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Abstract: The coordinated activities of autophagy and the ubiquitin proteasome system (UPS)
are key to preventing the aggregation and toxicity of misfold-prone proteins which manifest in
a number of neurodegenerative disorders. These include proteins which are encoded by genes
containing nucleotide repeat expansions. In the present review we focus on the overlapping role
of autophagy and the UPS in repeat expansion proteotoxicity associated with chromosome 9 open
reading frame 72 (C9ORF72) and androgen receptor (AR) genes, which are implicated in two motor
neuron disorders, amyotrophic lateral sclerosis (ALS) and spinal-bulbar muscular atrophy (SBMA),
respectively. At baseline, both C9ORF72 and AR regulate autophagy, while their aberrantly-expanded
isoforms may lead to a failure in both autophagy and the UPS, further promoting protein aggregation
and toxicity within motor neurons and skeletal muscles. Besides proteotoxicity, autophagy and UPS
alterations are also implicated in neuromuscular junction (NMJ) alterations, which occur early in both
ALS and SBMA. In fact, autophagy and the UPS intermingle with endocytic/secretory pathways to
regulate axonal homeostasis and neurotransmission by interacting with key proteins which operate
at the NMJ, such as agrin, acetylcholine receptors (AChRs), and adrenergic beta2 receptors (B2-ARs).
Thus, alterations of autophagy and the UPS configure as a common hallmark in both ALS and SBMA
disease progression. The findings here discussed may contribute to disclosing overlapping molecular
mechanisms which are associated with a failure in cell-clearing systems in ALS and SBMA.

Keywords: autophagy; proteasome; C9ORF72; AR; mTOR; TFEB; HSPB8; GSK3b; beta2 adrenergic
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1. Introduction

Alterations in the two major eukaryotic cell-clearing systems, autophagy and the
ubiquitin-proteasome system (UPS), are promiscuously implicated in a variety of neurological disorders
featuring protein misfolding, aggregation, and toxicity [1–4]. These disorders include a group in
which aggregated proteins are encoded by genes containing nucleotide repeat expansions, such as
Huntington disease, different forms of spinocerebellar ataxia (SCA), amyotrophic lateral sclerosis
(ALS) and/or frontotemporal dementia (FTD), and X-linked spinal-bulbar muscular atrophy (SBMA,
Kennedy’s disease) [5–10].
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Here we focus on chromosome 9 open reading frame 72 (C9ORF72) and androgen receptor
(AR) genes which are similarly affected by repeat expansions, leading to two different kinds of
motor neuron disorders, namely ALS and SBMA, respectively [11–14]. Despite differing in disease
frequency and clinical course, ALS and SBMA possess key overlapping features that are associated
with dysfunctions of cell-clearing systems, namely protein aggregation due to expanded C9ORF72 or
AR within both motor neurons and skeletal muscles, as well as early neuromuscular junction (NMJ)
and axonal alterations [10,15–21]. At baseline, both C9ORF72 and AR regulate autophagy, while their
aberrantly-expanded isoforms may lead to a failure in both autophagy and the UPS, further promoting
protein aggregation and toxicity within motor neurons and skeletal muscles [10,21–23].

Repeat expansions within C9ORF72 and AR are generally considered to produce neurotoxicity
through a gain-of-function mechanism consisting of the formation of dipeptide repeat (DPR) proteins
and polyglutamine-expanded AR (ARpolyQ) which aggregate in cells [10,18,24]. While being substrates
for both the UPS and autophagy, these protein aggregates might in turn alter cell-clearing systems,
and mostly the UPS, which is unable to process large and insoluble aggregates due to its narrow catalytic
chamber [25]. Remarkably, in both ALS and SBMA, a gain-of function toxicity may concomitantly
occur along with a loss of normal C9ORF72 and AR function, respectively [18–20,26,27]. This is
supposed to exacerbate the failure in cell-clearing systems, and mostly the autophagy pathway, which
is physiologically activated by the normal C9ORF72 and AR [22,23,28]. This is magnified in the case of
C9ORF72 repeat expansions, which often synergize with additional genetic disease modifiers to produce
frank toxicity through alterations of cell-clearing systems [29]. In fact, a plethora of mutated genes
which concur with C9ORF72 repeat expansions are known to alter autophagy and the UPS [11,30–32].

It is noteworthy that regardless of the causative mechanism, disease symptoms in ALS and
SBMA are bound to a failure of neurotransmission which may precede protein aggregation [33–35].
In particular, early alterations within the skeletal muscle, NMJ, and sensory/motor axons are emerging
as a primum movens in both ALS and SBMA [33,35–38]. In line with this, both diseases are being
redefined as neuromuscular synaptopathies, remarking the importance of proteostasis within the
sensory–motor system as a whole [36]. In this scenario, autophagy and the UPS hold a center
stage, being intermingled with each other and with endocytic/secretory pathways to regulate axonal
homeostasis and neurotransmission beyond the clearance of potentially toxic protein aggregates [39–42].
As we shall see, a plethora of proteins operating at the NMJ and which are altered in ALS and SBMA,
are bound to autophagy and/or UPS activities [43–45]. This is the case for agrin, acetylcholine receptors
(AChRs), and adrenergic beta2 receptors (B2-ARs), which are implicated in NMJ maintenance [43–46].

In the present manuscript, after providing an overview on the promiscuous roles of autophagy
and the UPS in proteoxicity within motor neurons, axons, and muscle cells in ALS and SBMA, we move
to discuss potential molecular mechanisms bridging autophagy and UPS alterations with early NMJ
alterations. In particular, we focus on C9ORF72 and specific genes which may concur with C9ORF72
repeat expansions to foster disease progression and proteotoxicity through alterations of cell-clearing
systems. This is taken as a paradigm to be compared with repeat expansions similarly affecting AR in
SBMA. The findings here discussed may contribute to disclosing overlapping molecular mechanisms
in ALS and SBMA.

2. Cell-Clearing Systems and C9ORF72 Repeat Expansions in ALS

C9ORF72 repeat expansions are currently the major genetic cause of familial ALS and/or FTD
worldwide while occurring with lower frequencies in sporadic ALS and/or FTD as well [11]. In detail,
GGGGCC hexanucleotide repeat expansions within the first intron of C9ORF72 lead to C9ORF72
haploinsufficiency and loss-of-function, and/or production of RNA foci and dipeptide repeat (DPR)
proteins forming toxic aggregates in motor neurons, with the two mechanisms not being necessarily
mutually exclusive [18,20,26]. Besides motor neurons, skeletal muscle cells also experience pathological
changes due to the C9ORF72 mutation. In fact, in skeletal myocytes differentiated from induced
pluripotent stem cells (iPSCs) of C9ORF72-ALS patients, the occurrence of DPR proteins is accompanied
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by abnormalities in the expression of mitochondrial genes and a high susceptibility to oxidative stress,
as well as increased expression and aggregation of TAR DNA-binding protein 43 (TDP-43) [47].
Supporting these findings, DPR-related pathology is detected in the skeletal muscle of ALS patients
with C9ORF72 repeat expansion [48].

