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1. Introduction

Many of the classic results in arithmetic Ramsey Theory are about the existence 
of monochromatic patterns found in any given finite coloring of the integers or of the 
natural numbers. (As usual in Ramsey Theory, “coloring” means partition, and a set is 
called “monochromatic” if it is included in one piece of the partition.) A great amount 
of work has been devoted to the search for monochromatic finite patterns, the archetype 
of which are the (finite) arithmetic progressions. Indeed, a cornerstone in this field of 
research is Van der Waerden Theorem, stating that in any finite coloring of the natural 
numbers one always finds arbitrarily long monochromatic arithmetic progressions.

Also infinite patterns have been repeatedly considered by researchers, although for 
them the variety of relevant examples does not seem to be comparable to that of finite 
configurations. The prototype of infinite monochromatic configurations in the natural 
numbers is the one given by the celebrated Hindman Theorem: “For every finite coloring 
N = C1 ∪ . . . ∪ Cr of the natural numbers, there exists an injective sequence (xn)∞n=1
such that all finite sums xn1 + . . . + xns

where n1 < . . . < ns are monochromatic.” The 
same result holds for the natural numbers with multiplication, and more generally, for 
any cancellative semigroup.

Generalizations of Hindman’s Finite Sum Theorem are obtained as corollaries of 
Milliken-Taylor Theorem; for instance, for every choice of coefficients a1, . . . , am ∈ N, 
there exists an injective sequence (xn)∞n=1 such that all sums a1

∑
n∈F1

xn + . . . +
am

∑
n∈Fm

xn where the nonempty finite sets F1 < . . . < Fm are arranged in increas-
ing order (that is, maxFi < minFi+1), are monochromatic. In the recent papers [3,15], 
within the general framework of semigroups, polynomial extensions of Milliken-Taylor 
Theorem have been proved which produce plenty of similar (but much more general) 
infinite monochromatic patterns.

The goal of this paper is to show that several infinite monochromatic configurations 
on the integers and on the natural numbers can be found where the additive and the 
multiplicative structure are mixed with the use of symmetric polynomials. (We pay 
attention that the considered patterns be not degenerate, in the sense that they are 
made of pairwise distinct elements.) To this end, we consider a class of associative and 
commutative operations on the integers originated by affine transformations, and then 
use the machinery of algebra on the Stone-Čech compactification.

The following property is probably the simplest corollary of our results which already 
provides a significant example of the type of “symmetrical” monochromatic patterns 
that can be obtained combining the sum and product operations (see Example 2.5 with 
� = 1):

• For every finite coloring of the natural numbers there exists an injective sequence 
(xn)∞n=1 such that all symmetric expressions below are monochromatic:

x1, x2, x3, . . . , x1 + x2 + x1x2, x1 + x3 + x1x3, x2 + x3 + x2x3, . . . ,
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x1 + x2 + x3 + x1x2 + x1x3 + x2x3 + x1x2x3, . . . .

(For the sake of brevity, we listed explicitly only the expressions that involve the first 
three elements of the sequence.) Notice that the above pattern is obtained by consid-
ering finite iterations of the symmetric polynomial function P (a, b) = a + b + ab. The 
key observation for the proof is that such a function is an associative operation on N, 
and in fact is the operation inherited from the multiplicative structure via the affine 
transformation T : a �→ a + 1.

In this regard, it is worth mentioning that monochromatic patterns in the natural 
numbers that mix additive and multiplicative structure are of great interest in the current 
research in arithmetic Ramsey Theory. For instance, it was only in 2010 that V. Bergelson 
[2] and N. Hindman [10] independently proved that the configuration {a, b, c, d} where 
a + b = c · d is monochromatic. In 2017 by J. Moreira [17] showed that the pattern 
{a, a + b, a · b} is monochromatic. In 2019, J.M. Barrett, M. Lupini and J. Moreira [1], 
building also on previous work by Luperi Baglini and the author [7], proved other similar 
partition regular configurations, including {a, a +b, a +b +a ·b}. It is still an open problem 
whether {a, b, a + b, a · b} is a monochromatic configuration.

The paper is organized as follows. In Sections 2 and 3, we present our results and give 
several examples. In Section 4 we recall all the notions required for the proofs, which 
are given in the following Section 5. The last Section 6 contains a list of remarks and 
possible directions for future research.

2. Symmetric polynomials and monochromatic configurations

Throughout the paper, we denote by N = {1, 2, . . .} the set of positive integers.
The combinatorial configurations we are interested in are symmetric, in the sense that 

they originate from suitable symmetric polynomials. Recall the following

Definition 2.1. For j = 1, . . . , n, the elementary symmetric polynomial in n variables is 
the polynomial:

ej(X1, . . . , Xn) =
∑

1≤i1<...<ij≤n

Xi1 · · ·Xij =
∑

G∈[{1,...,n}]j

∏
s∈G

Xs

where we used the notation [X]j = {G ⊆ X | |G| = j}.

