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Abstract 

In this paper, the extended higher-order sandwich plate’s theory (EHSAPT) is used to analyze 

the free vibration of the sandwich plate with compressible core and different boundary 

conditions in contact with fluid. First-order shear deformation theory is adopted for the top and 

bottom face sheets, while the in-plane and transverse displacements of the core are considered to 

be cubic and quadratic functions of the transverse coordinate, respectively. A single series is 

considered with two-variable orthogonal polynomials as a set of admissible functions satisfying 

the boundary conditions. Besides, the fluid is considered to be irrotational, inviscid and 

incompressible. By taking into account the boundary conditions and compatibility conditions, the 

fluid velocity potential is acquired. The natural frequencies of the system are calculated by the 

Rayleigh-Ritz method. An excellent accuracy is obtained between the results in the available 

literature and the present method. Finally, the effects of various parameters including boundary 

conditions, side-to-thickness ratio, thickness of the core to thickness of the face sheets ratio, face 

sheet to core flexural modulus ratio, dimensions of the container, and aspect ratios on the natural 

frequencies of the sandwich plate are presented and discussed in detail. 
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Nomenclature 

a Sandwich plate length 

b Sandwich plate width 

c Fluid width 

d Fluid depth 

𝑓𝑖(𝑥, 𝑦) Weight function 

𝑓𝑡 Top face sheet thickness 

𝑓𝑏 Bottom face sheet thickness 

𝑓𝑐 
g 

Core thickness 

Acceleration of gravity 

h Sandwich plate thickness 

𝑖 = √−1 Imaginary unit 

𝐼𝑡,𝑏,𝑐 Inertia terms of the face sheets and core 

𝑘𝑠 Shear correction factor 
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𝑀 Number of terms in displacement and rotation series 

𝑀1, 𝑁1 Number of terms in fluid series 

𝑇𝑓𝐵 Fluid kinetic energy related to bulging modes 

𝑇𝑓𝑆 Fluid kinetic energy related to sloshing modes 

𝑇𝑡,𝑏,𝑐 Kinetic energy of the face sheets and the core 

t Time 

𝑈𝑡,𝑏,𝑐 Strain energy of the face sheets and the core 

𝑢0
𝑡,𝑏

 In-plane displacement of the face sheets along x-axis 

𝑢0,1,2,3 Components of in-plane displacement of the core along x-axis 

𝑣0
𝑡,𝑏

 In-plane displacement of the face sheets along y-axis 

𝑣0,1,2,3 Components of in -plane displacement of the core along y-axis 

𝑤0
𝑡,𝑏

 Transverse displacement of the face sheets 

𝑤0,1,2 Transverse displacement of the core 

𝜌𝑡,𝑏,𝑐 Density of the face sheets and the core 

𝜌𝑓 Density of fluid 

𝛷𝑂 Fluid velocity potential 

𝛷𝐵 Fluid velocity potential associated with bulging modes  

𝛷𝑆 Fluid velocity potential associated with sloshing modes 

𝑥, 𝑦, 𝑧 Coordinates of system 

𝜓𝑥
𝑡,𝑏

 Rotation component of the transverse normal along y-axis  

𝜓𝑦
𝑡,𝑏

 Rotation component of the transverse normal along x-axis 

𝜀 Strain field 

𝜎 Stress field 

𝜔 Dimensionless natural frequency 

𝜔̅ Natural frequency 

𝜆𝑘 Member of orthogonal polynomials 

𝛬𝑙𝑘 Fourier coefficients related to the bulging modes 

𝛤𝑖𝑗 Fourier coefficients related to the sloshing modes 

𝛻2 Laplace operator 

 

Abbreviation 

Extended higher-order sandwich plate’s theory EHSAPT 

Two-dimensional 2D 

Three-dimensional 3D 

Equivalent single layer ESL 

Layer-wise LW 

Classical lamination theory CLT 

First-order shear deformation theory FSDT 

Functionally graded materials FGM 

Higher-order sandwich plate theory HSAPT 

Fluid-structure interaction FSI 

Simply-supported S 

Clamped C 

Free  F 
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Finite Element Method FEM 

 

1. Introduction 

Sandwich structures with laminated composite face sheets and honeycomb or foam cores are 

being used increasingly in various industrial areas including aerospace, automotive, locomotive, 

and mechanical engineering [1-4]. The most important advantage of this type of sandwich 

structures is their high strength-to-weight ratio [5]. Although, these structures are primarily built 

to operate under harsh environmental conditions, in particular high temperature applications and 

wet environments [6]. Honeycomb cores are usually regarded as incompressible which have high 

specific stiffness and strength, while foam cores are considered compressible with low specific 

stiffness and strength [7]. The behavior of the core has significant effects on the overall behavior 

of the sandwich structure. 

Two main approaches are available to obtain the response of a sandwich plate, based on three-

dimensional (3D) elasticity and two-dimensional (2D) structural theories. In turn, according to 

the assumptions for the displacement field, 2D models are classified into two categories: 

equivalent single layer (ESL) and layer-wise (LW) models. 

In recent years, many studies have been conducted on sandwich plates with both compressible 

and incompressible cores. Pagano [8] has used 3D elasticity solutions to solve the bending 

problem of simply-supported multilayered cross-ply plates. Moreover, by using 3D elasticity 

approach, the buckling and free vibrations of simply-supported sandwich panels with composite 

face sheets have been studied by Noor et al. [9]. Srinivas et al. [10-12] have provided exact 

analytical solutions for the bending, vibration, and buckling of homogeneous and laminated thick 

rectangular plates. 

In the ESL approach, the multilayered plate is reduced to a single equivalent layer thanks to the 

constitutive relations of plate theories. The simplest ESL models of sandwich structures are 

based on classical lamination theory (CLT) and first-order shear deformation theory (FSDT). It is 

worth mentioning that in ESL approach, the core will be modeled similar to the other layers 

located at the top and bottom face sheets. By using CLT and FSDT for sandwich structures with 

highly compressible cores, results may become inaccurate because the CLT ignores transverse 

shear deformation. Also, the accuracy of the FSDT depends strongly on the shear correction 

factor that modifies the through-the-thickness distribution of the transverse shear stresses. To 

solve the problem of the shear correction factor and calculating the real through-the-thickness 

distribution of transverse shear stresses, higher-order theories have been presented. Kant and 

Mallikarjuna [13], Kant and Swaminathan [14] and Swaminathan et al. [15, 16] have performed 

an analysis of the sandwich plate by using the higher-order theories. Furthermore, based on the 

higher-order theory, different finite element analyses have been carried out by Meunier and 

Shenoi [17] and Nayak [18]. Also, Bardell et al.[19] have provided an analysis of sandwich 

plates by using a zig-zag displacement pattern through the thickness. 

Contrary to the ESL approaches, in LW models, each layer (top face sheet, bottom face sheet, 

and core) behaves as a separate plate and also their kinematic relations are expressed separately. 

Besides, the compatibility conditions allow the layers to bond together. The natural frequencies 

of simply-supported sandwich plates based on a LW model have been studied by Rao and Desai 

[20]. Frostig et al. [21] have developed the higher-order sandwich plate theory (HSAPT), 

whereas the core is assumed to be compressible and its in-plane rigidity is ignored. Two models 

have been developed. In the first model, the displacement fields of the top and bottom face 

sheets, as well as the transverse shear stresses of the core, are expanded using polynomials. In 
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the second model, the displacement fields of the top and bottom face sheets and the core are 

represented as polynomials. Malekzadeh et al. [22] have used Navier’s technique to present free 

vibrations of sandwich plates with flexible viscoelastic core and simply-supported boundary 

condition. Also, Malekzadeh et al. [23] have reported dynamic responses of sandwich plates with 

viscoelastic core and arbitrary boundary conditions by using double Fourier series functions and 

Stokes’s transformation technique. Free vibration analysis of sandwich plates with functionally 

graded face sheets and temperature-dependent material properties has been presented by Khalili 

et al. [24]. Singh et al.[25] have performed a nonlinear analysis of the sandwich Functionally 

Graded Materials (FGM) on Pasternak foundation under thermal environment. Recently, Sayyad 

et al. [26] have presented a comprehensive review on the free vibrations of multilayered 

laminated composite and sandwich plates using various methods. It should be noted that HSAPT 

only considers the out-of-plane stresses of the core, while the in-plane stresses are ignored. By 

utilizing the extended higher-order sandwich plate theory (EHSAPT), both the in-plane and out-

of-plane stresses of the core are considered. Another advantage of the EHSAPT model over the 

HSAPT model is that EHSAPT model contains high modes including vibrations along the depth 

of the core, which the HSAPT model cannot identify. 

In recent years, the number of studies on fluid-structure interaction (FSI) has remarkably 

increased. It is obvious that the presence of a fluid changes the vibrational behavior of a plate. 

Therefore, the natural frequencies of the wet modes are changed and reduced compared to the 

dry modes. Zhou and Cheung [27] have used the Rayleigh-Ritz method to study the vibrations of 

a rectangular plate in contact with a fluid. By applying the boundary element method, the natural 

frequencies of cantilever plates partially submerged in fluid have been obtained by Ergin and 

Ugurlu [28]. Chang and Liu [29] have carried out the free vibration analysis of rectangular plates 

with different boundary conditions interacting with a fluid. Khorshidi and Farhadi [30] have 

studied the free vibration analysis of a laminated composite rectangular plate in contact with a 

fluid by employing the Rayleigh-Ritz method. Furthermore, Cheung and Zhou [31] have used 

the Ritz approach to investigate the dynamic characteristics of the fluid-structure interaction of 

the rectangular plate. Besides, these authors [32] have employed the Galerkin method to 

investigate the free vibration of a circular plate coupled with the fluid. Omiddezyani et al. [33] 

have investigated the size-dependent free vibration analysis of a rectangular microplate coupled 

with fluid.Ugurlu et al. [34] have developed mixed-type finite element formulation and a 

boundary element approach to analyze the effects of Pasternak foundation and ideal fluid on the 

natural frequencies and corresponding mode shapes of a rectangular plate. Hosseini-Hashemi et 

al. [35] have reported the natural frequencies of rectangular Mindlin plates coupled with 

stationary fluid. Furthermore, Eshaghi [36] has carried out the effect of magnetorheological fluid 

and aerodynamic damping for sandwich plates. By utilizing Galerkin method and Rayleigh-Ritz 

method, Zhou and Liu [37] have presented the analysis of hydroelastic vibrations of flexible 

rectangular tanks partially filled with liquid which accounted surface waves, bulging mode, and 

sloshing mode. An experimental investigation of free vibration of a floating composite sandwich 

plate with viscoelastic core has been provided by Rezvani and Kiasat [38]. Watts [39] has 

studied the vibrational characteristic of skew and trapezoidal plates with simply-supported and 

clamped boundary conditions in interaction with fluid by using a semi-analytical technique. 

A classical method used in the last decades to obtain approximate solutions for the natural 

frequencies of beams, plates, and shells is the Rayleigh–Ritz method. Many different basic 

functions have been used in this method to guess the structural response in terms of the 

displacement parameters. For instance, Rahmani et al. [40] have used trigonometric functions for 
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the free vibrational analysis of composite sandwich cylindrical shell. On the other hand, Chow et 

al. [41] have carried out the vibrational analysis of symmetrically laminated plates with the 

Rayleigh-Ritz method by utilizing admissible 2D orthogonal polynomials. An investigation has 

been done by using 2D orthogonal polynomials by Bhat [42] to analyze the flexural vibration of 

polygonal plates, whereas the Gram-Schmidt process has been used to generate the orthogonal 

two-variable polynomials. In order to use a two-variable function in the form of single series 

instead of two separate functions in the plate’s in-plane directions, Liew [43] has presented the 

analysis of vibration of a rectangular plate. Comprehensive reviews on the Rayleigh-Ritz method 

and its application have been presented by Kumar[44], Pablo et al. [45] and Chakraverty et al. 

[46]. A study by Nallim [47] showed that it is beneficial to use the Rayleigh-Ritz method with 

orthogonal polynomials functions rather than other guess functions because of a much faster 

convergence rate. It is worth mentioning that the advantages of semi-analytical methods over 

numerical methods, such as the Finite Element Method (FEM), are their direct applicability to 

both linear and nonlinear equations without requiring linearization, discretization, or perturbation 

procedures [48]. Furthermore, the existence of solutions can be proved using semi-analytical 

methods. 

Consequently, in this paper single series with two-variable orthogonal polynomials (orthogonal 

plate functions) will be used instead of double series to apply the Rayleigh-Ritz method. 

To the best of the authors’ knowledge, there is no research on the free vibration of sandwich 

plate with compressible core and different boundary conditions in contact with bounded fluid. 

The main novelty of the current study is to investigate the fluid-structure interaction effects on 

the vibrational characteristics of a rectangular sandwich plate in which the compressibility of the 

core and various boundary conditions are considered. The extended higher-order sandwich plate 

theory is used, in which both the in-plane and out-of-plane stresses in the core are considered. 

The distribution of the in-plane and transverse (out-of-plane) displacements of the core are 

assumed to cubic and quadratic, respectively. The effects of boundary conditions, aspect ratio, 

side-to-thickness ratio, thickness of the core to thickness of the face sheets ratio, face sheet to 

core flexural modulus ratio, and dimensions of the container on the natural frequencies of 

sandwich plate are studied in detail. 

 

2. Mathematical Formulation 

2.1. Sandwich Plate Formulation 

We consider a rectangular sandwich plate with length 𝑎, width 𝑏, and total thickness ℎ (Fig. 1). 

We assume that the sandwich plate is one of the vertical sides of a rigid tank with width c. The 

tank contains a fluid up to a depth 𝑑. We suppose that the fluid is inviscid, incompressible, and 

irrotational, and has mass density 𝜌𝑓. A Cartesian reference system Oxyz is fixed with the origin 

at a corner of the plate, the x- and y-axes along the in-plane directions of the plate, and the z-axis 

pointing towards the interior of the tank. 

Fig. 2 illustrates the sandwich plate in detail. It is made up of three layers: a top face sheet with 

thickness𝑓𝑡, a core with thickness 𝑓𝑐, and a bottom face sheet with thickness 𝑓𝑏. Henceforth, 

indices 𝑡, 𝑏, and 𝑐 denote quantities related to the top face sheet, bottom face sheet, and core, 

respectively. 
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Fig. 1: A rectangular sandwich plate in contact with fluid 

 

 
Fig. 2: Sandwich plate with length a, width b and total thickness h 

 

 

By assuming small deformations and rotations in line with FSDT, the displacement fields for the 

top and bottom face sheets at time t are: 

{

𝑢𝑖(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢0
𝑖 (𝑥, 𝑦, 𝑡) + 𝑧𝑖𝜓𝑥

𝑖 (𝑥, 𝑦, 𝑡)

𝑣𝑖(𝑥, 𝑦, 𝑧, 𝑡) = 𝑣0
𝑖 (𝑥, 𝑦, 𝑡) + 𝑧𝑖𝜓𝑦

𝑖 (𝑥, 𝑦, 𝑡)

𝑤𝑖(𝑥, 𝑦, 𝑡) = 𝑤0
𝑖(𝑥, 𝑦, 𝑡)

 ,        (𝑖 = 𝑡, 𝑏) 

 

(1) 

in which 𝑢0
𝑖  and 𝑣0

𝑖  are the in-plane displacements in the 𝑥 − and 𝑦 − directions, respectively; 𝑤0
𝑖  

is the transverse displacement of the middle surface of the face sheets; 𝜓𝑥
𝑖  and 𝜓𝑦

𝑖  are the rotation 

component of the transverse normal about the 𝑦 − and 𝑥 − directions, respectively. For each 
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layer, a local transverse coordinate 𝑧𝑖 is introduced pointing in the downward direction and 

measured from the local mid-plane. 

