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Abstract 

The inverse search determination of the strain-energy-density (SED) control radius R1 devised in Benedetti et 

al. Int J Fatigue 2019;126:306-318 and based on the knowledge of the notch fatigue factor estimated using an 

optimal V-notch specimen geometry is here reformulated to take into account the statistical properties of the 

input fatigue properties. It was found that R1 exhibits a non-symmetric probability density function that is well 

represented by a skew-normal distribution. The uncertainty in R1 can be attributed to the uncertainty in the 

inverse search procedure and to the material variability in notch sensitivity. By applying the devised procedure 

to real experimental data, it was found that the former contribution is preponderant in the assessment of very 

sharp notches, while the latter dictates the fatigue strength of blunt notches, especially in the case of 

intrinsically flawed materials, such as those additively manufactured. 
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Nomenclature 

AM Additive manufacturing 

CDF Cumulative distribution function 

CV Coefficient of variation 

MC Monte Carlo 

NCV Normalized coefficient of variation 

PDF Probability density function 

SED Strain energy density 

SLM Selective laser melting 

SND skew-normal distribution 

TCD Theory of critical distances 

D Specimen outer geometry (Fig. 2) 
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E Young's modulus 

I1 dimensionless parameter controlling 1W  (Eq. (5)) 

Kf fatigue stress concentration factor 

KN notch-stress intensity factor 

KN,UU N-SIF for unitary nominal stress and unitary half-diameter D 

L TCD critical distance 

m slope of the linear relationship between 0
R  and 1

R  for perfectly sharp notch 

R notch radius 

R stress ratio 

r CV of plain fatigue strength 

rN CV of notch fatigue strength 

0
R  dimensionless control radius based on the stress singularity assumption 

R  dimensionless notch radius 

r0 position of the averaging control domain (Fig. 1) 

R1 Mode I SED control radius 

1
R  dimensionless control radius 

1
R  dimensionless control radius estimated from mean values of plain and notch fatigue strength 

1,lim
R  control radius corresponding to a given value of NCV ν 

lim
R  dimensionless notch radius corresponding to a given value of NCV 

s William's power law singularity exponent 

S, SN standard deviation of plain and notch fatigue strength, respectively 

sk skewness of dimension-less control radius 

 shape parameter of SND 

𝛼̅ notch opening half-angle (Fig. 1) 

 location parameter of SND 

 scale parameter of SND 

 standard deviation of dimensionless control radius 

( )1 R  amplitude of the uncertainty interval of R1 

fl  plain specimen fatigue strength range. In this work, it is assumed to be normally distributed with 

mean fl  and standard deviation S 

N,fl  plain specimen fatigue strength range. In this work, it is assumed to be normally distributed with 

mean N,fl  and standard deviation SN 

1W  Mode I SED associated with the fatigue full range 



3 

 

 rN to r ratio 

 mean of dimensionless control radius 

 CV of the control radius normalized to the equivalent CV of the input data Σ 

 NCV of the control radius for a perfectly sharp notch 

𝜈̅ Poisson's ratio 

 equivalent CV of input data for control radius estimation (Eq. (13)) 

 

Best-fit coefficients 

1 4,...,a a  skewness inversion function (Eq. (11e)) 

1 2,b b  limit control radius (Eq. (15)) 

ijc  matrix coefficients for control radius inverse search (Eq. (6)) 

ijd  matrix coefficients for the direct problem (estimation of Kf through Eq. (7)) 

1 4,...,f f  normalized standard deviation on the estimation of notch fatigue strength (Eq. (22)) 

1 2,m m  mean of the control radius (Eq. (18)) 

1 4,...,n n  NCV of the control radius (Eq. (17)) 

1 4,...,s s  skewness of the control radius (Eq. (19)) 

 

1. Introduction 

Notch fatigue prognosis is of considerable importance in the mechanical engineering, as the structural integrity 

of many machine elements is dictated by the fatigue damage usually initiating from geometrical details, such 

as shoulders, holes, grooves, weld beads, which act as stress raisers. It is well known that the fatigue response 

is not so much controlled by the peak stress as by the stress state reigning in a neighborhood of finite size 

surrounding the critical spot of the component. Different approaches have been proposed so far in the technical 

literature to account for the material capability of accommodating stress concentrations produced by time-

varying loads. The most popular notch fatigue design criteria are based on the definition of a notch sensitivity 

factor [1] or notch support factor related to the slope of the stress gradient emanating from the stress peak 

location [2]. More sophisticated fracture mechanics approaches attempt to incorporate also the fatigue life 

spent to propagate the crack initiated in the critical fatigue location until eventual failure [3,4]. Neuber [5] and 

Peterson [6] were the first to introduce the key concept of "structural volume": the fatigue crack initiation 

mechanisms, which takes most of the fatigue life in the high-cycle fatigue regime of mechanical components 

of medium-to-small size, is controlled by the stress-strain process occurring in a domain of material 

characteristic size. Their pioneering works paved the way for the theorical framework of notch fatigue 

assessment approaches based on the concept of averaging in the neighborhood of the notch a fatigue damage 

parameter representative of the notch stress-strain field. A comprehensive review of these methods is given in 



4 

 

the recent literature review paper [7]. Among them, the Theory of Critical Distance (TCD) was conceptualized 

by Taylor [8] and Susmel [9] and postulates that the critical condition in a notched or cracked member is 

achieved when a suitable stress component evaluated at a certain critical distance, or averaged over a domain 

of a certain critical size, equals a stress value representative of the fatigue failure in a smooth part. An evolution 

of TCD to explicitly incorporate the stress gradient is the stress field intensity (SFI) approach initially proposed 

by Yao [10] and then further elaborated in later researches [11,12]. Another method, which is the focus of the 

present paper, considers the strain energy density (SED) W as the fatigue damage controlling parameter. Sih 

[13] was one of the first to argue that the structural integrity of cracked and notched member is related to the 

SED averaged over a critical distance from the point of stress peak. Gillemot [14] calculated the SED required 

for crack initiation in a unit volume of material. More recently, Lazzarin and Zambardi [15] laid the foundation 

for SED-based static and fatigue failure criteria. They are based on an accurate definition of the control volume 

, over which the SED must be averaged and compared with a critical SED value representative of static or 

fatigue failure [16]. For plane or axisymmetric problems, the control volume simplifies into a circular domain, 

as schematically illustrated in Fig. 1. Under mode I type of loading, the circular sector encompassing the notch 

tip is centered in the origin of the curvilinear reference frame used to describe the notch geometry and located 

at distance r0 from the notch tip moving along the notch bisector. r0 is a function of notch radius R and opening 

angle 2𝛼̅. Consequently, the circular domain  has a radius r0+R1, where R1 is regarded as the "control radius" 

and is a material dependent parameter. 

TCD and SED approaches have been successfully applied to predict the fatigue strength of blunt and sharp 

notches [12,17], weld joints [18,19], components exposed to fretting fatigue [20,21] or variable amplitude 

multiaxial loading [22-24], notches embedded in residual stress fields [25,26], notches in elastic-plastic 

conditions [27,28]. In all these fatigue scenarios, such methods are applied in a deterministic way with the aim 

of assessing only the average SN curve of the component (50% probability of failure) without accounting for 

the dispersion in fatigue strength and life. Nevertheless, it is well known that the fatigue damage is intrinsically 

stochastic in nature due to variations in material properties, defects, geometries and in-service loads. For this 

purpose, design codes, like Eurocode 3 [29] and FKM [30], provide the designer with a series of partial safety 

factors to achieve the target reliability. These empirical or semi-probabilistic approaches suffer in general from 

a high degree of conservatism, often resulting in oversized structures and unnecessary maintenance costs. For 

this reason, the scientific community is intensively developing probabilistic approaches able to provide a 

rational way for fatigue design under uncertainty. The research group formed by Fernández-Canteli and 

collaborators is very active in reformulating, in a stochastic perspective, various fatigue damage parameters to 

obtain the Weibull percentile curves of diverse structural components [31-33]. Barbosa et al. [34] extended 

this concept to devise a probabilistic Stüssi fatigue model based on Weibull distribution. The same statistical 

distribution was considered by Ai et al. [35] to analyze the fatigue life distribution of specimens with different 

geometries using the highly stressed volume approach. Zhu et al. [36] reformulated the critical plane approach 

formerly proposed by Fatemi and Socie [37] by incorporating the variability of the material constants of the 

Coffin-Manson equation. The concept of weakest-link is widely used to account for the statistical variability 
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in low-cycle fatigue [38], in assessing the mean stress effect [39], in reinterpreting the Kitagawa-Takahashi 

diagram [40], in estimating the microstructure-sensitivity of the fatigue notch factor [41]. Fracture mechanics 

approaches encapsulating a stochastic fatigue crack growth rate law have been proposed to estimate the 

statistical distribution of the fatigue life spent for crack propagation [42,43]. 