Remarkably, both C9ORF72 loss-of-function and production of DPR protein aggregates are bound
to alterations of cell-clearing systems. C9ORF72 acts a component of the autophagy initiation complex
which is composed of ULK1-RB1CC1-ATG13-ATG101 [49]. Autophagy initiation by C9ORF72 is
mediated by a direct interaction between ATG13 and the isoform-specific carboxyl-terminal DENN
and dDENN domain of C9ORF72 [49]. Downregulation of C9ORF72 in cell lines and primary neurons
impairs autophagy by hampering Rab1a-dependent trafficking of the ULK1 autophagy initiation
complex to the phagophore [22]. This in turn, promotes the accumulation of p62-positive puncta
similar to what is observed in C9-ALS/FTD patient-derived neurons [22]. In primary hippocampal
neurons cultured from C9ORF72-knockout mice, a reduction in dendritic branching and spine density
occurs, which is associated with an impairment of autophagy due to reduced ULK1 levels [49]. Thus,
besides protein degradation, C9ORF72-dependent promotion of ULK1-mediated autophagy has a key
role in neuronal and dendritic morphogenesis.

Recently, a disease mechanism in ALS resulting from reduced C9ORF72 levels which can synergize
with DPR-dependent gain of toxicity through autophagy and UPS deficits has been proposed [18,19].
In mice expressing a 450 repeat C9ORF72 transgene that does not encode the C9ORF72 protein,
inactivation of the endogenous C9ORF72 alleles exacerbates ALS phenotype and the accumulation
of DPR proteins by occluding the autophagy activity [18]. This implies a double-hit pathogenic
mechanism, whereby reduced expression of C9ORF72 synergizes with an impairment of DPR clearance
fostering their accumulation and toxicity in ALS [20]. This is largely bound to an autophagy impairment,
which exacerbates the accumulation of DPR proteins deriving from translation of sense and antisense
repeats, eventually promoting neurotoxicity. Conversely, pharmacological autophagy activators
prevent these effects [20]. Data from cell lines, primary neurons, transgenic mice, and patient tissue
indicate that DPR proteins derived from C9ORF72 repeat expansion, especially poly-glycine-alanine
(GA) and poly-proline-alanine (PA), impair the UPS besides autophagy [19,24,50–52]. Remarkably,
this is associated with TDP-43 cytoplasmic mislocalization, aggregation, and toxicity, which occurs in
the absence of TARDBP mutations [19]. In detail, cell-to-cell transmission of DPR proteins inhibits
the UPS in neighboring cells, both cell-autonomously and non-cell-autonomously. In turn, UPS
inhibition exacerbates the accumulation of TDP-43 which is ubiquitinated specifically within the
nuclear localization signal at lysine 95 [19]. Conversely, administration of the UPS activator rolipram
completely blocks DRP-dependent mislocalization and aggregation of TDP-43 [19]. In line with
this, DPR proteins physically associate with proteasomes to inhibit the degradation of ubiquitinated
substrates, while administration of UPS activators occludes the toxic effects of DPR on motor neuron
survival (Figure 1) [24]. These findings are in line with neuropathological investigations showing that
repeat expansions in C9ORF72 are associated with ubiquitin- and p62-containing cytoplasmic inclusions,
being either positive or negative for TDP-43 [11,53–55]. However, most of the abovementioned studies
did not focus on the potential differences between the effects of UPS vs. autophagy activity and the
specific type of DPR, which indeed may vary in aggregation dynamics and toxicity, while occurring
within neuronal inclusions other than TDP-43-positive ones.



Int. J. Mol. Sci. 2020, 21, 4021 4 of 25

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 4 of 25 

 

 
Figure 1. Chromosome 9 open reading frame 72 (C9ORF72) repeat expansions alter autophagy and the 
ubiquitin proteasome system (UPS) through a combination of loss- and gain-of-function mechanisms. 
Reduced C9ORF72 levels due to GGGGCC expansions may synergize with dipeptide repeat (DPR)-
dependent gain of toxicity through autophagy and UPS deficits. In detail, C9ORF72 loss-of-function 
impairs autophagy initiation by hampering the recruitment of Rab1, Rab8/39, and ULK1 complex to 
the phagophore. At the same time, through a gain-of function mechanism, C9ORF72 repeat expansions 
lead to the formation of DPR proteins through a repeat-associated non-AUG (RAN) translation and/or 
through formation of RNA foci that sequester proteins such as TAR DNA-binding protein 43 (TDP-43) 
which are exported from the nucleus to the cytoplasm. This leads to the formation of cytosolic protein 
aggregates that alter mitochondria and impair the UPS while engulfing autophagy compartments. A 
failure in autophagy flux along with UPS catalytic activity eventually promotes further DPR protein 
and TDP-43 aggregation, which can be prevented by autophagy or UPS inducers. Flashlights indicate 
mutations or alterations. 
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expansions, contributing to the pleiotropic clinical and pathological phenotypes observed in ALS, 
including the ALS–FTD spectrum [11]. These include mutations in superoxide dismutase 1 (SOD1), 
transcription of RNA activating protein/TAR DNA-binding protein (TARDBP), fused in sarcoma 
(FUS), optineurin (OPTN), ubiquilin-2 (UBQLN2), progranulin (PGRN), ataxin-2 (ATXN-2), valosin-
containing protein (VCP), and dynactin (DCTN1), among others [11,54,57–64]. Remarkably, mutations 
in these genes are per se bound to alterations of autophagy and the UPS, suggesting a possible 
mechanism through which they might add on the C9ORF72 expansion-related pathophysiology. The 
link among cell-clearing systems dysfunctions and mutated proteins such as SOD1, TDP-43, FUS, 
OPTN, and UBQLN2 has been thoroughly reviewed in the literature [3,30–32,65], thus it will be only 
briefly mentioned here. In detail, misfolded SOD1, TDP-43, FUS are all substrates of the UPS and 
autophagy, with large and insoluble oligomer species being preferentially degraded by autophagy 
[66–72]. In turn, these protein aggregates may impair both the UPS and autophagy, while enhancing 
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both motor neurons and muscle cells in various ALS models [66–74]. 
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Figure 1. Chromosome 9 open reading frame 72 (C9ORF72) repeat expansions alter autophagy
and the ubiquitin proteasome system (UPS) through a combination of loss- and gain-of-function
mechanisms. Reduced C9ORF72 levels due to GGGGCC expansions may synergize with dipeptide
repeat (DPR)-dependent gain of toxicity through autophagy and UPS deficits. In detail, C9ORF72
loss-of-function impairs autophagy initiation by hampering the recruitment of Rab1, Rab8/39, and
ULK1 complex to the phagophore. At the same time, through a gain-of function mechanism, C9ORF72
repeat expansions lead to the formation of DPR proteins through a repeat-associated non-AUG (RAN)
translation and/or through formation of RNA foci that sequester proteins such as TAR DNA-binding
protein 43 (TDP-43) which are exported from the nucleus to the cytoplasm. This leads to the formation
of cytosolic protein aggregates that alter mitochondria and impair the UPS while engulfing autophagy
compartments. A failure in autophagy flux along with UPS catalytic activity eventually promotes
further DPR protein and TDP-43 aggregation, which can be prevented by autophagy or UPS inducers.
Flashlights indicate mutations or alterations.

