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Abstract 

Probabilistic models for the concentrated leak erosion of earthen water retaining structures are 

presented. The models predict the values of the critical shear stress, the coefficient of erosion 

and the pipe radius enlargement, starting from other measurable soil properties and the 

geometrical dimensions of the embankment. The models account for both the non-cohesive 

and cohesive contributions to the erosion behavior. A Bayesian approach is used for the 

treatment of the unknown parameters. An importance sampling simulation is adopted to 

calibrate the models and estimate the posterior distribution of the unknown model parameters 

using laboratory and in situ experimental data. The new proposed probabilistic model for the 

pipe radius is then used to develop fragility curves that capture the pipe enlargement as a 

function of time for a given earth dam. 
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1. Introduction 

The uncertainties tied to the internal erosion failure of the embankments are still the subject of 

current study and research activities, since earth dams and levees are widespread throughout 

the world and have been used since ancient times [1]. Still today, internal erosion phenomena 

are one of the most common causes of breach mechanism in earth dams [2]; they are ruled by 

the propensity of the embankment soil to be eroded. 

The erodibility of a soil is commonly evaluated considering two main parameters [3]: 

the critical shear stress c  and the coefficient of erosion eC . The critical shear stress is defined 

as the tangential stress threshold at which we have the initiation of the erosion mechanism. The 

coefficient of erosion is a constant that expresses the intensity of the erosion rate. 

Jet Erosion Test (JET) [4–6] and Hole Erosion Test (HET) [7–10] are among the most 

recent experimental test procedures for determination of critical shear stress and the coefficient 

of erosion, which has proved to be a successful test for a number of soils. However, these tests 

can be time-consuming and difficult to perform compared to most common geotechnical 

investigations. Wan and Fell [8] presented regression models to predict eC  based on physical 

and geotechnical variables for soils showing non-cohesive or cohesive behavior. Andreini et 

al. [11] presented probabilistic models for the two soil erosion parameters accounting for both 

non-cohesive and cohesive contributions to the erosion behavior, where the unknown 

parameters were calibrated using HET laboratory data [7,12,13]. Andreini et al. [11] proposed 

also fragility curves indicating the conditional probability of erosion initiation, without 

addressing the evolution of the pipe enlargement in an embankment. Such an evolution requires 

the definition of a proper analytical formulation of the hole radius increase versus time [10]. 

For that purpose, a model for pipe flow with erosion analysis was developed in the last decades 

[15,17-19] on the basis of the equations of two-phase flow with erosion. 
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This paper revisits the probabilistic models for the critical shear stress c  and the 

coefficient of erosion eC  proposed by Andreini et al. [11]. Specifically, a Bayesian updating 

of the unknown model parameters is performed through additional in situ JET results. The 

posterior statistics of the parameters are determined by a Monte Carlo simulation [17], 

implementing the procedure presented by Gardoni et al. [18–20] in the parallel computation 

algorithm proposed by Andreini et al. [11] to reduce the calculation time. The updated models 

of the erosion parameters are then used in the formulation of nested probabilistic models of the 

pipe radius evolution in an embankment, as shown in the scheme in Figure 1. The unknown 

parameters of such a model are firstly calibrated using the in situ data from an experimental 

test, carried out on a scaled physical model of a dam [21]. The parameters for all models are 

subsequently updated/calibrated on the basis of all the available experimental data. 

The safety of earth dams toward internal erosion phenomena is commonly estimated by 

inspecting the factors that can lead to the initiation of an erosion process, checking the 

effectiveness of the eventual filters, and assessing whether some detection and repair 

interventions could be executed. The probability of failure is commonly assessed by means of 

event tree methods [22], where conditional probability of each event can be estimated by 

mathematical models, experiments, or expert judgment. The proposed probabilistic models are 

used to determine the conditional probability (or fragility) of not exceeding a certain value of 

the pipe radius in a specified time from the initiation of the concentrated leak erosion 

mechanism. This is needed to calculate the probability of no detection, intervention and repair. 

First, this paper presents the general formulation of the probabilistic models and the 

procedure used to for the Bayesian estimation of the unknown parameters. Then, the results of 

the model calibration and the posterior statistics of the unknown model parameters are 

presented and discussed. Finally, the paper presents the estimated conditional probability of no 

detection, intervention and repair for a typical earth dam. 
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2. Development of probabilistic models 

2.1 General formulation 

The probabilistic models presented herein are valid under the assumption that their standard 

deviation σ is independent of the physical variables (homoskedasticity assumption) and the 

model error follows the normal distribution (normality assumption). Under these assumptions, 

a generic univariate model C of a quantity of interest (or a transformation of the quantity of 

interest) can be expressed in the following general form [18–20]: 

   , , ,C c   x Θ x θ ,  (1) 

where x represents the physical variables,  , , Θ θ  denotes the set of unknown parameters 

(where θ is the set of model parameters used to best fit the data and λ is the parameter that 

controls the family of transformations used to satisfy the homoskedasticity and normality 

assumptions.), and   is the model error (where εis a normal random variable with zero mean 

and unit variance and σ is the standard deviation of the model error). In this paper, we use the 

family of dual power transformations proposed by Yang [23] as follows 
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2.2 Bayesian updating 

In the Bayesian approach [17,24], the unknown model parameters are estimated through the 

following updating rule 

     p L pΘ y Θ y Θ ,  (4) 
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where ( | )p Θ y  is the posterior distribution that reflects the updated state of information about 

the vector of unknown parameters Θ, ( | )L Θ y  is the likelihood function that captures the 

information from the data vector of n observations  1 2, ,..., ny y yy , p(Θ) is the prior 

distribution that represents the information available before collecting the data, and 

   
1

L p d


    Θ y Θ Θ  is a normalizing factor. In addition, the updating rule in Eq. (4) can 

be used to continuously update the current knowledge every time new data become available. 

For example, if an initial sample of observations 1y  is originally available, a first application 

of the updating rule gives 

     1 1 1p L pΘ y Θ y Θ ,  (5) 

where 1  is the normalizing factor for the first updating. If a second sample of observations 

2y , distributed independently from the first one, becomes available, 1( | )p Θ y  can be updated 

to account for the new information obtaining  
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in which 2  is the normalizing factor for the second updating. 

Eq. (6) is of the same form as Eq. (5) (i.e., the posterior distribution of Θ given 1y  works as 

the prior distribution for the second sample). Such updating process can be carried out any 

number of times, obtaining the following general form for qn  sets of samples 
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where    
1

1

q

q

n

n q
q

L p d




      
   
 Θ y Θ Θ  is the normalizing factor associated to the nq−th 

updating. 

Computation of these posterior statistics can be challenging, especially when large numbers of 

parameters are to be determined. Andreini et al. [11] proposed an algorithm using importance 

sampling, which may be used in parallel computing to reduce the analysis time. The analyses 

performed and presented in this paper are executed using this algorithm and it was detected 

that the time to satisfy the termination criterion was proportionally decreasing with the number 

of processing elements used. 

3. Probabilistic models adopted for the critical shear stress and the 

coefficient of erosion 

The adaptation of the probabilistic models proposed by Andreini et al. [11] to the case of 

multiple Bayesian updating is shown herein. The selected deterministic models for cohesive 

and non-cohesive soils of the erosion parameters and the behavior combination formula are 

described. The probabilistic model formulation and the model corrective terms are presented. 

The description of the likelihood function and the adopted prior distribution for the unknown 

parameters are finally given. 