Taking inspiration from this strong interest in providing fatigue assessment methods with a sound probabilistic 

framework, the present paper is aimed at investigating the sources of uncertainty in the fatigue predictions 

using the SED approach. In its original formulation, the fatigue criterion states that a notched component is in 

fatigue critical condition when the average SED of the notched part 1,notchW  equals the SED in the plain 

sample 1,plainW  under the same fatigue critical condition: 

( ) ( )1

1,notch 1,plain

1,notch

1

2
1,plain fl

1

1

2




 = 

 =  


 = 


R

W W

W W d
R

W
E

         (1) 

Where E is the Young’s modulus, fl the full range plain fatigue limit and  is a function of the control radius 

R1. From a first inspection of Eq. (1), it is clear that most of the variability in the SED predictions is associated 

to the scatter in the plain fatigue limit used to estimate the right-hand side part of the equality. In reality, there 

is also a second and non-negligible source of variability related to the uncertainty in the size of the control 

radius R1. This material property is in general indirectly deduced from the fatigue characteristic of a cracked 

or notched specimen geometry through inversion of Eq. (1). The drawbacks of inferring the control radius R1 

and the critical distance L from the crack growth threshold Kth have been already discussed in [44,45]: (i) 

though precisely described in the ASTM standard [46], the determination of Kth is experimentally 

challenging, especially with negative load ratios, and very susceptible to the precracking procedure and 

environmental conditions [47,48]; (ii) the fatigue crack growth test is usually performed on a very few samples, 

more frequently on a single specimen, thus without a sound statistical significance; (iii) this approach cannot 

be extended to the medium cycle fatigue regime as it is not clear which fracture mechanics parameter is 

representative of the crack growth resistance in the finite life regime. For these reasons, we devised an inverse 

search procedure starting from a notched specimen geometry to get a robust assessment of L [44] and R1 [45]. 

Specifically, the notch depth of an axisymmetric V-notched specimen was designed to maximize the intensity 

of the notch singular stress term in order to minimize the sensitivity of the inverse search to experimental 

uncertainties. Recent investigations [49] about the statistical distribution of the inverse estimation of L pointed 

out the crucial role played by the notch radius R: the coefficient of variation (CV, standard deviation to mean 

ratio) of L depends, as expected, on the CV of the input quantities, viz. the plain and notch fatigue strength, 

and is amplified by a factor that is an increasing function of the ratio R/L. As already observed in [49,50], it is 

clear that reliable fatigue assessments are only possible when the notch geometry used to get L or R1 is 

considerably sharper than that of the notch to be calculated. 
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The present paper is aimed at extending the investigations done in [49] on the critical distance L to the statistical 

distribution of the inverse estimation of R1. The key concept that we want to develop here is that the amplitude 

( )1 R  of the uncertainty interval of R1 (also graphically shown in Fig. 1) can be thought of as being composed 

of two contributions: 

( ) ( ) ( )material1 1 1inversion
variability

  = +R R R          (2) 

Where the first term is related to the uncertainty directly involved in the inversion procedure, for instance due 

to geometrical inaccuracies (especially on the notch radius) and deviations of the experimental conditions from 

the nominal ones (sample misalignment, accuracy in load control, etc.). The second term ( )material1
variability

 R  is the 

sought material-related variability of R1. This can be interpreted as the variability in the notch sensitivity of 

the material (directly correlated to R1) associated to fluctuations in microstructural features, mechanical 

properties and defectiveness. Regarding this last issue, it is commonly accepted that intrinsecally defected 

materials, like cast irons [51] and additively manufactured materials [52], display a lower notch sensitivity. As 

shown in [41], fluctuations in the size of the critical defect in the vicinity of a notch are associated to a 

variability in the notch fatigue factor. It is reasonable to expect, and this will be matter of investigation in the 

present paper, that the first uncertainty term is predominant in the fatigue assessment of very sharp notches, 

while the second term becomes more evident in the prediction of blunt notches, especially if embedded in 

materials with significant fluctuations in the fatigue properties. 

The present article is organized as follows. Section 2 summarizes the inverse search procedure devised in [45] 

to deduce the control radius R1 from plain and notch fatigue strength. Section 3 investigates the statistical 

properties of R1 starting from the stochastic characteristics of the input quantities. The impact of the variability 

of R1 on the notch fatigue predictions is evaluated in Section 4. Section 5 shows the application of these 

concepts to the probabilistic fatigue assessment of a conventionally manufactured aeronautical Al-grade and 

an additively manufactured Ti-alloy. Concluding remarks and directions for future research are given in 

Section 6. The appendix describes the use of editable Matlab scripts attached to the online version of this paper 

for a fast implementation of the inverse search and the statistical analyses. 

 

2. Background: inverse determination of the control radius 

The procedure recently devised in [45] for an accurate estimation of the control radius R1 is based on the 

knowledge of the fatigue strength fl and N,fl of two specimen geometries: the former is regarded as plain 

and introduces a negligible stress concentration effect, the latter is an axisymmetric V-notched bar, whose 

geometry is shown in Fig. 2a: A is the notch depth, R is the notch radius, 2𝛼̅ is the notch opening angle and D 

is the outer diameter of the specimen. The non-dimensional notch depth A/(D/2) = 0.3 was designated in [44] 

to maximize the intensity of the notch tip singular stress term and hence to minimize the sensitivity of the 

inverse search of R1 to the experimental uncertainties. In this way, the only independent specimen dimensions 
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are D, R and 2𝛼̅. To keep the problem non-dimensional, the notch root radius and the control radius are 

normalized with respect to the specimen outer radius: 

1
1;

/ 2 / 2
 = =

RR
R R

D D
          (3) 

Fig. 2b illustrates the infinitely sharp notch specimen configuration used to get a first estimation of the control 

radius, here denoted as 0
R . The singular stress distribution is expressed by: 

( ) N =y s

K
x

x
            (4) 

where KN is the (net) notch stress intensity factor (N-SIF), and s is the Williams power law singularity 

exponent. In this way, 0
R  can be expressed as: 

( )( )

1/

N,UU 1 fl
0 f

f N,fl

;
1

 

  

  
 = = 

 − −  

s

K I
R K

K s
       (5) 

KN,UU is the dimensionless (normalized) N-SIF, for unitary nominal stress and unitary scaling length, i.e. when 

the specimen outer radius D/2 equals unity. KN,UU and s are reported in Table 1 as a function of two notable 

values of the notch opening angle 2𝛼̅, viz. 90° and 60°, along with the dimensionless parameter I1. The fatigue 

stress concentration factor Kf, obtained as the ratio between the fatigue strength of the two specimen 

geometries, is the only experimental input of the procedure, besides the notched specimen geometry 

dimensions. 

Figure 2c reports the main formulas to evaluate the dimensionless control radius 1
R  from the asymptotic 

approximation 0
R : 

( ) ( ) ( )
4 5 1

2 2
1 0 0

1 1

, , , ,     
−

= =

    = + 
j i

ij

i j

R R m R c R R       () 

Where ( ), m  is the angular coefficient of the linear relationship found in [45] between 0
R  and the actual 

control radius 1
R  for the perfectly sharp V-notched specimen. It depends on the notch angle 2𝛼̅ and the 

Poisson’s ratio 𝜈̅ and its best-fit estimations are listed in Table 1. The coefficients cij take into account the 

effect of the notch radius R  in the case of radiused V-notched specimens. They can be obtained by best-fitting 

the results of FE simulations carried out in [45]. In this previous work, in order to keep the fitting accurate also 

in the region of low 1
R  values, the error variance to be minimized was normalized with respect to each data 

point. In the present paper, this fitting procedure was repeated by normalizing the error variance with respect 

to the square of the input data. Specifically, the Levenberg Marquardt algorithm [53] was used to solve the 

nonlinear fitting problem. The results of this new fitting are provided in the text file and implemented in the 

Matlab script attached to the online version of this paper. Its use is explained in detail in the Appendix. 
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The advantage of this new fitting is evident by looking at the relative error maps reported in Fig. 3a and b for 

2𝛼̅=90 and 60°, respectively: the absolute relative error is below 1.5% and more homogeneuosly distributed 

over the fitting domain as compared to the fit performed in [45]. 

In the so-called direct problem, the input and output variables of Eq. (6) are reversed. In this way, it is possible 

to deduce 0
R  from the knowledge of 1

R  according to the following equation: 

( )
( )

( ) ( )
5 4 5

1 2 2 2
0 1 1

1 2 1

, , , ,
,

     
  = = =


    = + + 

j j i

j ij

j i j

R
R R d R d R R

m
    () 

whence, through the inversion of Eq. (5), it is possible to determine the notch fatigue factor Kf: 

( )( )
N,UU 1

f

0 1



 
=

 − −s

K I
K

R s
          (8) 

The new fitting coefficients dij of Eq. (7) are provided in the text file and implemented in the Matlab script 

attached to the online version of this paper. 

