̂,β)) andM�(H(λ0,α̂,β))

respectively.M∩(H), instead, remains significantly different fromM∩(H (λ0,α̂,β)).
A further step along this line is to extend these measures in order to deal with distances

between unspecified processes and Poisson or Hawkes processes: a comparison with a Pois-
son process may be useful for a general analysis of the process; a comparison with a Hawkes
process may be more application-oriented. We leave this investigation to further research.
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