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Fractal Geometry of Higher Derivative Gravity
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We determine the scaling properties of geometric operators such as lengths, areas, and volumes
in models of higher derivative quantum gravity by renormalizing appropriate composite operators.
We use these results to deduce the fractal dimensions of such hypersurfaces embedded in a quantum
spacetime at very small distances.

It was shown a long time ago by Stelle [1] that the
action

S[g] =
∫

d4x
√−g

{

1
f2

2

(

1
3R

2 −RµνR
µν
)

+ 1
6f2

0

R2
}

(1)

is perturbatively renormalizable in four dimensions.
Stelle’s model became even more attractive once it was
shown to be asymptotically free in the coupling λ ≡ (f2)

2

[2, 3]. However it was soon realized that the model is
non-unitary because of the higher derivative propaga-
tor. Nevertheless, solutions to this problem were pro-
posed early on [4–7] and invoked a variety of ideas in-
cluding, in particular, self-stabilization [6] and the Lee-
Wick mechanism [8]. The interest toward higher deriva-
tive quantum gravity has resurged over the years [9, 10],
and recently has returned thanks to the appearance of
new proposals which are spiritual successors of the afore-
mentioned ideas: agravity [11, 12] and a perturbatively
unitary mechanism based on quantizing some degrees of
freedom as fakeons [13, 14]. Furthermore, it has been
conjectured that unitarity is restored when the theory
is assisted by a strongly coupled Yang-Mills theory [15]
or when its coupling coefficient is larger than that of an
added Einstein-Hilbert term [16].
Alongside the development of higher derivative grav-

ity the idea of non-perturbative renormalizability of stan-
dard Einstein gravity has gained momentum and culmi-
nated in the asymptotic safety conjecture [17, 18], which
has evidence based on non-perturbative renormalization
group methods [19, 20]. The status of the relation be-
tween asymptotically free Stelle’s gravity and asymptot-
ically safe Einstein’s gravity has been debated by theo-
rists for some time [21, 22], especially because the latter
is believed to originate from the continuation of (2 + ε)-
gravity [23]. Explicit results based on mass-dependent
regulators suggest that in four dimensions there could be
two distinct universality classes [24, 25].
The increasing attention toward Stelle’s gravity and its

high energy properties opens the avenue to the discus-
sion of its physical implications in the search for possible
phenomenological signatures. In fact, model specific im-
plications have already been explored in various contexts
[26–28]. The geometric characterization of the quantum
theory of (1), which could be expected to have a fractal
nature induced by radiative corrections, is, however, still

lacking. One straightforward tool to explore the geome-
try of quantum spacetimes is the inclusion of composite
operators into the renormalization process which have a
geometric meaning [29, 30] and, thus, can be used to
deduce meaningful quantities such as, for example, the
fractal dimensions of embedded hypersurfaces of various
(bare) dimensionalities. This work is dedicated to the
renormalization of some geometric operators which allow
one to read off such fractal dimensions.

Many quantum gravity scenarios predict that space-
time has a fractal behavior at a very small scale, often
implying that the dimension of spacetime is smaller than
four. Interestingly, this happens both in the asymptotic
safety scenario and in the causal dynamical triangula-
tions approach (see [31] for a comprehensive review). It
must be emphasized that there are, in principle, several
possible working definitions of the spacetime dimension.
Examples include the spectral dimension, the walk di-
mension and the Hausdorff dimension, and all these def-
initions could give different estimates of the fractal di-
mension [32].

Renormalization. We begin by recalling basic facts
on the renormalization of Stelle’s gravity to set the stage
for our results. In the following, we adopt the nota-
tion of [11], which we refer to for more details on the
couplings’ renormalization. The bare action (1) is the
most general power-counting renormalizable action con-
structed with curvature tensors of the metric gµν in four
dimensions modulo non-propagating boundary and topo-
logical terms. It includes the square of the Weyl ten-
sor C2 = CµνρθC

µνρθ which is weighted by the coupling
f2 because it fulfills

∫

C2 = −2
∫ (

1
3R

2 −RµνR
µν
)

by
neglecting the contribution of the Euler characteristic.
The parametrization is chosen such that the only term
manifestly breaking the Weyl symmetry is R2 which is
weighted by the coupling f0. We refer to the conformally
invariant limit f0 → ∞ as Weyl’s higher derivative grav-
ity [10]. Operators with fewer derivatives, such as the
scalar curvature R which couples through Newton’s con-
tant or the spacetime volume which couples through the
cosmological constant, can, in principle, be included as
relevant deformations of S[g], but we will stick to (1).