3.1. Cohesive and Non-cohesive behavior combination formula 

Referring to van Ledden [25] and van Rijn [26] who investigated the erosion phenomena in 

coastal engineering, embankment soils can be treated as a mixture of sand/gravels and mud, 

determinable as those components having an average diameter respectively higher and lower 

than 63 μm. 

Rearranging the combination formula proposed by van Ledden [25], Andreini et al. [11] 

found that the generic erosion parameter   (i.e. c  for the critical shear stress and eC   
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for the coefficient of erosion) for sand and mud mixtures can be expressed as a combination of 

those related to each component k  (i.e. k s  for pure sand and k m  for pure mud). Such a 

combination can assume the form 

   ,
,

c k c k
k s m

f w f  


  ,  (8) 

and therefore 

 1
,

,
c k c k

k s m

f w f  



 
   

 
 ,  (9) 

where ( )cf   is a transformation of the generic erosion parameter, 1( )cf
   is its inverse, ,kw  are 

the weight functions, and   is a corrective term. 

Following Gardoni et al. [18,19], Andreini et al. [11] revisited the combination formula 

of Van Ledden [25] in a global expression containing two nested probabilistic models having 

a global set of unknown parameters , ,( , , )    k wΘ θ θ , in which ,kθ  are those of the pure 

sand and pure mud models, ,wθ  are those of the weight functions and   is the standard 

deviation of the model error. The form of such a general expression is 

    1 1, , ,                k w c cC f fx x Θ W F F C , (10) 

where C  is the vector of the probabilistic models , , ,( , , )k k k kC C    x θ  related to pure sand 

and pure mud behaviour , , , , ,( , , ) [ ( , , ), ( , , )]k k s s s m m mC C         C C x θ x θ x θ , while W  is 

the vector of the weight functions , , ,( , )k k w ww w   x θ , that is 

, , , , ,( , ) [ ( , ), ( , )]w w s w w m w ww w       W W x θ x θ x θ , and ,( , )     w wx θ  is a corrective 

function. The two terms ( )c F  and ( ) F  in Eq. (10) are the vector-valued functions that 

respectively apply the scalar functions ( )cf   and ( )f   to each vector component. In the 
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mentioned expressions, kx  are the variables for the sand and the mud components, while wx  

are those for the weight functions. 

The model of both sand/gravels and mud components can be expressed as the sum of 

two contributions 

     , , , ,ˆ, , , , ,       k k k k k k k kC cx θ x x θ ,  (11) 

where, the deterministic model terms for both sand and mud component 

*
,

ˆˆ ( , ) ( ( ))k k k kc f  x x , are obtained by respectively applying the Yang transformation in Eq. 

(2) to the dimensionless expressions *ˆ ( )k k x  of sand and mud components of the critical shear 

stress *
,ˆ ( )c k k x  and the coefficient of erosion  *ˆ

e,k kC x . In Eq. (11), , ,( , , )k k k  x θ  are the 

correction terms for the deterministic models of sand and mud components. 

The weight functions and the corrective terms are defined in Table 1 as piecewise functions of 

the mud content percentage mP , whose critical value ,m crP  represents the threshold above 

which the non-cohesive behavior of the mixture becomes cohesive. In this case, w mPx  and 

the set of unknown parameters for the weights ,wθ  concerns two terms: , ,1 ,w m crP   and an 

empirical exponent , ,2w . 

3.2 Deterministic models 

3.2.1 Non-cohesive soils/sand component 

For the deterministic model of the critical shear stress we use the Meyer-Peter & Müller 

empirical formula [27] 

   
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g d
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where 1 6
,9026r sk d  , 1 6

,5021s sk d  , in which ,50sd  and ,90sd  are respectively the diameters 

corresponding to the 50% and 90% of the only sand and gravel component (grains with a 

diameter higher than 75 μm). 

Dividing the Eq. (12) by the quantity /( )d w c sg d  , where /  5c sd m  is the 

diameter which represents the transition between silt and clay in the fine part of the soils 

considered, we obtain the following expression of the dimensionless deterministic model of 

the critical shear stress 

 
5
,50*

4,
/ ,90

0.065
ˆ s
c s s

c s s

d

d d
 x .  (13) 

where the (*) identifies the dimensionless quantity. For the coefficient of erosion, we refer to 

van Rijn [26], which indicates the following formulation for non-cohesive soils 

   ,50
4

0.9
, *

ˆ 0.018 s d wd
e,s s

c s w

gd
C

D

 
 


x ,  (14) 

where *D  represents the dimensionless grain size 

 
3

* ,50 2
d w

s
w

g
D d

 
 


 ,  (15) 

  the kinematic viscosity, and ,c s is the critical shear stress for pure sand for which we use 

Eq. (13) setting  , ,ˆc s c s s  x . A dimensionless form of the Eq. (14) is obtained by multiplying 

it by the quantity /c sgd , so that we have 

   *
e,s e,s /

ˆ ˆ
s s c sC C gdx x .  (16) 



10 
 

3.2.2 Cohesive soils/mud component 

For the deterministic model of the critical shear stress, we consider the formula from Smerdon 

and Beasley [28], which associates the critical shear stress to the plasticity index (PI) in the 

following way: 

   0.84

,ˆ 0.167 PIc m m Pa x .  (17) 

The plasticity index gives the range of the water content where soils exhibit plastic behavior. 

The dimensionless form of Eq. (17) is obtained as presented above for the Mayer-Peter and 

Müller formula [27] as follows  

   
 

0.84

*
,

/

0.167 PI
ˆc m m

d w c s

Pa

g d


 



x .  (18) 

For the coefficient of erosion we use the formula proposed by Hanson and Simon [29] 

 
 

7

,

2 10ˆ
/

e,m m d

c m m

C
Pa





x

x
,  (19) 

where ,c m is the critical shear stress for pure mud, for which we use the Eq. (18) putting 

 , ,ˆc m c m m  x . 

A dimensionless form, as well as seen for the sand component, is obtained as follows 

   *
, , /

ˆ ˆ
e m m e m m c sC C gdx x .  (20) 

3.3 Models’ corrections 

Following Gardoni et al. [18–20] and Andreini et al. [11], the initial correction terms 

, ,( , , )k k k  x θ  are written as the following quadratic combination: 

         , , , , , , ,
1

, , , , , ,         
 

        
k kn n

T

k k k k k k k k k ij k i k k j k
i j i

h hx θ h x θ h x x x , (21) 

in which the sets of the unknown parameters ,kθ  are represented using an upper triangular 

matrix form, and kh  is a vector of kn  explanatory functions , ( )k i kh x  obtained by applying the 
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Yang transformation expressed in Eq. (2) to a set of basis functions , ( )k i k x , that is 

, ,( ) [ ( )]k i k k i kh f x x . 

3.4 Likelihood function and definition of prior distribution  

Considering the generic q-th set of data , , ,( , , )q k q w qy x x , the expression of the l-th residual , ,q lr  

related to the transformed reading , , , ,( )q l q lC f y   , for given , , , ,,( )k q l w q lx x , assumes the 

following form [11]: 

       1 1
, , , , , , , , , , , ,, , , , ,q l k w q l c c k q l k w q l wr C f f                  θ θ W F F C x θ x θ , (22) 

that is  , , , , , ,, ,q l k w q lr      θ θ . Under the assumption of statistically independent 

observations, we obtain the general form of the likelihood function [18,19] 
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Since   has a standard normal distribution, we can write 

   
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, (24) 

where φ(·) and Φ(·) respectively represent the standard normal probability density function and 

its cumulative distribution function. 