2.1. C9ORF72 Synergizes with Genetic Disease Modifiers to Alter Cell-Clearing Pathways

A stream of evidence suggests that C9ORF72 depletion might not lead per se to major neuronal
toxicity while contributing to ALS pathogenesis by directly interfering with additional genetic disease
modifiers [29,56]. In fact, a number of additional mutated genes may co-occur with C9ORF72 repeat
expansions, contributing to the pleiotropic clinical and pathological phenotypes observed in ALS,
including the ALS–FTD spectrum [11]. These include mutations in superoxide dismutase 1 (SOD1),
transcription of RNA activating protein/TAR DNA-binding protein (TARDBP), fused in sarcoma (FUS),
optineurin (OPTN), ubiquilin-2 (UBQLN2), progranulin (PGRN), ataxin-2 (ATXN-2), valosin-containing
protein (VCP), and dynactin (DCTN1), among others [11,54,57–64]. Remarkably, mutations in these
genes are per se bound to alterations of autophagy and the UPS, suggesting a possible mechanism
through which they might add on the C9ORF72 expansion-related pathophysiology. The link
among cell-clearing systems dysfunctions and mutated proteins such as SOD1, TDP-43, FUS, OPTN,
and UBQLN2 has been thoroughly reviewed in the literature [3,30–32,65], thus it will be only briefly
mentioned here. In detail, misfolded SOD1, TDP-43, FUS are all substrates of the UPS and autophagy,
with large and insoluble oligomer species being preferentially degraded by autophagy [66–72]. In turn,
these protein aggregates may impair both the UPS and autophagy, while enhancing the UPS and/or
autophagy prevents SOD1, TDP-43, and FUS protein aggregation and toxicity within both motor
neurons and muscle cells in various ALS models [66–74].
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UBQLNs bind the ubiquitin chains which are attached to variety of aggregation-prone proteins,
fostering their delivery and degradation by either the UPS or autophagy [75–77]. Thus, it is not
surprising that mutations in UBQLN2 are associated with an impaired protein degradation by both the
UPS and autophagy in ALS [65,78,79].

Finally, OPTN is a multifunctional autophagy receptor which possesses a ubiquitin-binding
domain and it plays important roles in vesicle trafficking, maintenance of the Golgi apparatus, and
autophagosome maturation. Mutations in OPTN may impair autophagy both through a loss-of
function mechanism and through the formation of misfolded and aggregated proteins [80]. In fact,
overexpression of wild type OPTN decreases protein inclusions which are induced by mutated
OPTN [80]. This occurs in cooperation with the UPS through K63-linked polyubiquitin-mediated
autophagy [80], which is in line with recent studies showing that OPTN may be a preferential target of
the UPS [81]. This is largely bound to the recently-identified E3 ubiquitin ligase Hrd1, which increases
the UPS-dependent degradation and microtubule-dependent aggresome formation of OPTN [81].
Besides these genes, less frequent mutated genes such as ATXN-2, VCP, PGRN, and DCTN1 may concur
with C9ORF72 in ALS [60–63], while potentiating alterations of cell-clearing systems, as discussed
below [82–85] (Figure 2).
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Figure 2. Mutated genes synergizing with C9ORF72 repeat expansions to produce proteotoxicity
through autophagy and UPS impairment. Ataxin-2 (ATNX-2) mutations may synergize with C9ORF72
repeat expansions to hamper autophagy initiation through occlusion of ATNX-2-mediated mTOR
inhibition. Progranulin (PGRN) mutations may hamper autophagosome formation by occluding the
recruitment of ATG12. Valosin-containing protein (VCP) mutations may contribute to hampering
autophagy flux by occluding the interaction with proteins (UBXD1 and YOD1) which mediate the fusion
with lysosomes. Optineurin (OPTN) mutations occlude the targeting of ubiquitinated substrates or
aggresomes to the UPS and autophagy pathways. Dinactin (DCNT1) mutations occlude the retrograde
transport of ubiquitinated substrates or aggresomes to the autophagy pathway. Superoxide dismutase
1



Int. J. Mol. Sci. 2020, 21, 4021 6 of 25

(SOD1), TDP-43, and FUS mutations contribute to increase the amount of intracellular protein aggregates
which impair mitochondrial homeostasis while overwhelming the UPS and autophagy. TDP-43 and
FUS may also be sequestered within C9ORF72-induced RNA foci to be subsequently exported from the
nucleus to the cytoplasm, thus potentiating the accumulation of aggregated proteins in the cytoplasm.
In the context of a UPS impairment, the chaperones heat shock protein family A (Hsp70) member 8
(HSP8)/Bcl-2-associated athanogene 3 (BAG3) may be recruited as a compensatory attempt to route
misfolded/aggregated proteins to the autophagy pathway. Nonetheless, a failure in autophagy flux may
eventually promote protein aggregation and toxicity, which can be prevented by various autophagy
inducers. Flashlights indicate mutations and alterations.

2.1.1. ATXN-2

Depletion of C9ORF72 in neurons mildly impairs autophagy by disrupting a molecular complex
which acts as a GDP/GTP exchange factor for RAB8 and RAB39 [29,56]. This leads to the accumulation
of TDP-43 and p62 aggregates, which intriguingly, is not associated with frank toxicity [29,56]. Instead,
dramatic effects on cell survival are documented in neurons bearing nucleotide expansions within
both C9ORF72 and ATXN-2, a gene implicated in ALS besides SCA [56]. In line with this, intermediate
ATXN-2 repeat lengths are likely to make C9ORF72 expansion carriers more susceptible to the
development of motor neuron disease [61]. This is confirmed in animal models, where C9ORF72
haploinsufficiency combined with ATXN-2 intermediate polyglutamine repeats (30Q), markedly
exacerbates ALS progression and proteotoxicity, which occurs through a powerful inhibition of the
autophagy pathway [29]. When coupled with autoptic findings documenting high levels of pathologic
TDP-43 in the motor cortex and spinal cord of ALS patients with C9ORF72 and ATXN-2 expansions [86],
these pieces of evidence suggest that autophagy impairment may be a mechanistic link between TDP-43
aggregation and ALS-related repeat expansions.

Remarkably, ATXN-2 mutations are per se bound to an impairment of autophagy, which might
explain the more severe alterations which are observed upon a combination with C9ORF72 expansions.
In fact, ataxin-2 is an intrinsically-disordered protein which acts as an autophagy inducer through
inhibition of the mammalian target of rapamycin complex 1 (mTORC1) signaling [87]. In yeast, ataxin-2
binds to TORC1 specifically during respiratory growth, to inhibit TORC1 through a methionine-rich,
low complexity region. This region causes phase separation and forms reversible fibrils while enabling
self-association into assemblies that are required for TORC1 inhibition [87]. Mutant ataxin-2 that
weakens phase separation in vitro exhibits reduced capacity to inhibit TORC1, causing consistent
metabolic disturbances due to autophagy inhibition and mitochondrial dysfunctions [87]. In line with
this, a CAG repeat expansion in the ATXN-2 gene leads to mitochondrial dysfunction and autophagy
inhibition, which goes along with caspase-8- and caspase-9-mediated apoptosis and production of
reactive oxygen species (ROS) in vitro [82]. These events are prevented by administration of either
autophagy inducers or compounds promoting oligomer dissolution [82]. This suggests that similarly
to DPR proteins arising from C9ORF72 repeat expansions, mutant ATXN-2 may also lead to potentially
toxic oligomers which can be targeted by autophagy [82].