To renormalize a path-integral constructed with the
action (1), we adopt the background field method and
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split the metric in a background and a fluctuation part,
gµν → gµν+hµν . This split is used to fix the gauge, while
the background metric is chosen to be flat, gµν = ηµν ,
from now on, which is enough to determine the countert-
erms. We employ the following gauge-fixing action:

SGF[h] = − 1

2ξg

∫

d4xχµ∂
2χµ (2)

with χµ = ∂ν
(

hµν − cg
1
2ηµνhα

α
)

and the two gauge-
fixing parameters ξg and cg.
By adopting dimensional regularization and using min-

imal subtraction one finds the beta functions

βf2 = − 1

(4π)2
133

20
f3
2 ,

βf0 = +
1

(4π)2

(

10

12

f4
2

f4
0

+
5

2

f2
2

f2
0

+
5

12

)

f3
0 ,

(3)

where βfi ≡ d
d logµ

fi, with µ being the reference scale
at which the renormalized couplings are defined. Both
beta functions admit Gaussian fixed points, while the ra-

tio ω =
f2

2

2f2

0

has a beta function βω with two non-trivial

zeroes. Thus, by setting ω to either fixed point one can
obtain a perturbative series controlled solely by f2. The
conformal limit f0 → ∞ is discontinuous because Weyl
invariance must be gauge fixed through the additional
condition hµ

µ = 0 and the number of propagating de-
grees of freedom changes [10]. The renormalization group
flow in this case becomes

βf2 = − 1

(4π)2
199

30
f3
2 . (4)

Here, we explicitly assume that the beta function in the
conformal limit is gauge independent as it is the case for
the beta functions of Stelle’s gravity [33].
Scaling dimensions. We now introduce the scaling di-

mension of an embedded hypersurface and discuss its
physical meaning. The scaling dimension is sometimes
used to guess the Hausdorff dimension but may dif-
fer from it [34]. Let us consider the volume of an n-
dimensional surface σn and denote it by Vσn

. Let us also
assume that the volume is characterized by some length
L.1 Classically, we expect that Vσn

scales like Vσn
∼ Ln.

In the quantum regime, however, the gravitational fluc-
tuations might change the classical scaling by modifying
the scaling exponent via an anomalous dimension γn, i.e.
Vσn

∼ Ln−γn . In this case, we say that the n-dimensional
surface σn has scaling dimension n − γn. One can con-
struct further definitions of scaling dimensions from the
building blocks σn. For instance, one may measure the
scaling dimension not in terms of the characteristic (co-
ordinate) length L, but rather in terms of the length

1 For instance, the volume is specified by an n-dimensional ball of
radius L in the coordinate space.

of a given curve σ1, whose total length we denote by
Vσ1

. Combining the scaling behaviors Vσn
∼ Ln−γn and

Vσ1
∼ L1−γ1 , one obtains that Vσn

∼ Vσ1

n−γn
1−γ1 , which

defines a new scaling exponent for the volume of σn.
Anomalous dimensions. Let us introduce the volume

of σn on the field theoretical side now. The induced met-
ric on σn is given by the pull-back of the spacetime metric
onto the surface, which we parametrize by xµ(u) via the
coordinates ua with a = 1, . . . , n. The pulled-back in-
duced metric is given by

gab(u) = gµν (x(u))
∂xµ

∂ua

∂xν

∂ub
, (5)

and the volume of the submanifold σn then is written as

Vσn
≡

∫

σn

√
x∗g =

∫

D

dnu
√

det gab(u) . (6)

It is easy to see that equation (6) for the case n = 1
reproduces the length of a given curve xµ(u),

Vσ1
=

∫

du

√

gµν (x(u)) ẋµ(u)ẋν(u) .

The induced volume element
√
gσn

≡ √
det gab is not

present in the bare action (1), but it can be renormalized
as a composite operator. To do so we extend the action
by adding a source ζ conjugate to the determinant of the
pulled-back metric:

SO[g, ζ] ≡
∫

dnu ζ (u)
√

det gab (u) , (7)

in which SO[g, ζ] is invariant under hypersurface-
preserving diffeomorphism if the source ζ is transformed
accordingly.
We denote the anomalous dimension of the composite

operator by γσn
which at one loop is linear in f2

2 and f2
0 .