Notice that for all real numbers a1, . . . , an, we have

n∏
j=1

(aj + 1) = c + 1

where
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c =
n∑

j=1
ej(a1, . . . , an) =

∑
∅�=G⊆{1,...,n}

∏
s∈G

as.

More generally, for �, k �= 0, it is easily verified that

n∏
j=1

(�aj + k) = �c + k

where

c =
n∑

j=1
�j−1kn−jej(a1, . . . , an) + kn − k

�
=

=
∑

∅�=G⊆{1,...,n}

(
�|G|−1kn−|G| ·

∏
s∈G

as

)
+ kn − k

�
.

The crucial point here is the fact that there exists a commutative and associative 
operation ���,k such that a1 ���,k · · · ���,k an = c, where c is the number defined as above. 
(See §4).

Notice that the above number c = c(a1, . . . , an) belongs to Z for all a1, . . . , an ∈ Z

if and only if � divides k(k − 1). This justifies our attention on the following class of 
symmetric polynomials.

Definition 2.2. For �, k ∈ Z with �, k �= 0, the (�, k)-symmetric polynomial in n variables 
is:

S�,k(X1, . . . , Xn) :=
n∑

j=1
�j−1kn−jej(X1, . . . , Xn) + kn − k

�

=
∑

∅�=G⊆{1,...,n}

(
�|G|−1kn−|G| ·

∏
s∈G

Xs

)
+ kn − k

�
.

For instance, if k = 1 and n = 4, then for every � �= 0:

S�,1(a, b, c, d) = a + b + c + d + �(ab + ac + ad + bc + bd + cd)+

+ �2(abc + abd + acd + bcd) + �3abcd.

Recall that for infinite sequences of natural numbers (xn)∞n=1, the corresponding set 
of finite sums is the set:

FS(xn)∞n=1 := {xn1 + . . . + xns
| n1 < . . . < ns}.
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A cornerstone result in arithmetic Ramsey Theory shows the existence of infinite 
monochromatic patterns of finite sums.

• Hindman Finite Sums Theorem (1974) [9]: For every finite coloring N = C1∪ . . .∪Cr

there exist a color Ci and an injective sequence (xn)∞n=1 such that FS(xn)∞n=1 ⊆ Ci. 
More generally, for every injective sequence of natural numbers (xn)∞n=1 and for every 
finite coloring FS(xn)∞n=1 = C1 ∪ . . . ∪ Cr of the corresponding set of finite sums, 
there exist an injective sequence (yn)∞n=1 and a color Ci such that FS(yn)∞n=1 ⊆ Ci.

The same result is also true if one considers finite products instead of finite sums.
In analogy with the set of finite sums we give the following

Definition 2.3. Let (xn)∞n=1 be an infinite sequence, and let �, k ∈ Z with �, k �= 0. The 
corresponding (�, k)-symmetric system is the set:

S�,k(xn)∞n=1 := {S�,k(xn1 , . . . , xns
) | n1 < . . . < ns} .

For suitable � and k, (�, k)-symmetric systems are partition regular on Z and on N.

Theorem 2.4. Assume that �, k �= 0 are integers where � divides k(k− 1). Then for every 
finite coloring Z = C1∪ . . .∪Cr there exist an injective sequence (xn)∞n=1 of integers and 
a color Ci such that S�,k(xn)∞n=1 ⊆ Ci.

More generally, for every injective sequence of integers (xn)∞n=1 and for every finite 
coloring S�,k(xn)∞n=1 = C1 ∪ . . .∪Cr of the corresponding (�, k)-symmetric system, there 
exist an injective sequence (yn)∞n=1 of integers and a color Ci such that S�,k(yn)∞n=1 ⊆ Ci.

Moreover, for positive � ∈ N, the above partition regularity properties are also true if 
we replace the integers Z with the natural numbers N.

Here are two of the simplest examples.

Example 2.5. When k = 1, for every � ∈ N one obtains the following infinite monochro-
matic pattern in the natural numbers, where the sequence (xn)∞n=1 is injective1:⎧⎨⎩ ∑

∅�=G⊆F

(
�|G|−1

∏
s∈G

xs

) ∣∣∣∣∣ ∅ �= F ⊂ N finite

⎫⎬⎭ .

That is, the following elements are monochromatic:

• xs for all s,

1 Following the common use, for simplicity we will say that: “the pattern (or configuration) S(xn)∞n=1 is 
monochromatic in X” to mean that: “for every finite partition X = C1 ∪ . . .∪Cr there exist a color Ci and 
a sequence (xn)∞n=1 such that S(xn)∞n=1 ⊆ C.”
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• xs + xt + � xsxt for all s < t,
• xs + xt + xu + �(xsxt + xsxu + xtxu) + �2 xsxtxu for all s < t < u,
• xs+xt+xu+xv +�(xsxt+xsxu+xsxv +xtxu+xtxv +xuxv) +�2(xsxtxu+xsxtxv +

xsxuxv + xtxuxv) + �3 xsxtxuxv for all s < t < u < v; and so forth.