2.1.2. VCP

Mutations in the ubiquitously-expressed valosin-containing protein (VCP) gene, which occur
in ALS besides inclusion body myopathy (IBM) associated with Paget’s disease of bone and FTD,
lead to autophagy alterations and TDP-43-positive, ubiquitinated inclusions within both neurons and
muscle cells [83]. Despite not being VCP mutations a major cause of ALS, pathogenic hexanucleotide
expansions have been identified in the VCP 5’UTR of C9ORF72-ALS cases [62]. Since VCP is essential
to autophagosome maturation both at baseline and during UPS inhibition [88], it is conceivable that a
loss of VCP function might synergize with C9ORF72 expansions to occlude autophagy-dependent
degradation of ubiquitinated proteins. VCP, in cooperation with the UPS, is also key to promoting
autophagy activity upon lysosomal damage. In fact, VCP moves to damaged endosomes and lysosomes
where the UPS components UBXD1, PLAA, and YOD1 are concomitantly recruited to foster the removal
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of p62-shuttled, K63-linked ubiquitinated substrates [89]. This is key to degrading ubiquitinated
substrates within damaged endosomes and lysosomes while promoting autophagosome formation.
In line with this, by intermingling with endocytic and autophagy pathways, VCP promotes the
degradation of TDP-43 and FUS, while TDP-43 and FUS aggregates in turn, impair VCP-dependent
protein turnover [90]. As we shall see, reduced expression of VCP also occurs in SBMA models
featuring mutant ARpolyQ [10], providing a possible molecular bridge among nucleotide repeat
expansions, impaired protein degradation, and neuromuscular disease.

2.1.3. PGRN

A few reports showed that progranulin (PGRN) mutations may concur with C9ORF72 repeat
expansions [60] while acting as a disease modifier in ALS through earlier onset and shorter survival [91].
PRGN is a key regulator of autophagy and it is critically involved in motor and sensory axonal
alterations which frequently occur in ALS (including C9ORF72 patients and experimental models)
and also in SBMA [26,37,92–99]. PGRN overexpression in sensory neurons attenuates neuropathic
pain after sciatic nerve injury and accelerates nerve healing [84]. Such an effect is bound to the
interactions of PGRN with the autophagy-related proteins ATG12 and ATG4b, as well as lysosomal
and endocytic proteins. In line with this, defective autophagy is detected in PGRN-deficient neurons.
This is associated with cell death, which is prevented by PGRN overexpression [84]. Likewise, in vivo,
nerve injury produces an impairment of autophagy flux in dorsal ganglia sensory neurons and nerves,
while PGRN enhances nerve healing and prevents the occurrence of protein aggregates in the injured
nerves [84]. In these conditions, inhibition of the autophagy flux by hydroxychloroquine occludes
the beneficial effects provided by PGRN, indicating a critical role of autophagy in the mechanisms
of action of PGRN in sensory neurons and axons [84]. Similar to what is observed in sensory axons,
knockdown of PGRN genes in zebrafish produces alterations in motor axons being characterized by
short axonal outgrowth and aberrant branching [100]. Remarkably PGRN overexpression rescues
motor axonopathy associated with either PGRN deficiency or TDP-43 aggregation [100], which is
likely bound to autophagy activation. This is supported by evidence from zebrafish models, where
the expression of C9ORF72-related DPR consistently induces a motor axonopathy which is rescued
by the autophagy-and UPS-related protein p62 [93]. Remarkably, trehalose, an mTOR-independent
activator of autophagy which exerts beneficial effects in both ALS and SBMA models [10,101–103],
enhances PGRN expression in both iPSC-derived human neurons carrying a PGRN mutation and in the
brains of PGRN haploinsufficient mice [104]. This suggests that autophagy inducers may be potential
therapeutics for neurodegenerative diseases featuring peripheral neuropathy.

In line with these findings, autophagy alterations are now emerging as a common mechanism in
peripheral neuropathies [105], which frequently occur in ALS and SBMA as well as in specific inherited
disorders. Despite the increased recognition that sensory, and mostly proprioceptive neurons and fibers
are affected in ALS, to date only mutated SOD1 and TDP-43 has been shown to directly affect sensory
neurons and axons [96]. Nonetheless, recent studies unraveled that C9ORF72 expansions, similar to
mutated SOD1 and TDP-43, are highly toxic to axons and substantially inhibit axonal mitochondrial
and vesicular transport, likely via a combination of gain- and loss-of-function mechanisms [26,106].
Since rescuing autophagy prevents the accumulation of damaged mitochondria associated with early
axonal clogging in SOD1(G93A)-ALS models [94,95], it is worth investigating whether an autophagy
impairment following C9ORF72 mutations may similarly produce axonal alterations.

2.1.4. DCTN1

Axonal transport defects consistently contribute to axonal alterations and motor neuron
degeneration in ALS and also in SBMA [21,94,107–110]. In fact, mutations in the genes coding
for the retrograde motor complex dynein/dynactin occur in both ALS, ALS/FTD, and SBMA patients
and animal models [63,64,108–110]. Recent studies showed that motor neuron disease-linked mutations
in dynactin (DCTN1) may lead to both DCTN1 dysfunction and DCTN1 protein aggregation [85,111].
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In line with a deleterious role of dynactin loss-of-function, the depletion of DCTN1 in mice produces a
consistent loss of spinal cord motor neurons along with NMJ disintegration and muscle atrophy, which
is associated with accumulating autophagosomes and lysosomes witnessing for vacuole transport
defects [111]. On the other hand, consistent with a potentially toxic role of DCTN1 mutations,
overexpression of transcription factor EB (TFEB) promotes the autophagy-dependent clearance of
mutant (G59S) DCTN1 aggregates while preventing cytotoxicity [85]. At baseline, the UPS is the
primary degradation system for both wild type (WT) and mutated (G59S) DCTN1, while autophagy is
recruited to clear mutated DCTN1 protein aggregates when the UPS is inhibited [85].