The kinematic relations of the face sheets are as follows: 

𝜀𝑥𝑥
𝑖 (𝑥, 𝑦, 𝑧𝑖 , 𝑡) = 𝑢0,𝑥

𝑖 + 𝑧𝑖𝜓𝑥,𝑥
𝑖 = 𝜀0𝑥𝑥

𝑖 + 𝑧𝑖𝜅𝑥
𝑖  

𝜀𝑦𝑦
𝑖 (𝑥, 𝑦, 𝑧𝑖, 𝑡) = 𝑣0,𝑦

𝑖 + 𝑧𝑖𝜓𝑦,𝑦
𝑖 = 𝜀0𝑦𝑦

𝑖 + 𝑧𝑖𝜅𝑦
𝑖  

𝛾𝑥𝑦
𝑖 (𝑥, 𝑦, 𝑧𝑖 , 𝑡) = 𝑢0,𝑦

𝑖 + 𝑣0,𝑥
𝑖 + 𝑧𝑖(𝜓𝑥,𝑦

𝑖 + 𝜓𝑦,𝑥
𝑖 ) = 𝛾0𝑥𝑦

𝑖 + 𝑧𝑖𝜅𝑥𝑦
𝑖  

𝛾𝑥𝑧
𝑖 (𝑥, 𝑦, 𝑧𝑖, 𝑡) = (𝜓𝑥

𝑖 + 𝑤0,𝑥
𝑖 ) 

𝛾𝑦𝑧
𝑖 (𝑥, 𝑦, 𝑧𝑖, 𝑡) = (𝜓𝑦

𝑖 + 𝑤0,𝑦
𝑖 )                  (𝑖 = 𝑡, 𝑏) 

(2) 

where: 

𝜀0𝑥𝑥
𝑖 = 𝑢0,𝑥

𝑖  

𝜀0𝑦𝑦
𝑖 = 𝑣0,𝑦

𝑖  

𝛾0𝑥𝑦
𝑖 = 𝑢0,𝑦

𝑖 + 𝑣0,𝑥
𝑖  

𝜅𝑥
𝑖 = 𝜓𝑥,𝑥

𝑖  

𝜅𝑦
𝑖 = 𝜓𝑦,𝑦

𝑖  

𝜅𝑥𝑦
𝑖 = 𝜓𝑥,𝑦

𝑖 + 𝜓𝑦,𝑥
𝑖 (𝑖 = 𝑡, 𝑏) 

(3) 

 

In present paper, cubic and quadratic polynomial distributions are assumed for the in-plane and 

transverse displacement fields of the core, respectively [49]: 

𝑢𝑐(𝑥, 𝑦, 𝑧𝑐, 𝑡) = 𝑢0(𝑥, 𝑦, 𝑡) + 𝑧𝑐𝑢1(𝑥, 𝑦, 𝑡) + 𝑧𝑐
2𝑢2(𝑥, 𝑦, 𝑡) + 𝑧𝑐

3𝑢3(𝑥, 𝑦, 𝑡) 
𝑣𝑐(𝑥, 𝑦, 𝑧𝑐 , 𝑡) = 𝑣0(𝑥, 𝑦, 𝑡) + 𝑧𝑐𝑣1(𝑥, 𝑦, 𝑡) + 𝑧𝑐

2𝑣2(𝑥, 𝑦, 𝑡) + 𝑧𝑐
3𝑣3(𝑥, 𝑦, 𝑡) 

𝑤𝑐(𝑥, 𝑦, 𝑧𝑐 , 𝑡) = 𝑤0(𝑥, 𝑦, 𝑡) + 𝑧𝑐𝑤1(𝑥, 𝑦, 𝑡) + 𝑧𝑐
2𝑤2(𝑥, 𝑦, 𝑡) 

(4) 

𝑢𝑖 and 𝑣𝑖(𝑖 = 0,1,2,3) are the unknowns of the in-plane displacements of the core; 𝑤𝑗(𝑗 = 0,1,2) 

are the unknowns of the vertical displacements of the core. 

The generalized strains for the core are as below: 

𝜀𝑥𝑥
𝑐 = 𝑢0,𝑥 + 𝑧𝑐𝑢1,𝑥 + 𝑧𝑐

2𝑢2,𝑥 + 𝑧𝑐
3𝑢3,𝑥 

𝜀𝑦𝑦
𝑐 = 𝑣0,𝑦 + 𝑧𝑐𝑣1,𝑦 + 𝑧𝑐

2𝑣2,𝑦 + 𝑧𝑐
3𝑣3,𝑦 

𝜀𝑧𝑧
𝑐 = 𝑤1 + 2𝑧𝑐𝑤2 

𝛾𝑥𝑦
𝑐 = 𝑢0,𝑦 + 𝑧𝑐𝑢1,𝑦 + 𝑧𝑐

2𝑢2,𝑦 + 𝑧𝑐
3𝑢3,𝑦 + 𝑣0,𝑥 + 𝑧𝑐𝑣1,𝑥 + 𝑧𝑐

2𝑣2,𝑥 + 𝑧𝑐
3𝑣3,𝑥 

𝛾𝑥𝑧
𝑐 = 𝑢1 + 2𝑧𝑐𝑢2 + 3𝑧𝑐

2𝑢3 + 𝑤0,𝑥 + 𝑧𝑐𝑤1,𝑥 + 𝑧𝑐
2𝑤2,𝑥 

𝛾𝑦𝑧
𝑐 = 𝑣1 + 2𝑧𝑐𝑣2 + 3𝑧𝑐

2𝑣3 + 𝑤0,𝑦 + 𝑧𝑐𝑤1,𝑦 + 𝑧𝑐
2𝑤2,𝑦 

(5) 

Similar to the kinematic relations for the face sheets, Eq. (3),we define: 

𝜀0𝑥𝑥
𝑐 = 𝑢0,𝑥  ;   𝜀1𝑥𝑥

𝑐 = 𝑢1,𝑥  ;   𝜀2𝑥𝑥
𝑐 = 𝑢2,𝑥  ;   𝜀3𝑥𝑥

𝑐 = 𝑢3,𝑥 

𝜀0𝑦𝑦
𝑐 = 𝑣0,𝑥  ;   𝜀1𝑦𝑦

𝑐 = 𝑣1,𝑥  ;   𝜀2𝑦𝑦
𝑐 = 𝑣2,𝑥  ;   𝜀3𝑦𝑦

𝑐 = 𝑣3,𝑥 

𝜀0𝑧𝑧
𝑐 = 𝑤1  ;   𝜀1𝑧𝑧

𝑐 = 2𝑤2  ;    𝛾0𝑥𝑦
𝑐 = 𝑢0,𝑦 + 𝑣0,𝑥  ;   𝛾1𝑥𝑦

𝑐 = 𝑢1,𝑦 + 𝑣1,𝑥 

𝛾2𝑥𝑦
𝑐 =  𝑢2,𝑦 + 𝑣2,𝑥  ;   𝛾3𝑥𝑦

𝑐 = 𝑢3,𝑦 + 𝑣3,𝑥   ;   𝛾0𝑥𝑧
𝑐 = 𝑢1 + 𝑤0,𝑥 

𝛾1𝑥𝑧
𝑐 = 2𝑢2 + 𝑤1,𝑥  ;   𝛾2𝑥𝑧

𝑐 = 3𝑢3 + 𝑤2,𝑥  ;  𝛾0𝑦𝑧
𝑐 = 𝑣1 + 𝑤0,𝑦 

𝛾1𝑦𝑧
𝑐 = 2𝑣2 + 𝑤1,𝑦  ;    𝛾2𝑦𝑧

𝑐 = 3𝑣3 + 𝑤2,𝑦 

(6) 

The stress-strain relations for the top and bottom laminated composite face sheets are given by: 

(7) {

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜏𝑥𝑦

} = [

𝑄̅11 𝑄̅12 𝑄̅16
𝑄̅12 𝑄̅22 𝑄̅26
𝑄̅16 𝑄̅26 𝑄̅66

] {

𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑥𝑦

},       {
𝜏𝑦𝑧
𝜏𝑥𝑧
} = [

𝑄̅44 𝑄̅45
𝑄̅45 𝑄̅55

] {
𝛾𝑦𝑧
𝛾𝑥𝑧
} 
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where 𝑄̅𝑖𝑗 are the transformed stiffness constants for the layers. The stress resultants for the top 

and bottom laminated face sheets are obtained as follows: 

(8) 

{

𝑁𝑥𝑥
(𝑖)

𝑁𝑦𝑦
(𝑖)

𝑁𝑥𝑦
(𝑖)

} = [

𝐴11
(𝑖) 𝐴12

(𝑖) 𝐴16
(𝑖)

𝐴21
(𝑖) 𝐴22

(𝑖) 𝐴26
(𝑖)

𝐴16
(𝑖) 𝐴26

(𝑖) 𝐴66
(𝑖)

] {

𝑢0,𝑥
𝑖

𝑣0,𝑦
𝑖

𝑢0,𝑥
𝑖 + 𝑣0,𝑦

𝑖

}

+ [

𝐵11
(𝑖) 𝐵12

(𝑖) 𝐵16
(𝑖)

𝐵21
(𝑖) 𝐵22

(𝑖) 𝐵26
(𝑖)

𝐵16
(𝑖) 𝐵26

(𝑖) 𝐵66
(𝑖)

]{

𝜓𝑥,𝑥
𝑖

𝜓𝑦,𝑦
𝑖

𝜓𝑥,𝑥
𝑖 + 𝜓𝑦,𝑦

𝑖

}   (𝑖 = 𝑡, 𝑏) 

(9) 

{

𝑀𝑥𝑥
(𝑖)

𝑀𝑦𝑦
(𝑖)

𝑀𝑥𝑦
(𝑖)

} = [

𝐵11
(𝑖) 𝐵12

(𝑖) 𝐵16
(𝑖)

𝐵21
(𝑖) 𝐵22

(𝑖) 𝐵26
(𝑖)

𝐵16
(𝑖) 𝐵26

(𝑖) 𝐵66
(𝑖)

] {

𝑢0,𝑥
𝑖

𝑣0,𝑦
𝑖

𝑢0,𝑥
𝑖 + 𝑣0,𝑦

𝑖

}

+ [

𝐷11
(𝑖) 𝐷12

(𝑖) 𝐷16
(𝑖)

𝐷21
(𝑖) 𝐷22

(𝑖) 𝐷26
(𝑖)

𝐷16
(𝑖) 𝐷26

(𝑖) 𝐷66
(𝑖)

] {

𝜓𝑥,𝑥
𝑖

𝜓𝑦,𝑦
𝑖

𝜓𝑥,𝑥
𝑖 + 𝜓𝑦,𝑦

𝑖

}   (𝑖 = 𝑡, 𝑏) 

(10) {
𝑄𝑦𝑧
(𝑖)

𝑄𝑥𝑧
(𝑖)
} = [

𝐴44
(𝑖)

𝐴45
(𝑖)

𝐴45
(𝑖)

𝐴55
(𝑖)
] {
𝑤𝑖,𝑦 + 𝜓𝑦𝑖
𝑤𝑖,𝑥 + 𝜓𝑥𝑖

}   (𝑖 = 𝑡, 𝑏) 

where 𝐴𝑖𝑗,𝐵𝑖𝑗 and 𝐷𝑖𝑗(𝑖 = 1,2, … ,6) are the elements of the extensional, extension-bending 

coupling, and bending stiffness matrices, respectively. Likewise, 𝐴𝑖𝑗  (𝑖, 𝑗 = 4,5) are the elements 

of the transverse shear stiffness matrices. For the face sheets, these quantities are given by: 

(11a) 

𝐴𝑖𝑗 =∑(𝑄̅𝑖𝑗)𝑘(𝑧𝑘 − 𝑧𝑘−1)

𝑁

𝑘=1

 

(11b) 

𝐵𝑖𝑗 =
1

2
∑(𝑄̅𝑖𝑗)𝑘(𝑧𝑘

2 − 𝑧𝑘−1
2 )

𝑁

𝑘=1

 

(11c) 

𝐷𝑖𝑗 =
1

3
∑(𝑄̅𝑖𝑗)𝑘(𝑧𝑘

3 − 𝑧𝑘−1
3 )

𝑁

𝑘=1

,        (𝑖, 𝑗) = 1,2,6 

and: 

𝐴𝑖𝑗 = 𝑘𝑠∑(𝑄̅𝑖𝑗)𝑘(𝑧𝑘 − 𝑧𝑘−1)

𝑁

𝑘=1

,       (𝑖, 𝑗) = 4,5 (11d) 

 

in which N is the total number of layers in the laminate, 𝑧𝑘 and 𝑧𝑘−1 are the distances of the top 

and bottom surfaces of the kth layer from the face sheet’s mid-plane, respectively. Likewise, 𝑘𝑠 is 

the shear correction factor which is taken to be 5 6⁄ [18, 50]. 

According to equations (2-3) and (8-10), the strain energy of the top and bottom face sheets can 

be defined as follows: 
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𝑈𝑖 =
1

2
∫ ∫ [𝑁𝑥𝑥

𝑖 𝜀0𝑥𝑥
𝑖 + 𝑁𝑦𝑦

𝑖 𝜀0𝑦𝑦
𝑖 + 𝑁𝑥𝑦

𝑖 𝛾0𝑥𝑦
𝑖 +𝑀𝑥𝑥

𝑖 𝜅𝑥
𝑖 +𝑀𝑦𝑦

𝑖 𝜅𝑦
𝑖 +𝑀𝑥𝑦

𝑖 𝜅𝑥𝑦
𝑖

𝑏

0

𝑎

0

+ 𝑄𝑦𝑧
𝑖 𝛾𝑦𝑧

𝑖 + 𝑄𝑥𝑧
𝑖 𝛾𝑥𝑧

𝑖 ]𝑑𝑦 𝑑𝑥             

 

(𝑖 = 𝑡, 𝑏) 

(12) 

On the other hand, by assuming that the core material is isotropic, the stress-strain relations are 

related to it as follows: 

(13) 

{
  
 

  
 
𝜎𝑥𝑥
𝑐

𝜎𝑦𝑦
𝑐

𝜎𝑧𝑧
𝑐

𝜏𝑥𝑧
𝑐

𝜏𝑦𝑧
𝑐

𝜏𝑥𝑦
𝑐 }
  
 

  
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
1

𝐸1
−
𝜐12
𝐸1

−
𝜐13
𝐸1

0 0 0

−
𝜐12
𝐸1

1

𝐸2
−
𝜐23
𝐸2

0 0 0

−
𝜐13
𝐸1

−
𝜐23
𝐸2

1

𝐸3
0 0 0

0 0 0
1

𝐺23
0 0

0 0 0 0
1

𝐺31
0

0 0 0 0 0
1

𝐺12]
 
 
 
 
 
 
 
 
 
 
 
 
 
−1

{
  
 

  
 
𝜀𝑥𝑥
𝑐

𝜀𝑦𝑦
𝑐

𝜀𝑧𝑧
𝑐

𝛾𝑥𝑧
𝑐

𝛾𝑦𝑧
𝑐

𝛾𝑥𝑦
𝑐 }
  
 

  
 

 

in which𝐸𝑖 and 𝐺𝑖𝑗 are the Young and shear modulus. 