 

3. Statistical properties of the control radius 

3.1 The skew-normal distribution 

On the base of the comments made in the Introduction, it can be noted that 1
R  is expected to be a function of 

two random variables, viz. plain fl and notch fatigue strength N,fl. More specifically, 1
R  depends, through 

complex nonlinear relationships expressed by Eqs. (5,6), on the notch fatigue factor Kf, thus on the ratio of 

two random variables. We came to a similar conclusion when analysing in [49] the statistical properties of the 

inverse search estimation of the critical distance L. In this paper, we will follow a similar approach to get the 

statistical properties of the SED control radius 1
R . The complex formulation of Eqs. (5,6) makes an analytical 

derivation of the statistical distribution of 1
R  unfeasible, unless a simplified approach is taken. The first 

simplification concerns the hypothesis that fl and N,fl are Gaussian (normal) random variables. A careful 

reader might object that the distribution of fatigue strength data is restricted to positive real values, and 

therefore displays rather a log-normal or, according to the weakest-link concept [35], a Weibull distribution. 

Nevertheless, we deem the assumption of normally distributed fatigue strength still reasonable for the 

following reasons: (i) as shown in the following, the analysis is restricted to low CV values (less than 0.1), 

thus making the occurrence of negative values extremely unlikely and the normal distribution very similar to 

the log-normal one, (ii) the very commonly adopted (especially in the industrial field) stair-case procedure 

assumes the fatigue limit to be normally distributed [54]; (iii) the present analysis can benefit from the findings 

of the research community concerning the distribution of the ratio between two normal variables. We are not 

aware of similar investigations on differently distributed variables. Ref. [55] investigated the distribution of 

the ratio between two Weibull random variables, but the analysis is restricted to integer values of the shape 

parameter of the distribution. 
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The second simplification involves the use of the Monte Carlo (MC) method to infer the statistical properties 

of 1
R . This is based on the generation of a (large) population of individuals through repeated random sampling 

(“trials”). In each trial, individuals of 1
R  are randomly generated assuming a Gaussian probability distribution 

function (PDF) for Δσfl and ΔσN,fl. Their mean value and standard deviation are denoted as fl , S, N,fl , 

SN, respectively. The corresponding CV are defined as follows: 

N
N

fl N,fl

;
 

= =
 

SS
r r           () 

In the MC simulations, the mean value 
N,fl  is expressed as a function of the input value 1

R  of the critical 

radius. 

( )
fl

N,fl

f 1





 =

K R
           () 

where the fatigue notch concentration factor Kf is calculated according to Eq. (8). 1
R  represents the control 

radius estimated considering the average values fl  and 
N,fl . 

In the following, the statistical properties of 1
R  will be inferred from populations composed of 100,000 

individuals, a number found in [49] to be adequate to get stationary statistical characteristics. The simulations 

were done considering values of Poisson's ratio 𝜈̅ ranging from 0.27 to 0.33. No detectable influence of 𝜈̅ was 

found on the statistical properties of 1
R , therefore this material parameter will be disregarded in the ensuing 

discussion. 

Figure 4a shows the PDF histograms obtained by elaborating the 1
R  populations generated at different values 

r of the CV of the plain fatigue strength ranging from 0.01 to 0.1. For the moment, we will assume that the 

notch fatigue strength takes the same CV rN = r, this assumption will be then removed in the following. 

Interestingly, the PDF is unimodal with longer right-sided tail. The asymmetry degree of the PDF, which can 

be quantified in terms of skewness (positive in the case of longer right tails), increases with rising r. Figure 4b 

compares the PDF histograms generated for the nondimensional critical length l (normalized with respect to 

the specimen outer radius) producing the same fatigue notch factor in the notched sample of same geometry 

as that considered in Fig. 4b. The PDF of l and 1
R  are very similar, with the important difference that the 

positive skewness of l increases more rapidly with r as compared to 1
R . 

As already observed in [49], as long as r is sufficiently small, the PDF histograms of l are well represented 

(solid lines) by a tri-parametric skew-normal distribution (SND) able to take into account the asymmetry in 

the PDF visible in Fig. 4 and expressed as [56]: 

2

2

1 ( ) ( )
( ) 1 erf exp

22 2

x x
PDF x

  

  

    − −
= + −     

   

               (11a) 
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The same property holds true also for the PDF histograms of 1
R  plotted in Fig. 4a (solid lines). Mean , 

standard deviation  and skewness sk of SND are expressed, in contrast to other PDFs (for instance log-normal 

and Weibull), by simple algebraic functions of shape , location  and scale  parameters: 

2

2

1

 
 


= +

+
                    (11b) 

2

2

2
1

(1 )


 

 
= −

+
                    (11c) 

( )

3

3/2
2

2(4 )

( 2)
sk

 

  

−
=

+ −
                   (11d) 

The skewness sk is a function of the only shape parameter  and zeroes for vanishing . In this case, the SND 

becomes normal with mean  and standard deviation . As shown in Fig. 5a, sk increases monotonically with 

 and is bounded in the interval (-1,1). This means that the SND is able to reproduce only PDF with low-to-

moderate sk values. This explains the reason why the SND fails to correctly represent the PDF of l (Fig. 4b) 

for large values of r (above 0.07): when sk approaches the unity, α increases asymptotically leading to the 

degeneration of the PDF evident in Fig. 4b for r=0.1. Interestingly, the slower increment of sk displayed by 

1
R  with rising r makes the SND suitable to correctly represent the PDF of 1

R  even at higher values of r (see 

the plot at r =0.1 shown in Fig. 4a). This has the great advantage that the present statistical approach is 

applicable to materials displaying more dispersed fatigue properties, as discussed in the following, which 

cannot be analized using the TCD statistical approach proposed in [49]. The following statistical analysis of 

1
R  will be anyway restricted to r values not exceeding 0.1 in order to keep reasonable the hypothesis of 

normally distributed input fatigue properties discussed at the beginning of this section. 

The algebraic inversion of Eq. (11d) to get the shape parameter  from sk is computationally very challenging. 

Therefore, we proposed in [49] the following approximate numerical expression restricted in the positive 

interval of sk: 

4
/2

2
1

1
; 0 1

1

i

i

i

a sk sk
sk


=

=  
−

                    (11e) 

whose best-fit coefficients ai are listed in Table 2. As shown in Fig. 5b, the agreement between numerical and 

analytical solution is very good. Once  has been calculated from Eq. (11e),  and  can be simply evaluated 

from Eqs. (11b)-(c). 

The hypothesis of normally distributed input fatigue properties with low CV value permits now to extend the 

above analysis to scenarios in which plain and notch fatigue strength display different CV values r and rN, 

respectively. For this purpose, we first introduce the following index: 

N =
r

r
            (12) 
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Which quantifies the deviation from the previous assumption of equal CV (=1). Recent investigations [57] 

about the distribution of the ratio Z=X/Y of normal variables with CV rx and ry is nearly Gaussian (in reality 

we already know that its skewness is non-zero) with CV equal to 
2 2+x yr r . If this property can be extended 

to the PDF of 1
R  as well, we expect that the PDF in the case of different values of r and rN is identical to that 

obtained under assumption of =1 provided that both input fatigue properties have the following equivalent 

CV: 

2 2 21

2 2

+ +
 = =Nr r

r           (13) 

In fact, the CV of the ratio of two normal variables of same CV  will be 
2 2+ Nr r  as that of the original 

problem. To check the validity of the proposed method to deal with scenarios with non-unitary  values, Figure 

4c and 4d compare the actual and equivalent (approximated) PDF of 1
R  in the lower and upper bound of the 

proposed validity range of the index : 0.5 2  . Importanty, the agreement in CV between the two 

distributions is good, being the relative absolute difference below 3%. Additional analyses will be done in the 

following to confirm the satisfactory accord between actual and equivalent PDF. In this way, it is possible to 

greatly simplify the statistical analysis of 1
R , as its CV can be directly deduced with good accuracy from the 

only knowledge of . A closer inspection of Fig. 5c and d reveals that the two distributions differ in mean and, 

to an even greater extent, in skewness (particularly pronounced in the case of low values of ). Correction 

functions will be derived in the following to fix this discrepancy. 

 

3.2 Parameters of the skew-normal distribution of 1
R  

Parametric MC simulations were carried out to investigate the dependency of mean , CV  and skewness 

sk of 1
R  upon the statistical properties of the input fatigue data  and  as well as the geometrical parameters 

of the notched specimen 2𝛼̅ and R . The following discussion will be focused on the notch angle 2𝛼̅ = 90°. 

Similar considerations hold true also for 2𝛼̅ = 60°. Therefore, no mention will be made in the following about 

this second notch angle value, apart from reporting in the next tables the corresponding best-fit coefficients. 

We will indicate the CV of 1
R  normalized to the equivalent CV  of the input fatigue data as the normalized 

coefficient of variation (NCV) expressed by: 

( )0 1 1,lim

1
; 7


   


 =    =


R R         (14) 

Figure 6a shows the results of parametric MC runs exploring the effect of notch radius R  and control radius 

1
R  on NCV . Importantly, the NCV is fairly independent of , thus indicating that the CV  scales linearly 

with . NCV is greatly influenced by the ratio 1 / R R , in fact it declines with increasing values of 1
R  and 

decreasing values of R . The lower bound of NCV is set by the condition of infinitely sharp notch ( 0 =R , 
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black dashed line in Fig. 6a), which permits to minimize the CV of the estimation of 1
R  as it represents the 

condition of steepest stress gradient. This minimum value of NCV will be indicated as  and reported in Table 

3 for the two explored 2𝛼̅ values. It is clear that the use of radiused notch geometries will result in 1
R  affected 

by larger values of . The higher the notch radius R  in comparison with 1
R , the larger the corresponding 

value of . 