Considering the availability of qn  different sets of data , qny , the Bayesian updating rule 

expressed in the Eq. (7) can be written as 

         ,1 , , ,1 , 1
1

, , , ,
q

q q q q q

n

n n q n n n
q
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 
Θ y y Θ y Θ Θ y Θ y y  , (25) 
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where    
1

, ,
1

q

q

n

n q
q

L p d    




      
   
 Θ y Θ Θ  is the normalizing factor associated to the nq-

th updating. 

4. Formulation of the probabilistic model for pipe enlargement 

4.1 Deterministic model based on a simplified mechanical approach 

A model for the pipe enlargement was developed on the basis of the integrated reduced Navier-

Stokes/Prandtl equations with erosion by Bonelli and Brivois [14]. The enlargement of the hole 

resulting from the erosion has been described by 

1 if

0 otherwise

p

e c b
b c

d c

C
dR

dt

   
 

  
      



,  (26) 

where R is the radius of the pipe increasing with the time t, d  is the dry density of the soil, 

b  is the shear stress exerted by the flow on the soil and p is a positive empirical exponent 

equal or lower than 1. 

We refer to the case shown in Figure 2, where the transversal section of an earth dam 

is in the condition of absence of a filter or inability to stop the continuation of the erosion 

process. Such a section is geometrically defined by the total height damH , the widths of the 

crest minb  and the base maxb , and the gradients of the upstream and downstream slopes uc  and 

dc . 

As in Bonelli et al. [10], we consider the simplified case of a straight circular pipe of 

length min( , ) ( )( )    W u d dam Wb z h c c H h z b  and current radius ( )R t , occurred at a certain 

depth z from the free surface, considering a water level wh  from the dam base. 

In this content, Bonelli et al. [10] proposed a formulation to obtain a closed form expression of 

( )R t , by means of the simplifying assumptions that constant pressure drop and both the head 
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and the momentum loss factors, α and β, are stationary during the pipe enlargement. 

Accordingly, it is possible to show that the initiation of the erosion occurs when the initial 

radius of the pipe is higher than a critical value cR  depending on the critical shear stress c  by 

means of the relation 

 
0

2 ,c W
c

w

b z h
R R

gz




  .  (27) 

Integrating the Navier/Stokes equations with erosion concerning Eq. (26), Bonelli et al. [10] 

showed that the radius increase factor 0/r R R   can be given by 

 
 

0 0

1
1 1 1

0 0 0

1   if  1

ˆ

1 1 1  if  0 1  

er

t

tc c

b b

r r p p p

c c c

b b er b

e p

t
t

p p
t

 
 

 
  
  

  

  
    

    
     
           
      

, (28) 

where 0b  and ert  are respectively the initial shear stress applied on the lateral surface of the 

pipe and the characteristic time, given by the following expressions 

 
0

0 2 ,

  w
b

W

R gz

b z h
,  (29) 

 2 ,
 

 d W
er

e w

b z h
t

C gz
.  (30) 

Since considering that both factors α and β are stationary is a strong assumption, they are treated 

together with the coefficient p as unknown parameters in the probabilistic model described in 

the following. 

4.3 Probabilistic model formulation 

The probabilistic model rC  of the radius increase factor r  can be expressed through the 

general form 

   , , , ,
r r r r rr r rC f               Θ Θ x Θ θ , (31) 
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where ( , , )   
r r rrΘ θ  is the additional set of parameters of such a model, ( , , ) 

r k w rx x x x  

represents the set of variables in which 0( , , , , )r wz R h tx , and ( , , )    
r pθ  are the 

parameters which account, as mentioned at the end of the previous section, for the uncertainties 

of the factors α, β and the exponent p. In addition, r  is a parameter used to correct for the bias 

of the approximated formulation of Bonelli et al. [10] in Eq. (28),  r
is a normal random 

variable with zero mean and unit variance and  r
 is the standard deviation of the model error 

 r  r
. 

With the formulation in Eq. (31), the radius increase factor expression 

 , ,
r rr r     x Θ θ  can be obtained by plugging the values of the following functions in Eq. 

(28): 

     1
/, , , , , ,

c c cc c k w d w c s k wg d f C              x x Θ x x Θ , (32) 

   1
/, , , , , ,

c e ee e k w C k w C c sC C f C gd       x x Θ x x Θ , (33) 

   
 

2
, , ,

, , ,e

e

d
er er C

e k w C w

b z
t t z

C gz
 

 


 

   
 Θ

x x Θ
, (34) 

   
0

0 0 0, , ,
2 ,

w
b b W

W

R gz
z h R

b z h



     .  (35) 

Considering a generic set of data ( , ) r r
y x , the expression of the l-th residual ,r lr  

related to the transformed reading  , , ,
rr l lC y   assumes the following form: 

      , , ,, , , , , ,
r r r r r r rl r r l l r rr C y f                  Θ θ x Θ θ . (36) 

Under the assumption of statistically independent observations, we obtain the general form of 

the likelihood function 

   ,
Equality Data 

, , , , , , ,
r r r r r rr l r

l

L P r                Θ θ Θ θ  (37) 
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and, since  r
responds to a standard normal distribution, we can write 

   ,

Equality Data 

, , ,1
, , r r

r

r r

l r

l

r
L

  
 

 

 
 

 

      
    


Θ θ

Θ Θ . (38) 

We have two options to determine the posterior statistics of the unknown parameters 
r

Θ : 

1. Application of the probabilistic model of the radius increase factor, considering the 

updated posterior means ˆ
c

Θ  and ˆ
eCΘ of the erosion parameters’ models as 

deterministic. 

2. Estimation of the descriptors of the joint posterior distribution of the total sets of 

parameters ( , , )  
r

Θ Θ , by means of models’ updating using a global likelihood 

function. 

Following the second option, the definition of a joint prior distribution of the parameters 

( , )
r Θ Θ  is needed. This is discussed in the section 5.3. 

5. Calibration of the probabilistic models 

5.1 Data sets used to construct the probabilistic models 

Andreini et al. [11] presented a first calibration of the formulated probabilistic models for the 

erosion parameters. They used the data set ,1y  concerning the HETs performed by Wan and 

Fell [7] on 144 samples of 13 different types of soils. In addition, 11 tests carried out by 

Benahmed and Bonelli [12] and Benahmed et al. [13] on 100% clay samples were considered. 

All these tests offered a definite value of the critical shear stress so that they are used as equality 

data for the calibration of the parameters related to  c
C . Wan and Fell [7] reported 27 cases 

where the erosion rate slowed down gradually or negligible erosion was detected. These cases 

were used in [11] as upper bound data in calibration of the coefficient of erosion model. 
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The calibration of pipe enlargement models requires data recorded on physical models 

of embankments subjected to concentrated leak erosion. In this paper, we consider the first of 

the three experiments carried out by the Hydraulic Engineering Research Unit of the U.S. 

Bureau of Reclamation [21] on large-scale models of homogeneous embankment dams. 