Similar compensatory, yet promiscuous mechanisms between autophagy and the UPS are reported
in models of motor neuron disease following dynein alterations. In detail, dynein-mediated retrograde
transport is key to shuttle misfolded or aggregated proteins toward the perinuclear region of the
cells, where they are either degraded by autophagy or stored into the aggresome [21]. Inhibition
of dynein-mediated retrograde transport is known to occlude the targeting of misfolded species
to autophagy. However, in cell models of expanded polyGP-C9ORF72, the UPS is recruited as a
compensatory response to prevent protein aggregation following inhibition of dynein-mediated
retrograde transport [21]. The same effects are observed in cells expressing mutant SOD1 and TDP-43.
In detail, UPS recruitment and the clearance of polyGP proteins, SOD1 and TDP-43 is associated with
an increase in heat shock protein family A (Hsp70) member 8 (HSPA8) cochaperone Bcl-2-associated
athanogene 1 (BAG1) [21]. The latter reroutes protein cargoes to the UPS in a dynein-independent
manner when autophagy-dependent protein degradation is impaired [21].

3. Cell-Clearing Systems and AR Nucleotide Repeat Expansions in SBMA

Analogously to what occurs in C9ORF72-ALS, tandem repeats in exon 1 of the AR gene in SBMA
lead to an abnormal CAG expansion which produces a long polyglutamine tract (polyQ) in the AR
protein [12]. The mutant AR (ARpolyQ) misfolds, and upon activation by the AR ligand testosterone,
it forms cytoplasmic and toxic nuclear aggregates through a gain-of function mechanism. Despite
neurotoxicity being largely associated with the formation of nuclear aggregates, nuclear localization
of ARpolyQ is necessary though not sufficient for toxicity [112]. Remarkably, improving ARpolyQ
cytoplasmic clearance contributes to decreasing ARpolyQ nuclear accumulation, which indicates
that the occlusion of autophagy-dependent cytoplasmic ARpolyQ enhances the toxicity of nuclear
ARpolyQ [112]. In fact, while normal AR promotes the activation of the autophagy inducer TFEB,
ARpolyQ impairs TFEB-dependent autophagy flux in motor neuron-like cells [23]. The combination
of the TFEB-related autophagy inducer trehalose and the antiandrogen bicalutamide which slows
down AR nuclear translocation, reduces insoluble ARpolyQ within motor neurons with a higher
efficiency compared with single treatments [113]. Such a combination allows an increased recognition
of misfolded species by the autophagy pathway prior to their migration into the nucleus while clearing
insoluble AR species which bear a very long polyQ (Q112) tract [113]. Again, in neuronal cells,
the heat shock protein 90 (HSP90) inhibitor 17-(allylamino)-17-demethoxygeldanamycin (17-AAG)
exerts beneficial action in SBMA [114], and this occurs through an autophagy-dependent clearance of
ARpolyQ [115]. Intriguingly, 17-AAG is unable to counteract SOD1 and TDP-43 aggregation, suggesting
a quite specific role for HSP90 in AR aggregation [115]. The chaperone HSPB8 also facilitates the
autophagy-mediated removal of ARpolyQ aggregating species [116]. Despite not influencing p62 and
LC3 levels, it does prevent p62 bodies formation while restoring autophagy flux. Trehalose, which
counteracts ARpolyQ through autophagy activation, also induces HSPB8 expression indicating the key
role of HSPB8-related autophagy as a potential target against ARpolyQ toxicity [116].

Besides autophagy, rescuing the UPS may be key to counteracting ARpolyQ-protein degradation,
as well as mitochondrial alterations and axonal transport defects in SBMA models [117]. In fact,
ARpolyQ aggregates sequester mitochondria and stain positively for heat shock proteins such as HSP90
and HSP70 as well as UPS subunits, suggesting a breakdown in UPS processing [9,118]. Ubiquitin
is also detected in aggregated ARpolyQ nuclear species whose proteolysis eventually requires UPS
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activity [119]. Recent studies showed that HSPA8 and its cochaperone BAG1 are key to rerouting
ARpolyQ towards the UPS when dynein-mediated retrograde targeting of misfolded proteins to the
autophagy pathway is impaired [21]. Again, in a mouse model of SBMA featuring neuronal ARpolyQ
obtained through the Tet-On system, cepharanthine phytochemical from Stephania cepharantha decreases
ARpolyQ levels both in the cytoplasm and nucleus [120]. In detail, while the UPS appears to be mostly
implicated in WT AR degradation, autophagy induction following cepharanthine administration
enhances the clearance of cytoplasmic ARpolyQ while providing neuroprotection [120].

In transgenic Drosophila, ARpolyQ produces ligand-dependent degeneration of specific neurons
resulting in a rough eye phenotype, which is associated with an impairment of both the UPS and
autophagy [121]. Inducing autophagy through overexpression of histone deacetylase 6 (HDAC6)
accelerates the turnover of the ARpolyQ while lowering steady-state levels of monomeric and
aggregated ARpolyQ in these fly models [121]. Treatment with the TOR inhibitor rapamycin reproduces
these effects [121], suggesting a synergistic activity between autophagy and the UPS. This is in line
with recent studies linking mTOR inhibition to a simultaneous activation of autophagy and the
UPS [4,122,123].

Autophagy and the UPS in SBMA Muscle and Axons

Beyond motor neurons within the spinal cord and brainstem, AR mutations also affect dorsal root
ganglia neurons and skeletal muscle cells, leading to sensory dysfunctions and atrophy of bulbar, facial,
and limb muscles, with CAG repeat size differentially correlating with motor- and sensory-dominant
phenotypes [10,124–127]. Recent studies suggest that SBMA first manifests in skeletal muscle, prior
to any motor neuron degeneration which only occurs in late-stage disease [127]. Although the
polyQ expansion is known to impart a toxic gain-of-function effect upon the mutant AR protein,
evidence has been provided showing that SBMA pathogenesis may concomitantly involve an AR
gain-of-function toxicity and loss of normal AR function, reminiscent of what reported for C9ORF72
repeat expansions [27]. In fact, androgens acting through the AR are important for muscle development
suggesting that both loss of normal AR functions and gain of novel harmful functions can contribute
to neurodegeneration and muscular atrophy [27,117]. This was addressed by crossing transgenic
mice models harboring 100 AR glutamines (AR100) with AR-null mice (testicular feminization;
Tfm) [27]. Absence of the endogenous AR protein in AR100Tfm mice has profound effects upon
neuromuscular and endocrine features, leading to neurodegeneration and severe androgen insensitivity
compared with AR100 littermates. Remarkably, AR transactivation diminishes competitively in a
polyQ length-dependent way. Reduction in size and number of androgen-sensitive motor neurons
in the spinal cord of AR100Tfm mice underscores the importance of normal AR action for neuronal
survival and muscle function [27]. This is key since the transcriptional activity of the normal AR
receptor is bound the autophagy pathway. In fact, the core autophagy genes ATG4B, ATG4D, ULK1,
and ULK2, as well as TFEB, a master regulator of autophagosome–lysosomal biogenesis and function,
are all transcriptional targets of AR [23,28]. This suggests that ARpolyQ may impair cell-clearing
systems both directly, by forming large aggregates which engulf autophagy compartments and the
UPS, and also indirectly, by competitively blocking AR transactivation and subsequent autophagy
induction. Intriguingly, similarly to ARpolyQ which blocks AR transactivation in a length-dependent
way, AR transactivation is repressed in a dose-dependent manner by glycogen synthase kinase 3beta
(GSK3b) [128], a well-known autophagy modulator [73,129–131]. Remarkably, the suppression of AR
transactivation by GSK3b is abolished by the GSK3b inhibitor and autophagy inducer lithium [128].