The stress resultants of the core are given by: 

{𝑁𝑥𝑥
𝑐 , 𝑀𝑛𝑥𝑥

𝑐 } = ∫ (1, 𝑧𝑐
𝑛)𝜎𝑥𝑥

𝑐 𝑑𝑧𝑐

 𝑓𝑐
2

−
 𝑓𝑐
2

 

{𝑁𝑦𝑦
𝑐 ,𝑀𝑛𝑦𝑦

𝑐 } = ∫ (1, 𝑧𝑐
𝑛)𝜎𝑦𝑦

𝑐 𝑑𝑧𝑐

 𝑓𝑐
2

−
 𝑓𝑐
2

 

{𝑁𝑥𝑦
𝑐 ,𝑀𝑛𝑥𝑦

𝑐 } = ∫ (1, 𝑧𝑐
𝑛)𝜏𝑥𝑦

𝑐 𝑑𝑧𝑐

 𝑓𝑐
2

−
 𝑓𝑐
2

 

{𝑄𝑥𝑧
𝑐 ,𝑀𝑄𝑛𝑥𝑧

𝑐 } = ∫ (1, 𝑧𝑐
𝑛)𝜏𝑥𝑧

𝑐 𝑑𝑧𝑐

 𝑓𝑐
2

−
 𝑓𝑐
2

 

{𝑄𝑦𝑧
𝑐 ,𝑀𝑄𝑛𝑦𝑧

𝑐 } = ∫ (1, 𝑧𝑐
𝑛)𝜏𝑦𝑧

𝑐 𝑑𝑧𝑐

 𝑓𝑐
2

−
 𝑓𝑐
2

 

{𝑅𝑧
𝑐, 𝑀𝑧

𝑐} = ∫ (1, 𝑧𝑐
𝑛)𝜎𝑧𝑧

𝑐 𝑑𝑧𝑐

 𝑓𝑐
2

−
 𝑓𝑐
2

 

(14) 

According to equations (5-6) and (14), the strain energy of the core can be defined as follows: 
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𝑈𝑐 = 
1

2
∫ ∫ [𝑁𝑥𝑥

𝑐 𝜀0𝑥𝑥
𝑐 +𝑀1𝑥𝑥

𝑐 𝜀1𝑥𝑥
𝑐 +𝑀2𝑥𝑥

𝑐 𝜀2𝑥𝑥
𝑐 +𝑀3𝑥𝑥

𝑐 𝜀3𝑥𝑥
𝑐 + 𝑁𝑦𝑦

𝑐 𝜀0𝑦𝑦
𝑐

𝑏

0

𝑎

0

+𝑀1𝑦𝑦
𝑐 𝜀1𝑦𝑦

𝑐 +𝑀2𝑦𝑦
𝑐 𝜀2𝑦𝑦

𝑐 +𝑀3𝑦𝑦
𝑐 𝜀3𝑦𝑦

𝑐 + 𝑅𝑧
𝑐𝜀0𝑧𝑧
𝑐 +𝑀𝑧

𝑐𝜀1𝑧𝑧
𝑐

+ 𝑁𝑥𝑦
𝑐 𝛾0𝑥𝑦

𝑐 +𝑀1𝑥𝑦
𝑐 𝛾1𝑥𝑦

𝑐 +𝑀2𝑥𝑦
𝑐 𝛾2𝑥𝑦

𝑐 +𝑀3𝑥𝑦
𝑐 𝛾3𝑥𝑦

𝑐 + 𝑄𝑥𝑧
𝑐 𝛾0𝑥𝑧

𝑐

+𝑀𝑄1𝑥𝑧
𝑐 𝛾1𝑥𝑧

𝑐 +𝑀𝑄2𝑥𝑧
𝑐 𝛾2𝑥𝑧

𝑐 + 𝑄𝑦𝑧
𝑐 𝛾0𝑦𝑧

𝑐 +𝑀𝑄1𝑦𝑧
𝑐 𝛾1𝑦𝑧

𝑐

+𝑀𝑄2𝑦𝑧
𝑐 𝛾2𝑦𝑧

𝑐 ]𝑑𝑦 𝑑𝑥 

(15) 

Also, the kinetic energy of the top and bottom face sheets and the core are obtained as follows: 

𝑇𝑖 =
1

2
∫ ∫ [𝐼0

𝑖((𝑢̇0
𝑖 )2 + (𝑣̇0

𝑖 )2 + (𝑤̇0
𝑖)2) + 2𝐼1

𝑖(𝑢̇0
𝑖 𝜓̇𝑥

𝑖 + 𝑣̇0
𝑖 𝜓̇𝑦

𝑖 )
𝑏

0

𝑎

0

+ 𝐼2
𝑖 ((𝜓̇𝑥

𝑖 )
2
+ (𝜓̇𝑦

𝑖 )
2
)] 𝑑𝑦 𝑑𝑥 ,       (𝑖 = 𝑡, 𝑏) 

(16) 

 

𝑇𝑐 =
1

2
∫ ∫ [𝐼0

𝑐(𝑤0
2 + 𝑢0

2 + 𝑣0
2) + 2𝐼1

𝑐(𝑤0𝑤1 + 𝑣0𝑣1 + 𝑢0𝑢1)
𝑏

0

𝑎

0

+ 𝐼2
𝑐(𝑤1

2 + 2𝑤0𝑤2 + 𝑣1
2 + 2𝑣0𝑣2 + 𝑢1

2 + 2𝑢0𝑢2)  
+ 2𝐼3

𝑐(𝑤1𝑤2 + 𝑣1𝑣2 + 𝑣0𝑣3 + 𝑢1𝑢2 + 𝑢0𝑢3)
+ 𝐼4

𝑐(𝑤2
2 + 𝑣2

2 + 2𝑣1𝑣3 + 𝑢2
2 + 2𝑢1𝑢3) + 2𝐼5

𝑐(𝑣2𝑣3 + 𝑢2𝑢3)
+ 𝐼6

𝑐(𝑢3
2 + 𝑣3

2)]𝑑𝑦 𝑑𝑥 

(17) 

where 𝐼𝑗
𝑖(𝑗 = 0,1,2; 𝑖 = 𝑡, 𝑏) are the inertia terms of the face sheets and 𝐼𝑗

𝑐(𝑗 = 0,1, … ,6) are the 

inertia terms of the core, respectively defined as follows: 

(𝐼0
𝑖 , 𝐼1

𝑖 , 𝐼2
𝑖) = ∫ 𝜌𝑖(1, 𝑧𝑖, 𝑧𝑖

2)𝑑𝑧𝑖

𝑓𝑖 2⁄

−𝑓𝑖 2⁄

(𝑖 = 𝑡, 𝑏) 

(𝐼0
𝑐, 𝐼1

𝑐, 𝐼2
𝑐 , 𝐼3

𝑐, 𝐼4
𝑐, 𝐼5

𝑐, 𝐼6
𝑐) = ∫ 𝜌𝑐(1, 𝑧𝑐, 𝑧𝑐

2, 𝑧𝑐
3, 𝑧𝑐

4, 𝑧𝑐
5, 𝑧𝑐

6)𝑑𝑧𝑐

𝑓𝑐 2⁄

−𝑓𝑐 2⁄

 

(18) 

 

2.2. Compatibility Conditions 

Since there is no slip between the core and face sheets, the compatibility conditions at the top 

and the bottom face–core interface are given as follows: 

𝑢𝑐 (𝑧𝑐 = −
𝑓𝑐
2
) = 𝑢0

𝑏 +
1

2
𝑓𝑏𝜓𝑥

𝑏 

𝑣𝑐 (𝑧𝑐 = −
𝑓𝑐
2
) = 𝑣0

𝑏 +
1

2
𝑓𝑏𝜓𝑦

𝑏 

𝑤𝑐 (𝑧𝑐 = −
𝑓𝑐
2
) = 𝑤0

𝑏 

𝑢𝑐 (𝑧𝑐 =
𝑓𝑐
2
) = 𝑢0

𝑡 −
1

2
𝑓𝑡𝜓𝑥

𝑡  

𝑣𝑐 (𝑧𝑐 =
𝑓𝑐
2
) = 𝑣0

𝑡 −
1

2
𝑓𝑡𝜓𝑦

𝑡  

𝑤𝑐 (𝑧𝑐 =
𝑓𝑐
2
) = 𝑤0

𝑡 

 

 

 

 

(19) 
 

By substituting equations (1) and (4) into the above equation, the compatibility conditions are 

obtained: 

𝑢0 − 𝑢1
𝑓𝑐
2
+ 𝑢2

𝑓𝑐
2

4
− 𝑢3

𝑓𝑐
3

8
= 𝑢0

𝑏 + 𝜓𝑥
𝑏
𝑓𝑏
2
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𝑣0 − 𝑣1
𝑓𝑐
2
+ 𝑣2

𝑓𝑐
2

4
− 𝑣3

𝑓𝑐
3

8
= 𝑣0

𝑏 + 𝜓𝑦
𝑏
𝑓𝑏
2

 

𝑤0 −𝑤1
𝑓𝑐
2
+ 𝑤2

𝑓𝑐
2

4
= 𝑤0

𝑏 

𝑢0 + 𝑢1
𝑓𝑐
2
+ 𝑢2

𝑓𝑐
2

4
+ 𝑢3

𝑓𝑐
3

8
= 𝑢0

𝑡 − 𝜓𝑥
𝑡
𝑓𝑡
2

 

𝑣0 + 𝑣1
𝑓𝑐
2
+ 𝑣2

𝑓𝑐
2

4
+ 𝑣3

𝑓𝑐
3

8
= 𝑣0

𝑡 −𝜓𝑦
𝑡
𝑓𝑡
2

 

𝑤0 +𝑤1
𝑓𝑐
2
+ 𝑤2

𝑓𝑐
2

4
= 𝑤0

𝑡 

 

 

 

 

(20) 
 

For ease of calculation, the relations between the dependent coefficients are calculated and the 

number of unknowns of the problem is reduced. The relations between displacement dependent 

parameters in the core are derived as the following: 

𝑢2 = (2(𝑢0
𝑏 + 𝑢0

𝑡) + 𝑓𝑏𝜓𝑥
𝑏 − 𝑓𝑡𝜓𝑥

𝑡 − 4𝑢0) 𝑓𝑐
2⁄  

𝑢3 = (4(𝑢0
𝑡 − 𝑢0

𝑏) − 2(𝑓𝑏𝜓𝑥
𝑏 + 𝑓𝑡𝜓𝑥

𝑡) − 4𝑓𝑐𝑢1) 𝑓𝑐
3⁄  

𝑣2 = (2(𝑣0
𝑏 + 𝑣0

𝑡) + 𝑓𝑏𝜓𝑦
𝑏 − 𝑓𝑡𝜓𝑦

𝑡 − 4𝑣0) 𝑓𝑐
2⁄  

𝑣3 = (4(𝑣0
𝑡 − 𝑣0

𝑏) − 2(𝑓𝑏𝜓𝑦
𝑏 + 𝑓𝑡𝜓𝑦

𝑡) − 4𝑓𝑐𝑣1) 𝑓𝑐
3⁄  

𝑤2 = 2(𝑤0
𝑡 + 𝑤0

𝑏 − 2𝑤0) 𝑓𝑐
2⁄  

𝑤1 = (𝑤0
𝑡 − 𝑤0

𝑏) 𝑓𝑐⁄  

 

 

 

(21) 
 

 

2.3. Fluid Formulations 

There are two well-known vibrational modes of the fluid-structure systems: the bulging and 

sloshing modes. Vibrations of flexible structure that stimulate fluid are related to the bulging 

modes. Conversely, sloshing modes are caused by the rigid body movement of the container that 

oscillates in the fluid free-surface [51]. The fluid is assumed to be inviscid, incompressible, and 

irrotational. Now, by using the principle of superposition, the fluid velocity potential will be 

written as follow: 

(22)  𝛷𝑂 =  𝛷𝐵 +  𝛷𝑆 

where  𝛷𝐵 and  𝛷𝑆 are the fluid velocity potential associated with bulging and sloshing modes, 

respectively. On the other hand the fluid velocity potential can be divided into two separate 

segments: Spatial velocity potential and a harmonic time function [51]: 

(23)  𝛷𝑂(𝑥, 𝑦, 𝑧, 𝑡) = 𝜑𝑂(𝑥, 𝑦, 𝑧)𝑇̇(𝑡) = 𝑖𝜔̅𝜑𝑂(𝑥, 𝑦, 𝑧)𝑒
𝑖𝜔̅𝑡 

in which 𝜔̅ is the natural frequency and 𝑖 = √−1 is the imaginary unit. 

To satisfy the three-dimensional Laplace equation, the fluid velocity potential is introduced: 

(24) 𝛻2𝜑𝑂 = 𝛻2𝜑𝐵 + 𝛻
2𝜑𝑆 = 0 → 𝛻2𝜑𝐵 = 0 , 𝛻2𝜑𝑆 = 0 

where 𝛻2 is the Laplace operator. 

The boundary conditions of the rigid walls of the container can be given as: 

(25a) 
𝜕𝜑𝐵
𝜕𝑥

|
𝑥=0,𝑎

= 0,             
𝜕𝜑𝐵
𝜕𝑦

|
𝑦=0

= 0,              
𝜕𝜑𝐵
𝜕𝑧

|
𝑧=𝑐

= 0 

(25b) 
𝜕𝜑𝑆
𝜕𝑥

|
𝑥=0,𝑎

= 0,              
𝜕𝜑𝑆
𝜕𝑦

|
𝑦=0

= 0,               
𝜕𝜑𝑆
𝜕𝑧

|
𝑧=0,𝑐

= 0 

By neglecting the effect of free surface waves, 𝜑𝐵 must satisfy the following boundary 

conditions: 
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(26) 𝜑𝐵|𝑦=𝑑 = 0    

Also at the fluid-contacting surface, the velocity components of the fluid and top face sheet of 

the sandwich plate in the transverse direction must be equal: 

(27) 
𝜕𝛷𝐵
𝜕𝑧

|
𝑧=0

=
𝜕𝑤𝑡(𝑥, 𝑦, 𝑡)

𝜕𝑡
 

where 𝑤𝑡(𝑥, 𝑦, 𝑡) is the transverse deflection of the top face sheet in sandwich plate. The 

linearized sloshing condition at the fluid free surface can be written as: 

(28) 
𝜕𝛷𝑂
𝜕𝑦

|
𝑦=𝑑

=
𝜔̅2

𝑔
𝛷𝑂|𝑦=𝑑 

where 𝑔 is the gravity acceleration. By substituting Eq. (22) into (28), and recalling Eq. (26), one 

obtains: 

(29) 
𝜕𝛷𝐵
𝜕𝑦

|
𝑦=𝑑

+
𝜕𝛷𝑆
𝜕𝑦

|
𝑦=𝑑

=
𝜔̅2

𝑔
𝛷𝑆|𝑦=𝑑 

Multiplying the above equation by 𝜌𝑓𝛷𝑆 and then integrating over the fluid free surface, we 

have: 

(30) 𝑈𝜑𝐵 +𝑈𝜑𝑆 = 𝜔̅
2𝑇𝜑𝑆 

in which: 

(31) 

𝑈𝜑𝐵 = 𝜌𝑓∫ ∫ 𝛷𝑆

𝑐

0

𝜕𝛷𝐵
𝜕𝑦

|
𝑦=𝑑

𝑑𝑧𝑑𝑥
𝑎

0

 

𝑈𝜑𝑆 = 𝜌𝑓∫ ∫ 𝛷𝑆

𝑐

0

𝜕𝛷𝑆
𝜕𝑦

|
𝑦=𝑑

𝑑𝑧𝑑𝑥
𝑎

0

 