Example 2.6. When � = k = 2, one obtains the following infinite monochromatic pattern 
in the natural numbers, where the sequence (xn)∞n=1 is injective:⎧⎨⎩2|F |−1 ·

⎛⎝ ∑
∅�=G⊆F

∏
s∈G

xs

⎞⎠ + 2|F |−1 − 1

∣∣∣∣∣ ∅ �= F ⊂ N finite

⎫⎬⎭ .

That is, the following elements are monochromatic:

• xs for all s,
• 2 (xs + xt + xsxt) + 1 for all s < t,
• 4 (xs + xt + xu + xsxt + xsxu + xtxu + xsxtxu) + 3 for all s < t < u,
• 8 (xs +xt +xu +xv +xsxt +xsxu +xsxv +xtxu + xtxv +xuxv + xsxtxu + xsxtxv +

xsxuxv + xtxuxv + xsxtxuxv) + 7 for all s < t < u < v; and so forth.

As already mentioned, a fundamental result in arithmetic Ramsey Theory is the classic

• Van der Waerden Theorem (1927) [19]: For every finite coloring N = C1∪. . .∪Cr and 
for every L ∈ N there exists a monochromatic arithmetic progression of length L; that 
is, there exist a color Ci and elements a, b ∈ N such that a, a + b, a +2b, . . . , a +Lb ∈
Ci.

The following year 1928, the above Ramsey property was strengthened by Brauer [5], 
who proved that one can also have the common difference b of the same color as the 
elements of the progression.

A few decades later, as a result of his studies about partition regularity of homogeneous 
systems of linear Diophantine equations, Deuber [6] demonstrated further generaliza-
tions; in particular, he showed the partition regularity of the so-called (m, p, c)-sets.

• Deuber Theorem (1974) [6]: For every m, p, c ∈ N and for every finite coloring 
N = C1 ∪ . . . ∪ Cr there exists a monochromatic (m, p, c)-set; that is, there exist a 
color Ci and elements a0, a1, . . . , am ∈ Ci such that aj +

∑j−1
s=0 nsas ∈ Ci for every 

j ∈ {1, . . . , m} and for all n0, . . . , nj−1 ∈ {−p, . . . , p}.

The following analogue of Deuber Theorem holds in our context.

Theorem 2.7. Let �, k be integers where � �= 0 divides k − 1, let m ∈ N, and let 
L ∈ N. Then for every finite coloring Z = C1 ∪ . . . ∪ Cr there exist a color Ci and 
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elements a0, a1, . . . , am ∈ Ci such that for every j = 1, . . . , m and for all n0, . . . , nj−1 ∈
{0, 1, . . . , L}:

1
�

(
(�aj + k)

j−1∏
s=0

(�as + k)ns − k

)
∈ Ci

where we can assume that (�aj + k) �= 0, 1, −1 for all j.2
Moreover, for positive � ∈ N, the above partition regularity property is also true if we 

replace the integers Z with the natural numbers N.

Example 2.8. In the simple case when � = k = 1 and m = L = 2 one obtains the following 
monochromatic pattern in the natural numbers:

a, b, c, a + b + ab, a + c + ac, b + c + bc, a + b + c + ab + ac + bc + abc,

a2b + a2 + 2ab + 2a + b, a2c + a2 + 2ac + 2a + c, b2c + b2 + 2bc + 2b + c,

a2bc + a2b + a2c + 2abc + 2ab + 2ac + a2 + bc + 2a + b + c,

ab2c + ab2 + b2c + 2abc + 2ab + 2bc + b2 + ac + a + 2b + c,

a2b2c+2a2bc+2ab2c+4abc+a2c+b2c+2ac+2bc+a2b2+2a2b+2ab2+4ab+a2+b2+2a+2b+c.

As a consequence of Theorem 2.7, the following analogue of Brauer Theorem is proved, 
where elements in the monochromatic configuration are all distinct:

Theorem 2.9. Let �, k be integers where � �= 0 divides k−1. Then for every finite coloring 
Z = C1 ∪ . . .∪Cr and for every L ∈ N there exist a color Ci and elements a, b such that

a, b,
1
�

(
(�a + k)(�b + k) − k

)
, . . . ,

1
�

(
(�a + k)(�b + k)L − k

)
∈ Ci

where we can assume the above elements to be pairwise distinct.
Moreover, for positive � ∈ N, the above partition regularity property is also true if we 

replace the integers Z with the natural numbers N.

Example 2.10. In the simplest case when � = k = 1, for every L ∈ N one obtains the 
following monochromatic pattern in the natural numbers, where all elements are distinct:

a, b, a + b + ab, ab2 + b2 + 2ab + 2b + a,

ab3 + b3 + 3ab2 + 3b2 + 3ab + 3b + a, . . . , (a + 1)(b + 1)L − 1.

2 This condition is needed to get meaningful configurations.
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3. Symmetric patterns and Milliken-Taylor theorem

Below, we denote by [N]m the family = {F ⊂ N | |F | = m} of all subsets of N
of cardinality m; and for nonempty finite F, G ⊂ N we write F < G to mean that 
maxF < minG.