The effects of GSK3b and lithium are poorly investigated in the context of SBMA. However,
lithium exerts beneficial effects in both ALS patients and experimental models, where it rescues
affected motor neurons, axons, and skeletal muscles through autophagy induction and restoration of
mitochondrial homeostasis [73,95,131–137]. Remarkably, in human muscle cultures, GSK3b activity is
also enhanced by UPS inhibition, while treatment with lithium rescues UPS activity while preventing
protein aggregation [138]. These findings add to the vast body of evidence linking lithium-induced
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inhibition of GSK3b activity with autophagy induction, showing that besides autophagy, GSK3b
inhibition may empower the UPS.

This is key since RNA-sequencing studies recently identified the UPS as one of the major
pathways being disrupted in the muscle of ARpolyQ-knockin mice [139]. In fact, numerous UPS genes
are downregulated in AR113Q-expressing muscle, encoding approximately 30% of UPS subunits
and 20% of E2 ubiquitin-conjugating enzymes. These changes are age, hormone, and glutamine
length-dependent [139]. Furthermore, the reduction in the expression of UPS genes and catalytic
activity is associated with decreased levels of the UPS transcription factor NRF1 and its activator
DDI2. In fact, the downregulation of NRF1 or ADRM1 Drosophila orthologues reproduces ARpolyQ
accumulation and toxicity. These data indicate that AR113Q muscle develops progressive UPS
dysfunction promoting the accumulation and toxicity of ARpolyQ protein in SBMA [139]. Conversely,
enhancing UPS-dependent clearance of AR through administration of insulin-like growth factor 1
(IGF-1) reduces AR aggregation [140]. This is documented in vitro as well as in SBMA transgenic mice
overexpressing a muscle-specific isoform of IGF-1, which leads to Akt-dependent AR phosphorylation
and UPS-dependent AR clearance. This is associated with a reversal of behavioral and histopathological
abnormalities, and reduction of both muscle and spinal cord pathology [140].

Supporting a role for early impairment of the UPS in SBMA muscle, an increased BAG3:BAG1
ratio along with autophagy markers is detected in the muscle of AR113Q mice, suggesting a preferential
routing of misfolded proteins to the autophagy pathway [141]. Recent studies in stabilized skeletal
myoblasts show that ARpolyQ forms testosterone-inducible insoluble aggregates which are processed
by both the UPS and autophagy. Intriguingly, while the UPS clears both WT AR and ARpolyQ,
autophagy clears mostly ARpolyQ and it is early activated by ARpolyQ itself [10]. Nonetheless,
ARpolyQ, even in the absence of testosterone, reduces the expression of two autophagy-related
proteins BAG3 and VCP, eventually impairing autophagy response in ARpolyQ s-myoblasts [10].
Overexpression of BAG3 ameliorates ARpolyQ clearance, while the treatment with trehalose induces
complete ARpolyQ degradation, suggesting that ARpolyQ may eventually impair autophagy besides
the UPS in muscle cells [10].

Similar to what was observed for dynein/dynactin-related alterations in ALS, mutations in DNCT1
in a transgenic mouse model of SBMA lead to late-onset, slowly progressive muscle weakness along
with deficits in axonal caliber and NMJ integrity, indicating a distal degeneration of motor neurons [142].
Remarkably, this is associated with accumulation of enlarged lysosomes and lipofuscin granules,
witnessing for an impaired fusion with autophagosomes [142]. Similar defects in autophagy flux
are observed within the motor neurons and hindlimb muscle of SBMA mice models, as well as
in SBMA mice embryonic motor neurons and in a human cell model of motor neuron precursor
cells derived from reprogrammed patient fibroblasts [16]. In detail, ARpolyQ expansion results in
early transcriptional downregulation of the charged multivesicular body protein 7 (CHMP7), which
leads to impaired autophagy flux and alterations in the endosome–lysosome pathways. This is
intriguing since CHMP7 is part of the endosomal sorting complexes required for transport (ESCRT)-III
complex that also includes CHMP2, which is mutated in ALS [143]. These proteins sort ubiquitinated
proteins from endosomes to the lysosome through formation of multivesicular bodies while delivering
autophagosomes to lysosomes [16]. Besides leading to lysosomes accumulation and impaired
autophagy flux, ARpolyQ-induced CHMP7 downregulation is also bound to gene pathways which
are associated with mitochondrial clearance and axonal branching as well as NMJ formation and
maintenance [16]. Among these genes, an enrichment in the GSK3b signaling pathway, which is
known to promote autophagy and UPS inhibition, was identified in SBMA motor neurons along with a
concomitant downregulation in pathways being involved in NMJ development [16]. Thus, autophagy
and UPS alterations may play a key role in the development of SBMA by affecting early NMJ integrity
while promoting protein aggregation and toxicity (Figure 3). In light of these considerations, potential
mechanisms through which autophagy and the UPS may affect NMJ integrity will be discussed in the
following section.
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Figure 3. Androgen receptor (AR) repeat expansions produce proteotoxicity through autophagy and
UPS impairment. A CAG expansion in the AR produces a long polyglutamine tract (polyQ) in the AR
protein. The mutant AR (ARpolyQ) misfolds, and upon activation by the AR ligand testosterone, it forms
cytoplasmic and toxic nuclear aggregates through a gain-of function mechanism. ARpolyQ occludes
autophagy by decreasing transcription factor EB (TFEB), VCP, charged multivesicular body protein 7
(CHMP7), and also BAG3, which is activated as a compensatory response following UPS impairment
by ARpolyQ. ARpolyQ nuclear accumulation may also lead to a loss of normal AR transactivation
while further impairing autophagy. In fact, while normal AR promotes the activation of the autophagy
inducer TFEB, ARpolyQ impairs both normal AR transactivation and TFEB-dependent autophagy,
eventually promoting the accumulation of cytoplasmic ARpolyQ species which are imported in the
nucleus to produce toxicity. Boosting ARpolyQ cytoplasmic clearance through autophagy and UPS
inducers contributes to decreasing ARpolyQ nuclear accumulation and toxicity.