An effective way of eliminating the dependency upon R  is to research the locus of notch radii leading to a 

fixed value of  [49]. The grey dashed lines of Fig. 6a indicate the discrete integer values, comprised between 

4 and 7, here explored besides the lower bound . Results at higher  values are not shown as they lead to 

excessively dispersed 1
R  estimations. Dotted values of Fig. 6b indicate the numerically computed roots of Eq. 

(14), graphically representing the intersection points of solid curves of Fig. 6a with the horizontal dashed lines 

 = const. These roots turned out to be independent of  and represent the sought locus of notch radii R  

corresponding to a fixed  value of NCV. It is well expressed by the following quadratic polynomial (solid 

lines in Fig. 6b): 

( ) ( ) 2

1,lim 1 2, ,     = +R b R b R          (15) 

Whose best-fit coefficients are listed in Table 4. Importantly, 1
R  input values satisfying the equality 

1 1,lim
 =R R  are affected by a NCV value  with a degree of approximation that can be inferred by inspection 

of Fig. 6c: the NCV evaluated from MC simulations done by keeping fixed  (=5 in Fig. 6c) and adjusting the 

value of 1
R  according to the explored notch radius (Eq. (15)) fall within a relative error band across  

comprised between -1.5% and 3%, irrespectively of the statistical properties  and  of the input fatigue data. 

This result is very important, as it confirms the ability of Eqs. (13,14) to bring the NCV of 1
R  for a generic 

set of input fatigue data back to that predicted for =1 (r=rN). 

Eq. (15) can be easily inverted to get the notch radius lim
R  the NCV of 1

R  equal to a prescribed  value: 

( ) ( ) ( )

( )

2

1 1 2 1

lim lim lim

2

, , 4 ,
;

2 , 2

     

 

− + +
 = =

b b b R D
R R R

b
     (16) 

The statistical properties of 1
R  will be now investigated for five discrete values of , namely 0, 4 ,5,6, 7. The 

dotted values of Fig. 6d represent the numerically computed root of the equation 
lim

 =R R  by varying 

parametrically 1
R . In essence, these roots correspond to the value of the notch radius R  leading to 1

R  

estimations affected by a NCV value equal to . Interestingly, the points outline a trend converging to 0 for 

vanishing R  (infinintely sharp notch) that is well represented by the following expression (solid lines in Fig. 

6d): 
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( ) ( ) ( )3 4

2

0 1 2

1 1

 
  

 
= + +

 n n

R R
n n

R R
         (17) 

Whose best-fit coefficients ni are listed in Table 3. Equation (17) is very worthwhile, essentially for two 

reasons: (i) it permits to design the notch radius of the notch specimen according to the expected control radius 

1
R  and the desidered level of NCV ; (ii) given the notch radius R  of the notched specimen used to estimate 

the the input value 1
R  of the control radius, it is possible to calculate the NCV  of 1

R . The knowledge of  

is useful to deduce the statistical properties of 1
R . In fact, the CV can be immediately estimated from Eq. (14); 

moreover, the expressions proposed in the following for evaluating mean and skewness at the above mentioned 

discrete values of ν (ν0, 4, 5, 6, 7) can be extended to intermediate ν values through simple interpolation. 

The results of MC simulations carried out to explore the effect of  and  on mean and skewness are shown 

in Fig. 7a and b (dotted values), respectively. It is clear that increasing values of  and decreasing values of  

make more pronounced the asymmetry in the PDF of 1
R . This results in a progressive positive deviation of 

the mean  from the input value 1
R  and a concomitant increment in skewness sk. Hyperbolic functions (solid 

lines) are here proposed to interpolate the MC results plotted in Fig. 7. In particular, mean and skewness are 

well represented by the following expressions: 

( ) ( )1 1 2

cosh
, ,



    

 
=    + R m m

         (18) 

( ) ( )( )
( ) ( )

1 2

3 4

, , sinh
, ,

    
    

 
= +   + 

sk s s
s s

      (19) 

Whose best-fit coefficients mi and si are listed in Table 5 and 6, respectively. 

To conclude, Table 7 summarizes the validity range under which the proposed method to deduce the statistical 

properties of the inverse estimations of the control radius 1
R  can be used with reasonable degree of 

approximation. The flowchart depicted in Fig. 8a summarizes the procedure for assessing the statistical 

properties of the control radius 1
R . This is also incorporated in Matlab scripts enclosed in the electronic version 

of the paper and described in the Appendix. 

 

3.3 Probabilistic notch fatigue assessments 

The statistical properties of the control radius deduced in the previous section can be used to estimate the 

uncertainty in the fatigue assessment of V-notches of severity different from that used for the inverse 

estimation of R1. For this purpose, MC simulations were carried out to generate a skew-normally distributed 

population of R1 with statistical parameters estimated according to the procedure illustrated in Fig. 8. Equations 

(7,8) are then used to calculate the corresponding notch fatigue factor Kf for a V-notched specimen of notch 

radius R . Its fatigue strength is calculated within a probabilistic framework extracting individuals of Kf and 
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plain fatigue limit, this latter assumed as usual as normally distributed with mean fl  and standard deviation 

S. The corresponding CV of the plain fatigue limit can be rearrenged from Eq. (13) as follows: 

2
fl 1

2

 


= =

 +

S
r            (20) 

In this way, a population of notch fatigue strength is generated and its mean and standard deviation are finally 

evaluated. It was found that the mean is very well approximated by the following intuitive expression: 

( )
fl

N,fl

f







 =

K
           (21) 

In other words, the mean notch fatigue strength is given by the ratio of the mean plain fatigue strength and the 

fatigue notch factor corresponding to the mean control radius  (Eq. (18)). 

Since the CV of the notch fatigue strength displays a nearly linear dependency upon the equivalent CV  of 

the input fatigue data, the following calculations will be expressed in terms of the NCV defined as N

N,fl

1

 

S

. The flowchart depicted in Fig. 8b summarizes the procedure for the probabilistic fatigue assessment of a 

notched geometry with diameter D notch radius R and opening angle 2𝛼̅ once the statistical properties of the 

control radius (namely mean  standard deviation  and input value 1
R ) have been determined from an 

independent notch geometry (characterized by  and  statistical properties). 

The NCV estimated from MC simulations are shown in Fig. 9a-d (dotted values) for the four values  

comprised within the proposed validity range, namely 0.5, 1, 1.5 and 2, respectively, as a function of notch 

root radius R  and parametric in control radius 1
R . For the sake of brevity, Fig. 9 reports the simulations 

undertaken for  =5. Similar trends are obtained for the remaining explored value of . Interestingly, these 

results indicate an asymptotic trend for large 1
R  and small 1

R  tending to the NCV of the plain fatigue strength 

(refer to Eq. 20) equal to 
2

1

1

2

+
. For this reason, the following tri-variate fitting equation is proposed to 

represent the data shown in Fig. 9: 

( ) ( )( ) ( ) ( )( )

N

22

N,fl
1 2 3 4 2

1

1 2 1

1
, , , ,

 
         

= +
  +

+ + +


S

R
f f f f

R

   (22) 

Whose best fit coefficients fi are listed in Table 6. The agreement of this function (solid lines in Fig. 9) with 

the numerical data is very good. The aforementioned aysmptotic behavior is not surprising, as the notched 

specimen to be assessed tends to a smooth one for R  approaching infinity, especially for small values of the 

control radius 1
R . Looking at Fig. 9, it is also evident that NCV increases with increasing sharpness of the 

notch and is maximum for the perfectly sharp notch, regardless of the value of 1
R . As expected, NCV increases 
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with increasing . In particular, the maximum value achieved for the perfectly sharp notch increases from 1.8 

at = to 3.6 at =. Recalling the discussion started in the Introduction, this increment in NCV with respect 

to the smooth sample is related to the uncertainty in the control radius 1
R , which in turn is linked to the 

inversion procedure (affecting mostly the sharpest notches) and to material’s variability. 

The statistical properties of 1
R  and the probabilistic assessment of independent notch configurations discussed 

in this section will be applied in the following to interpret the fatigue data collected on two metallic materials. 

 

4. Applicative examples 

4.1 Experimental data 

The experimental data derived from our previous papers [50,58] and [52,59] are analyzed with the proposed 

procedure. Specifically, in [50,58], the fatigue behavior of the Al aeronautical grade 7075-T6 (Poisson's ratio 

𝜈̅ =0.33) was investigated by undertaking axial fatigue tests at two load ratios (R=-1 and R=0.1) on plain and 

notched specimens extracted from the same wrought bar. The geometry of this latter sample type is illustrated 

in Fig. 10a. In particular, notches of different acuity were machined. They differ in the notch root radius R: 

R0.12 (ultrasharp), R0.21 (sharp) and R1 (blunt). The first two types of notch proved to be suitable for reliable 

inverse search estimations of critical length L and control radius R1, whereas the last was used for validation 

tests only. The interested reader is referred to [48,56] for further detail. 