The following result, that was independently proved by Milliken and Taylor soon after 
Hindman proved his Finite Sums Theorem, is a common strengthening of Hindman and 
Ramsey Theorems.

• Milliken-Taylor Theorem (1975) [16,18]: For every finite coloring [N]m = C1∪. . .∪Cr

there exist an injective sequence (xn)∞n=1 of natural numbers and a color Ci such that

{{xF1 , . . . , xFm
} | F1 < . . . < Fm} ⊆ Ci

where for F = {n1 < . . . < ns} ⊂ N we denoted xF = xn1 + . . . + xns
.

Clearly, when m = 1 one obtains Hindman Theorem; and when all Fj are singletons, 
one obtains Ramsey Theorem.

Similarly to Hindman Theorem and van der Waerden Theorem, also Milliken-Taylor 
Theorem has an analogue with our symmetric patterns.

For convenience, we now extend the definition of (�, k)-symmetric systems S�,k to 
cases where k = 0 or � = 0, so as to also include the usual finite products and finite 
sums.

Definition 3.1. For integers � �= 0 we set:

• S�,0(a1, . . . , an) = a1 ���,0 · · · ���,0an = �n−1a1 · · · an.

We also set:

• S0,1(a1, . . . , an) = a1 ��0,1 · · · ��0,1an = a1 + . . . + an.

Theorem 3.2. Assume that

(a) (�j , kj)mj=1 is a finite sequence of pairs of integers where for every j = 1, . . . , m, 
either �j �= 0 divides kj(kj − 1) or (�j , kj) = (0, 1);

(b) f : Zm → Z is any function.

Then for every finite coloring Z = C1 ∪ . . .∪Cr there exist injective sequences (x(j)
n )∞n=1

for j = 1, . . . , m and there exists a color Ci with the properties that (x(j)
n )∞n=1 = (x(j′)

n )∞n=1
whenever (�j , kj) = (�j′ , kj′), and
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{
f
(
x

(1)
F1

, . . . , x
(m)
Fm

) ∣∣∣F1 < . . . < Fm

}
⊆ Ci,

where for F = {n1 < . . . < ns} ⊂ N we denoted x(j)
F = S�j ,kj

(x(j)
n1 , . . . , x

(j)
ns ).

Moreover, if we also assume that all �j ≥ 0 and if f : Nm → Z satisfies the condition:

(†) ∃ n1 ∀n1 ≥ n1 ∃ n2 ∀n2 ≥ n2 . . . ∃ nm ∀nm ≥ nm one has that f(n1, n2, . . . , nm) ∈
N,

then the above partition regularity property is also true if we replace the integers Z with 
the natural numbers N.

Clearly, every function f : Nm → N trivially satisfies condition (†); however, we 
remark that there are more relevant examples, including a large class of polynomial 
functions (see below).

Recall that a multi-index is a tuple α = (α1, . . . , αm) ∈ (N∪{0})m. If z = (z1, . . . , zm)
is a vector of variables and α = (α1, . . . , αm) is a multi-index, then we write zα to 
denote the monomial 

∏m
i=1 z

αi
i . Polynomials in the variables z1, . . . , zm are written in 

the form P (z) =
∑

α cαzα, where α are multi-indexes and where cα are the coefficients of 
monomials zα. The support of P is the finite set supp(P ) = {α | cα �= 0}. Now consider 
the anti-lexicographic order on the multi-indexes, where for α �= β one sets:

(α1, . . . , αm) < (β1, . . . , βm) ⇐⇒ αi < βi where i = max{j | αj �= βj}.

The leading term of a polynomial P =
∑

α cαzα is the monomial cαzα where α =
max Supp(P ) is the greatest multi-index of P according to the anti-lexicographic order. 
The leading coefficient of P is the coefficient cα of its leading term.

Proposition 3.3. Let P ∈ Z[z1, . . . , zm] be a polynomial in several variables over the 
integers with positive leading coefficient. Then the polynomial function P (z1, . . . , zm)
satisfies condition (†) of Theorem 3.2.

Proof. It is a straightforward consequence of the following general property of polyno-
mials, restricted to variables that are natural numbers:

• If P ∈ R[z1, . . . , zm] has positive leading coefficient, then:
∃ x1 ∀x1 ≥ x1 ∃ x2 ∀x2 ≥ x2 . . . ∃ xm ∀xm ≥ xm one has that P (x1, x2, . . . , xm) > 0.

In the base case of a single variable, let P (z) =
∑d

j=1 cjz
j where the leading coefficient 

cd > 0. Then limx→+∞ P (x) = +∞, and so there exists x1 such that P (x1) > 0 for all 
x1 ≥ x1.