4. Potential Mechanisms Linking Cell-Clearing Systems and Neuromuscular Junction Alterations
in ALS and SBMA

4.1. Autophagy and the UPS Regulate NMJ Development and Function

In Drosophila, autophagy promotes NMJ growth by reducing the levels of a mutated E3 ubiquitin
ligase (highwire), suggesting that autophagy may compensate for UPS dysfunction during NMJ
development [144]. Autophagy is also key for presynaptic assembly and for axon outgrowth dynamics.
In fact, as shown in Caenorhabditis elegans, autophagosome biogenesis occurs in the axon near
synapses, and this is largely bound to the presence of the integral membrane autophagy protein
ATG9 [145]. In turn, alterations of autophagy in either motor neurons or skeletal muscles promote
early NMJ disruption and axon degeneration [146]. This is documented in murine models bearing a
transmembrane protein 184B (TMEM184b) mutation, which leads to early sensory–motor alterations
that are associated with accumulation of stagnant, rimmed autophagy vacuoles and inclusions [146].
Remarkably, these are reminiscent of those caused by mutations in the autophagy-regulating
VCP [146,147]. Again, the ultrastructural terminals of mutant TMEM184b mice feature alterations
which resemble those occurring in models of neuro-axonal dystrophy caused by PLA2G6 phospholipase
mutations [146,148,149]. Finally, dystrophic presynaptic swellings which are consistently found in
TMEM184b mutants are reminiscent of those occurring in mice bearing a spontaneous mutation in the
deubiquitinating protease USP14 [146,150]. This is associated with an abnormal accumulation of UPS
substrates in axon terminals [150]. These findings strengthen the evidence that autophagy and the
UPS are critically involved in sensory–motor terminal structure and function. This may be relevant for
early axon degeneration which occurs in neuromuscular disorders including ALS and SBMA.



Int. J. Mol. Sci. 2020, 21, 4021 12 of 25

4.2. Autophagy and the UPS Regulate Neurotransmission at the NMJ

Besides clearing potentially toxic protein aggregates to maintain synaptic and axonal proteostasis,
autophagy and the UPS play a key role in neurotransmitter release [39–42,151–155]. At the Drosophila
NMJ, the presynaptically-enriched chaperone Hsc70-4, which is known to form a multimeric complex
with HSPB8/BAG3, promotes autophagy to modulate neurotransmitter release through the turnover of
specific synaptic proteins such as Unc-13, EndophilinA, WASp, and Comt/NSF [40]. Loss of autophagy
slows down neurotransmission, while potentiating autophagy increases neurotransmission through
the formation of a larger, readily releasable synaptic vesicle pool. Such a process is modulated by Sgt,
a cochaperone of Hsc70-4, which is able to switch the activity of Hsc70-4 from autophagy-promoting
toward a protein-folding activity. Thus, Hsc70-4 controls rejuvenation of the synaptic protein pool in a
dual way, either by refolding proteins together with Sgt, or by targeting them for autophagy-dependent
degradation [40]. Similar findings are reported in mice featuring UPS dysfunctions due to USP14
mutations [42]. This is associated with a reduction in the size of the readily-releasable vesicle pool within
the NMJ, which cannot keep pace with physiological rates of transmitter release [42]. Likewise, in mice
carrying a spontaneous mutation in the E3 ubiquitin ligase HERC1, a reduction of the motor end-plate
area is detected along with inefficient neuromuscular activity and impaired evoked neurotransmitter
release at the NMJ [155]. Similarly to autophagy, the UPS at the Drosophila NMJ controls synaptic
vesicle priming and neurotransmitter release probability through the turnover of UNC-13 presynaptic
protein [156], which is altered in neurological disorders including ALS [131,137]. Therefore, autophagy
and UPS-dependent targeting of synaptic proteins is key to orchestrating neurotransmitter release and
the size of synaptic vesicles pools at the NMJ.

4.3. Autophagy and the UPS Regulate nAChR Turnover at the NMJ

At vertebrate motor endplates, the conversion of nerve impulses into muscle contraction is
initiated by binding of acetylcholine to its nicotinic receptor (nAChR) at the postsynapse [44]. Efficiency
and safety of this process largely depend on proper localization of the receptors, which in turn,
depends on autophagy- and UPS-dependent turnover. In fact, by intermingling with endocytic
trafficking pathways, autophagy and the UPS orchestrate the delivery and clustering of nAChR to the
postsynaptic membrane, as well as its endocytic retrieval, leading to either recycling or degradation
of nAChR [44,157,158]. In detail, autophagy regulates the turnover of the endocytosed nAChR in
cooperation with the E3 ubiquitin ligase, TRIM63, and SQSTM1/p62 [157]. Inhibition of the UPS in cell
lines leads to a marked upregulation nAChR, which is reproduced, though at a lesser extent, by the
administration of autophagy inhibitors [159]. In detail, nAChR ubiquitination and UPS-dependent
degradation modulates its distribution between specialized intracellular compartments and the plasma
membrane. This effect is achieved by controlling the stability of the alpha3 subunit and, consequently,
the number of receptors at the cell surface [160]. Mice with defective autophagy due to skeletal
muscle-specific loss of ATG7, display alterations of nAChR turnover and of endosome trafficking,
which goes along with fragmentation of NMJs, and early synaptic dysfunction including partial
denervation [15]. In line with this, nAChR expression is increased under muscle wasting conditions
such as immobilization and denervation, highlighting the key role of nAChR turnover by autophagy
and the UPS in these conditions [157,159].

Muscle denervation in ALS has a deep impact on AChR composition and distribution, and
missense variants in nAChR genes are detected in sALS patients [161]. In detail, mutations within
alpha3 and alpha4 nAChRs subunits lead to altered receptor trafficking associated with reduced receptor
desensitization and sustained intracellular Ca(2+) concentration compared with WT-nAChR [161].
Alterations of nAChR are also reported in SBMA. Recently, a genome-wide transcriptome analysis in
SBMA-derived iPSCs differentiated into spinal motor neurons revealed the involvement of synapse
alterations associated with aberrant AChR clustering and NMJ formation [38]. This goes along
with the upregulation of synaptic proteins which are substrates of autophagy and the UPS, such as
synaptotagmin and synaptophysin [38]. Remarkably, nAChR mRNA levels are also upregulated in
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SBMA mice models featuring muscle AR toxicity [35,162]. This is associated with slowed synaptic
potentials and reduced size of the readily releasable synaptic vesicle pool and probability of release [35],
which are known to be orchestrated by the UPS and autophagy.

Autophagy and the UPS are also bound to key proteins belonging to a complex-signaling cascade
which is required for synapse formation at the mammalian NMJ [41,43]. This is the case of agrin, a motor
neuron-derived proteoglycan that stabilizes the junction, and muscle-specific receptor tyrosine kinase
(MuSK), a key organizer of post-synaptic components. At the level of muscle fibers, agrin normally
inhibits the dispersal of AChRs while its alterations lead to endplate fragmentation [163]. In mice
featuring an mTOR-dependent genetic suppression of autophagy, a downregulation of agrin occurs,
which is associated with marked NMJ malformations, aberrantly distributed nAChRs, and varicose
presynaptic nerve terminals in the muscle [43]. Remarkably, administration of the mTOR inhibitor
torin2 reverses both autophagy and agrin downregulation in muscle and nerves while preventing
NMJ alterations. Thus, autophagy failure is bound to an aberrant distribution of AChRs and NMJ
malformations associated with agrin signaling alterations. Again, the UPS component PDZRN3, a PDZ
domain containing the Ring ubiquitin ligase, acts as a MuSK-binding partner. PDZRN3 is concentrated
at postsynapses and it promotes MuSK ubiquitination while suppressing the agrin-induced AChRs
clustering. The lack of Ring domain abolishes such an effect, suggesting that the UPS is important for
AChRs clustering and NMJ development [164].