A specific point of novelty of the present work as compared to its companion paper [49] aimed at investigating 

the statistical properties of L is that the broader range of allowable values of  (see Table 7) permits to extend 

the statistical analysis to the outcomes of the investigations carried out in [52,59] on a new class of materials 

gaining growing interest in the academic and industrial field, viz. an additively manufactured (AM) Ti-alloy 

(Poisson's ratio 𝜈̅ =0.30). Such interest stems from the broad design freedom allowed by AM techniques and 

from the fact that they introduce defects into the material that are particularly critical to the fatigue structural 

integrity [60]. Specifically, notched samples, whose geometry is shown in Fig. 10b, were fabricated by 

selective laser melting (SLM) of the titanium alloy Ti-6Al-4V ELI (henceforth abbreviated Ti-64) and fatigue 

tested at the load ratio R=-1. To explore the defectiveness effect on the notch fatigue strength, two sample 

batches were fabricated. The first one, termed turned notch (T-N), is obtained by turning the notch from plain 

cylindrical bars, while in the second batch, termed SLM notch (SLM-N), the notch geometry is already 

introduced by the SLM process and a slight turning finish was applied to restore the correct notch radius. 

Notches of different severity were machined: samples with notch radius R0.2 (sharp) will be used for the 

inverse search of R1, while those with notch radius R1 (blunt) will be used for verification. 

The collected SN are shown in Fig. 11a and b for 7075-T6 and Ti-64, respectively, and are fitted according to 

the following asymptotic power law equation (solid lines): 

3

2
a 1

f

 = +
k

k
k

N
            (23) 
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Where a is the amplitude (half range ) stress and Nf the number of cycles to failure. The best-fit coefficients 

ki are listed in Table 9 along with the estimated regression standard deviation S and SN assumed to be uniform 

for the whole fatigue curve. In this way, it is possible to build the SN curves with 10% and 90% failure 

probability (dashed lines in Fig. 11). 

As already discussed in [52], the fatigue stress concentration factor Kf used for the inverse search procedure 

of the AM Ti-64 is calculated by modifying the value of the plain fatigue strength to make it representative of 

the actual Vickers hardness and defect size leading to fatigue failure in the notched counterpart. In essence, as 

shown in Table 10, the population of critical defects was found to be different in the plain and notched 

specimens. This is due to the fact that the notch stress gradient forces the crack nucleation to occur in the 

vicinity of the notch apex; in this way, only a fraction of defects dispersed throughout the specimen volume 

have the potential to become critical, in contrast to the scenario present in smooth samples, wherein the uniform 

axial stress distribution in the gauge section is able to activate a larger fraction of defects. As a result, if the 

area  Murakami model calibrated in [58] to account for the actual size of critical defects found in plain 

samples is applied to the population of critical defects found in the vicinity of the notch tip (listed in Table 10), 

the resulting fatigue strength is slightly different from that of the smooth samples. For this reason, the plain 

fatigue strength data reported in Table 9 and used in the following for the inverse estimation of R1 slightly 

differ from those used to plot the SN curve of the original plain variant shown in Fig. 11b. The interested 

reader is referred to [52,61] for further detail. 

 

4.2 Inverse search of the control radius R1 

Table 11 summarizes the results of the inverse search estimation of the control radius R1 based on the high-

cycle fatigue data listed in Table 9. It can be noted that all the experimental variants of 7075-T6 satisfy the 

requirements on  and  listed in Table 7 for the validity of the proposed statistical analysis. The SLM Ti-64 

variant displays a slight violation on the  requirement, which was found to lead to consistent statistical results 

and will be therefore further developed in the present paper. Conversely, the turned Ti-64 variant is affected 

by significant deviations of both  and  from the above-mentioned requirements, which make impossible the 

direct application of the devised statistical approach. An approximate way for overcoming this limitation will 

be discussed in the following. 

Except for this last experimental condition, Table 11 lists the statistical properties of R1 estimated according 

to Eq. (17-19). Table 11 reports also the results of MC simulations where, during each trial, R1 is computed 

extracting normally distributed values of plain and notch fatigue strength with mean and standard deviation 

listed in Table 9. The agreement among the statistical parameters estimated in the two ways is satisfactorily 

good, especially for mean and CV /. As expected, the R1 estimations made for 7075-T6 on the base of the 

ultrasharp (R0.12) notched geometry are affected by a lower value of NCV  as compared to the predictions 

based on the sharp (R0.21) notch configuration. Regarding the Ti-64 SLM variant, the large value of R1 in 
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comparison with the notch radius R makes the estimation of R1 affected by a very low value of , viz. close to 

the minimum 0 attainable using a perfectly sharp notch. 

Fig. 12a and b compare the PDF of R1 estimated through MC simulations (histograms) and the SND with 

parameters deduced from Eqs. (17-19) and listed in Table 11 (solid curves) for 7075-T6 tested under R = −1 

and R = 0.1, respectively, using the HCF data of the ultrasharp notched geometry. The agreement between the 

two approaches is very good. Fig. 12c illustrates the same PDF comparison for the Ti-64 SLM notch variant. 

Once again, the agreement is satisfactorily good, even though to a lower extent, probably due to the slight 

violation of the requirement on the maximum allowed  value shown in Table 9. 

Figure 13a illustrates the dependency of the control radius of Ti-64 upon the critical defect size. Besides the 

two AM variants here investigated, we consider a third experimental point (red dotted value) representative of 

the wrought counterpart under the same fine acicular microstructural conditions. Specifically, the control 

radius is deduced in this case from the fatigue limit and the crack growth threshold values found in the 

literature. The interested reader is referred to [52] for further detail. Interestingly, R1 increases with the size of 

the critical defect and this trend is well represented by a hyperbolic tangent function (solid line in Fig. 13a). 

Figure 13b and c illustrates the SEM micrograph of critical defects typically found in the vicinity of the notch 

tip in the turned and SLM notched specimens, respectively. The aforementioned approximate method to 

estimate the statistical properties of R1 of the turned notched variant is based on the assumption that the 

corresponding R1 PDF can be obtained from that of the SLM variant by linearly scaling the only mean value 

and keeping the same CV and skewness. The comparison between this approximate estimation and that based 

on MC simulations incorporating the actual statistical properties of the input fatigue data is given in Fig. 12d. 

It can be noted that, despite the questionable assumption, the agreement between the two PDF is satisfactorily 

good. Therefore, the following probabilistic assessment of turned notches will be done considering this 

approximate statistical estimation of R1. 

The statistical analysis applied so far to the HCF strength can be then extended to the medium cycle fatigue 

regime. For this purpose, probabilistic notch assessments are made according to the flowchart depicted in Fig. 

8b, wherein the plain fatigue strength and the control radius (which in turn is determined according to Fig. 8a 

from an independent notch variant) are random variables depending upon the number of cycles to failure. Once 

mean and standard deviation of the notch fatigue strength have been calculated, the SN curves can determined 

at different failure probability assuming the notch fatigue strength to be normally distributed. 

Fig. 14a,c,e illustrate the dependency of mean (solid line), 10%,50%, 90% cumulative distribution function 

CDF (dashed lines) upon the number of cycles to failure Nf for 7075-T6 at R=0.1, for 7075-T6 at R=-1 and 

SLM Ti-64, respectively. It can be noted that R1 decreases with increasing fatigue lives and that the almost 

symmetric PDF of 7075-T6 at R=-1 (see Fig. 12b) makes the distribution nearly Gaussian (mean and 50% 

CDF are practically coincident). Fig. 14b,d,f show the limit notch radius Rlim expressed by Eq. (16) as a 

function of Nf and parametric in the NCV . Interestingly, the ultrasharp notched configuration is able to keep 

 between 4 and 5 and below 4 throughout the entire explored fatigue regime for 7075-T6 at R=0.1 and R=-1, 

respectively. Higher values of , though still within the validity interval, are obtained considering the sharp 
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notched geometry. For SLM Ti-64,  is well below 4 throughout the entire fatigue regime thanks to the large 

R1 to R ratio. 

 

4.3 Probabilistic notch fatigue assessment 

In this section, notch fatigue assessments are made through MC simulations and according to Eqs. (21-22) 

derived on the base of the statistical properties of the SND assumed for R1. 

Table 12 lists the results of the following self-consistency test: the statistical properties of R1 inferred from a 

certain notched geometry are used to predict the fatigue strength (mean and standard deviation) of the same 

notch configuration. As expected, the mean value assessed according to both approaches is in very good 

agreement with the input value. More interestingly, both probabilistic assessments lead to a systematic 

overestimation of the standard deviation. The uncertainty linked to the inverse search procedure leads to an 

increased dispersion in the assessment of the input fatigue data. 