At the inductive step, let P =
∑

α cαzα ∈ R[z1, . . . , zm, zm+1], where the leading 
term cγzγ has positive coefficient cγ > 0. If γ = (β1, . . . , βm, d), then we can write 
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P =
∑d

j=0 Pj · (zm+1)j for suitable polynomials Pj ∈ R[z1, . . . , zm] for j = 0, . . . , d. 
Notice that the leading term of Pd is cγzβ where β = (β1, . . . , βm). By the inductive 
hypothesis applied to Pd, we have that ∃ x1 ∀x1 ≥ x1 ∃ x2 ∀x2 ≥ x2 . . . ∃ xm ∀xm ≥
xm one has that Pd(x1, x2, . . . , xm) > 0. Given any x1, . . . , xm as above, consider the 
polynomial Q(z) := P (x1, . . . , xm, z) ∈ R[z]. Notice that Q(z) =

∑d
j=0 ajz

j where 
aj := Pj(x1, x2, . . . , xm). Since the leading term ad = Pd(x1, x2, . . . , xm) is positive, 
limx→+∞ Q(x) = +∞ and so there exists xm+1 such that for every xm+1 ≥ xm+1 one 
has that Q(xm+1) = P (x1, . . . , xm, xm+1) > 0, as desired. �

For the natural numbers N, we can prove a modified version of the previous theorem 
where a smaller class of (�j , kj) is allowed, but where a larger class of functions f is 
considered.

Theorem 3.4. Assume that

(a) (�j , kj)mj=1 is a finite sequence of pairs of integers where for every j = 1, . . . , m, 
either �j > 0 and kj ∈ {0, 1}, or (�j , kj) = (0, 1);

(b) f is an m-variable function that satisfies the following property, where all variables 
nj , nj , Nj ∈ N:
(‡) ∃ n1, N1 ∀n1 ≥ n1 ∃ n2, N2 ∀n2 ≥ n2 . . . ∃ nm, Nm ∀nm ≥ nm one has that 

f(n1N1, n2N2, . . . , nmNm) ∈ N.

Then for every finite coloring N = C1 ∪ . . .∪Cr there exist injective sequences (x(j)
n )∞n=1

for j = 1, . . . , m and there exists a color Ci with the properties that (x(j)
n )∞n=1 = (x(j′)

n )∞n=1
whenever (�j , kj) = (�j′ , kj′), and

{
f
(
x

(1)
F1

, . . . , x
(m)
Fm

) ∣∣∣F1 < . . . < Fm

}
⊆ Ci,

where for F = {n1 < . . . < ns} ⊂ N we denoted x(j)
F = S�j ,kj

(x(j)
n1 , . . . , x

(j)
ns ).

The functions that satisfy condition (‡) above include a large class of polynomial 
functions with rational coefficients.

Proposition 3.5. Let P (z1, . . . , zm) ∈ Q[z1, . . . , zm] be a polynomial in several variables 
over the rational numbers with positive leading coefficient and no constant term. Then 
the polynomial function P (z1, . . . , zm) satisfies condition (‡) of Theorem 3.4.

Proof. Let P (z) =
∑

α cαzα ∈ Q[z1, . . . , zm]. We will prove the following property:

• ∃ N ∈ N such that ∃ n1 ∀n1 ≥ n1 ∃ n2 ∀n2 ≥ n2 . . . ∃ nm ∀nm ≥ nm one has that 
P (n1N, n2N, . . . , nmN) ∈ N.
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Since all cα ∈ Q we can pick N ∈ N such that N · cα ∈ Z for every α ∈ Supp(P ). 
Then consider the polynomial

P ′(z1, . . . , zm) := P (z1N, . . . , zmN),

that is, P ′(z) =
∑

α c′αzα where for every multi-index α = (α1, . . . , αn), it is 
c′α = Nα1+...+αncα. Since P has no constant term, then it is readily verified that 
P ′ ∈ Z[z1, . . . , zm]. Then, by the previous Proposition 3.3 applied to P ′, we obtain 
that:

• ∃ n1 ∀n1 ≥ n1 ∃ n2 ∀n2 ≥ n2 . . . ∃ nm ∀nm ≥ nm one has that P ′(n1, . . . , nm) > 0, 
and hence P (n1N, n2N, . . . , nmN) ∈ N. �

Let us now see a few particular cases of Theorems 3.2 and 3.4. The examples presented 
below are not necessarily the most relevant or interesting; rather, they have been chosen 
with the only intent of giving the flavor of the kind of configurations that one can obtain.

Example 3.6. 3 Let f : N3 → Z be the polynomial function f(z1, z2, z3) = −3z1 + 2z2z3. 
For all (�1, k1), (�2, k2), (�3, k3) where either �j > 0 divides kj(kj − 1) or (�j , kj) = (0, 1), 
Theorem 3.2 applies. E.g., let us take (�1, k1) = (0, 1), (�2, k2) = (1, 1), and (�3, k3) =
(�1, k1) = (0, 1). Notice that the leading term of f , namely 2z2z3, has positive leading 
coefficient and so, by Proposition 3.3, condition (†) is satisfied. Then we obtain the 
following infinite monochromatic pattern in the natural numbers, where the sequences 
(xn)∞n=1 and (yn)∞n=1 are injective:

⎧⎨⎩−3
∑
s∈F1

xs + 2

⎛⎝ ∑
∅�=G⊆F2

∏
t∈G

yt

⎞⎠( ∑
u∈F3

xu

) ∣∣∣∣∣ F1 < F2 < F3

⎫⎬⎭ .