Concentrated leak erosion was produced by embedding a pipe with radius R0 of 20 mm in the 

embankment and pulling it out through the downstream side to begin each test. After that, the 

pipe enlargement in terms of downstream width variation versus time was monitored and 

recorded up to the failure occurred after 13 minutes for loss of ability to support a roof. For the 

sake of simplicity, we consider in the following that the pipe maintained a cylindrical shape for 

the entire duration of the experiment and, according with the images of the collapse, the 

collapse occurred corresponding to a final value of the radius equal to 3damH . Although it 

represent a strong assumption [10], such a simplification allows us to construct the data set  r
y  

by easily scaling the function shape of the pipe width readings reported by Hanson et al. [21] 

from an initial value (0) 1r   to a final one of (13min) / (3 ) 20.33r dam 0H R   . Moreover, 

since two soil samples from such a physical model were subjected to JET [30-32], we use the 

related results as new data ,2y  to update the parameters of the probabilistic models of c  and 

eC , before the calibration of those related to  r
C model. 

5.2 Erosion parameters’ models 

Defining 2
 Σ  as the variance of the erosion parameters’ model, it generally assumed its 

independence from ,kθ  and ,wθ , so that the prior distribution of the parameters Θ  is, 

therefore, , ,( ) ( , ) ( )    k wp p pΘ θ θ Σ . 

Considering a noninformative prior distribution for the parameters ,kθ , and referring 

to Box and Tiao [24], it is possible to show that it is locally uniform, thus we obtain that 
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, , ,( , ) ( )  k w wp pθ θ θ ; while, following Gardoni et al. [19], for  Σ  we adopt ( ) 1 / p Σ , 

so that the prior distribution assumes the following form, 

   ,



 wp

p
θ

Θ .  (39) 

A more extended description of the prior distribution ( )p Θ  is in [11], as well as for a first 

Bayesian updating using the first set of data ,1y , which leads to the posterior distribution 

,1( | )p  Θ y . 

5.3 Pipe enlargement 

Since each component of 
r

θ  has a range in the interval [0, 1], we assume that their prior 

distributions are Beta distributions 
,

1 1
, , ,( ) (1 ) / ( , )i i

i r r rr

q r
i i i i if B q r

      
   , in which ( , )i iB q r  

is the Beta function of the shape parameters iq  and ir . 

Considering a noninformative prior distribution for p , and referring to Box and Tiao [24], we 

take it to be locally uniform. The joint probability density function ( , )p     is obtained by 

coupling those marginals of the single parameters through the Nataf model [33], which assumes 

in this case the following form 

       
   

2 ,
,p f f

z z    
 


   

  




z R
,  (40) 

where z is the Gaussian random vector whose components z  and z  can be determined from 

the related   and   using the equalities 1[ ( )]Z F
 


   and 1[ ( )]Z F

 


  , that 

associates the marginal cumulative distribution functions ( )F

  and ( )F

  , obtained by 

numerically integrating ( )f

  and ( )f


 , and the standard normal cumulative probability  

distribution function  ( 1( )   denotes its inverse). In Eq. (40), 2( )   is the bivariate standard 
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normal probability density function whose correlation matrix R  is defined by the coefficient 

  obtained from the correlation coefficient  , between   and   as follows 

 2 , ,z z dz dz

 


     

  
  

 
  

 
 

  
       

  , (41) 

where 


 ,


 , 


  and 


   are respectively the mean and the standard deviation of the 

parameters   and  . 

Referring to the simplified approach for time to failure and peak flow presented by 

Bonelli et al. [10], a first approximation of a stationary value of the head loss factor α is about 

0.26, and considering the height and the material of the dam physical model described by 

Hanson et al. [21], an average value of the momentum loss factor β can be assumed to be equal 

to 0.55. Thus, assuming these values as the means 


 and 


  and considering a reasonable 

value of the coefficient of variation equal to 0.20, we can obtain the Beta distribution shape 

parameters 18.24q  , 51.91r   and 10.70q  , 8.76r  . Considering herein a 

reasonable value of 0.50  , the Eq. (41) furnishes an almost identical value of 

0.502  . 

In this paper, λ is assumed to follow a standard normal distribution. Considering 

noninformative prior distribution for λ, and referring to Box and Tiao [24], it is assumed to be 

locally uniform while following Gardoni et al. [19], we assume ( ) 1 / 
r r

p Σ . We assume 

the a priori independence between Θ  and ( , , )  
r rθ  as well as the variance of the univariate 

model 2
 r r

Σ . Following this approach, the joint prior distribution can be written as  

 
 ,1 ,

,1 ,

,...,

, , ,... ,
r

r

n

n

p

p


  


   






 Θ y y

Θ Θ y y  (42) 

which leads, together with Eq. (38), to the following general form of the posterior distribution 
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   

     

,1 , 1
1

,1 , ,1 ,

, , ,1
, , ,... , ,

                                                , ,... , ,... ,

r
r i r

r r r

rr

c c c e e e Cc e

n
r

n n
i

n C C C n

r
p

p p p



 



  
    



    

 
 



 




      
    

 


Θ θ

Θ Θ y y y

Θ y y Θ y y

, (43) 

which simplifies, in the case of 2 sets of data ,1y  and ,2y , to the particular form 

   

     

,1 ,2 1
1

,1 ,2 ,1 ,2

, , ,1
, , , ,

                                             , , ,

r
ri r

r r r

rr

c c c e e e

n
r

n
i

C C C

r
p

p p p





  
    



    

 
 



 




      
    

 


Θ θ

Θ Θ y y y

Θ y y Θ y y

, (44) 

that is adopted in the remainder of this paper. 

6. Calibrated probabilistic models 

6.1 General remarks on Cξ models’ correction 

We consider a first candidate explanatory function ,1( ) 1k kh x , in order to capture the potential 

bias of the deterministic models of each of the two components, that is independent on kx  and 

λ. Relating to the non-cohesive part (sand component), we select 5 /,2 , 0 c( )s s ss d d x , 

9 /,3 , 0 c( )s s ss d d x  and 4 %, ( )s s s x  (being %s  the total percentage of sand) to capture the 

potential bias associated to each component of sx . For the cohesive part, we select 

,2 ( ) PIm m x  to correct the bias associated to the deterministic terms *ˆ ( )m m x , 

ma,3 , x( )m d dm  x  to account for the influence of the percentage of compaction referred to 

the maximum dry density ,maxd  of the mixture, ,4 ( )m m  x  to capture the possible effect of 

the water content percentage ω, ,5 ( ) OWCmm x  to correct the bias depending on the optimum 

water content percentage (OWC), and finally ,6 ( )m m S x  to account for the degree of 

saturation S expressed in percentage. The explanatory functions , ( )k i kh x  are obtained by means 

of the Eq. (2) where the value of λ is determined simultaneously to other unknown parameters 
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using the maximum likelihood approach [34]. In all the cases related to the C  models, such a 

criterion gives λ equal to 0, that makes the Yang transformation [23] corresponding to the 

natural logarithm and its inverse to the exponential function. 

Once we performed the transformation of the basis functions, a stepwise deletion procedure 

can be applied in order to simplifying the models, removing the unimportant terms. Following 

to Gardoni et al. [18,19], the stepwise deletion process, adopted for each set of data 

, , ,, )( ,q k q w qy x x  concerned the following steps: 

1) Compute the posterior mode of the parameters Θ  and the related approximation of 

covariance matrix    
1

,
1

ln
qn

q
q

p L
    





       
   

Θ ΘΣ Θ Θ y , referring to Richards 

[35]. 

2) Identify the term , ( )k i kh x  whose coefficient ,kθ  has the largest coefficient of variation 

(C.o.V.). Such a term is the least informative among all the explanatory functions, so 

one can choose to drop it from the correction term , ,( , , 0)   k k kx θ . 