Table 13 lists the results of the validation tests: fatigue assessments are made on notched configurations not 

used to get the statistical properties of R1. The agreement in mean value is very good for all the investigated 

material variants, being the absolute relative error below 5%. Interestingly, when the ultrasharp notched 

geometry is used to assess independent notched configurations of 7075-T6, the standard deviation is very close 

to the experimental one for the blunt notch at both R ratios and sharp notch at R=-1, while it is overestimated 

for the sharp notch at R=0.1, wherein the uncertainty in R1 is larger ( is 4.6 vs 4 at R=-1). When the sharp 

notched geometry is used to get the statistical properties of R1, the standard deviation of the blunt specimens 

is again in good agreement with the experimental data, whereas there is a systematic and significant 

overestimation of the standard deviation of the notched configurations that are sharper (ultrasharp) than that 

used for the R1 inverse search procedure. This means that, in the former scenario, the uncertainty in fatigue 

predictions is mainly related to the material variability in plain fatigue strength and control radius R1, whereas, 

in the latter one, it is primarily dictated by the uncertainty in the inverse search of R1. The results of AMed Ti-

64 further confirm these observations: the low NCV  value in the estimation of R1 makes the contribution of 

the uncertainty in inverse search of R1 negligible and the standard deviation of the assessed variants is in very 

good agreement with the experimental values. 

A careful reader may object that, in the case of R1 estimations assessed by low NCV , the standard deviation 

of the fatigue notch assessments is mainly due to the dispersion in the plain fatigue strength data and 

consequently that no particular role is played by the material variability of R1. However, if we look at Table 

14, this is not exactly true. Indeed, Table 14 compares the CV of the plain fatigue strength with that of the 

notched variants, both deduced from experimental data and probability assessments. The experimental CV of 

the notched variants of 7075-T6 at R=0.1 is very close to that of the plain specimen tested under the same R. 

In this case, we can argue that the dispersion in the fatigue notch strength is actually due to the material 

variability in plain fatigue strength. The fact that the probabilistic notch fatigue assessment overestimates the 

actual CV, especially in the sharpest notch configuration, can be ascribed to the uncertainty introduced by the 

inverse search procedure. Different is the scenario depicted by 7075-T6 under R=-1. In this case, the low CV 
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value of the plain fatigue strength along with the lower uncertainty in R1 (lower  than at R=0.1) makes the 

probabilistic assessment of the CV of the notched (especially blunt) variants in better agreement with the 

experimental data as compared to the CV of the input plain fatigue strength. We expect therefore a non-

negligible role of the material variability of R1. Even more convincing is the situation displayed by the AMed 

Ti-64: the CV of the notched variants is significantly higher than that of the plain fatigue strength and is in 

much better agreement with that predicted by the probabilistic assessments. Apparently, the high level of 

defectiveness of this material class significantly increases the material variability of R1 and this is correctly 

considered by the proposed statistical approach. 

In conclusion, Fig. 15a-d compare the experimental data with the SN curves predicted on the base of the 

statistical distribution of R1 shown in Fig. 14 as a function of Nf. The solid lines refer to 50% (
N ) failure 

probability, the dashed lines indicate 10% (
N N1.282 −  S ) and 90% (

N N1.282 +  S ) failure probability 

deduced from the knowledge of the standard deviation of the notch fatigue assessments. It can be noted that 

the proposed method allows for a sound rationalization of the experimental data: in fact, 80% of the 

experimental data lies within the 10%-90% dispersion band, apart from the predictions made for the sharp 

7075-T6 notch at R=-1 (Fig. 15b): this mismatch is due to a slight underestimation of the mean fatigue strength 

(2%, see Table 13), whereas the amplitude of the dispersion band is coherent with that displayed by the 

experimental data. 

 

5. Conclusions 

The present paper investigated the statistical properties of the control radius R1 estimated through the inverse 

search procedure proposed in [45]. This requires a specific notch geometry devised to minimize the sensitivity 

of R1 to the experimental uncertainty. New fitting coefficients were proposed in this paper allowing for lower 

absolute relative errors with respect to [45]. Through Monte Carlo simulations, it was possible to demonstrate 

that, if the input quantities are normally distributed, the output variable has a non-symmetric probability 

density function that, under certain conditions, is well represented by a skew normal distribution. Approximate 

functions were proposed to predict mean, standard deviation and skewness of such distribution and tested using 

real experimental data. Probabilistic fatigue assessments were made on independent notch geometries. The 

following conclusions can be drawn: 

1) The normalized coefficient of variation (NCV) of R1 increases with increasing notch radius to R1 ratio 

(Eq. 17). In this way, it is possible to design the acuity of the notched specimen to achieve the desired 

NCV of R1. 

2) The statistical properties of R1 can be used for probabilistic fatigue assessments of notched geometries. 

The NCV in notch fatigue strength is dictated by two contributions, viz. the uncertainty in the plain 

fatigue strength and that in the control radius R1. The former is predominant in materials with little 

dispersed control radius values and in blunt notch geometries. 

3) The uncertainty in control radius can be thought as to be composed of two contributions: the 

uncertainty linked to the inverse search of R1, particularly affecting the dispersion of the fatigue 
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assessment of very sharp notches, and the uncertainty linked to the material variability of notch 

sensitivity and hence in R1. This last contribution plays a crucial role in additively manufactured 

materials, wherein the pronounced defectiveness amplifies the material variability of R1. 

4) Matlab scripts are attached to the on-line version of the present paper. They permit a fast inverse search 

of R1 and the determination of its statistical properties. They can be used for probabilistic notch fatigue 

assessments, wherein Monte Carlo simulations are carried out by generating normally distributed plain 

fatigue strength and skew-normally distributed R1 values. 

 

Appendix 

The compressed file NewCoefficientsInverseDirect.zip contains the text files listing in tabular 

form the coefficients cij and dij for inverse (Eq. (6)) and direct problems (Eq. (7)), respectively. 

An example is reported in this appendix to show step-by-step the proposed statistical calculation procedure. 

The data analyzed here is about the experimental results of Aluminum alloy 7075-T6, under load ratio R = ‒

1, and the Poisson’s ratio for this alloy is 0.33 = . This calculation sequence can be retrieved in the editable 

script files for MATLAB® software, which are available online in Appendix B. The script 

RunThisFirst_SaveCoeffs.m is initially required to be run, just to have all the coefficients available 

and saved in the local folder. The script InverseSearchExample_StatisticalAnalysis.m leads 

to the determination of the control radius, along with its statistical distribution and provides a graph for the 

PDF. The script DirectProblemExample_StatisticalAnalysis.m eventually allows the 

evaluation of the fatigue strength of another (blunter) specimen and the related standard deviation. 

The SED control radius is initially determined by combining the plain specimen and the ultrasharp notched 

specimen, with their standard deviations. The fatigue strength properties are reported below, for the plain 

specimen: 

fl / 2 159MPa, / 2 5.23MPaS = =         (A.1a) 

and for the ultrasharp specimen, 20mm, 90 , 0.12mmD R= =  = : 

fl N/ 2 38.2MPa, / 2 2.19MPaS = =         (A.1b) 

The plain and the notched specimen data can be combined, obviously to find the fatigue stress concentration 

factor: 

f 4.162K =             (A.2) 

and by means of Eqs. (5) and (6) the control radius is obtained: 

1  = 0.005966R            (A.3a) 

1  = 0.05966 mmR            (A.3b) 

The coefficients of variation and the equivalent CV are easily found: 

0.03289r =             (A.4a) 
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N 0.05733r =             (A.4b) 

1.743 =             (A.4c) 

0.04674 =             (A.4d) 

The normalized CV can be obtained from Eq. (17) resulting from the geometry of the notch (angle and 

dimensionless radius) and the obtained control radius in dimensionless form: 

3.989 =             (A.5) 

The mean value (dimensionless)   of the control radius distribution can be obtained by interpolating Eq. (18): 

1 0

1 2

cosh , ,...,7
( , ) ( , )

R
m m

  
    

 
= = 

+ 
       (A.6a) 

and then by a piecewise linear interpolation it follows: 

( 3.989) 0.005997  = =           (A.6b) 

A similar procedure is followed to find the skewness of the distribution, according to Eq. (19): 

( ) ( )( )
( ) ( )

1 2

3 4

, , sinh , ( 3.989) 0.1590
, ,

sk s s sk
s s

     
    

 
= + = =  + 

   (A.7) 

The standard deviation can be found by inverting Eq. (14): 

0.001118  =  =            (A.8) 

and the shape parameter   of the distribution is then obtained with Eq. (11e): 

4
/2

2
1

1
1.103

1

i

i

i

a sk
sk


=

= =
−

          (A.9) 

Now the scale parameter   can be found by inverting Eq. (11c) since the values ,   are available: 

2

2

0.001386
2

1
(1 )






 

= =

−
+

         (A.10) 

and the location parameter   is obtained with Eq. (11b): 

2

2

0.005178
1

 
 


= − =

+
          (A.11) 

All the parameters for the skew-normal PDF distribution are available now. 

The strength of a blunter notched specimen (R = 1.0 mm) can be assessed with Eqs. (7), (8) and finally Eq. 