𝑇𝜑𝑆 =
𝜌𝑓

𝑔
∫ ∫ 𝛷𝑆

2|𝑦=𝑑

𝑐

0

𝑎

0

𝑑𝑧𝑑𝑥 

By performing the method of separation of variables and using the boundary conditions Eq. (25), 

the fluid velocity potentials can be obtained by solving Eq. (24): 

(32a) 𝛷𝐵(𝑥, 𝑦, 𝑧, 𝑡) = 𝑖 𝜔̅𝜑𝐵(𝑥, 𝑦, 𝑧)𝑒
𝑖𝜔̅𝑡 

(32b) 𝜑𝐵(𝑥, 𝑦, 𝑧) = 𝜑𝐵𝑥(𝑥)𝜑𝐵𝑦(𝑦)𝜑𝐵𝑧(𝑧) 

(32c) 
𝜕2𝜑𝐵
𝜕𝑥2

+
𝜕2𝜑𝐵
𝜕𝑦2

+
𝜕2𝜑𝐵
𝜕𝑧2

= 0 

By substituting Eq. (32b) into (32c), we get: 

(33) 
1

𝜑𝐵𝑥(𝑥)

𝑑2𝜑𝐵𝑥(𝑥)

𝑑𝑥2
+

1

𝜑𝐵𝑦(𝑦)

𝑑2𝜑𝐵𝑦(𝑦)

𝑑𝑦2
+

1

𝜑𝐵𝑧(𝑧)

𝑑2𝜑𝐵𝑧(𝑧)

𝑑𝑧2
= 0 

Eq. (33) can be separated as: 

(34a) 
1

𝜑𝐵𝑥(𝑥)

𝑑2𝜑𝐵𝑥(𝑥)

𝑑𝑥2
= −𝑝1

2 

(34b) 
1

𝜑𝐵𝑦(𝑦)

𝑑2𝜑𝐵𝑦(𝑦)

𝑑𝑦2
= −𝑞1

2 

(34c) 
1

𝜑𝐵𝑧(𝑧)

𝑑2𝜑𝐵𝑧(𝑧)

𝑑𝑧2
= (𝑝1

2 + 𝑞1
2) 

where −𝑝1
2 and −𝑞1

2 are optional nonnegative real number. The general solution of the above 

equations ((34a),(34b) and (34c)) are: 

(35a) 𝜑𝐵𝑥(𝑥) = 𝑎1 sin(𝑝1𝑥) + 𝑎2cos (𝑝1𝑥) 
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(35b) 𝜑𝐵𝑦(𝑦) = 𝑎3 𝑠𝑖𝑛(𝑞1𝑦) + 𝑎4𝑐𝑜𝑠 (𝑞1𝑦) 

(35a) 𝜑𝐵𝑧(𝑧) = 𝑎5𝑒
√𝑝1

2+𝑞1
2𝑧
+ 𝑎6𝑒

−√𝑝1
2+𝑞1

2𝑧
 

By applying the boundary conditions Eq. (25) and inserting into Eq. (32a), the expression of the 

fluid velocity potential for the bulging modes are as follows: 

(36) 
𝛷𝐵(𝑥, 𝑦, 𝑧, 𝑡) =∑∑𝑖𝜔̅𝛬𝑙𝑘(𝑡)cos (

𝑙𝜋𝑥

𝑎
)cos (

(2𝑘 + 1)𝜋𝑦

2𝑑
){𝑒𝜎𝑧 + 𝑒𝜎(2𝑐−𝑧)}

∞

𝑘=0

∞

𝑙=0

 

For 𝑙, 𝑘 = 0,1,2, … , 0 ≤ 𝑥 ≤ 𝑎,     0 ≤ 𝑦 ≤ 𝑏,    0 ≤ 𝑧 ≤ 𝑐 

where: 

(37) 𝜎 = 𝜋√(
𝑙

𝑎
)
2

+ (
2𝑘 + 1

2𝑑
)
2

 

The compatibility condition at the fluid-sandwich plate interface is: 

(38) ∑∑𝑖𝜔̅𝛬𝑙𝑘(𝑡)𝜎(1 − 𝑒
2𝑐𝜎)𝑐𝑜𝑠

∞

𝑘=0

∞

𝑙=0

(
𝑙𝜋𝑥

𝑎
) 𝑐𝑜𝑠 (

(2𝑘 + 1)𝜋𝑦

2𝑑
) =

𝜕𝑤𝑡(𝑥, 𝑦, 𝑡)

𝜕𝑡
 

The above equation can be considered as a double Fourier series, whose coefficient 𝛬𝑙𝑘(𝑡)are 

determined as follows: 

(39) 

𝛬𝑙𝑘(𝑡)

=
𝑐𝑜𝑒𝑓𝑓

𝑖𝜔̅𝑎𝑑𝜎(1 − 𝑒2𝑐𝜎)
∫ ∫

𝜕𝑤𝑡(𝑥, 𝑦, 𝑡)

𝜕𝑡

𝑑

0

𝑎

0

 𝑐𝑜𝑠 (
𝑙𝜋𝑥

𝑎
) 𝑐𝑜𝑠 (

(2𝑘 + 1)𝜋𝑦

2𝑑
)𝑑𝑦𝑑𝑥 

in which: 

(40) 𝑐𝑜𝑒𝑓𝑓 = {

1,         𝑖𝑓 𝑙 𝑎𝑛𝑑 𝑘 = 0
2,            𝑖𝑓 𝑙 𝑜𝑟 𝑘 = 0
4,          𝑖𝑓 𝑙 𝑎𝑛𝑑 𝑘 ≠ 0

 

In a similar way, to calculate the fluid velocity potential associated with sloshing mode, by using 

the separation variable method and with the help of boundary conditions Eq. (25b), the general 

solution is: 

(41) 𝛷𝑆(𝑥, 𝑦, 𝑧, 𝑡) =∑∑𝑖𝜔̅𝛤𝑖𝑗(𝑡)𝑐𝑜𝑠 (
𝑖𝜋𝑥

𝑎
) cosh (𝜏𝑦)𝑐𝑜𝑠

∞

𝑗=0

∞

𝑖=0

(
𝑗𝜋𝑧

𝑐
) 

where 𝛤𝑖𝑗(𝑡)are the undetermined coefficients and: 

(42) 𝜏 = 𝜋√(
𝑖

𝑎
)
2

+ (
𝑗

𝑐
)
2

 

Since the fluid is considered to be incompressible, inviscid and irrotational, the kinetic energy of 

the fluid is as follows: 

(43) 𝑇𝑓 =
1

2
𝜌𝑓 ∫|∇𝛷𝑂|

2𝑑𝑉

𝑉

 

where 𝜌𝑓, 𝑉 and ∇𝛷𝑂 are the fluid density, fluid domain and velocity vector, respectively. In 

order to achieve total kinetic energy of the fluid in addition to considering boundary conditions 

Eq. (25) and compatibility conditions Eq. (27), the divergence theorem need to be adapted to Eq. 

(43).  
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(44) 

𝑇𝑓 = 𝑇𝑓𝐵 + 𝑇𝑓𝑆 = −
1

2
𝜌𝑓∫ ∫ (𝛷𝑂

𝜕𝛷𝑂
𝜕𝑧

)|
𝑧=0

𝑑𝐴
𝑑

0

𝑎

0

= −
1

2
𝜌𝑓∫ ∫ (𝛷𝐵 + 𝛷𝑆)|𝑧=0 (

𝜕𝑤𝑡
𝜕𝑡
) 𝑑𝑦𝑑𝑥

𝑑

0

𝑎

0

 

 

3. Governing Equations and Corresponding Boundary Conditions 

The Hamiltonian principle for the free vibration analysis of a wet sandwich panel is stated as 

follows. 

(45) 𝛿 ∫ (𝑇𝑝 + 𝑇𝑓 − 𝑈𝑝)𝑑𝑡 = 0
𝑡𝑓

𝑡𝑖

 

In the above equation, 𝑇𝑝 and 𝑈𝑝 are the kinetic and potential (strain) energies of the sandwich 

plate, respectively; 𝑇𝑓 is the kinetic energy of the fluid presented in Eq. (44). By inserting these 

energy expressions into Hamilton’s principle, the governing equations of motion and 

corresponding boundary conditions are obtained as presented in Appendix A. 

 

3.1. Solution Method 

Displacement components of the face sheets and the core can be expressed by utilizing two-

variable orthogonal polynomials by single series as follows: 

𝑢𝑡(𝑥, 𝑦) =∑𝑢𝑖
𝑡𝜆𝑖
𝑢𝑡(𝑥, 𝑦)

𝑚

𝑖=1

 𝑣𝑡(𝑥, 𝑦) =∑𝑣𝑖
𝑡𝜆𝑖
𝑣𝑡(𝑥, 𝑦)

𝑚

𝑖=1

 

(46) 

𝑤𝑡(𝑥, 𝑦) =∑𝑤𝑖
𝑡𝜆𝑖
𝑤𝑡(𝑥, 𝑦)

𝑚

𝑖=1

 𝜓𝑥
𝑡(𝑥, 𝑦) =∑𝜓𝑥𝑖

𝑡 𝜆𝑖
𝑥𝑡(𝑥, 𝑦)

𝑚

𝑖=1

 

𝜓𝑦
𝑡 (𝑥, 𝑦) =∑𝜓𝑦𝑖

𝑡 𝜆𝑖
𝑦𝑡(𝑥, 𝑦)

𝑚

𝑖=1

 𝑢𝑏(𝑥, 𝑦) =∑𝑢𝑖
𝑏𝜆𝑖

𝑢𝑏(𝑥, 𝑦)

𝑚

𝑖=1

 

𝑣𝑏(𝑥, 𝑦) =∑𝑣𝑖
𝑏𝜆𝑖

𝑣𝑏(𝑥, 𝑦)

𝑚

𝑖=1

 𝑤𝑏(𝑥, 𝑦) =∑𝑤𝑖
𝑏𝜆𝑖

𝑤𝑏(𝑥, 𝑦)

𝑚

𝑖=1

 

𝜓𝑥
𝑏(𝑥, 𝑦) =∑𝜓𝑥𝑖

𝑏 𝜆𝑖
𝑥𝑏(𝑥, 𝑦)

𝑚

𝑖=1

 𝜓𝑦
𝑏(𝑥, 𝑦) =∑𝜓𝑦𝑖

𝑏 𝜆𝑖
𝑦𝑏(𝑥, 𝑦)

𝑚

𝑖=1

 

𝑢0(𝑥, 𝑦) =∑𝑢0𝑖𝜆𝑖
𝑢𝑐(𝑥, 𝑦)

𝑚

𝑖=1

 𝑢1 (𝑥, 𝑦) =∑𝑢1𝑖𝜆𝑖
𝑢1

𝑐

(𝑥, 𝑦)

𝑚

𝑖=1

 

𝑣0(𝑥, 𝑦) =∑𝑣0𝑖𝜆𝑖
𝑣𝑐(𝑥, 𝑦)

𝑚

𝑖=1

 𝑣1 (𝑥, 𝑦) =∑𝑣1𝑖𝜆𝑖
𝑣1
𝑐

(𝑥, 𝑦)

𝑚

𝑖=1

 

𝑤0(𝑥, 𝑦) =∑𝑤0𝑖𝜆𝑖
𝑤𝑐(𝑥, 𝑦)

𝑚

𝑖=1

 
 

 

in which (𝑤𝑖
𝑡, 𝑣𝑖

𝑡, 𝑢𝑖
𝑡, 𝜓𝑥𝑖

𝑡 , 𝜓𝑦𝑖
𝑡 , 𝑤𝑖

𝑏,𝑣𝑖
𝑏, 𝑢𝑖

𝑏, 𝜓𝑥𝑖
𝑏 , 𝜓𝑦𝑖

𝑏 , 𝑤0𝑖, 𝑣0𝑖, 𝑢0𝑖, 𝑣1𝑖, 𝑢1𝑖) are unknown 

coefficients and 𝜆𝑖
𝑘(𝑘 = 𝑤𝑡, 𝑤𝑏 , 𝑤𝑐, … , 𝑢1

𝑐) are shape functions that must be chosen to satisfy 

the essential boundary conditions. As mentioned earlier, various shape functions including 
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polynomial and trigonometric functions, have been used to satisfy the essential boundary 

conditions. Bhat [42] and Liew [43] provided the Gram-Schmidt process to generate two-

variable orthogonal polynomials functions. The members of the orthogonal polynomials are 

generated as follows (see Appendix B): 

𝜆𝑖
𝑘(𝑥, 𝑦) = (𝑓𝑖(𝑥, 𝑦) − 𝑎𝑖,1)𝜆1

𝑘(𝑥, 𝑦) − 𝑎𝑖,2𝜆2
𝑘(𝑥, 𝑦) − 𝑎𝑖,3𝜆3

𝑘(𝑥, 𝑦) − ⋯

− 𝑎𝑖,𝑖−1𝜆𝑖−1
𝑘 (𝑥, 𝑦) 

(47) 

where 𝑓𝑖(𝑥, 𝑦) is the weight function that is represented by (1, 𝑥, 𝑦, 𝑥2, 𝑥𝑦, 𝑦2, … , 𝑥𝑖−𝑛𝑦𝑛) where 

(𝑖 = 1,… ,𝑚 𝑎𝑛𝑑 𝑛 = 0,… ,𝑚) and 𝑎𝑖,𝑖−1 is calculated as follows [42, 43]: 

𝑎𝑖.𝑖−1 =
∫ ∫ 𝑓𝑖𝜆1

𝑘(𝑥, 𝑦)𝜆𝑖−1
𝑘 (𝑥, 𝑦) 𝑑𝑦𝑑𝑥

𝑏

0

𝑎

0

∫ ∫ 𝜆𝑖−1
𝑘 (𝑥, 𝑦)𝜆𝑖−1

𝑘 (𝑥, 𝑦) 𝑑𝑦𝑑𝑥 
𝑏

0

𝑎

0

 (48) 

The orthogonality relationship must be satisfied by the generated set of plate functions: 

∫ ∫ 𝜆𝑖
𝑘(𝑥, 𝑦)

𝑏

0

𝑎

0

𝜆𝑗
𝑘(𝑥, 𝑦)𝑑𝑥𝑑𝑦 = {

0   𝑖𝑓  𝑖 ≠ 𝑗

𝜖𝑖𝑗 ≠ 0   𝑖𝑓   𝑖 = 𝑗
 (49) 

where 𝜖𝑖𝑗 is a non-zero value. Using the above method, the displacement components can be 

considered as single series [42]. 