3) Assess the reduced model by checking if the value   has not increased by an 

unacceptable amount. If so, accept the reduced model and repeat the step 1 and 2 for 

further reductions. Otherwise, the performed reduction is not desirable and the model 

form before such a reduction is as parsimonious as possible. 

4) Compute the posterior statistics of the parameters Θ  using the parallel computing 

algorithm proposed by Andreini et al. [11]. 

It is worth noting that what makes unacceptable the increase of   is the level of accuracy and, 

at the same time, of parsimony desired for the specific problem. 
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6.2. Critical Shear Stress Model 

This section presents the results of the stepwise deletion and the estimation of the posterior 

statistics of the parameters  c
Θ . Considering the first set of data, Andreini et al. [11] were left 

with ,2 ( )s sh x , ,3 ( )s sh x , and ,4 ( )s sh x  for the sand component, and ,1( )m mh x  and ,5 ( )m mh x  for the 

cohesive component. Instead, we remain with the entire vector of explanatory functions ( )s sh x  

and ,1( )m mh x , ,2 ( )m mh x , ,4 ( )m mh x  and ,5 ( )m mh x , adding the second set of data ,2 ,2 ,2( , , )
c k wy x x  

and repeating the stepwise deletion procedure. Figure 3 shows the resulting most parsimonious 

and accurate model. Table 2 reports the posterior statistics of the parameters after the updating, 

which involves the following expressions of the correction terms: 

   

,50 ,90
, ,s , ,11 , ,12 , ,13

/ /

,50 ,90
, ,24 % , ,34 %

/ /

( , , 0) ln ln

ln ln ln ln

    

 

    

 

   
      

   
   

    
   

c c c c c

c c

s s
s s s s s

c s c s

s s
s s

c s c s

d d

d d

d d
s s

d d

x θ

, (45) 

   
       

, , , ,11 , ,12 , ,15

, ,25 , ,45

( , , 0) ln PI ln OWC

ln PI ln OWC ln ln OWC
c c c c c

c c

m m m m m m

m m

    

 

    

  

   

 

x θ
. (46) 

Considering only the first set of data, it seems that the critical percentage of mud ,m crP , 

represented by the parameter , ,1 c w , be strictly depending on the optimum water content OWC, 

since their correlation coefficient reported by Andreini et al. [11] is equal to −0.82. This would 

imply that the change of the erosion initiation behavior could be expressed in terms of the OWC 

threshold, but this is not confirmed in the updated model presented here using the second set 

of data. On the other hand, the posterior mean of ,m crP  remains stable around the 30% after the 

updating, confirming what also observed by Panagiotopoulos et al. [36]. Another observation 

is that the addition of more erodible materials for the second updating lead to a negative mean 

(=−43.21) of , ,11 c s , which suggests that the deterministic model ,ˆ ( )c s s x  overestimates the 



22 
 

critical shear stress, independently on sx . Furthermore, the large positive values detected for 

the means of the parameters , ,11 c m  and , ,12 c m  indicate that the contribution of the mud 

component is strongly underestimated by ,ˆ ( )c m m x , whose bias is also due to the absence in its 

formulation of the OWC and, in the case of the second updating, even of the water content ω.  

Figure 4 shows a comparison between the measured and the predicted values of the 

critical shear stress, applying the deterministic and the reduced probabilistic models, after the 

first and the second updating, substituting in the models the posterior median values of the 

parameters. 

6.3. Coefficient of Erosion 

As for the critical shear stress, the stepwise deletion has been performed to reduce number of 

elements of 
eCΘ , in order to estimate the related posterior statistics of a smaller number of 

parameters. Considering the first set of data, Andreini et al. [11] found that all of the 

explanatory functions are needed to correct the bias associated to the variables kx . This fact is 

not confirmed when the second set of readings is added: the stepwise deletion in the updated 

model (Figure 5) reaches a large variation of 
eC after 24 steps, allowing to correct the bias of 

the cohesive component by means of the unique term , ,25 ,2 ,5( ) ( )
eC m m m m mh hx x . All of the 

explanatory functions , ( )s i sh x , except the first one, are instead needed to correct the bias of the 

deterministic model associated to the non-cohesive component. In this case, the corrective 

terms can be expressed as 

 

 
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/ / /
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       
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d d d
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d d d

x θ

    2
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,

  (47) 
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   , , , ,25( , , 0) ln PI ln OWC   
e e cC m m C m mx θ .  (48) 

The posterior statistics of the reduced parameters for each updating are reported in Table 3, 

whereas a comparison between the applications of the deterministic and the probabilistic 

models is shown in the Figure 6. It is easy to recognize how the corrective terms reduce the 

bias associated to the deterministic model. The second Bayesian updating of the parameters 

allows to have a more accurate model for more erodible soils. 

Only in the case of the second updating, the mean value of the critical percentage of 

mud assumes a value out of the range 20-30%. Moreover, the explanatory function associated 

to the OWC is present in all the forms presented for the correction terms , ,( , , 0)  
e eC m m C mx θ

. Indeed, such a geotechnical property seems to be not negligible to describe the cohesive 

behavior, both in terms of critical shear stress and coefficient of erosion. 

6.4. Pipe enlargement model 

The applications of the probabilistic model to the set of data, from the physical model 

mentioned in Section 5.1, are herein presented. The value of λ is also in this case determined 

simultaneously to the other parameters using the maximum likelihood approach [34]. As for 

the C  models, we obtain λ equal to 0. We consider firstly the task of calibrating the parameters 

( , , )   
r r rrΘ θ  substituting the values of the most updated posterior means ˆ

 c
Θ  and ˆ

eCΘ

(Tables 2 and 3) in Eqs. (31-38). In such a case, the Eq. (44) reduces to the form 

     ,

1
1

ˆ , ,, r
r r

r r r

rr

n
l r

n
l

rp
p





   
 



 


 


          


Θ θ
Θ y , (49) 

where ( , )p     is the joint prior distribution of the parameters   and   given by Eq. (40). 

Table 4 reports the posterior distribution descriptors of the parameters 
r

Θ  obtained in this 
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way and Figure 7 shows a comparison between measured values of the pipe radius and 

predicted ones by means of the probabilistic model calibrated in this way. 

Instead, the problem of the total calibration of the parameters ( , )
r Θ Θ  on the totality 

of the sets of available data requires the determination of the descriptors of the related joint 

posterior distribution defined in Eq. (44). Table 5 reports the posterior distribution descriptors 

obtained by the calibration process. Figure 8 shows a comparison between the measured and 

predicted values for the critical shear stress, coefficient of erosion, and radius variation 

obtained by this global parameter calibration. 

It can be seen that this global calibration process does not alter the accuracy of the 

erosion parameter models, while makes the pipe enlargement model overestimating the 

experimental readings. Moreover, the posterior mean of the parameters   and   presents 

lower values but still within the ranges given by Bonelli et al. [10] for dams of small 

dimensions. 