(21), and by using the mean value of the distribution for the control radius input. The fatigue stress 

concentration factor Kf is initially obtained, and then from the plain specimen fatigue stregth the assessment 

for the blunt notch is: 

N,fl / 2 63.5MPa →  =           (A.12) 
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Eq. (22) eventually provides a calculation tool for the standard deviation, and an interpolation in terms of the 

CV is again required: 

( ) ( )( ) ( ) ( )( )N N,fl 2 2

1 2 3 4 1

2 1

1 , , , , ( / )
S

f f f f R R


          

 
=   + 

  + + + + 
  (A.13a) 

By introducing the CV obtained with the mean value of the skewed distribution of the control radius, the 

resulting standard deviation is: 

N3.982 / 2 2.23MPaS = → =          (A.13b) 

 

Appendix B 

Script files introduced in Appendix A for the online version of the paper: 
RunThisFirst_SaveCoeffs.m 

InverseSearchExample_StatisticalAnalysis.m 

DirectProblemExample_StatisticalAnalysis.m 
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Tables 

Table 1. Coefficients for the singularity-based analysis of the V-notched specimen. 

2  s KN,UU 
I1 m 

0.27 =  0.30 =  0.33 =  0.27 =  0.30 =  0.33 =  

90° 0.455516 0.3210 0.81715 0.77192 0.72467 0.97352 0.98043 0.98884 

60° 0.487779 0.2866 0.84387 0.79271 0.73898 0.96829 0.97696 0.98745 

 

Table 2. ai fit model coefficients for the inversion of Eq. (11e). 

a1 a2 a3 a4 

2.6159 1.7983 -5.4302 4.1124 

 

Table 3: Best-fit coefficients of the equations used to estimate NCV of 
1
R  (Eq. (17)). 

Notch 

angle 2  

NCV Best-fit coefficients of Eq. (17) 

0 n1 n2 n3 n4 

90° 3.140 0.2752 0.1434 0.8776 1.991 

60° 2.932 0.02478 0.3012 1.398 1.832 

 

Table 4: Best fit coefficients of the equations used to estimate 
1
R  (Eq. (15)) 

Notch angle 2  NCV b1 b2 

90° 4 
0.4721 -0.3740 

5 
0.3129 -0.09226 

6 
0.2480 -0.06302 

 
0.2052 -0.05047 

60° 4 
0.4248 -0.3045 

5 
0.2964 -0.1084 

6 
0.2410 -0.1047 

 
0.1993 -0.09003 

 

Table 5: Best fit coefficients of the equations used to estimate mean value of 
1
R  (Eq. (18)). 

Notch angle 2  NCV Symbol 
Index i 

1 2 

90° 

0 

mi 

0.2411 0.07261 

4 0.2238 0.1369 

5 0.1868 0.1980 

6 0.1534 0.2458 

7 0.1253 0.2869 
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60° 

0 0.2501 0.08307 

4 0.2139 0.2091 

5 0.1678 0.2784 

6 0.1349 0.3209 

 0.1050 0.3514 

 

Table 6: Best fit coefficients of the equations used to estimate skewness of 
1
R  (Eq. (19)) 

Notch 

angle 2  

NCV Symbol Index i 

1 2 3 4 

90° 0 si 0.5591 0.1828 0.03268 0.05253 

4 0.6043 -0.1182 0.04643 0.04272 

5 0.5267 -0.1877 0.04761 0.03725 

6 0.5237 -0.2469 0.05305 0.03300 

7 0.4374 -0.2388 0.04692 0.03297 

60° 0 0.8930 0.05799 0.05580 0.05351 

4 0.6043 -0.1182 0.04643 0.04272 

5 0.4729 -0.2170 0.04880 0.03624 

6 0.4823 -0.2562 0.05195 0.03796 

 0.4340 -0.2548 0.05155 0.03379 

 

Table 7. Requirements for statistically validated 
1
R  estimations. 

Requirements on input fatigue data Requirement on 
1
R  Requirements on R  

0.1

0.5 2

 

 
 

10.0025 0.08 R  0.2 R  

 

Table 8: Best fit coefficients for the estimation of the normalized standard deviation on the estimation of notch 

fatigue limit (Eq. (22)). 

Notch 

angle 

2  

NCV Symbol Index i 

1 2 3 4 

90° 0 fi 1.632 -0.2932 0.1962 -0.04946 

4 1.094 -0.1704 0.1251 -0.03004 

5 0.7728 -0.1032 0.08236 -0.01867 

6 0.5906 -0.06887 0.05964 -0.01278 

7 0.4822 -0.05800 0.04632 -0.01074 
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60° 0 1.600 -0.2875 0.2112 -0.05244 

4 0.9615 -0.1424 0.1181 -0.02750 

5 0.6828 -0.08592 0.07906 -0.01751 

6 0.5328 -0.06643 0.05867 -0.01377 

 0.4300 -0.04811 0.04475 -0.01004 

 

Table 9. Fatigue data used for inverse statistical estimation of the control radius R1. 

Material R Geometry k1 (MPa) k2 (MPa) k3 
Fatigue 

life 

fl / 2

N,fl / 2  

(MPa) 

S/2 SN/2 

(MPa) 

CV 

Al 7075-

T6 

0.1 

plain 114.8 62347 0.651 

3×107 

116 9.4 0.08 

notch R0.12 24.67 81852 0.742 24.9 1.46 0.06 

notch R0.21 26.48 32560 0.638 27.0 1.43 0.06 

-1 

plain 158.3 946747 0.810 159 5.23 0.03 

notch R0.12 38.01 2.6010×107 1.101 38.2 2.19 0.06 

notch R0.21 36.15 3078 0.364 42.0 2.69 0.06 

Ti-64 

SLM 
-1 

plain 240* 123927 0.646 

5×107 

241.5* 14* 0.06 

notch R0.2 109.7 60374 0.514 116.3 15.2 0.13 

Ti-64 

Turned 

plain 185* 123927 0.646 186.5* 12.4* 0.07 

notch R0.2 72.0 496.0 0.144 110.5 18.0 0.16 

* Estimated according to the Murakami model devised in [43,50] to account for the actual critical defect size 

in the notched specimens.  

 

Table 10. Hardness and critical defect size in plain and sharp notched variants of additively manufactured Ti-

6Al-4V investigated in [52,59]. 

Material/geometry Hardness HV0.1 Critical defect size maxarea  (m) 

Mean Standard deviation 

Plain 382 150 61.4 

SLM sharp notch 401 63 22.6 

Turned sharp notch 385 223 78.6 

 

Table 11. Statistical properties of the inverse estimation of the control radius R1. Data in bold indicate 

violation of the requirements set in Table 7. 

Material R 
Geom. 

1R  

(mm) 
   

Monte Carlo Predictions Eq. (17-19) 

1/ R  /   sk 1/ R  /   sk 

Al 

7075-

T6 

0.1 
R0.12 0.04338 0.071 0.72 4.57 1.024 0.317 0.503 1.023 0.324 0.461 

R0.21 0.03892 0.068 0.65 7.86 1.012 0.534 0.217 1.023 0.538 0.272 

-1 
R0.12 0.05966 0.047 1.74 3.99 1.006 0.179 0.205 1.005 0.186 0.159 

R0.21 0.06587 0.051 1.95 5.01 1.004 0.255 0.070 1.004 0.247 0.050 

Ti-64 

SLM 
-1 

R0.2 
0.1178 0.101 2.26 3.85 1.026 0.374 0.413 1.02 0.389 0.312 

Ti-64 

Turned 

R0.2 
0.1934 0.124 2.45 3.49 1.047 0.407 0.735 * * * 

* not compliant with the requirements set by Table 7. 
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Table 12. Self-consistency tests: probabilistic HCF assessment of notch geometries used to get R1. 

Material R Geometry 
Exp. (MPa) 

Monte Carlo 

(MPa) 
Eq. (21-22) (MPa) 

N,fl / 2  SN/2 N,fl / 2  SN/2 N,fl / 2  SN/2 

Al 

7075-

T6 

0.1 
R0.12 24.9 1.46 25.2 3.30 25.4 3.35 

R0.21 27.0 1.43 27.2 3.61 27.3 3.68 

-1 
R0.12 38.2 2.19 38.5 2.76 38.5 2.92 

R0.21 42.0 2.69 42.3 3.31 42.3 3.48 

Ti-64 

SLM 
-1 R0.2 116.3 15.2 116.7 18.0 117.0 19.4 

 

Table 13. Validation tests: probabilistic HCF assessment of independent notch geometries. 

Material R 
Start. 

geometry 

Pred. 

geometry 

Exp. (MPa) 
Monte Carlo 

(MPa) 
Eq. (21-22) (MPa) 

N,fl / 2  SN/2 N,fl / 2  SN/2 N,fl / 2  SN/2 

Al 

7075-

T6 

0.1 

R0.12 
R1 45.0 2.72 45.5 3.77 45.5 3.77 

R0.21 27.0 1.43 27.9 2.98 27.9 3.02 

R0.21 
R1 45.0 2.72 45.3 3.84 45.3 3.82 

R0.12 24.9 1.46 24.1 4.58 24.5 4.47 

-1 

R0.12 
R1 62.3 2.86 63.5 2.21 63.5 2.23 

R0.21 42.0 2.69 41.2 2.39 41.2 2.49 

R0.21 
R1 62.3 2.86 64.0 2.42 64.0 2.40 

R0.12 38.2 2.19 39.8 3.91 39.9 4.13 

Ti-64 

SLM 
-1 

R0.2 

SLM 

R1 148.8 17.2 145.5 14.4 144.8 15.0 

Ti-64 

Turned 

R0.2 110.5 18.0 112.2 20.9 110.5 19.9 

R1 116.6 11.8 124.5 17.1 122.4 12.0 

 

Table 14. Coefficient of variation of experimental data and predictions of independent notch geometries. 