 

3.2. Rayleigh-Ritz Method 

The Lagrangian function of the fluid-sandwich plate coupled system expresses: 

Π =∑(𝑆𝑡𝑟𝑎𝑖𝑛 𝐸𝑛𝑒𝑟𝑔𝑦)𝑚𝑎𝑥 −∑(𝐾𝑖𝑛𝑒𝑡𝑖𝑐 𝐸𝑛𝑒𝑟𝑔𝑦)𝑚𝑎𝑥 (50) 

To minimize the above equation with respect to the unknown coefficients, we impose: 
𝜕Π

𝜕𝑞
= 0 (51) 

in which q is the vector of generalized coordinates including unknown coefficients of the 

admissible trial functions which have been demonstrated in Eq. (41) and Eq. (46) (i.e. 

q={𝑤𝑖
𝑡, 𝑣𝑖

𝑡, 𝑢𝑖
𝑡, 𝜓𝑥𝑖

𝑡 , 𝜓𝑦𝑖
𝑡 , 𝑤𝑖

𝑏 , 𝑣𝑖
𝑏 , 𝑢𝑖

𝑏 , 𝜓𝑥𝑖
𝑏 , 𝜓𝑦𝑖

𝑏 , 𝑤0𝑖 , 𝑣0𝑖 , 𝑢0𝑖 , 𝑣1𝑖 , 𝑢1𝑖 , Γ𝑖𝑗}
𝑇
). The eigenvalue problem is 

obtained by employing Eq. (51): 

(𝐾𝑝)Η𝑖 − 𝜔̅
2[(𝑀𝑝 +𝑀𝑓𝐵)Η𝑖 +𝑀𝑓𝑆Γ𝑚,𝑛] = 0 (52) 

where Η𝑖 = {𝑤𝑖
𝑡, 𝑣𝑖

𝑡, 𝑢𝑖
𝑡 , 𝜓𝑥𝑖

𝑡 , 𝜓𝑦𝑖
𝑡 , 𝑤𝑖

𝑏 , 𝑣𝑖
𝑏 , 𝑢𝑖

𝑏 , 𝜓𝑥𝑖
𝑏 , 𝜓𝑦𝑖

𝑏 , 𝑤0𝑖 , 𝑣0𝑖 , 𝑢0𝑖 , 𝑣1𝑖 , 𝑢1𝑖 , Γ𝑖𝑗}
𝑇
and: 

𝐾𝑝 =
𝜕2𝑈𝑝

𝜕𝑞𝑖𝜕𝑞𝑗
  ,           𝑀𝑝 =

1

𝜔̅2
𝜕2𝑇𝑝

𝜕𝑞𝑖𝜕𝑞𝑗
  ,  

𝑀𝑓𝐵 =
1

𝜔̅2
𝜕2𝑇𝑓𝐵

𝜕𝑞𝑖𝜕𝑞𝑗
  ,        𝑀𝑓𝑆 =

1

𝜔̅2
𝜕2𝑇𝑓𝑆

𝜕𝑞𝑖𝜕𝑞𝑗
  , 

(53) 

Eq. (52) cannot be solved without having an expression for Γ𝑚,𝑛.Thus Eq. (30) has to be added to 

Eq. (53): 

[
𝐾𝑝 0

𝐾𝜑𝐵 𝐾𝜑𝑆
] {
𝛨𝑖
𝛤𝑚,𝑛

} − 𝜔̅2 [
𝑀𝑝 +𝑀𝑓𝐵 𝑀𝑓𝑆

0 𝑀𝜑𝑆
] {
𝛨𝑖
𝛤𝑚,𝑛

} = 0 (54) 

in which: 

𝐾𝜑𝐵 =
𝜕2𝑈𝜑𝐵
𝜕𝑞𝑖𝜕𝑞𝑗

= 
𝜕2𝑈𝜑𝐵
𝜕𝛨𝑖𝜕𝛤𝑚,𝑛

 (55a) 
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𝐾𝜑𝑆 =
𝜕2𝑈𝜑𝑆
𝜕𝑞𝑖𝜕𝑞𝑗

= 
𝜕2𝑈𝜑𝑆

𝜕𝛤𝑖,𝑗𝜕𝛤𝑚,𝑛
 (55b) 

𝑀𝜑𝑆 =
𝜕2𝑇𝜑𝑆
𝜕𝑞𝑖𝜕𝑞𝑗

= 
𝜕2𝑇𝜑𝑆

𝜕𝛤𝑖,𝑗𝜕𝛤𝑚,𝑛
 (55c) 

Equation (54) is a standard eigenvalue problem which the natural frequencies (eigenvalue) and 

the mode shapes (eigenvector) of the sandwich plate in contact with fluid can be determined. 

 

 

4. Numerical Results and Discussion 

In the following, a convergence study of the proposed method is conducted at first. Then, in 

order to validate the results of this paper, comparison study has been done with published papers 

in literature. Eventually, the wet natural frequencies of sandwich plate with different boundary 

conditions in contact with fluid are demonstrated and the effects of side-to-thickness ratio, 

thickness of the core to thickness of the face sheets ratio, flexural modulus of the face sheet to 

that of the core ratio, dimensions of the tank and aspect ratios on the natural frequencies are 

discussed in details. All calculations have been carried out by applying the commercial software, 

Matlab (version 2018a) and the outcomes are displayed in graphical and tabular styles. 

The material properties for the core and face sheets used in the following examples are given in 

Table 1. 

 

Table 1: The material properties for various types of sandwich plates 

  Material No.   

Property Unit 𝑀1[22] 𝑀2[22] 𝑀3[52] 𝑀4[52] 𝑀5[52] 𝑀6[52] 

𝐸1 GPa 0.10363 24.51 0.00689 131 0.5776 276 

𝐸2 GPa 0.10363 7.77 0.00689 10.34 0.5776 6.9 

𝐸3 GPa 0.10363 7.77 0.00689 10.34 0.5776 6.9 

𝐺12 GPa 0.05 3.34 0.00345 6.895 0.1079 6.9 

𝐺23 GPa 0.05 1.34 0.00345 6.895 0.2221 6.9 

𝐺13 GPa 0.05 3.34 0.00345 6.205 0.1079 6.9 

𝑣12  0.33 0.078 0 0.22 0.0025 0.25 

𝑣23  0.33 0.49 0 0.22 0.0025 0.25 

𝑣13  0.33 0.078 0 0.49 0.0025 0.3 

𝜌 𝑘𝑔 𝑚3⁄  130 1800 97 1627 1000 681.8 

 

 

4.1. Convergence Study 

In this section, the convergence of the response has inspected with respect to the number of the 

terms of series. Table 2 shows the first four dimensionless dry natural frequencies of sandwich 

plate with various boundary conditions and lay-up [0/90/0/Core/0/90/0] for a different number of 

terms of series. The dimensionless natural frequency (𝜔) has been calculated based on 𝜔 =

𝜔̅𝑎2√𝜌𝑐 𝐸𝑐⁄ /ℎ. Also, 𝜌𝑐 and 𝐸𝑐 are the density and modulus of the core, respectively and ℎ is 

the total thickness of the sandwich plate. The geometrical parameters have been already depicted 

in Figs. 1 and 2. 
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Table 2: Convergence study of first four dimensionless dry natural frequencies parameters (𝜔 =

𝜔̅𝑎2√𝜌𝑐 𝐸𝑐⁄ /ℎ) of a sandwich plate 

(𝑎 𝑏⁄ = 1, 𝑎 ℎ⁄ = 10 andℎ𝑐 ℎ⁄ = 0.88) 

𝑀 Boundary conditions       

SSSS  CCCC 

 𝜔1 𝜔2 𝜔3 𝜔4  𝜔1 𝜔2 𝜔3 𝜔4 

10 14.2844 27.6400 28.1594 36.4457  18.4162 31.7830 32.1142 44.8576 

15 14.2843 26.2126 26.8479 36.2009  18.2196 28.8885 29.3947 42.9198 

20 14.2827 26.2122 26.8455 34.5758  18.1153 28.7599 29.1353 37.0841 

25 14.2820 26.2086 26.8224 34.5695  18.0103 28.5495 29.0170 36.8868 

30 14.2820 26.1842 26.8222 34.5591  17.9639 28.4133 28.9504 36.7771 

35 14.2820 26.1842 26.8222 34.5165  17.9478 28.3883 28.8626 36.7106 

40 14.2820 26.1842 26.8222 34.5165  17.9478 28.3883 28.8626 36.7106 

          

 SSSF     CCCF    

10 10.5006 18.7186 26.2797 32.1588  13.9496 22.1572 27.4178 36.0943 

15 10.4921 18.3579 24.8871 30.8953  13.8230 20.6926 26.8285 34.0270 

20 10.4891 18.3357 24.8684 29.8088  13.7221 20.5091 26.6335 31.8340 

25 10.4889 18.3234 24.8442 29.7261  13.6645 20.3409 26.4929 31.6590 

30 10.4886 18.3217 24.8435 29.7074  13.6600 20.2791 26.4849 31.5179 

35 10.4886 18.3217 24.8432 29.6955  13.6366 20.2508 26.3918 31.4783 

40 10.4886 18.3217 24.8432 29.6955  13.6366 20.2508 26.3918 31.4783 

          

 SSCF     CSCS    

10 10.9920 20.3254 26.6838 34.4669  16.3961 29.6513 30.5919 40.7456 

15 10.9521 19.3627 25.1142 32.9630  16.3169 27.8809 27.9451 40.2995 

20 10.9458 19.2957 25.0303 30.5796  16.2876 27.7276 27.9400 36.0144 

25 10.9381 19.1950 24.9896 30.4578  16.2065 27.6518 27.7853 35.9232 

30 10.9319 19.1317 24.9799 30.2939  16.1656 27.5669 27.6220 35.8057 

35 10.9319 19.1317 24.9796 30.2877  16.1656 27.5669 27.6220 35.8010 

40 10.9319 19.1317 24.9796 30.2877  16.1656 27.5669 27.6220 35.8010 

 

 

Another convergence study has been done on the dimensionless wet natural frequencies of 

sandwich plate with different boundary conditions and lay-up [0/90/0/Core/0/90/0] coupled with 

fluid. As shown in tables 2 and 3, as the number of terms of series increases, the natural 

frequencies converge to the specified amounts. Thus, for the upcoming results, we use 𝑀 = 40 

for the number of terms of series for the plate deformation components and 𝑀1 = 𝑁1 = 8 for the 

fluid velocity potential. 

 

Table 3: Convergence study of first four dimensionless wet natural frequencies parameters (𝜔 =

𝜔̅𝑎2√𝜌𝑐 𝐸𝑐⁄ /ℎ) of a sandwich plate coupled with fluid 

(𝑎 𝑏⁄ = 2, 𝑎 ℎ⁄ = 10, ℎ𝑐 ℎ⁄ = 0.88 and 𝑑 𝑏⁄ = 0.2) 

𝑀 𝑀1 × 𝑁1 Boundary conditions     

SSSS   CCCC 
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  𝜔1 𝜔2 𝜔3 𝜔4  𝜔1 𝜔2 𝜔3 𝜔4 

15 2×2 25.9477 34.2948 47.2739 48.0081  30.1746 38.1394 53.1808 54.4372 

20 3×3 25.9465 34.1848 44.9212 48.0014  30.0706 37.6279 48.1636 52.9328 

25 4×4 25.9419 34.1673 44.7515 47.8810  29.9351 37.4770 47.9115 52.3483 

30 5×5 25.9413 34.1563 44.6050 47.7841  29.7478 37.2828 47.6878 51.9772 

35 6×6 25.9410 34.1543 44.5600 47.7779  29.7365 37.1099 47.4213 51.8755 

40 7×7 25.9395 34.1533 44.5589 47.6196  29.7011 37.0832 47.3163 51.6214 

40 8×8 25.9395 34.1533 44.5589 47.6196  29.7011 37.0832 47.3163 51.6214 

           

  SSSF     CCCF    

15 2×2 12.3850 26.4292 35.4486 42.6183  17.2727 29.0542 37.7840 42.7930 

20 3×3 12.3822 26.3780 35.4355 39.9279  17.1772 28.7743 37.4871 41.9909 

25 4×4 12.3818 26.3551 35.3913 39.8289  17.1025 28.6350 37.1648 41.7263 

30 5×5 12.3817 26.3515 35.3819 39.7188  17.0584 28.5166 36.9306 41.5948 

35 6×6 12.3817 26.3498 35.3808 39.7042  17.0538 28.4820 36.8567 41.5531 

40 7×7 12.3816 26.3495 35.3697 39.7000  17.0261 28.4505 36.7397 41.4528 

40 8×8 12.3816 26.3495 35.3697 39.7000  17.0261 28.4505 36.7397 41.4528 

           

  SSCF     CSCS    

15 2×2 15.3044 27.4546 37.1240 43.6059  29.2714 36.8525 51.8344 52.6429 

20 3×3 15.2990 27.2976 37.0650 40.6043  29.2458 36.5410 47.1749 52.6288 

25 4×4 15.2605 27.2595 36.7582 40.3717  29.1080 36.4552 46.8978 52.0242 

30 5×5 15.2367 27.2228 36.5491 40.2398  28.9546 36.2782 46.6590 51.6819 

35 6×6 15.2362 27.1962 36.5410 40.1419  28.9514 36.1474 46.1930 51.6707 

40 7×7 15.2210 27.1960 36.4296 40.1296  28.9282 36.1463 46.1841 51.4184 

40 8×8 15.2210 27.1960 36.4296 40.1296  28.9282 36.1463 46.1841 51.4184 

 

4.2. Comparison Study 

In order to validate the present method, Tables 4, 5 and 6 are devoted to compare the results 

obtained from this paper with published papers in the literature. Since no study has been reported 

on the free vibration of sandwich plate in contact with fluid, this section first compares dry 

natural frequencies of sandwich plate with the results presented in the literature. Then, the wet 

natural frequencies of isotropic plates are compared. 

As a first comparison study, in Table 4, the dry natural frequencies of square sandwich plate with 

simply-supported boundary conditions are compared with the analytical solutions based on layer 

wise approach [22], the FEM solutions based on high-order shear deformations theory [53], and 

other analytical solutions based on high-order shear deformation theory and considering ESL 

approach[17, 18]. 

 

Table 4: Dimensionless dry natural frequencies (𝜔 = 𝜔̅𝑎2√𝜌𝑐 𝐸𝑐⁄ /ℎ) for simply-supported 

sandwich plate with different lay-ups and 𝑎 𝑏⁄ = 1, 𝑎 ℎ⁄ = 10 and ℎ𝑐 ℎ⁄ = 0.88. (Lay-up 1: 

[0/90/0/Core/0/90/0] and Lay-up 2: [45/-45/45/Core/-45/45/-45]) 

Lay-ups 
Mode 

No. 

 Method 

Present 
Analytical 

[22] 

FEM-

HSDT 

Analytical-

HSDT 

FEM–

HSDT 
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(LW) [53] (ESL) [17] (ESL) 

[18] 

Lay-up 1 

𝜔1 14.282 14.83 14.440 15.28 15.34 

𝜔2 26.1842 26.91 26.826 28.69 30.18 

𝜔3 26.8221 27.47 27.456 30.01 31.96 

𝜔4 34.5165 35.57 35.706 38.86 40.94 

        

Lay-up 2 

𝜔1 15.245 15.53 15.405 16.38 16.43 

𝜔2 26.7295 27.36 27.417 29.65 31.17 

𝜔3 26.7295 27.36 27.417 29.65 31.17 

𝜔4 35.3905 36.93 36.592 40 42.78 

 

 

The next comparison study is devoted to the dry natural frequencies of the sandwich plate with 

different boundary conditions. As shown in Table 5, the first six dimensionless dry natural 

frequencies of square sandwich plate are compared with various types of FEM models. 

The material properties M5 and M6 are used for the core and face sheets, respectively. 

The FEM solution presented by Chalak et al. [52] is based on higher-order zig-zag model. Also, 

Kulkarni and Kapuria [54] reported the results based on zig-zag model for different boundary 

conditions along with the 3D results from ABAQUS software package. 

 

Table 5: Dimensionless dry natural frequencies (𝜔 = 100𝜔̅𝑎√𝜌𝑐 𝐸𝑡⁄ ) for sandwich plate with 

lay-up [0/90/Core/90/0] and different boundary conditions (𝑎 𝑏⁄ =1, 𝑎 ℎ⁄ =10, ℎ𝑐 ℎ⁄ =0.8) 

B.C. 
 