In particular, if a, b, c, d are the first elements of the sequence (xn)∞n=1, d′, e, f, g are the 
first elements of the sequence (yn)∞n=1, and we only consider those F1 < F2 < F3 which 
are nonempty subsets of {1, 2, 3, 4}, then we obtain the following monochromatic pattern 
in the natural numbers:4

3 Compare to [3, Thm. 1.13].
4 We can assume without loss of generality that a, b, c, d, e, f, g are pairwise distinct. The six elements of 

the pattern correspond to the following six choices of F1 < F2 < F3, respectively:

{1} < {2} < {3}, {1} < {2} < {4}, {2} < {3} < {4},

{1, 2} < {3} < {4}, {1} < {2, 3} < {4}, {1} < {2} < {3, 4}.
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− 3a + 2ce, −3a + 2de, −3b + 2df,

− 3a− 3b + 2df, −3a + 2de + 2df + 2def, −3a + 2ce + 2de.

Example 3.7. Let (�j , kj) = (1, 1) for j = 1, . . . , m, and let f be any linear function 
f(z1, . . . , zm) =

∑m
j=1 cjzj with coefficients cj ∈ Q and where cm > 0. Then by The-

orem 3.4 we have the following infinite monochromatic pattern in the natural numbers 
where the sequence (xn)∞n=1 is injective:

⎧⎨⎩
m∑
j=1

cj

⎛⎝ ∑
∅�=G⊆Fj

∏
s∈G

xs

⎞⎠ ∣∣∣∣∣F1 < . . . < Fm

⎫⎬⎭ .

For instance, when m = 3, the following elements are monochromatic:

• c1xs + c2xt + c3xu for all s < t < u;
• c1(xs + xt + xsxt) + c2xu + c3xv, c1xs + c2(xt + xu + xtxu) + c3xv, c1xs + c2xt +

c3(xu + xv + xuxv) for all s < t < u < v;
• c1(xs+xt+xu+xsxt+xsxu+xtxu+xsxtxu) +c2xv+c3xw, c1(xs+xt+xsxt) +c2(xu+

xv +xuxv) +c3xw, c1(xs+xt+xsxt) +c2xu+c3(xv +xw +xvxw), c1xs+c2(xt+xu+
xv+xtxu+xtxv+xuxv+xtxuxv) +c3xw, c1xs+c2(xt+xu+xtxu) +c3(xv+xw+xuxw), 
c1xs+c2xt+c3(xu+xv+xw+xuxv+xuxw+xvxw+xuxvxw) for all s < t < u < v < w; 
and so forth.

Example 3.8. Let f : N3 → Q be the function

f(z1, z2, z3) = −11
5 z3

1 + 1
3 · z3

z2
2
.

Observe that f satisfies condition (‡) of Theorem 3.4 because, by letting n1 = 1, N1 = 5, 
n2 = 1, N2 = 1, n3 = 275n3

1 + 1, and N3 = 3n2
2, the following property holds:

• ∃ n1, N1 ∀n1 ≥ n1 ∃ n2, N2 ∀n2 ≥ n2 ∃ n3, N3 ∀n3 ≥ n3 one has f(n1N1, n2N2, n3N3)
∈ N.

Indeed,

f(n1N1, n2N2, n3N3) = −11
5 (n15)3 + 1

3 · n3 · (3n2
2)

n2
2

= −275n3
1 + n3 ∈ N.

If we consider (�1, k1) = (�2, k2) = (1, 0) and (�3, k3) = (1, 1) then, by Theorem 3.4, 
we obtain the following infinite monochromatic pattern in the natural numbers, where 
the sequences (xn)∞n=1 and (yn)∞n=1 are injective:
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⎧⎨⎩−11
5

( ∏
s∈F1

xs

)3

+ 1
3 ·

∑
∅�=G⊆F3

∏
u∈G yu(∏

t∈F2
xt

)2

∣∣∣∣∣ F1 < F2 < F3

⎫⎬⎭ .

In particular, if a, b, c, c′ are the first elements of the sequence (xn)∞n=1, c′′, c′′′, d, e are 
the first elements of the sequence (yn)∞n=1, and we only consider those F1 < F2 < F3
which are nonempty subsets of {1, 2, 3, 4}, then we obtain the following monochromatic 
pattern in the natural numbers:5

− 11
5 a3 + 1

3
d

b2
, −11

5 a3 + 1
3
e

b2
, −11

5 b3 + 1
3
e

c2
,

− 11
5 a3b3 + 1

3
e

c2
, −11

5 a3 + 1
3

e

b2c2
, −11

5 a3 + 1
3
d + e + de

b2
.