4.4. Autophagy Converging with the Sympathetic Innervation of NMJs

Besides the tuning of autophagy and of the agrin pathway, the beneficial effects of the sympathetic
innervation of NMJs are being widely investigated in the treatment of muscle wasting disorders,
including ALS and SBMA [45]. In detail, sympathetic neurons make close contacts with NMJs and
they form a network involving blood vessels, motor neurons, and muscle fibers, which is crucial for
synapse maintenance and function [165]. Direct stimulation of sympathetic neurons leads to activation
of muscle postsynaptic β2-adrenoreceptor (B2-AR) and subsequent cAMP production, which is also
key to control the abundance and distribution of AChRs in NMJs [165]. These events are molecularly
associated with the import of the transcriptional coactivator peroxisome proliferator-activated receptor
γ-coactivator 1α (PPARGC1A, or PGC-1α) into myonuclei [165]. Remarkably, PPARGC1A is known to
upregulate autophagy through a SQSTM1-dependent mechanism [166]. In turn, the UPS mediates
PPARGC1A nuclear degradation and governs its cellular localization, half-life, and potential biological
actions [167]. These findings provide a potential mechanistic link between sympathetic innervation
and cell-clearing systems in NMJ homeostasis. This is further supported by studies showing that
trehalose, which has beneficial effects in both ALS and SBMA, induces autophagy in a TFEB-dependent
manner through upregulation of PPARGC1A as well as well-known autophagy-related genes such
as BECN1, LC3, ATG10, ATG12, and SQSTM1/p62 [101]. This is key since norepinephrine was shown
to activate autophagy through B2-ARs [46,168,169], even though contradictory results have been
provided documenting an activation of the mTOR pathway following chronic B2-AR administration,
which is supposed to inhibit autophagy [170]. However, the fact that PPARGC1A activation similarly
occurs following B2-AR stimulation and TFEB activation suggests that B2-ARs likely induce autophagy
through mTOR-independent mechanisms, which calls for confirmatory studies. Altogether, these
findings suggest that cell-clearing systems are key to grant NMJ homeostasis at baseline (Figure 4),
while their alterations might promote NMJ derangements which occur early in ALS and SBMA.
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Figure 4. Autophagy and the UPS at the neuromuscular junction. Autophagy and the UPS promote
neurotransmitter (acetylcholine, ACh) release and contribute to rejuvenating the synaptic vesicle
pool through the turnover of specific proteins that are implicated in synaptic vesicle exocytosis and
endocytosis. Autophagy activity is also bound the to the production of agrin, which together with
muscle-specific receptor tyrosine kinase (MuSK), a UPS substrate, forms a complex that is key to
maintaining the neuromuscular junction (NMJ) and to regulating nAChR at the postsynapse. Here,
autophagy and the UPS are key to promote the internalization and degradation of AChR, which is also
bound to the activity of adrenergic beta2 receptors (B2-ARs). In fact, B2-ARs contribute to regulating
nAChR clustering and NMJ functions, likely through stimulation of autophagy via cAMP-peroxisome
proliferator-activated receptor γ-coactivator 1α (PGC-1α).

5. Conclusions and Future Directions

The findings here discussed suggest that boosting autophagy/UPS activity might counteract early
NMJ alterations while facilitating the removal of potentially-toxic protein inclusions, including DPR
and ARpolyQ which arise from C9ORF72 and AR repeat expansions, respectively. Obviously, besides
ALS and SBMA, this may apply to a very broad range of neurodegenerative proteoinopathies, including
those featuring poly-Q protein aggregation such as HD and SCA, where mechanisms underlying
autophagy–UPS crosstalk would similarly deserve to be dealt with. Another issue that deserves
further attention is the potentially-different role of autophagy vs. the UPS in DPR degradation. In fact,
DPR proteins possess peculiar structures and dynamics compared with classical misfolded proteins
and their toxicity may also differ for each specific DPR [171,172]. Albeit being less frequent than
poly-GP and poly-GA DRP, arginine-containing DPR poly-GR and poly-PR are generally associated
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with greatest toxicity [172]. Again, DPR inclusions generally sequester SQSTM1/p62, though the
preferred pathway of degradation is not uniform for the five DPR proteins [171]. Of all five DPR, only
the polyGP seems to be efficiently removed via the UPS, while the others are apparently to be mainly
degraded via autophagy. An exception is represented by polyPR, which is not significantly affected by
autophagy inhibition through 3-MA administration or HSPB8 depletion [171]. This is likely due to
the fact that polyPR inclusions are mostly detectable in the nucleus, where they cannot be cleared by
autophagy. Remarkably, HSPB8 overexpression significantly and robustly counteracts the accumulation
of insoluble species of all five DPR proteins, which suggests that the action of this chaperone may take
place before polyPR nuclear import and aggregation [171]. How HSPB8 recognizes and facilitates
clearance of DPR proteins remains to be determined. A peculiar feature of arginine-containing
DPR proteins is their potential for post-translational modification by arginine methyl-transferases,
which produces methylarginine DPR [172]. Supporting a possible contribution of methylarginine
post-translational modification to poly-GR toxicity, an association between dimethylarginine-poly-GR
and neurodegeneration was documented in C9-ALS and/or FTD patients [172]. A role for arginine
methylation has also been documented in the pathogenesis of experimental FUS-related ALS [173].
Intriguingly, posttranslational arginine methylation is key for modulating degradation efficiency in
selective autophagy by regulating the association of the cargo-receptor complex with the scaffold
protein [174]. This calls for further studies investigating the potential relationship between alterations
in autophagy/UPS and methyl-transferases in the mechanisms of proteotoxicity.
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Abbreviations

UPS ubiquitin proteasome system
C9ORF72 chromosome 9 open reading frame 72
AR androgen receptor
ALS amyotrophic lateral sclerosis
SMBA spinal bulbar muscular atrophy
FTD frontotemporal dementia
NMJ neuromuscular junction
ARpolyQ polyglutamine-expanded AR
DPR dipeptide repeat
AChRs acetylcholine receptors
B2-ARs adrenergic beta2 receptors
TDP-43 TAR DNA-binding protein 43
SOD1 superoxide dismutase 1
TARDBP transcription of RNA activating protein/TAR DNA-binding protein
FUS fused in sarcoma
OPTN optineurin
UBQLN2 ubiquilin-2
PGRN progranulin
ATXN-2 ataxin-2
VCP valosin-containing protein
DCTN1 dynactin
mTORC1 mammalian target of rapamycin complex 1
SQSTM1/p62 sequestosome 1/p62
HSPA8 heat shock protein family A (Hsp70) member 8
Hsc70 heat shock cognate 71 kDa protein
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BAG1/3 Bcl-2-associated athanogene 1/3
TFEB transcription factor EB
GSK3b glycogen synthase kinase 3beta
CHMP2/7 charged multivesicular body protein 2/7
ESCRT-III endosomal sorting complexes required for transport III
TMEM184b transmembrane protein 184B
MuSK muscle-specific receptor tyrosine kinase
PPARGC1A or PGC-1α peroxisome proliferator-activated receptor γ-coactivator 1α
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