The Callan-Symanzik equation for 〈
√

gσn
(u)〉 reads

(

µ∂µ + βf2

∂

∂f2
+ βf0

∂

∂f0
+ γσn

)

〈
√

gσn
(u)〉 = 0 . (8)

In the deep ultraviolet, i.e. for f2, f0 → 0, we can neglect
the beta functions, which are cubic in the couplings, and
approximate equation (8) as2

(µ∂µ + γσn
) 〈
√

gσn
(u)〉 ≈ 0 . (9)

Equation (9) facilitates the scaling analysis of correla-
tion functions in conjunction with dimensional analysis,
which provides a further, independent equation. In par-
ticular, since the metric is dimensionless, one has

(µ∂µ − u∂u) 〈
√

gσn
(u)〉 = 0 , (10)

2 We assume here that the expectation value of the composite op-
erator can be expanded perturbatively and that it is non-zero
even at zero coupling, which is to be expected since gravity is
naturally in the broken phase, i.e. 〈gµν〉 ≈ ηµν 6= 0.
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in which we assume the energy scale of interest is much
bigger than all other dimensionful quantities other than
the coordinates (e.g. any infrared mass).3 Combining
equations (9) and (10) together, one obtains

〈
√

gσn
(u)〉 ∼ u−γσn .

Thus, one can estimate the scaling behavior of Vσn
via

〈Vσn
〉 =

∫

D

dnu 〈
√

gσn
(u)〉 ∼ Ln−γσn ,

where L is the characteristic length of the domain of in-
tegration. This proves that at very high energies, or al-
ternatively at very small scales, the exponents coincide,
γn = γσn

, and we can determine the scaling properties
by field theoretic methods.
In the case of Stelle’s gravity, the ultraviolet fixed-point

is Gaussian; thus in the infinite energy limit the anoma-
lous dimensions observables are zero or, more precisely,
radiative corrections to the scaling behavior are only log-
arithmic. However, in a regime in which the coupling
is sufficiently small, we are allowed to neglect the beta
functions in (8) and we encounter approximate scale in-
variance in which a fractal-like behavior of geometrical
volumes is present.4 Let us note that, even if scaling di-
mensions are not generally universal away from a fixed
point, in the present approximation both the anoma-
lous dimension and the couplings are independent of the
renormalization scheme, implying that the approximate
scale invariance is a physical effect. This is the scaling
regime located above any physical mass (including the
Planck mass) and inside the possibly infinite energy range
of validity of (1), which displays scale-invariant (fractal)
properties.
Geometric composite operators. To explicitly derive

the scaling exponent γσn
, we couple the composite oper-

ator of interest to a local source ζ(u) in (1). At one loop
a new divergence associated to the composite operator
can be computed by employing the standard trace-log
formula for the source-dependent effective action

Γ [g, ζ] = S [g, ζ] +
1

2
Tr log

(

δ2S [g, ζ]
)

.

The new divergences can be renormalized multiplica-
tively by introducing a suitable counterterm for SO[g, ζ]:
∫

dnu ζ(u)Zσn

√

gσn
(u). The anomalous dimension is

then given by the coefficient of the pole of Zσn
, which

is computed by evaluating the one-point function

δΓ

δζ

∣

∣

∣

ζ=0
=Zσn

√
gσn

+
1

2
Tr

[

G ·
(

δ2
√
gσn

)]

, (11)

3 Equivalently, we assume that the correlation function depends
only on the product (uµ).

4 Notice that, in the case d = 4− ε, a non-trivial scaling behavior
is present even at the ultraviolet non-Gaussian fixed point.

in which we keep all terms up to O(f2
2 ) and O(f2

0 ). Here,
G denotes the gauge-fixed graviton propagator

Gρσ
µν =

i

k4

{

− 2f2
2P

(2) + f2
0

[

P (0) +

√
3 cgT

(0)

2− cg

+
3c3gP

(0ω)

(2− cg)2

]

+ 2ξg

[

P (1) +
2P (0ω)

(2− cg)2

]}ρσ

µν
,

in which P (0), P (1), P (2), P (0ω) and T (0) are spin-
projectors whose exact form is stated in [11].
The explicit computation of (11) for Stelle’s model

gives

γσn
=

1

(4π)2
n

288

{

20(2− 5n)f2
2 −

[

(11n− 26)

+
6cg(7n− 10)

2− cg
−

9c2g(n+ 2)

(2− cg)2

]

f2
0

− 12
[

(2 − 5n)− (n+ 2)