7. Fragility estimates 

7.1 General Formulation 

The probabilistic models presented in this paper can be used to compute the fragility, which 

can be defined in this content as the probability of attaining or exceeding prescribed limits for 

a given set of boundary variables. Following Ditlevsen and Madsen [37] and Gardoni [17], we 

define a limit state function ( , , , )
r r r r

g    x s Θ Θ  as a mathematical model such that the event 

{ ( , , , ) 0}
r r r r

g     x s Θ Θ  represents the attainment or exceedance of such a limit. Using the 

developed capacity models, the limit state function can be formulated as 

     , , , , ,
r r r r r r r r r

g C D           x Θ Θ x Θ Θ x s , (50) 

where ( , )  r r r
D x s  represents the demand models, in which r

s is the vector of demand 

variables. This way, the fragility can be stated as 
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    , , , , , 0 , ,
r r r r r r r r r

F P g           
    

s Θ Θ x s Θ Θ s Θ Θ , (51) 

which is a function of both the variables and the parameters Θ  and  r
Θ , in order to underline 

the fact that an estimate depends on how we consider the uncertainties associated to such 

parameters [19,20]. 

A point estimate of the fragility can be obtained using a point estimate ˆ
Θ  and ˆ

r
Θ , 

such as the posterior means or the Maximum Likelihood Estimation (MLE), thus ignoring the 

uncertainties related to the model parameters. We indicate the corresponding point estimate 

fragility as 

   ˆ ˆˆ , ,
r r r r r

F F     s s Θ Θ .  (52) 

In these cases, all the uncertainties are associated to the models’ variables kx , wx  and rx , and 

in the model error term  r
, which is basically aleatory in nature. 

Alternatively, to account for the epistemic uncertainties in models’ parameters, we must 

consider Θ  and  r
Θ  as random variables and, consequently, the predictive estimate of 

fragility ( ) 


r r
F s  can be evaluated as the expected value of the function in the Eq. (51) over 

the posterior distribution expressed by the Eq. (44), that are: 

     ,1 ,, , , ,... , ,
r r r r r r r rnF F p d d

             s s Θ Θ Θ Θ y y y Θ Θ . (53) 

Following Gardoni et al. [18,19], the explicit effect of the epistemic uncertainty in the 

model parameters can be evaluated by constructing confidence bounds on the reliability index 

   1, , 1 , ,
r r r r r r

F             s Θ Θ s Θ Θ  corresponding to the fragility which are written 

as 

{ [ ( , , ) ( , , )], [ ( , , ) ( , , )]}
r r r r r r r r r rr r                        s Θ Θ s Θ Θ s Θ Θ s Θ Θ  , (54) 

where 
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             
, , , , , , , ,

2 , , , , , , ,
r r r r r r r rC C C Cr c e r c e r c e r c e r

T

                      Θ Θ Θ Θs Θ Θ s Θ Θ Σ s Θ Θ  (55) 

is the variance of the reliability index approximated by the first-order Taylor series expansions 

around the posterior mean point 
 , ,Cc e r ΘM  (in which 

 , ,
( , , )

r r rCc e r     Θ s Θ Θ  is the gradient 

row vector of ( , , )
r r r    s Θ Θ  evaluated at 

 , ,Cc e r ΘM  and 
   , , , ,C Cc e r c e r   Θ ΘΣ  is the posterior 

covariance matrix of  , , [ , , ]
c e rc e r CC    Θ Θ Θ Θ ), and 1[1 ( )]      

r r r
F s  is the generalized 

reliability index corresponding to ( ) 


r r
F s . 

7.2 Application to a typical earth dam 

7.2.1 Problem description 

As presented in the introduction, the evolution of the concentrated leak erosion phenomenon, 

which leads to the collapse of a water retaining structure, can be subdivided in four main 

phases. These phases can be modeled as a series system of events, in which we have to consider, 

as a further element, the occurrence of any successful action of detection, intervention or repair. 

Referring to the Figure 9, where the single events are EI = initiation, EC = continuation of 

erosion, EP = progression to form a pipe, ED = not detection, intervention and repair and B = 

Breach mechanism, we can consider that the failure event is given by the occurrence of all the 

mentioned events and can be evaluated as ( )   I C P DE E E E B , where   denotes the 

intersection, or in a simpler notation as ( )I C P DE E E E B . Thus, considering each couple of 

events as mutually exclusive, we have that the probability of failure [( ) ] I C P D
fP P E E E E B  

can be expanded in [ | ( )] ( ) I C P D I C P D
fP P B E E E E P E E E E  by means of the multiplication 

rule [38], which leads to the following expression when applied iteratively: 

            I C P D D I C P P I C C I I
fP P B E E E E P E E E E P E E E P E E P E . (56) 
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In particular, ED concerns 3 sub-events: EOL = observation of the concentrated leak because it 

is observable, EDT = leak detected and EuI = interventions fail. In Figure 9, the overlined symbol 

E  indicates the complement of the generic event E. 

The fragilities’ formulation presented in the Section 7.1 can be used to determine the 

conditioned probabilities ( | )DT I C P OLP E E E E E  and ( | )uI I C P OL DTP E E E E E E , as described in 

the following section. For this purpose, we refer to the general case of an embankment dam 

without any filter, having Hdam = 15m, bmin = 4m and cu = cd = 1.5, and made of the soil with 

null PI and the properties indicated in the Table 6. 

7.2.2 Detection, intervention and repair 

The probability of not detection, intervention and repair is strictly dependent on the total time 

required for progression of the pipe enlargement and the development of the breach 

mechanism.  

We consider the fragility ( ) 


r r
F s , associated to the limit state function 

0( , , ) ( , , ) ( , )
r r r r r r r Dg C D R R         x Θ Θ x Θ Θ , where 0 0( , ) ( / )

r D DD R R f R R   and DR  

can be seen as a control value of the pipe radius. 

The application to the case under study is shown in the Figure 10, where the fragility 

curves are plotted as a function of the time t and the radius DR , for 15w damz h H  m and 

R0 = 150 mm. Such curves have the expression 

   
 

0 0

0

, , , , , , 0 , , , ,

, , , ,

r r r rw D w D

D w D

F z h R t R g z h R t R

R t RP z h R R

P

t

    
    
  

x Θ Θ
, (57) 

and allow us to determine the probability of having a certain remaining time Δt to the breach, 

given a definite value of the radius variation interval.  

As an example, considering that the failure occurs when the pipe achieves an ultimate 

value of the radius / 3(  5)u du amR Ht   m at time ut , as in Bonelli et al. [10], the probability 
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to not achieve the failure at certain time t is given by putting D uR R  in Eq. (57) and, for the 

case under study, it simplifies to 

   , , 0 , ,
r r r r D u u D uF t g t RP R t t t R RP    

         x Θ Θ , (58) 

which is plotted in the Figure 11. Fell et al. [22] reported the values of the probability of not 

detection and not intervention as a function of the period of time [ , ]t t t  , to which belongs 

the failure time ut . The probability of such events can be calculated by the application of the 

total probability rule placed in the forms 

     | | ,DT I C P OL DT I C P O

t

LP E E E E E P E E E E E t P t t


   , (59) 

     | |uI I C P OL DT uI I C P O

t

L DTP E E E E E E P E E E E E t P tE


   , (60) 

where ( , ) ( ) ( )
r r

P t t F t F t t       is the probability that [ , ]u t tt t  . In this example, the 

terms of Eqs. (59) and (60) are reported in Table 7 and we have ( | ) 0.471DT I C P OLP E E E E E   

and ( | ) 0.673uI I C P OL DTP E E E E E E  . 