Method 
 Frequencies 

 𝜔1 𝜔2 𝜔3 𝜔4 𝜔5 𝜔6 

CFCF 

 Present  7.0426 7.7690 14.2215 15.2980 17.1898 21.5046 

 Chalak [52]  7.0359 7.7249 14.2105 15.2415 17.1179 21.3580 

 3D Abaqus [54]  7.0119 7.7131 14.1496 15.1975 17.0942 21.3089 

 ZIGT FE [54]  7.0923 7.8284 14.3407 15.4498 17.1776 21.5871 

          

CFFF 

 Present  2.9740 3.6312 9.4107 10.7907 15.8589 17.2400 

 Chalak [52]  2.9721 3.6053 9.3976 10.7219 15.8489 17.2203 
 3D Abaqus [54]  2.9674 3.6113 9.3738 10.7228 15.8337 17.5148 

 ZIGT FE [54]  2.9791 3.6348 9.4418 10.8109 15.8500 17.3072 

          

CSCS 

 Present  10.3848 15.3560 18.2338 21.4893 21.6985 26.7959 

 Chalak [52]  10.3027 16.1798 18.3228 22.1962 23.2839 27.1750 

 3D Abaqus [54]  10.2816 16.1245 18.3029 22.1480 23.1797 27.1464 

 ZIGT FE [54]  10.3582 16.3499 18.3744 22.4100 23.5983 27.2300 

          

CCCC 

 Present  11.3166 16.8330 19.1758 23.0592 23.7886 28.4357 

 Chalak [52]  11.2607 16.7446 19.0385 22.8018 23.6414 28.1930 

 3D Abaqus [54]  11.2236 16.6777 18.9650 22.7096 23.5270 28.0728 

 ZIGT FE [54]  11.4158 17.0329 19.3780 23.4305 24.0862 28.7241 
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Table 6 shows another comparison study, in which an isotropic plate coupled with a fluid is 

considered. The geometric and material properties of the plate are: 𝑎 = 10 𝑚, 𝑏 = 10 𝑚, ℎ =
0.15 𝑚, 𝜌 = 2400 𝑘𝑔 𝑚3⁄ , 𝐸 = 25 𝐺𝑃𝑎 and 𝑣 = 0.15. Also, the width of the container and the 

mass density of the fluid are: 𝑐 = 100 𝑚 and 𝜌𝑓 = 1000 𝑘𝑔 𝑚3⁄ . The results in this comparison 

have been obtained for different ratios of the fluid depth (𝑑 𝑏⁄ = 0.2 ,0.4 ,0.6, 0.8 and 1). As can be 

seen from Tables 4, 5 and 6, there is an excellent agreement between the results from the present 

method and the available data in the literatures. 

 

Table 6: Comparison study of the dimensionless natural frequencies (𝜔 =

𝜔̅𝑎2 𝜋2⁄ √12𝜌𝑝(1 −  𝜐2) 𝐸ℎ2⁄ )of a square isotropic plate coupled with fluid 

Mode  Method 
𝑑 𝑏⁄  

0  0.2  0.4  0.6  0.8  1 

(1,1) Present    3.1394  3.0601  2.3419  1.6389  1.2819  1.1175 

  Omiddezyani [33] 3.139  3.052  2.335  1.639  1.281  1.117 

  Ugurlu [34] 3.169  3.064  2.196  1.496  1.173  1.036 

  Khorshidi 3.1415  3.0127  2.0746  1.3563  1.0172  0.8565 

                  

(2,1) Present    7.8403  7.2236  5.8004  4.4777  3.8798  3.2254 

  Omiddezyani [33] 7.837  7.186  5.776  4.47  3.878  3.225 

  Ugurlu [34] 7.902  7.092  5.708  5.174  3.926  3.337 

  Khorshidi [30] 7.8527  6.9032  5.5313  4.9530  3.7329  3.1434 

                  

(1,2) Present    7.8403  7.6369  5.9253  5.2698  3.8952  3.6883 

  Omiddezyani [33] 7.837  7.609  5.919  5.265  3.899  3.687 

  Ugurlu [34] 7.902  7.622  5.382  4.058  3.484  3.261 

  Khorshidi [30] 7.8528  7.4957  5.0916  3.7884  3.2288  3.0037 

                  

(2,2) Present    12.5981 11.6135 10.1930 8.9846  6.8847  5.8711 

  Omiddezyani [33] 12.525  11.501  10.153  8.925  6.839  5.847 

  Ugurlu [34] 12.68  11.40  9.974  8.746  6.777  5.942 

  Khorshidi [30] 12.563  11.074  9.7556  8.4732  6.5952  5.6503 

                  

(3,1) Present    15.6673 14.0444 11.6623 9.6395  8.7689  7.6436 

  Omiddezyani [33] 15.644  13.938  11.47  9.594  8.731  7.562 

  Ugurlu [34] 15.95  13.80  12.57  10.57  9.41  7.848 

  Khorshidi [30] 15.6962 13.3586 12.1332 10.2708 9.1994  7.7808 

                  

(3,2) Present    20.6552 18.6283 17.3675 14.8131 12.3494 10.6039 

  Omiddezyani [33] 20.312  18.259  16.686  14.198  11.994  10.462 

  Ugurlu [34] 20.69  18.10  16.68  14.47  12.66  10.72 

  Khorshidi [30] 20.4023 17.6359 16.1027 14.1435 12.4425 10.9678 

                 

(2,3) Present    20.6553 19.2150 17.9124 16.0522 13.0619 10.7520 

  Omiddezyani [33] 20.312  18.721  17.544  14.907  12.355  10.661 

  Ugurlu [34] 20.69  18.64  17.52  14.57  11.74  10.63 

  Khorshidi [30] 20.4023 18.5549 17.3109 15.0785 12.2572 10.4765 

                  

(4,1) Present    27.5749 24.8262 22.0406 18.6427 16.9125 14.8851 
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  Omiddezyani [33] 26.519  23.971  19.677  17.248  16.113  14.384 

  Ugurlu [34] 27.52  24.21  21.36  19.32  17.66  14.91 

  Khorshidi [30] 26.6411 23.3108 20.53  18.6439 18.7913 15.6739 

 

4.3. Parametric Studies 

After validating the performance of the proposed formulation and approach, several numerical 

examples are employed in this section to study the vibrational characteristics of the sandwich 

plate with various boundary conditions contacting with fluid. 

 

4.3.1. Effect of the presence of fluid on the natural frequencies 

Table 7 demonstrates the first four dimensionless natural frequencies of sandwich plate with six 

different boundary conditions coupled with fluid. The material properties M1 and M2 are applied 

for the core and face sheets, respectively. As can be observed, the highest natural frequencies are 

related to fully clamped sandwich plate. On the contrary, the lowest natural frequencies are 

related to SSSF. Furthermore, it can be seen that by increasing the depth of fluid from 0 to 0.5, 

the natural frequency is reduced for all boundary conditions. It is worth mentioning that when 

one edge of the boundaries in sandwich plate is free (usually top edge), the effect of fluid on the 

fundamental natural frequencies is less than that edge of the boundary being simply-supported or 

clamped. This aspect is also seen later in the study of the effect of flexural modulus of the face 

sheet to that of the core. 

 

Table 7: Dimensionless natural frequencies (𝜔 = 𝜔̅𝑎2√𝜌𝑐 𝐸𝑐⁄ /ℎ) of square sandwich plate with 

various boundary conditions, Lay-up [0/90/0/Core/0/90/0] and 𝑎 ℎ⁄ = 10, 𝑎 𝑏⁄ = 1, ℎ𝑐 ℎ⁄ =
0.88 

Depth 

of fluid 

Mode 

No. 
Boundary conditions 

  SSSS CCCC SSCF CCCF SSSF CSCS 

𝑑

𝑏
= 0 

𝜔1 14.2820 17.9478 10.9319 13.6366 10.4886 16.1656 

𝜔2 26.1842 28.3883 19.1317 20.2508 18.3217 27.5669 

𝜔3 26.8221 28.8626 24.9796 26.3918 24.8432 27.6220 

𝜔4 34.5165 36.7106 30.2877 31.4783 29.6955 35.8010 

        

𝑑

𝑏
= 0.5 

𝜔1 7.9622 9.6957 8.2467 9.5128 7.4852 8.8980 

𝜔2 14.2809 15.3701 12.6052 14.4552 12.4461 14.6373 

𝜔3 16.7998 18.3301 14.7364 15.6284 14.3003 17.7068 

𝜔4 20.9687 21.9413 19.1831 20.1398 18.3529 21.1843 

        

 

4.3.2. Effect of Side to Thickness Ratio (a/h) on the Wet Natural Frequency 

Fig. 3 illustrates the fundamental wet natural frequencies of five layered square sandwich plate 

[0/90/Core/0/90] with 𝑎 𝑏⁄ = 1, 𝑐 𝑎⁄ = 0.5 and 𝑓𝐶 𝑓𝑡⁄ = 10 in contact with different depths of 

fluid. It also contains different boundary conditions and varying side-to-thickness ratios. The 

material properties M3 and M4 are used for the core and face sheets, respectively. 

As can be seen, by decreasing the side to thickness ratio (𝑎 ℎ⁄ ), the natural frequencies decrease. 

This effect can be ascribed to the significant contribution of shear deformation and rotary inertia. 

Likewise, as the fluid depth increases, the natural frequencies decrease. Moreover, as stated 
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earlier the highest natural frequencies are related to the fully clamped boundary conditions which 

are due to this fact that for this boundary condition, the general stiffness of the system is 

maximum. It should be noted that FSDT is deemed sufficient to predict the vibrational 

characteristics of moderately thick plates (
𝑎

ℎ
≥ 10). For the thick plates (

𝑎

ℎ
≤ 10), FSDT may 

produce unreliable results. 

 

 
Fig. 3: Variation of dimensionless fundamental natural frequency of sandwich plate 

[0/90/Core/0/90] with different boundary conditions versus dimensionless depth of the fluid 

(𝑎 𝑏⁄ = 1, 𝑐 𝑎⁄ = 0.5 and 𝑓𝑐 𝑓𝑡⁄ = 10) 

 

4.3.3. Effect of Flexural Modulus of the Face Sheet to the Core Ratio (𝑬𝒕 𝑬𝑪⁄ ) 

This section covers the influence of flexural modulus of the face sheet to flexural modulus of the 

core ratio on the natural frequencies. Fig. 4 presents fundamental wet and dry natural frequencies 

of sandwich plate with 𝑎 ℎ⁄ = 10, 𝑐 𝑎⁄ = 0.5, 𝑑 𝑏⁄ = 0.45 and 𝑓𝑐 ℎ⁄ = 0.88. It can be seen that 

the wet natural frequencies are always less than the dry ones. Furthermore, by increasing the 

ratio of flexural modulus of the face sheet to that of the core, both dry and wet natural 

frequencies increase. Moreover, when one edge of the sandwich plate is free, the difference 

between dry and wet natural frequencies is lower than when all edges are simply supported or 

clamped. 
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Fig. 4: Variation of dimensionless fundamental natural frequency of square sandwich plate 

[0/90/0/Core/0/90/0] with different boundary conditions coupled with fluid for various values of 

flexural modulus of the face sheet to that of the core. 
(𝑎 ℎ⁄ = 10, 𝑓𝑐 ℎ⁄ = 0.88,𝑑 𝑏⁄ = 0.45, 𝑐 𝑎⁄ = 0.5) 

 

4.3.4. Effect of Thickness of the Core to Thickness of the Face Sheet Ratio (𝒇𝒄 𝒇𝒕⁄ ) 

Fig. 5 shows the influence of thickness of the core to thickness of the face sheet ratio on the 

fundamental wet natural frequencies of square sandwich plate with lay-up [0/90/Core/0/90]. The 

material properties M3 and M4 from Table 1 are adopted for the core and face sheets, 

respectively. In this example, three different depths of the fluid (𝑑 𝑏⁄ = 0.1, 0.3 and 0.5) are 

considered. It is clear that the stiffness of the sandwich plate increases as the ratio of (𝑓𝑐 𝑓𝑡⁄ ) 

increases. Therefore, the fundamental natural frequencies increase. Also, with increasing depth 

of fluid, the natural frequencies decrease. In addition, the boundary conditions listed in Fig. 5 

follow the same trend as stated earlier. Also, the highest and lowest fundamental wet natural 

frequencies are related to the fully clamped boundary conditions and SSSF (three edges simply-

supported and the other one free), respectively.  
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Fig. 5: Variation of dimensionless fundamental natural frequency of square sandwich plate 

[0/90/Core/0/90] with different boundary conditions in contact with fluid for various values of 

thickness of the core to thickness of the face sheet. 

 (𝑎 ℎ⁄ = 10, 𝑎 𝑏⁄ = 1, 𝑐 𝑎⁄ = 0.5) 

 

4.3.5. Effect of Container Width Ratio on the Wet Natural Frequency 

In Fig. 6, the numerical results are given for a seven layered square sandwich plate with lay-up 

[0/90/0/Core/0/90/0] and different container width ratio (𝑐 𝑎⁄ ). The material properties M1 and 

M2 from Table 1 are chosen for the core and face sheets, respectively. Fig. 6 indicates as the 

width ratio of container increases, the fundamental natural frequencies increase for all boundary 

conditions shown in Fig. 6. It is worth mentioning that for high values of width ratio, changes in 

the fundamental natural frequencies are greatly reduced and tend to the specific value. 

 
Fig. 6: Variation of dimensionless fundamental natural frequency of sandwich plate 

[0/90/0/Core/0/90/0] with different boundary conditions versus width of the container 
(𝑎 𝑏⁄ = 1, 𝑎 ℎ⁄ = 10, 𝑑 𝑏⁄ = 0.4 and𝑓𝑐 ℎ⁄ = 0.88) 

 

4.3.6. Effect of Sandwich Plate Aspect Ratio (𝒂 𝒃⁄ ) on the Wet Natural Frequency 

Fig. 7 presents the effect of plate aspect ratio (𝑎 𝑏⁄ ) on the first dimensionless wet natural 

frequency of sandwich plate with lay-ups [45/-45/45/Core/-45/45/-45] and [0/90/0/Core/0/90/0] 

coupled with fluid. Results are given for dimensions (𝑎 ℎ⁄ = 10,𝑓𝑐 ℎ⁄ = 0.88, 𝑑 𝑏⁄ = 0.3 and 

𝑐 𝑎⁄ = 0.5) and two different boundary conditions just for brevity. Material properties M1 and 

M2 are chosen from Table 1 for the core and face sheets, respectively. It is found that 

fundamental natural frequencies illustrate an increasing trend up as the aspect ratio increases. In 

addition, comparison between two lay-ups reveals sandwich plate with lay-up [45/-45/45/Core/-

45/45/-45] has higher natural frequencies than another one [0/90/0/Core/0/90/0]. In should be 

mentioned that another comparison between these two lay-ups has been done in Table 4 in which 

the environment is dry. 
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Fig. 7: Variation of dimensionless fundamental natural frequency of sandwich plate with two 

different lay-ups versus aspect ratio (𝑎 𝑏⁄ ) for SSSS and CSCS boundary conditions in contact 

with fluid (𝑎 ℎ⁄ = 10, 𝑓𝑐 ℎ⁄ = 0.88, 𝑑 𝑏⁄ = 0.3 and 𝑐 𝑎⁄ = 0.5) 

 

4.3.7. Effect of Fluid Presence on the Wet Mode Shapes 

In order to appreciate the effect of fluid on the fluid-structure interaction, the first six mode 

shapes of sandwich plate in contact with fluid are shown in Fig. 8. Also, for comparison 

purposes, the first six mode shapes of sandwich plate in air are presented in Fig. 9. As can be 

observed, the presence of fluid causes distortion in the mode shapes. 