(2− cg)2

]

ξg

}

,

(12)

which is linear in both couplings f2
0 and f2

2 and in the
gauge-fixing parameter ξg. The anomalous dimension
(12) is scheme independent at this order.5 The physical
interpretation of this result is that all modes propagating
in the gauge-fixed propagator contribute to (12), includ-
ing both, gauge-invariant spin-2 (graviton) and scalar
modes as well as the unphysical vector and pseudoscalar
ones.
The gauge dependence of (12) is to be expected be-

cause embedded hypersurfaces break diffeomorphism in-
variance and thus, strictly speaking, are not true observ-
ables. We could circumvent this problem by constructing
a gauge-invariant observable which combines the volume
of an hypersurface with an observable amplitude such
that the various gauge dependencies cancel each other.
This typically results in very non-local observables such
as the correlation length at fixed geodesic length. A sim-
ilar program works nicely in 2d quantum gravity [37, 38]
where computations are typically performed in the con-
formal gauge (to the best of our knowledge there is no
study exploring the explicit gauge dependence cancella-
tion). However, the problem of constructing interesting
and meaningful gauge-invariant observables in four di-
mensional quantum gravity is a long-standing one [39–
44], and is beyond the scope of this work.
In order to find a simpler workaround we first no-

tice (cf. [12]) that, in the physical gauge cg = ξg = 0,
only the gauge-invariant, hence physical, modes propa-
gate. The physical gauge is often associated to the unique

5 A systematic improvement of our estimate may be based on ei-
ther pushing perturbation theory to higher order or on applying
the functional renormalization group together with optimization
techniques; see [35, 36] for their application in statistical me-
chanics.
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Vilkovisky-de Witt effective action in which a nontrivial
connection in field space ensures that only physical modes
are integrated over and that the effective action is gauge
independent [45]. Importantly, this gauge also ensures
the vanishing of (12) at the Gaussian fixed-point. There-
fore, from now on, we work in the gauge cg = ξg = 0 and
assume that the physical scaling of hypersurfaces is given
by this gauge, in which only gauge-invariant degrees of
freedom propagate. (See also [46, 47] for a related ap-
proach where only physical degrees of freedom are used.)
Anomalous scaling in Stelle’s gravity. On the basis

of the fact that only physical modes propagate, we argue
that the physical gauge limit of (12) gives a reliable esti-
mate of the scaling dimension of an embedded hypersur-
face. In the limit ξg = cg = 0 the anomalous dimension

in terms of the couplings f2 and ω =
f2

2

2f2

0

reads

γσn
=

n

(4π)2
f2
2

576

{

40(2− 5n) +
1

ω
(26− 11n)

}

, (13)

which can be used in (8) and constitutes one of the main
results of this letter.
In four dimensions, the value of γσn

depends on the
scale of the renormalization group flow at which the cou-
plings are located. The anomalous dimension vanishes
at the fixed point but is non-zero as soon as we move
away from it. Note that this feature will hold in the
physical gauge for any theory exhibiting a fixed point
which is Gaussian. For sufficiently small values of the
couplings, we find approximate scale invariance charac-
terized by an effective fractal dimension of the geometric
operators. More precisely, if f2

2 > 0 it is straightfor-
ward to check that the anomalous dimension is positive
or negative depending on the value of n. For n = 1, 2,
i.e. lengths and areas, the anomalous dimension is posi-
tive for 1

ω
> 80−200n

−26+11n , while for n = 3, 4, i.e. three- and

four-volumes, for 1
ω
< 80−200n

−26+11n . It follows that quantum
fluctuations affect hypersurfaces of different dimensions
in different manners: A length can effectively decrease
its scaling dimension, while the opposite happens for a
three-volume. Compared to other models of quantum
gravity, which often display only dimensional reduction,
this behavior is very peculiar to higher derivative quan-
tum gravity.
As already mentioned, in d = 4− ε the theory exhibits

two nontrivial ultraviolet fixed points which are solutions
of −εf2+2βf2 = 0 and βω = 0. The scaling of geometric
operators at such fixed points is characterized by γσn

.
The system has two non-Gaussian solutions because the
equation βω = 0 has two roots ω∗,1 = −0.0229 and ω∗,2 =
−5.4671. We label them by

(f2
2 , ω)∗,1 = (−11.8732 ε,−0.0229) , (14)

(f2
2 , ω)∗,2 = (−11.8732 ε,−5.4671) . (15)