8. Conclusions 

Probabilistic models for the critical shear stress, the coefficient of erosion and pipe enlargement 

for concentrated leak mechanisms are presented. The models are able to predict the influence 

on the vulnerability to erosion of the physical and geotechnical properties of the soils for water 

retaining structures. The probabilistic models of the erosion parameters are constructed 

considering both the non-cohesive and cohesive components. The contribution of each 

component is modeled using empirical deterministic models, whose bias is corrected by 

additional terms that also improve the overall accuracy of the predictions. A stepwise deletion 

process is used to simplify the erosion parameters’ model reducing the number of the correction 

terms, deleting those are least informative while keeping an adequate level of accuracy. The 
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proposed models are calibrated and updated using test data. The updating is preformed using a 

Bayesian approach. 

The updated models of the erosion parameters are then used in the formulation of nested 

probabilistic model of the pipe radius evolution in an embankment. The unknown parameters 

of such a model are calibrated using the in-field data from an experimental test carried out on 

a scaled physical model of a dam. The totality of the parameters of all the models are 

subsequently calibrated on the basis of all the experimental data. 

The proposed probabilistic models are used for the assessment of the probability of not 

detection and not intervention in case of a concentrated leak erosion mechanism. The results 

show how transversal cracks with a radius of few centimeters can the cause of pipe enlargement 

rates, which can lead to breach mechanism in few days with a significant probability. 
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Table 1: Combination terms for the erosion parameters’ models: transformations, weight and 

corrective functions for the sand and mud components. 
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Table 2: Posterior Statistics of Parameters in the Critical Shear Stress Model, after the Bayesian update with the second set of data ,2 ,2 ,2( , , )
c k wy x x  

 θ
τc,s,11

 θ
τc,s,12

 θ
τc,s,13

 θ
τc,s,24

 θ
τc,s,34

 θ
τc,m,11

 θ
τc,m,12

 θ
τc,m,15

 θ
τc,m,25

 θ
τc,m,45

 θ
τc,w,1

 θ
τc,w,2

 σ
τc,

 

Mean −43.208 7.314 5.203 41.133 −23.892 284.615 103.247 −269.508 −34.938 59.178 0.309 1.385 0.861 

SD 2.833 0.944 0.694 2.639 1.486 17.756 9.859 15.650 3.370 3.889 0.000 0.055 0.068 

Correlation Coefficients 

θ
τc,s,12

 −0.59             

θ
τc,s,13

 −0.30 −0.58            

θ
τc,s,24

 −0.84 0.22 0.63           

θ
τc,s,34

 0.86 −0.26 −0.59 −1.00          

θ
τc,m,11

 0.12 −0.25 0.18 −0.02 0.03         

θ
τc,m,12

 0.19 −0.03 −0.16 −0.22 0.22 0.14        

θ
τc,m,15

 −0.20 0.19 −0.03 0.15 −0.15 −0.80 −0.71       

θ
τc,m,25

 −0.20 0.02 0.17 0.22 −0.22 −0.14 −1.00 0.71      

θ
τc,m,45

 0.22 −0.13 −0.07 −0.20 0.20 0.56 0.90 −0.95 −0.90     

θ
τc,w,1

 0.08 −0.16 0.12 0.00 0.01 0.48 0.30 −0.52 −0.29 0.45    

θ
τc,w,2

 −0.31 −0.01 0.30 0.37 −0.36 0.05 −0.14 0.05 0.15 −0.10 −0.04   

σ
τc

 0.29 −0.01 −0.26 −0.33 0.32 −0.01 0.21 −0.13 −0.22 0.18 0.01 −0.47  
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Table 3: Posterior statistics of parameters in the coefficient of erosion model, after the Bayesian update with the second set of data ,2 ,2 ,2( , , )
eC k wy x x  

 θ
Ce,s,14 θ

Ce,s,22 θ
Ce,s,23 θ

Ce,s,24 θ
Ce,s,33 θ

Ce,s,34 θ
Ce,s,44 θ

Ce,m,25 θ
Ce,w,1

 θ
Ce,w,2

 σ
Ce

 

Mean −35.321 −36.796 55.873 29.196 −21.351 −18.905 −15.678 0.663 0.490 1.563 1.935 

SD −24.833 −32.135 48.718 23.966 −18.565 −15.791 −12.018 0.750 0.670 1.741 1.827 

Correlation Coefficients 

θ
Ce,s,22 0.39           

θ
Ce,s,23 −0.41 −1.00          

θ
Ce,s,24 −0.61 −0.48 0.55         

θ
Ce,s,33 0.44 0.98 −0.99 −0.62        

θ
Ce,s,34 0.51 0.40 −0.48 −0.94 0.57       

θ
Ce,s,44 0.76 0.12 −0.15 −0.38 0.21 0.51      

θ
Ce,m,25 −0.28 0.18 −0.22 −0.42 0.24 0.37 −0.48     

θ
Ce,w,1

 0.20 0.40 −0.44 −0.61 0.48 0.57 0.02 0.69    

θ
Ce,w,2

 −0.21 −0.88 0.91 0.68 −0.93 −0.64 0.00 −0.54 −0.62   

σ
Ce

 −0.25 −0.03 0.05 0.18 −0.07 −0.16 −0.18 −0.01 −0.22 0.01  
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Tab. 4: Posterior statistics of the parameters in the radius increase model. 

 
p      

r  
r

  

Posterior Mean 0.695 0.252 0.551 −11.627 0.289 

Posterior SD 0.01 0.01 0.01 0.20 0.09 

Correlation Coefficients 

  −0.71     

  −0.87 0.32    

r  −0.86 0.51 0.81   

r
  0.21 −0.36 −0.10 −0.23  
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Tab. 5: Posterior statistics of the parameters after the global calibration using the totality of available data. 

 θτc,s,11 θτc,s,12 θτc,s,13 θτc,s,24 θτc,s,34 θτc,m,11 θτc,m,12 θτc,m,15 θτc,m,25 θτc,m,45 θτc,w,1 θτc,w,2 στc θCe,s,14 θCe,s,22 θCe,s,23 θCe,s,24 θCe,s,33 θCe,s,34 θCe,s,44 θCe,m,25 θCe,w,1 θCe,w,2 σCe θp θα θβ θr σδr 

Mean −43.093 7.209 5.246 41.046 −23.843 275.453 98.384 −258.930 −33.285 56.642 0.309 1.397 0.840 −37.848 −38.728 58.906 31.043 −22.556 −20.211 −16.793 0.659 0.488 1.578 1.920 0.670 0.243 0.521 −11.169 0.302 

SD 2.813 0.761 0.541 2.391 1.351 21.422 13.605 23.460 4.605 5.873 0.000 0.027 0.046 3.027 1.850 2.738 1.611 1.030 1.206 1.625 0.047 0.047 0.017 0.136 0.043 0.053 0.109 1.631 0.103 

Correlation coefficients 

θτc,s,12 −0.66                             

θτc,s,13 −0.47 −0.35                            

θτc,s,24 −0.85 0.51 0.55                           

θτc,s,34 0.85 −0.54 0.51 1.00                          

θτc,m,11 0.00 0.06 0.03 0.07 −0.07                         

θτc,m,12 0.15 0.05 0.19 0.03 −0.04 0.55                        

θτc,m,15 −0.08 −0.06 0.12 −0.06 0.07 −0.89 −0.87                       

θτc,m,25 −0.15 −0.05 0.18 −0.03 0.04 −0.55 −1.00 0.87                      

θτc,m,45 0.11 0.06 0.15 0.05 −0.06 0.78 0.95 −0.98 −0.95                     

θτc,w,1 0.05 0.03 0.04 0.10 −0.10 0.72 0.68 −0.79 −0.67 0.77                    

θτc,w,2 0.14 −0.16 0.01 −0.18 0.18 −0.18 −0.22 0.23 0.23 −0.24 −0.17                   

στc 0.09 0.08 0.17 0.00 −0.01 0.03 0.22 −0.14 −0.21 0.17 0.17 −0.04                  

θCe,s,14 −0.25 0.12 0.16 0.20 −0.20 0.04 −0.06 0.01 0.06 −0.03 0.03 −0.12 −0.07                 

θCe,s,22 −0.06 0.03 0.05 0.08 −0.08 0.21 0.12 −0.19 −0.12 0.17 0.23 −0.12 −0.05 0.47                