 
Fig. 8. First six mode shapes of a sandwich plate with lay-up [0/90/0/Core/0/90/0] and (𝑎 ℎ⁄ =

10, 𝑓𝑐 ℎ⁄ = 0.88, 𝑎 𝑏⁄ = 1) in contact with fluid (𝑑 𝑏⁄ = 0.5 and 𝑐 𝑎⁄ = 10). 

 

 

 



Manuscript submitted to Thin-Walled Structures (August 2020) 26 

 

 
Fig. 9: First six mode shapes of a sandwich plate with lay-up (0/90/0/Core/0/90/0) and (𝑎 ℎ⁄ =

10, 𝑓𝑐 ℎ⁄ = 0.88, 𝑎 𝑏⁄ = 1) in air. 

 

 

5. Conclusion 

In this paper, the vibrational behavior of a sandwich plate with compressible core and different 

boundary conditions has been investigated where whether the top or bottom face sheet of 

sandwich plate has been coupled with fluid. The extended higher-order sandwich plate theory 

has been used for the analysis of sandwich plate in which both the in-plane and out of plane 

stresses of the core are considered. Also, the first-order shear deformation theory is adopted to 

the face sheets of sandwich plate. In additions assumptions for the fluid were also considered to 

be incompressible, Irrotational and inviscid. Hamilton’s principle has been used to achieve 

governing differential equations of motions and corresponding boundary conditions. Rayleigh-

Ritz method with two-variable orthogonal polynomials is used to solve the eigenvalue problem 

related to the free vibration of sandwich plate with various boundary conditions in contact with 

fluid. As presented in the numerical results section, wet natural frequencies are always lower 

than dry natural frequencies. In addition as the depth of fluid increases, the natural frequencies 

decrease for all types of boundary conditions. The fully clamped boundary conditions has the 

highest natural frequencies among all the examples are studied. Also with increasing the side to 

thickness ratio of the sandwich plate, the natural frequencies increase. It is observed that by 

increasing the thickness of the core to thickness of the face sheet, the natural frequencies 

increase. Furthermore the numerical results show that the natural frequencies increase as the 

aspect ratio increases. As the width of the tank increases, the natural frequencies increase and 

eventually tend to a certain amount. The distortion that the fluid has caused is shown in the mode 

shapes. For the future study, the free surface wave and also the compressibility of the fluid can 

be considered in the mathematical modeling. 
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Appendix A 

The governing equations and corresponding boundary conditions are derived as follows: 

For the top face sheet: 

𝑁𝑥𝑥,𝑥
𝑡 + 𝑁𝑥𝑦,𝑦

𝑡 +
2

𝑓𝑐2
𝑀2𝑥𝑥,𝑥
𝑐 +

2

𝑓𝑐2
𝑀2𝑥𝑦,𝑦
𝑐 +

4

𝑓𝑐2
𝑀𝑄1𝑥𝑧
𝑐 +

4

𝑓𝑐
3𝑀3𝑥𝑥,𝑥

𝑐 +
4

𝑓𝑐
3𝑀3𝑥𝑦,𝑦

𝑐

+
12

𝑓𝑐
3𝑀𝑄2𝑥𝑧

𝑐 − 𝐼0
𝑡𝑢0,𝑡𝑡

𝑡 − 𝐼1
𝑡𝜓𝑥,𝑡𝑡

𝑡 −
4

𝑓𝑐
3 𝐼3

𝑐𝑢0,𝑡𝑡 −
2

𝑓𝑐2
𝐼2
𝑐𝑢0,𝑡𝑡

−
4

𝑓𝑐
3 𝐼4

𝑐𝑢1,𝑡𝑡 −
2

𝑓𝑐2
𝐼3
𝑐𝑢1,𝑡𝑡 −

4

𝑓𝑐
3 𝐼5

𝑐𝑢2,𝑡𝑡 −
2

𝑓𝑐2
𝐼4
𝑐𝑢2,𝑡𝑡 −

4

𝑓𝑐
3 𝐼6

𝑐𝑢3,𝑡𝑡

−
2

𝑓𝑐
2
𝐼5
𝑐𝑢3,𝑡𝑡 = 0 

(A-1) 

𝑁𝑦𝑦,𝑦
𝑡 + 𝑁𝑥𝑦,𝑥

𝑡 +
2

𝑓𝑐2
𝑀2𝑦𝑦,𝑦
𝑐 +

2

𝑓𝑐2
𝑀2𝑥𝑦,𝑥
𝑐 +

4

𝑓𝑐2
𝑀𝑄1𝑦𝑧
𝑐 +

4

𝑓𝑐
3𝑀3𝑦𝑦,𝑦

𝑐 +
4

𝑓𝑐
3𝑀3𝑥𝑦,𝑥

𝑐

+
12

𝑓𝑐
3𝑀𝑄2𝑦𝑧

𝑐 − 𝐼0
𝑡𝑣0,𝑡𝑡

𝑡 − 𝐼1
𝑡𝜓𝑦,𝑡𝑡

𝑡 −
4

𝑓𝑐
3 𝐼3

𝑐𝑣0,𝑡𝑡 −
2

𝑓𝑐2
𝐼2
𝑐𝑣0,𝑡𝑡

−
4

𝑓𝑐
3 𝐼4

𝑐𝑣1,𝑡𝑡 −
2

𝑓𝑐2
𝐼3
𝑐𝑣1,𝑡𝑡 −

4

𝑓𝑐
3 𝐼5

𝑐𝑣2,𝑡𝑡 −
2

𝑓𝑐2
𝐼4
𝑐𝑣2,𝑡𝑡 −

4

𝑓𝑐
3 𝐼6

𝑐𝑣3,𝑡𝑡

−
2

𝑓𝑐2
𝐼5
𝑐𝑣3,𝑡𝑡 = 0 

(A-2) 

𝑄𝑥𝑧,𝑥
𝑡 + 𝑄𝑦𝑧,𝑦

𝑡 +
1

𝑓𝑐
𝑀𝑄1𝑦𝑧,𝑦
𝑐 +

1

𝑓𝑐
𝑀𝑄1𝑥𝑧,𝑥
𝑐 +

1

𝑓𝑐
𝑅𝑍
𝑐 +

2

𝑓𝑐2
𝑀𝑄2𝑦𝑧,𝑦
𝑐 +

2

𝑓𝑐2
𝑀𝑄2𝑥𝑧,𝑥
𝑐

+
4

𝑓𝑐2
𝑀𝑧
𝑐 − 𝐼0

𝑡𝑤0,𝑡𝑡
𝑡 −

1

𝑓𝑐
𝐼1
𝑐𝑤0,𝑡𝑡 −

2

𝑓𝑐2
𝐼2
𝑐𝑤0,𝑡𝑡 −

1

𝑓𝑐
𝐼2
𝑐𝑤1,𝑡𝑡

−
2

𝑓𝑐2
𝐼3
𝑐𝑤1,𝑡𝑡 −

1

𝑓𝑐
𝐼3
𝑐𝑤2,𝑡𝑡 −

2

𝑓𝑐2
𝐼4
𝑐𝑤2,𝑡𝑡 +

1

2
𝜌𝑓(Φ̇𝐵 + Φ̇𝑆) = 0 

(A-3) 

𝑀𝑥𝑥,𝑥
𝑡 +𝑀𝑥𝑦,𝑦

𝑡 + 𝑄𝑥𝑧
𝑡 −

𝑓𝑡
𝑓𝑐2
𝑀2𝑥𝑥,𝑥
𝑐 −

𝑓𝑡
𝑓𝑐2
𝑀2𝑥𝑦,𝑦
𝑐 − 2

𝑓𝑡
𝑓𝑐2
𝑀𝑄1𝑥𝑧
𝑐 − 2

𝑓𝑡

𝑓𝑐
3𝑀3𝑥𝑥,𝑥

𝑐

− 2
𝑓𝑡

𝑓𝑐
3𝑀3𝑥𝑦,𝑦

𝑐 − 6
𝑓𝑡

𝑓𝑐
3𝑀𝑄2𝑥𝑧

𝑐 − 𝐼1
𝑡𝑢0,𝑡𝑡
𝑡 − 𝐼2

𝑡𝜓𝑥,𝑡𝑡
𝑡 + 2

𝑓𝑡

𝑓𝑐
3 𝐼3

𝑐𝑢0,𝑡𝑡

+
𝑓𝑡
𝑓𝑐2
𝐼2
𝑐𝑢0,𝑡𝑡 + 2

𝑓𝑡

𝑓𝑐
3 𝐼4

𝑐𝑢1,𝑡𝑡 +
𝑓𝑡
𝑓𝑐2
𝐼3
𝑐𝑢1,𝑡𝑡 + 2

𝑓𝑡

𝑓𝑐
3 𝐼5

𝑐𝑢2,𝑡𝑡 +
𝑓𝑡
𝑓𝑐2
𝐼4
𝑐𝑢2,𝑡𝑡

+ 2
𝑓𝑡

𝑓𝑐
3 𝐼6

𝑐𝑢3,𝑡𝑡 +
𝑓𝑡
𝑓𝑐2
𝐼5
𝑐𝑢3,𝑡𝑡 = 0 

(A-4) 

𝑀𝑦𝑦,𝑦
𝑡 +𝑀𝑥𝑦,𝑥

𝑡 + 𝑄𝑦𝑧
𝑡 −

𝑓𝑡
𝑓𝑐2
𝑀2𝑦𝑦,𝑦
𝑐 −

𝑓𝑡
𝑓𝑐2
𝑀2𝑥𝑦,𝑥
𝑐 − 2

𝑓𝑡
𝑓𝑐2
𝑀𝑄1𝑦𝑧
𝑐 − 2

𝑓𝑡

𝑓𝑐
3𝑀3𝑦𝑦,𝑦

𝑐

− 2
𝑓𝑡

𝑓𝑐
3𝑀3𝑥𝑦,𝑥

𝑐 − 6
𝑓𝑡

𝑓𝑐
3𝑀𝑄2𝑦𝑧

𝑐 − 𝐼1
𝑡𝑣0,𝑡𝑡
𝑡 − 𝐼2

𝑡𝜓𝑦,𝑡𝑡
𝑡 + 2

𝑓𝑡

𝑓𝑐
3 𝐼3

𝑐𝑣0,𝑡𝑡

+
𝑓𝑡
𝑓𝑐2
𝐼2
𝑐𝑣0,𝑡𝑡 + 2

𝑓𝑡

𝑓𝑐
3 𝐼4

𝑐𝑣1,𝑡𝑡 +
𝑓𝑡
𝑓𝑐2
𝐼3
𝑐𝑣1,𝑡𝑡 + 2

𝑓𝑡

𝑓𝑐
3 𝐼5

𝑐𝑣2,𝑡𝑡 +
𝑓𝑡
𝑓𝑐2
𝐼4
𝑐𝑣2,𝑡𝑡

+ 2
𝑓𝑡

𝑓𝑐
3 𝐼6

𝑐𝑣3,𝑡𝑡 +
𝑓𝑡
𝑓𝑐2
𝐼5
𝑐𝑣3,𝑡𝑡 = 0 

(A-5) 
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For the core: 

𝑁𝑥𝑥,𝑥
𝑐 + 𝑁𝑥𝑦,𝑦

𝑐 −
4

𝑓𝑐2
𝑀2𝑥𝑥,𝑥
𝑐 −

4

𝑓𝑐2
𝑀2𝑥𝑦,𝑦
𝑐 −

8

𝑓𝑐2
𝑀𝑄1𝑥𝑧
𝑐 − 𝐼0

𝑐𝑢0,𝑡𝑡 +
4

𝑓𝑐2
𝐼2
𝑐𝑢0,𝑡𝑡

− 𝐼1
𝑐𝑢1,𝑡𝑡 +

4

𝑓𝑐2
𝐼3
𝑐𝑢1,𝑡𝑡 − 𝐼2

𝑐𝑢2,𝑡𝑡 +
4

𝑓𝑐2
𝐼4
𝑐𝑢2,𝑡𝑡 − 𝐼3

𝑐𝑢3,𝑡𝑡 +
4

𝑓𝑐2
𝐼5
𝑐𝑢3,𝑡𝑡

= 0 

(A-6) 

𝑁𝑦𝑦,𝑦
𝑐 + 𝑁𝑥𝑦,𝑥

𝑐 −
4

𝑓𝑐2
𝑀2𝑦𝑦,𝑦
𝑐 −

4

𝑓𝑐2
𝑀2𝑥𝑦,𝑥
𝑐 −

8

𝑓𝑐2
𝑀𝑄1𝑦𝑧
𝑐 − 𝐼0

𝑐𝑣0,𝑡𝑡 +
4

𝑓𝑐2
𝐼2
𝑐𝑣0,𝑡𝑡

− 𝐼1
𝑐𝑣1,𝑡𝑡 +

4

𝑓𝑐2
𝐼3
𝑐𝑣1,𝑡𝑡 − 𝐼2

𝑐𝑣2,𝑡𝑡 +
4

𝑓𝑐2
𝐼4
𝑐𝑣2,𝑡𝑡 − 𝐼3

𝑐𝑣3,𝑡𝑡 +
4

𝑓𝑐2
𝐼5
𝑐𝑣3,𝑡𝑡

= 0 

(A-7) 

𝑄𝑦𝑧,𝑦
𝑐 + 𝑄𝑥𝑧,𝑥

𝑐 −
4

𝑓𝑐2
𝑀𝑄2𝑦𝑧,𝑦
𝑐 −

4

𝑓𝑐2
𝑀𝑄2𝑥𝑧,𝑥
𝑐 −

8

𝑓𝑐2
𝑀𝑧
𝑐 − 𝐼0

𝑐𝑤0,𝑡𝑡 +
4

𝑓𝑐2
𝐼2
𝑐𝑤0,𝑡𝑡

− 𝐼1
𝑐𝑤1,𝑡𝑡 +

4

𝑓𝑐2
𝐼3
𝑐𝑤1,𝑡𝑡 − 𝐼2

𝑐𝑤2,𝑡𝑡 +
4

𝑓𝑐2
𝐼4
𝑐𝑤2,𝑡𝑡 = 0 

(A-8) 

𝑀𝑦𝑦.𝑦
𝑐 +𝑀𝑥𝑦.𝑥

𝑐 + 𝑄𝑦𝑧
𝑐 −

4

𝑓𝑐2
𝑀3𝑦𝑦,𝑦
𝑐 −

4

𝑓𝑐2
𝑀3𝑥𝑦,𝑥
𝑐 −

12

𝑓𝑐2
𝑀𝑄2𝑦𝑧
𝑐 − 𝐼1

𝑐𝑣0,𝑡𝑡

+
4

𝑓𝑐2
𝐼3
𝑐𝑣0,𝑡𝑡 − 𝐼2

𝑐𝑣1,𝑡𝑡 +
4

𝑓𝑐2
𝐼4
𝑐𝑣1,𝑡𝑡 − 𝐼3

𝑐𝑣2,𝑡𝑡 +
4

𝑓𝑐2
𝐼5
𝑐𝑣2,𝑡𝑡 − 𝐼4

𝑐𝑣3,𝑡𝑡

+
4

𝑓𝑐2
𝐼6
𝑐𝑣3,𝑡𝑡 = 0 

(A-9) 