Example 3.9. Let (�1, k1) = (0, 1), (�2, k2) = (1, 1), let r ∈ R \Q be an irrational number, 
and let f : N2 → Q be the function

f(z1, z2) =
⌊
{rz1}z2

⌋
· z2

17z3
1

where � x � := max{s ∈ Z | s ≤ x} is the integer part, and {x} := x −� x � is the fractional 
part. Observe that f satisfies condition (‡) of Theorem 3.4 with n1 = N1 = 1. Indeed, let 
an arbitrary n1 ∈ N be given. Since r is irrational, {rn1} > 0 and so we can pick n2 such 
that {rn1}n2 ≥ 1. By letting N2 := 17n3

1, the desired condition f(n1N1, n2N2) ∈ N is 
fulfilled for every n2 ≥ n2. Then we obtain the following infinite monochromatic pattern 
in the natural numbers, where the sequences (xn)∞n=1 and (yn)∞n=1 are injective:{⌊

{r
∑

s∈F1
xs} ·

∑
∅�=G⊆F2

∏
t∈G yt

⌋
·
∑

∅�=G⊆F2

∏
t∈G yt

17 · (
∑

s∈F1
xs)3

∣∣∣∣∣ F1 < F2

}
.

In particular, if a, b are the first two elements of the sequence (xn)∞n=1, b′, c, d are the 
first three elements of the sequence (yn)∞n=1, and we only consider those F1 < F2 which 
are nonempty subsets of {1, 2, 3}, then we obtain the following monochromatic pattern 
in the natural numbers:6

5 We can assume without loss of generality that a, b, c, d, e are pairwise distinct. The six elements of the 
pattern correspond to the following six choices of F1 < F2 < F3, respectively:

{1} < {2} < {3}, {1} < {2} < {4}, {2} < {3} < {4},

{1, 2} < {3} < {4}, {1} < {2, 3} < {4}, {1} < {2} < {3, 4}.

6 We can assume without loss of generality that a, b, c, d are pairwise distinct. The six elements of the 
pattern correspond to the following five choices of F1 < F2, respectively:
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For instance, the following pattern is monochromatic in the natural numbers, where 
F1 = {a < b} < {c < d} = F2:⌊

{ra}c
⌋
c

17a3 ,

⌊
{ra}d

⌋
d

17a3 ;
⌊
{rb}d

⌋
d

17b3 ;
⌊
{r(a + b)}d

⌋
d

17(a + b)3 ;
⌊
{ra}(c + d + cd)

⌋
(c + d + cd)

17a3 .

4. The associative operations ���,k

In order to prove the results presented in the previous sections, we need to introduce 
a suitable class of associative operations on the integers.

For �, k ∈ Z with � �= 0, let T�,k : Z → Z be the affine transformation

T�,k : a �−→ �a + k.

An elementary, but crucial observation is the following.

Proposition 4.1. Let �, k ∈ Z be integers with � �= 0. Then the set

S�,k := range(T�,k) = {�a + k | a ∈ Z}

is closed under multiplication if and only if � divides k(k − 1).

Proof. Just notice that S�,k = {m ∈ Z | m ≡ k mod �} is closed under multiplication if 
and only if k2 ≡ k mod �.

Equivalently, given a, b ∈ Z, there exists c ∈ Z such that (�a + k)(�b + k) = (�c + k)
if and only if

c = 1
�

((�a + k)(�b + k) − k) = �ab + k(a + b) + k(k − 1)
�

∈ Z,

and this happens if and only if k(k−1)
� ∈ Z. �

When S�,k is closed under multiplication, the bijection T�,k : Z → S�,k induces an 
operation ���,k on Z that makes T�,k an isomorphism of semigroups:

T�,k : (Z, ���,k) → (S�,k, ·).

Definition 4.2. For �, k ∈ Z where � �= 0 divides k(k − 1), define:

a ���,kb = c ⇐⇒ T�,k(a) · T�,k(b) = T�,k(c) ⇐⇒ (�a + k)(�b + k) = (�c + k).

{1} < {2}, {1} < {3}, {2} < {3}, {1, 2} < {3}, {1} < {2, 3}.
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As seen above, the explicit formula is the following:

a ���,k b = �ab + k(a + b) + k(k − 1)
�

.

Notice that when k = 0, one has:

a ���,0 b = �ab.

Clearly, for iterated ���,k-products one has that

a1 ���,k · · · ���,k an = c ⇐⇒ (�a1 + k) · · · (�an + k) = (�c + k). (4.1)

We now extend the definition of operations ���,k to the case where � = 0 and k = 1, 
so as to also include the usual finite sums:

a ��0,1 b = a + b.

The (�, k)-symmetric polynomials S�,k(X1, . . . , Xn) of Definitions 2.2 and 3.1 have 
been introduced because their values are precisely the iterated ���,k-products.

Proposition 4.3. Let �, k ∈ Z be such that either � �= 0 divides k(k− 1) or (�, k) = (0, 1). 
Then for all a1, . . . , an ∈ Z:

a1 ���,k · · · ���,k an = S�,k(a1, . . . , an).