θCe,s,23 0.08 −0.03 −0.07 −0.09 0.09 −0.22 −0.11 0.19 0.11 −0.17 −0.23 0.13 0.06 −0.50 −1.00               

θCe,s,24 0.14 −0.08 −0.09 −0.15 0.15 −0.23 −0.09 0.18 0.08 −0.15 −0.12 0.12 0.05 −0.72 −0.53 0.59              

θCe,s,33 −0.11 0.04 0.09 0.11 −0.11 0.23 0.10 −0.19 −0.10 0.16 0.22 −0.12 −0.07 0.55 0.98 −0.99 −0.65             

θCe,s,34 −0.15 0.06 0.13 0.15 −0.15 0.24 0.01 −0.15 −0.01 0.10 0.08 −0.07 −0.09 0.63 0.41 −0.49 −0.94 0.58            

θCe,s,44 −0.22 0.07 0.19 0.17 −0.16 0.03 −0.18 0.08 0.18 −0.12 −0.03 −0.01 −0.13 0.80 0.22 −0.28 −0.58 0.36 0.70           

θCe,m,25 0.09 −0.04 −0.06 −0.06 0.05 0.03 0.09 −0.07 −0.09 0.08 −0.07 0.00 −0.01 −0.12 0.01 −0.03 −0.22 0.04 0.18 −0.29          

θCe,w,1 −0.14 −0.09 0.22 0.00 0.01 −0.21 −0.31 0.30 0.31 −0.31 −0.24 0.09 −0.13 0.49 0.25 −0.28 −0.31 0.31 0.28 0.33 0.30         

θCe,w,2 0.06 −0.01 −0.08 −0.10 0.09 −0.30 −0.11 0.23 0.10 −0.19 −0.22 0.09 0.06 −0.36 −0.88 0.91 0.68 −0.93 −0.65 −0.23 −0.23 −0.24        

σCe 0.12 0.07 −0.25 −0.12 0.11 0.00 0.21 −0.11 −0.21 0.15 0.08 −0.12 0.21 −0.11 0.10 −0.08 0.03 0.04 −0.13 −0.23 −0.02 −0.23 −0.04       

θp 0.05 0.06 −0.06 0.14 −0.14 0.41 0.40 −0.47 −0.40 0.46 0.36 −0.10 0.13 −0.06 0.06 −0.07 −0.18 0.08 0.21 0.01 −0.05 −0.43 −0.19 −0.08      

θα 0.01 0.04 −0.06 0.04 −0.04 −0.11 0.09 0.02 −0.10 0.03 0.01 −0.21 0.11 0.20 0.19 −0.18 −0.10 0.16 −0.01 0.01 0.03 0.16 −0.07 0.34 −0.24     

θβ 0.03 0.07 −0.11 0.02 −0.03 −0.04 0.05 0.00 −0.05 0.02 −0.01 −0.17 0.09 0.15 0.16 −0.16 −0.12 0.15 0.04 0.02 −0.01 0.05 −0.10 0.37 −0.18 0.62    

θr −0.17 −0.02 0.17 −0.03 0.04 −0.27 −0.36 0.36 0.36 −0.38 −0.28 0.15 −0.20 0.30 0.05 −0.05 −0.06 0.05 0.01 0.19 −0.01 0.43 0.07 −0.20 −0.69 −0.31 −0.38   

σδr 0.21 0.00 −0.28 −0.21 0.20 −0.11 0.18 −0.03 −0.19 0.09 0.01 −0.03 0.18 −0.01 0.07 −0.04 0.04 0.01 −0.16 −0.18 0.07 0.02 0.06 0.46 −0.21 0.31 0.32 −0.02  
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Table 6: Random variables for the soil of the example dam. 

Parameter Mean C.o.V. Distribution Model 

ds,50 [mm] 0.35 0.20 Lognormal 

ds,90 [mm] 1.10 0.20 Lognormal 

Sand Content  0.75 0.20 Beta [0, 1] 

OWC 0.15 0.30 Beta [0, 1] 

Max Dry Density 
[Mg/m3] 

1.90 0.15 Lognormal 

POC 0.95 0.15 Beta [0, 1] 

ω 0.15 0.20 Beta [0, 1] 

DOS 0.65 0.20 Beta [0, 1] 

Mud Content 0.20 0.20 Beta [0, 1] 
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Table 7: Probability of not detection and not intervention according to Fell et al. [22], for the example dam in case of monthly inspections and/or 

monitoring and no public nearby. 

Interval of time from 
Concentrated leak initiation 

to breach mechanism 
[ , ]t t t   

Probability of 
not detection

 |DT I C P OLP E E E E E t  

Probability of 
not intervention

 |uI I C P OL DTP E E E E E E t  
( , ) ( ) ( )

r r
P t t F t F t t       

< 3 hours 0.999 0.99 1 (3 hours) 0.013
r

F   

3 hours to 12 hours  0.99 0.95 (3 hours) (12 hours) 0.219
r r

F F     

12 hours to 24 hours 0.95 0.9 (12 hours) (1 day) 0.154
r r

F F     

1 day to 2 days 0.9 0.8 (1 day) (2 days) 0.050
r r

F F     

2 days to 7 days 0.6 0.7 (1 week) (2 days) 0.009
r r

F F     

> 1 week 0.1 0.6 (1 week) 0.445
r

F   
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Figures 

 

Fig. 1: Concepts for formulation of the probabilistic model for erosion parameters and pipe 

enlargement 
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Fig. 2: Scheme of the example dam. 
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Fig. 3: Stepwise deletion process of the critical shear stress model 
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Fig. 4: Comparison between measured and predicted the critical shear stress based on deterministic (left), probabilistic model by Andreini et al. 

[11] (center) and the updated one with data from two additional JETs [30–32] (right). 
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Fig. 5: Stepwise deletion process of the coefficient of erosion model
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Fig. 6: Comparison between measured and predicted the coefficient of erosion based on deterministic (left), probabilistic model by Andreini et al. 

[11] (center) and the updated one with data from two additional JETs [30–32] (right). 
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Fig. 7: Comparison between measured values of the pipe radius and predicted ones by means 

of the calibrated probabilistic model. 
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Fig. 8: Comparison between measured and predicted critical shear stress (left), coefficient of erosion (center) and pipe radius increase versus time 

(right) after the global parameter calibration using the totality of available data. 
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Fig. 9: Scheme of the concentrated leak erosion process: series system concerning the initiation, 

the continuation of erosion, the progression to form a pipe, no detection, intervention, and 

repair, and the initiation of the breach mechanism. 
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Fig. 10: Fragility estimate for the pipe radius at a certain time from the initiation of the 

concentrated leak erosion mechanism. 
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Fig. 11: Fragility estimate of the time to failure for the example dam. 

 