𝑀𝑥𝑥,𝑥
𝑐 +𝑀𝑥𝑦,𝑦

𝑐 + 𝑄𝑥𝑧
𝑐 −

4

𝑓𝑐2
𝑀3𝑥𝑥,𝑥
𝑐 −

4

𝑓𝑐2
𝑀3𝑥𝑦,𝑦
𝑐 −

12

𝑓𝑐2
𝑀𝑄2𝑥𝑧
𝑐 − 𝐼1

𝑐𝑢0,𝑡𝑡 +
4

𝑓𝑐2
𝐼3
𝑐𝑢0,𝑡𝑡

− 𝐼2
𝑐𝑢1,𝑡𝑡 +

4

𝑓𝑐2
𝐼4
𝑐𝑢1,𝑡𝑡 − 𝐼3

𝑐𝑢2,𝑡𝑡 +
4

𝑓𝑐2
𝐼5
𝑐𝑢2,𝑡𝑡 − 𝐼4

𝑐𝑢3,𝑡𝑡 +
4

𝑓𝑐2
𝐼6
𝑐𝑢3,𝑡𝑡

= 0 

(A-10) 

 

For bottom face sheet: 

𝑁𝑥𝑥,𝑥
𝑏 + 𝑁𝑥𝑦,𝑦

𝑏 +
2

𝑓𝑐2
𝑀2𝑥𝑥,𝑥
𝑐 +

2

𝑓𝑐2
𝑀2𝑥𝑦,𝑦
𝑐 +

4

𝑓𝑐2
𝑀𝑄1𝑥𝑧
𝑐 −

4

𝑓𝑐
3𝑀3𝑥𝑥,𝑥

𝑐 −
4

𝑓𝑐
3𝑀3𝑥𝑦,𝑦

𝑐

−
12

𝑓𝑐
3𝑀𝑄2𝑥𝑧

𝑐 − 𝐼0
𝑏𝑢0,𝑡𝑡

𝑏 − 𝐼1
𝑏𝜓𝑥,𝑡𝑡

𝑏 +
4

𝑓𝑐
3 𝐼3

𝑐𝑢0,𝑡𝑡 −
2

𝑓𝑐2
𝐼2
𝑐𝑢0,𝑡𝑡

+
4

𝑓𝑐
3 𝐼4

𝑐𝑢1,𝑡𝑡 −
2

𝑓𝑐2
𝐼3
𝑐𝑢1,𝑡𝑡 +

4

𝑓𝑐
3 𝐼5

𝑐𝑢2,𝑡𝑡 −
2

𝑓𝑐2
𝐼4
𝑐𝑢2,𝑡𝑡 +

4

𝑓𝑐
3 𝐼6

𝑐𝑢3,𝑡𝑡

−
2

𝑓𝑐2
𝐼5
𝑐𝑢3,𝑡𝑡 = 0 

(A-11) 
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𝑁𝑦𝑦,𝑦
𝑏 + 𝑁𝑥𝑦,𝑥

𝑏 +
2

𝑓𝑐2
𝑀2𝑦𝑦,𝑦
𝑐 +

2

𝑓𝑐2
𝑀2𝑥𝑦,𝑥
𝑐 +

4

𝑓𝑐2
𝑀𝑄1𝑦𝑧
𝑐 +

4

𝑓𝑐
3𝑀3𝑦𝑦,𝑦

𝑐 −
4

𝑓𝑐
3𝑀3𝑥𝑦,𝑥

𝑐

−
12

𝑓𝑐
3𝑀𝑄2𝑦𝑧

𝑐 − 𝐼0
𝑏𝑣0,𝑡𝑡

𝑏 − 𝐼1
𝑏𝜓𝑦,𝑡𝑡

𝑏 +
4

𝑓𝑐
3 𝐼3

𝑐𝑣0,𝑡𝑡 −
2

𝑓𝑐2
𝐼2
𝑐𝑣0,𝑡𝑡

+
4

𝑓𝑐
3 𝐼4

𝑐𝑣1,𝑡𝑡 −
2

𝑓𝑐2
𝐼3
𝑐𝑣1,𝑡𝑡 +

4

𝑓𝑐
3 𝐼5

𝑐𝑣2,𝑡𝑡 −
2

𝑓𝑐2
𝐼4
𝑐𝑣2,𝑡𝑡 +

4

𝑓𝑐
3 𝐼6

𝑐𝑣3,𝑡𝑡

−
2

𝑓𝑐2
𝐼5
𝑐𝑣3,𝑡𝑡 = 0 

(A-12) 

𝑄𝑥𝑧,𝑥
𝑏 + 𝑄𝑦𝑧,𝑦

𝑏 −
1

𝑓𝑐
𝑀𝑄1𝑦𝑧,𝑦
𝑐 −

1

𝑓𝑐
𝑀𝑄1𝑥𝑧,𝑥
𝑐 −

1

𝑓𝑐
𝑅𝑍
𝑐 +

2

𝑓𝑐2
𝑀𝑄2𝑦𝑧,𝑦
𝑐 +

2

𝑓𝑐2
𝑀𝑄2𝑥𝑧,𝑥
𝑐

+
4

𝑓𝑐2
𝑀𝑧
𝑐 − 𝐼0

𝑏𝑤0,𝑡𝑡
𝑏 +

1

𝑓𝑐
𝐼1
𝑐𝑤0,𝑡𝑡 −

2

𝑓𝑐2
𝐼2
𝑐𝑤0,𝑡𝑡 +

1

𝑓𝑐
𝐼2
𝑐𝑤1,𝑡𝑡

−
2

𝑓𝑐2
𝐼3
𝑐𝑤1,𝑡𝑡 +

1

𝑓𝑐
𝐼3
𝑐𝑤2,𝑡𝑡 −

2

𝑓𝑐2
𝐼4
𝑐𝑤2,𝑡𝑡 = 0 

(A-13) 

𝑀𝑥𝑥,𝑥
𝑏 +𝑀𝑥𝑦,𝑦

𝑏 + 𝑄𝑥𝑧
𝑏 +

𝑓𝑏
𝑓𝑐2
𝑀2𝑥𝑥,𝑥
𝑐 +

𝑓𝑏
𝑓𝑐2
𝑀2𝑥𝑦,𝑦
𝑐 + 2

𝑓𝑏
𝑓𝑐2
𝑀𝑄1𝑥𝑧
𝑐 − 2

𝑓𝑏

𝑓𝑐
3𝑀3𝑥𝑥,𝑥

𝑐

− 2
𝑓𝑏

𝑓𝑐
3𝑀3𝑥𝑦,𝑦

𝑐 − 6
𝑓𝑏

𝑓𝑐
3𝑀𝑄2𝑥𝑧

𝑐 − 𝐼1
𝑏𝑢0,𝑡𝑡

𝑏 − 𝐼2
𝑏𝜓𝑥,𝑡𝑡

𝑏 + 2
𝑓𝑏

𝑓𝑐
3 𝐼3

𝑐𝑢0,𝑡𝑡

−
𝑓𝑏
𝑓𝑐2
𝐼2
𝑐𝑢0,𝑡𝑡 + 2

𝑓𝑏

𝑓𝑐
3 𝐼4

𝑐𝑢1,𝑡𝑡 −
𝑓𝑏
𝑓𝑐2
𝐼3
𝑐𝑢1,𝑡𝑡 + 2

𝑓𝑏

𝑓𝑐
3 𝐼5

𝑐𝑢2,𝑡𝑡 −
𝑓𝑏
𝑓𝑐2
𝐼4
𝑐𝑢2,𝑡𝑡

+ 2
𝑓𝑏

𝑓𝑐
3 𝐼6

𝑐𝑢3,𝑡𝑡 −
𝑓𝑏
𝑓𝑐2
𝐼5
𝑐𝑢3,𝑡𝑡 = 0 

(A-14) 

𝑀𝑦𝑦,𝑦
𝑏 +𝑀𝑥𝑦,𝑥

𝑏 + 𝑄𝑦𝑧
𝑏 +

𝑓𝑏
𝑓𝑐2
𝑀2𝑦𝑦,𝑦
𝑐 +

𝑓𝑏
𝑓𝑐2
𝑀2𝑥𝑦,𝑥
𝑐 + 2

𝑓𝑏
𝑓𝑐2
𝑀𝑄1𝑦𝑧
𝑐 − 2

𝑓𝑏

𝑓𝑐
3𝑀3𝑦𝑦,𝑦

𝑐

− 2
𝑓𝑏

𝑓𝑐
3𝑀3𝑥𝑦,𝑥

𝑐 − 6
𝑓𝑣

𝑓𝑐
3𝑀𝑄2𝑦𝑧

𝑐 − 𝐼1
𝑡𝑣0,𝑡𝑡
𝑡 − 𝐼2

𝑡𝜓𝑦.𝑡𝑡
𝑡 + 2

𝑓𝑏

𝑓𝑐
3 𝐼3

𝑐𝑣0,𝑡𝑡

−
𝑓𝑏
𝑓𝑐2
𝐼2
𝑐𝑣0,𝑡𝑡 + 2

𝑓𝑏

𝑓𝑐
3 𝐼4

𝑐𝑣1,𝑡𝑡 −
𝑓𝑏
𝑓𝑐2
𝐼3
𝑐𝑣1,𝑡𝑡 + 2

𝑓𝑏

𝑓𝑐
3 𝐼5

𝑐𝑣2,𝑡𝑡 −
𝑓𝑏
𝑓𝑐2
𝐼4
𝑐𝑣2,𝑡𝑡

+ 2
𝑓𝑏

𝑓𝑐
3 𝐼6

𝑐𝑣3,𝑡𝑡 −
𝑓𝑏
𝑓𝑐2
𝐼5
𝑐𝑣3,𝑡𝑡 = 0 

(A-15) 

Furthermore, the corresponding boundary conditions are given as follows: 

At 𝑥 = 0 and 𝑥 = 𝑎: 

𝑁𝑥𝑥
𝑖 = 0  𝑜𝑟  𝑢0

𝑖 = 0  ;  𝑀𝑥𝑥
𝑖 = 0  𝑜𝑟  𝜓𝑥

𝑖 = 0  ;   𝑁𝑥𝑦
𝑖 = 0  𝑜𝑟  𝑣0

𝑖 = 0 

𝑀𝑥𝑦
𝑖 = 0  𝑜𝑟  𝜓𝑦

𝑖 = 0  ;   𝑄𝑥𝑧
𝑖 = 0  𝑜𝑟  𝑤0

𝑖 = 0  ;   𝑀𝑄1𝑥𝑧
𝑖 = 0  𝑜𝑟  𝑤1 = 0 

𝑀𝑥𝑧
𝑖 = 0  𝑜𝑟  𝑤2 = 0  ;   𝑄𝑥𝑧

𝑐 = 0  𝑜𝑟  𝑤0 = 0  ;   𝑁𝑥𝑥
𝑐 = 0  𝑜𝑟  𝑢0 = 0 

𝑀𝑥𝑥
𝑐 = 0  𝑜𝑟  𝑢1 = 0  ;  𝑀2𝑥𝑥

𝑐 = 0  𝑜𝑟  𝑢2 = 0  ;  𝑀3𝑥𝑥
𝑐 = 0  𝑜𝑟  𝑢3 = 0 

𝑁𝑥𝑦
𝑐 = 0  𝑜𝑟  𝑣0 = 0  ;  𝑀𝑥𝑦

𝑐 = 0  𝑜𝑟  𝑣1 = 0  ;   𝑀2𝑥𝑦
𝑐 = 0  𝑜𝑟  𝑣2 = 0 

𝑀3𝑥𝑦
𝑐 = 0  𝑜𝑟  𝑣3 = 0 

 

 

(B) 
 

At 𝑦 = 0 and 𝑦 = 𝑎: 

𝑁𝑦𝑦
𝑖 = 0  𝑜𝑟  𝑣0

𝑖 = 0  ;  𝑀𝑦𝑦
𝑖 = 0  𝑜𝑟  𝜓𝑦

𝑖 = 0  ;   𝑁𝑥𝑦
𝑖 = 0  𝑜𝑟  𝑢0

𝑖 = 0  ; 

𝑀𝑥𝑦
𝑖 = 0  𝑜𝑟  𝜓𝑦

𝑖 = 0  ;   𝑄𝑦𝑧
𝑖 = 0  𝑜𝑟  𝑤0

𝑖 = 0  ;   𝑀𝑄1𝑦𝑧
𝑐 = 0  𝑜𝑟  𝑤1 = 0  ; 

𝑀𝑄2𝑦𝑧
𝑐 = 0  𝑜𝑟  𝑤2 = 0  ;   𝑄𝑦𝑧

𝑐 = 0  𝑜𝑟  𝑤0 = 0  ;  𝑁𝑥𝑦
𝑐 = 0  𝑜𝑟  𝑢0 = 0  ; 

(C) 
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𝑀𝑥𝑦
𝑐 = 0  𝑜𝑟  𝑢1 = 0  ;  𝑀2𝑥𝑦

𝑐 = 0  𝑜𝑟  𝑢2 = 0  ;   𝑀3𝑥𝑦
𝑐 = 0  𝑜𝑟  𝑢3 = 0  ; 

𝑁𝑦𝑦
𝑐 = 0  𝑜𝑟  𝑣0 = 0  ;  𝑀𝑦𝑦

𝑐 = 0  𝑜𝑟  𝑣1 = 0  ;   𝑀2𝑦𝑦
𝑐 = 0  𝑜𝑟  𝑣2 = 0  ; 

𝑀3𝑦𝑦
𝑐 = 0  𝑜𝑟  𝑣3 = 0  ; 

 

 

Appendix B 

Generally, the basic functions (𝜆𝑖
𝑘(𝑘 = 𝑤𝑡, 𝑤𝑏 , 𝑤𝑐, … , 𝑢1

𝑐)) can be considered as follows: 

a) 

𝜆1
𝑤𝑙 = 𝑥𝛾𝑦𝛾(𝑥 − 𝑎)𝛾(𝑦 − 𝑏)𝛾 (D-1) 

in which  𝑙 = 𝑡, 𝑏, 𝑐 and: 

𝛾 =

{
 
 

 
 

0                         if edge is free

1    if edge is simply − suppoted

2                  if edge is clamped

 

 

b) 

𝜆1
𝑢𝑙 = 𝑥𝛽𝑦𝛽(𝑥 − 𝑎)𝛽(𝑦 − 𝑏)𝛽 (D-2) 

and: 

𝜆1
𝑢𝑙 = 𝜆1

𝑥𝑘 = 𝜆1
𝑢1

𝑐

 (D-3) 

 

where 𝑙 = 𝑡, 𝑏, 𝑐,   𝑘 = 𝑡, 𝑏 and: 

𝛽 = {

0            if edge is free or simply − suported in 𝑦 − direction

1   if edge is simply − suported in 𝑥 − direction  or clamped
 

 

c) 

𝜆1
𝑣𝑙 = 𝑥𝜉𝑦𝜉(𝑥 − 𝑎)𝜉(𝑦 − 𝑏)𝜉  (D-4) 

and: 

𝜆1
𝑣𝑙 = 𝜆1

𝑦𝑘
= 𝜆1

𝑣1
𝑐

 (D-5) 

where 𝑙 = 𝑡, 𝑏, 𝑐,   𝑘 = 𝑡, 𝑏 and: 

𝜉 = {

0            if edge is free or simply − suported in 𝑥 − direction

1   if edge is simply − suported in 𝑦 − direction  or clamped
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