Comparison with the experimental CV of the plain specimen variant. Data in bold indicates bad estimation 

of actual CV of notched variants 

Material R 
Start. 

geometry 

Pred. 

geometry 

CV 

Plain Exp. 
Monte 

Carlo 

Assessment 

from Eq. 

(21-22) 

Al 7075-

T6 

0.1 

R0.12 
R1 

0.08 

0.06 0.08 0.08 

R0.21 0.05 0.11 0.11 

R0.21 
R1 0.06 0.08 0.08 

R0.12 0.06 0.19 0.18 

-1 

R0.12 
R1 

0.03 

0.05 0.03 0.04 

R0.21 0.06 0.06 0.06 

R0.21 
R1 0.05 0.04 0.04 

R0.12 0.06 0.10 0.10 
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Ti-64 

SLM 
-1 R0.2 SLM 

R1 0.06 0.12 0.10 0.10 

Ti-64 

Turned 

R0.2 
0.06 

0.16 0.19 0.18 

R1 0.10 0.14 0.10 
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Figures 

 

Figure 1. Strain energy density averaging domain Ω ahead of the notch root. (R1) indicates the amplitude of 

the uncertainty interval of the control radius R1, which is the focus of the present paper. 

 

 

Figure 2. (a) Specimen geometry for notch-derived estimation of the control radius R1. (b) Initial assumption 

based on singular stress distribution. (c) summary of the control radius inverse search. 
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Figure 3. Percentage relative difference between the FE control radius and the inverse search procedure result 

for the opening angle 2𝛼̅ = 90° (a) and 2𝛼̅ = 60° (b). The new fitting technique proposed in the present paper 

allows for a reduction in maximum absolute relative error with respect to [45]. 

 

 

Figure 4. (a) Probability density function (PDF) of notch-derived control radius estimations. Histograms are 

obtained from Monte Carlo (MC) simulations. Mean, standard deviation and skewness calculated from MC 

simulations are used to evaluate the parameters of the skew-normal distributions plotted as solid lines. r is 

the coefficient of variation (CV) of the plain fatigue strength, which is here assumed to be equal to CV of the 
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notch fatigue strength (rN). (b) PDF of notch-derived critical distance corresponding the same notch fatigue 

factor as that considered in (a). (c) and (d) PDFs accounting for the effective CV, r, rN = κ r, are compared 

with those obtained considering, for plain and notch fatigue strength, the same equivalent CV, namely Σ. (c) 

maximum, (d) minimum value of the validity range established for κ. 

 

 

Figure 5. (a) relation between skewness and shape parameter α for the skew-normal distribution (Eq. (11d)). 

(b) comparison between analytical and numerical (Eq. (11e), dotted yellow line) inversion of Eq. (11d). 

 

 

Figure 6. (a) The CV of notch-derived 1
R  estimations normalized to Σ (and denoted as ν) depends on the 

notch radius R . Here, the statistical properties of 1
R  will be evaluated considering five values of ν, ranging 

from ν0 (corresponding to an infinitely sharp notch, black dashed line) to 7. (b) 1,lim
R  is the locus of control 

radii for varying notch radii R  corresponding to a certain value of ν. (c) The NCV ν for the locus 1,lim
R  is 
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fairly independent of Σ and R  within an error band −1.5%, 3%. (d) The dependency of ν upon R  and 1
R  is 

well represented by Eq. (17). 

 

 

Figure 7. Statistical properties of notch-derived 1
R  estimations characterized by the same ν value (here taken 

equal to 5). (a) Mean to input 1
R  ratio and (b) skewness are well represented by hyperbolic functions Eq. (18-

19). 
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Figure 8. (a) Flowchart illustrating the step-by-step calculation procedure of the statistical properties of 

notch-derived control radius estimations. (a) Flowchart illustrating the probabilistic fatigue notch assessment 

taking into account the statistical properties of the control radius R1. 
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Figure 9. Dependency of the CV of notch fatigue strength estimations made using notch-derived control 

radius estimations upon notch radius R  and input control radius 1
R . The plots are build considering the 

value of NCV =5. Similar trends were obtained for all the explored values of . (a) =0.5, (b) =1, (c) 

=1.5, (d) =2. The results of MC simulations (dotted values) are well represented by Eq. (22) (solid lines). 

 

 

0.00 0.05 0.10 0.15 0.20
1.0

1.5

2.0

2.5

3.0

Notch radius R'

1
S

N N
,f
l

0.00 0.05 0.10 0.15 0.20
0.5

1.0

1.5

2.0

2.5

3.0

Notch radius R'

1
S

N N
,f

l

0.00 0.05 0.10 0.15 0.20
0.5

1.0

1.5

2.0

2.5

3.0

Notch radius R'

1
S

N N
,f

l

0.00 0.05 0.10 0.15 0.20
0.5

1.0

1.5

2.0

2.5

3.0

Notch radius R'

1
S

N N
,f
l

(a) (b)

Eq. (22)

(c) (d)

5,  2,  2 90n k a= = = °

Eq. (22)

1 0.0025R¢ =
1 0.005R¢ =

1 0.01R¢ =
1 0.02R¢ =

1 0.03R¢ =
1 0.05R¢ =

5,  1,  2 90n k a= = = °1 0.0025R¢ =
1 0.005R¢ =

1 0.01R¢ =
1

0.02R¢ =
1 0.03R¢ =

1 0.05R¢ =

5,  1.5,  2 90n k a= = = °1 0.0025R¢ =
1

0.005R¢ =

1 0.01R¢ =
1 0.02R¢ =

1 0.03R¢ =
1

0.05R¢ =

5,  0.5,  2 90n k a= = = °1
0.0025R¢ =

1 0.005R¢ =
1 0.01R¢ =

1
0.02R¢ =

1 0.03R¢ =
1 0.05R¢ =

Eq. (22)

Eq. (22)



38 

 

Figure 10. Geometry of notched specimens used in the present study. (a) Specimens of Al 7075-T6 were 

fatigue tested in [50,58]. Three different notch radii R were explored: R0.12 (ultrasharp), R0.21 (sharp), R1 

(blunt). (b) Specimens of Ti-6Al-4V were additively manufactured and fatigue tested in [52]. Two different 

notch radii R were explored: R0.2 (sharp), R1 (blunt). Notches were fabricated directly via selective laser 

melting (SLM notch) or by turning additively manufactured cylindrical bars (Turned notch). 

 

  

Figure 11. SN curves of plain and notched specimens used for the inverse search estimation of R1. (a) Al 

7075-T6, (b) additively manufactured Ti-6Al-4V. Solid lines refer to 50% failure probability, dashed lines to 

10% and 90% failure probability. Arrows indicate run-out tests. 
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Figure 12. Comparison between PDF estimated through MC simulations and predicted by Eqs. (17-19) for 

the notch-derived control radius. (a) Al 7075-T6 tested at R=0.1, (b) Al 7075-T6 tested at R=-1, (c) Ti-6Al-

4V where the notch was directly fabricated via SLM, (d) Ti-6Al-4V where the notch was turned from 

SLMed bars. In (d) the PDF is predicted from that shown in (c) by scaling the mean value according to Fig. 

13. 

 

 

Figure 13. (a) Control radius dependency upon the critical defect size from experimental data collected in 

[50] for additively manufactured Ti-6Al-4V and from the literature for a conventionally processed material 

with similar microstructure. (b) and (c) SEM micrograph of the fracture surface illustrating (red arrows) the 

critical defect in the vicinity of the tip of turned and SLM notch, respectively. The solid line indicates the 

hyperbolic tangent function proposed in [52]. 
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Figure 14. (a), (c), (e) Results of the inverse search statistical determination of the control radius as a 

function of the number of cycles to failure for (a) Al 7075-T6 at R=0.1, (c) Al 7075-T6 at R=-1, (e) Ti-6Al-

4V where the notch was directly fabricated via SLM. (b), (d), (f) Limit notch radius Rlim (Eq. (16)) as a 

function of the number of cycles to failure. (a)-(b) Al 7075-T6 at R=0.1, (c)-(d) Al 7075-T6 at R=-1, (e)-(f) 

Ti-6Al-4V where the notch was directly fabricated via SLM. 
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Figure 15. Probabilistic assessment of SN curves of independent notch geometry not used for R1 inverse 

estimation. Solid lines refer to 50% failure probability, dashed lines to 10% and 90% failure probability. 

Dotted values are experimental results. (a) Al 7075-T6 at R=0.1, (b) Al 7075-T6 at R=-1, (c) Ti-6Al-4V 

where the notch was directly fabricated via SLM, (d) Ti-6Al-4V where the notch was machined by turning 

AMed cylindrical bars. 