We argue that the more important solution is the first
one, because it is fully ultraviolet attractive and because

the second one was shown to lead to a non-positive ghost
inverse propagator [25]. The values of γσn

at both fixed
points can be exactly calculated, but for compactedness
we give their numerical approximations in Tab. I.
Anomalous scaling in Weyl-squared gravity. The

computation of γσn
in the Weyl-invariant case goes along

the same lines as in the case of Stelle’s theory with the
difference being that the propagator in (11) contains only
spin-2 propagating modes. Unfortunately at two loops
the conformal symmetry is anomalous [10] and, conse-
quently, radiative corrections will also generate the prop-
agating scalar mode; nevertheless Weyl theory is still rel-
evant for situations in which the conformal symmetry is
approximately realized [48]. At one loop, the propagator
is given by G with f2

0 = ξg = 0 which also employs the
additional gauge-fixing condition hµ

µ = 0. The explicit
result for the anomalous dimension then reads

γσn
= − 1

(4π)2
10

144
(5n2 − 2n) f2

2 . (16)

In d = 4 the anomalous dimension is zero at the fixed
point but non-zero in its neighbourhood. It is straight-
forward to see that the sign of the correction depends on
the sign of f2

2 for hypersurfaces of dimension 1 < n ≤ 4
and not on n itself. In d = 4−ε there is only one solution
of −εf2 + 2βf2 = 0, with the beta function (4), in this
case and we include the estimates for the scaling dimen-
sions in the last line of Tab. I with the label w for Weyl.
The anomalous dimension at the non-trivial fixed point
in d = 4− ε implies an effective dimensional reduction in
the UV for ε > 0.
Summary and future prospects. Since by nature grav-

ity is a geometrical theory, we believe that it is natural
to investigate the quantum properties of geometrical ob-
jects, such as lines, areas, and volumes in quantum grav-
ity. In this letter we have considered the quantum prop-
erties of such geometric operators in higher derivative
gravity for the first time. More precisely, we have com-
puted the scaling properties of these geometric operators
in Stelle’s and Weyl theories in d = 4 and d = 4− ε.
For the most physically relevant case corresponding

to d = 4, we have found that these geometric operators
display a peculiar scaling behavior: At the Gaussian fixed

TABLE I. Leading estimates of the anomalous dimension
(13) at the fixed points in d = 4 − ε spacetime dimensions
which correct the scaling of all hypersurfaces of dimension n

lower than four.

n = 1 n = 2 n = 3 n = 4

γσn |∗,1 0.1012ε 0.1291ε 0.0839ε −0.0348ε

γσn |∗,2 0.0160ε 0.0837ε 0.2031ε 0.3742ε

γσn |∗,w 0.0157ε 0.0838ε 0.2041ε 0.3769ε
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point the scaling is purely classical while moving away
from it we have a regime of approximate scale invariance
in which the effective dimension is fractal. The nature of
this fractal behavior depends on the couplings and, thus,
on the precise scale at which the operators are observed.
Remarkably, similar geometric operators can be de-

fined also in other approaches to quantum gravity, such
as loop quantum gravity, and causal dynamical triangu-
lations [44, 49]. Therefore this work paves the way to a
possible comparison among the predictions of all different
quantum gravity models, now including higher deriva-
tive quantum gravity. In general, the comparison of our
present results with [29, 30] corroborates the intuition
that Stelle’s asymptotically free gravity and Einstein’s
asymptotically safe gravity are two distinct universality
classes which are characterized by rather different fractal
behaviors of the respective geometrical operators.
The biggest open issue of the approach presented here

is to find a gauge-invariant generalization of our results
on the scaling dimensions. As a matter of fact, this
search overlaps with the quest for meaningful gauge in-
variant observables in theories of quantum gravity. Our
approach offers a shortcut based on the choice of prop-
agating only the physical, i.e., gauge invariant degrees
of freedom in full analogy with the Vilkovisky-de Witt
formalism. However, to what extent our approach is
valid should be tested further. In any case, let us em-
phasize that the approach developed here can also serve
to study fully fledged diffeomorphism-invariant observ-
ables. For instance, one could consider a correlation
function at fixed geodesic length between two operators:
〈
∫

x

∫

y
O(x)O(y)δ (ℓg − r)〉 with ℓg being the geodesic

length. Performing a scaling analysis of such correlation
functions involves the computation of the scaling dimen-
sion of the geodesic length itself, which can be computed
in a way similar to the one outlined in this work.
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