Proof. When (�, k) = (0, 1) the desired equality directly follows from the definitions. In-
deed, operation ��0,1 is the sum, and the (0, 1)-symmetric polynomial S0,1(X1, . . . , Xn) =
X1 + . . . + Xn. Also when k = 0 and � �= 0, one directly uses the definitions, since

a ���,0 b = �ab =⇒ a1 ���,0 · · · ���,0 an = �na1 · · · an = S�,0(a1, . . . , an).

Finally, let us now assume that �, k �= 0 and � divides k(k − 1). By equality (4.1), if 
c = a1 ���,k · · · ���,k an then

c = 1
�

⎛⎝ n∏
j=1

(�aj + k)

⎞⎠− k

�
= 1

�

⎛⎝kn +
∑

∅�=G⊆{1,...,n}
�|G|kn−|G|

∏
s∈G

as

⎞⎠− k

�
=

=
∑

∅�=G⊆{1,...,n}

(
�|G|−1kn−|G| ·

∏
s∈G

as

)
+ kn − k

�
=

=
n∑

�j−1kn−jej(a1, . . . , an) + kn − k

�
= S�,k(a1, . . . , an). �
j=1
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Before showing the fundamental properties that are satisfied by the operations ���,k, 
we review the basic notions about semigroups (see, e.g., the monograph [14]).

Recall that a semigroup (S, �) is a set S endowed with an associative operation �. An 
element z is a zero if z � a = a � z = z for every a ∈ A; and an element u is an identity
if u � a = a � u = a for every a ∈ S. If a zero element or an identity element exists,
then they are necessarily unique. An element a is invertible if it has an inverse b, that is 
a � b = b � a = u.

For simplicity, in the following we will write a(n) to denote the n-th power of a with 
respect to the operation �:

a(n) := a � · · · � a︸ ︷︷ ︸
n times

An element a has finite order (or infinite order) if the generated sub-semigroup {a(n) |
n ∈ N} is finite (or infinite, respectively); equivalently, a has finite order if a(n) = a(m)

for some n �= m.
The semigroup (S, �) is left cancellable if every element a is left cancellable, that is 

for all b, b′, one has that a � b = a � b′ ⇒ b = b′. The notion of right cancellable is defined 
similarly. A semigroup is cancellative if it is both left and right cancellable. Clearly, 
for commutative semigroups, the notions of left cancellativity, right cancellativity, and 
cancellativity coincide.

Proposition 4.4. Let �, k ∈ Z be such that � �= 0 divides k(k − 1). Then

(1) (Z, ���,k) is a commutative semigroup.
(2) (Z, ���,k) contains the zero element z if and only if � divides k; in this case, z = −k

� .
(3) (Z, ���,k) contains the identity element u if and only if � divides k − 1; in this case, 

u = −k−1
� .

(4) (Z, ���,k) contains an invertible element u′ �= u if and only if � divides k + 1; in this 
case the only such element is u′ = −k+1

� and u′���,ku
′ = u. Therefore, (Z, ���,k) is 

not a group.
(5) The only possible elements of (Z, ���,k) that have finite order are the zero element 

z = −k
� of order 1, the identity u = −k−1

� of order 1, and u′ = −k+1
� of order 2, 

when they are integers.
(6) Z \ {−k

� } is a cancellative sub-semigroup.
(7) Z \ {−k+1

� , −k
� } is a cancellative sub-semigroup.

(8) Z \ {−k+1
� , −k

� , −
k−1
� } is a cancellative sub-semigroup.

(9) If � > 0 then {a ∈ Z | a > −k
� } is a cancellative sub-semigroup.

(10) If � > 0 and N ∈ N then {a ∈ Z | a ≥ −k
� + N

� } is a cancellative sub-semigroup.

Notice that under the hypothesis that � �= 0 divides k(k − 1), if � divides k + 1 then 
� also divides k − 1 = (k + 1)(k − 1) − k(k − 1), and so (Z, ���,k) contains the identity 
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u. The converse does not hold; e.g. if � = 3 and k = 4 then � divides k − 1, and hence 
k(k − 1), but � does not divide k + 1; in this case, the identity u = −k−1

� = −1 is the 
only invertible element in (Z, ��3,4)

Proof. All properties directly follow from the fact that, when � �= 0 divides k(k− 1), the 
affine transformation T�,k : (Z, ���,k) → (S�,k, · ) is an isomorphism of semigroups.

(1). The associativity and commutativity properties of multiplication on S�,k are in-
herited by the operation ���,k, via the isomorphism T�,k.

(2). z is the zero element of (Z, ���,k) if and only if T�,k(z) = �z + k = 0 is the zero 
element of S�,k if and only if z = −k

� ∈ Z.
(3). u is the identity of (Z, ���,k) if and only if T�,k(u) = �u + k = 1 is the identity of 

S�,k if and only if u = −k−1
� ∈ Z.

(4). A product a ���,kb = u if and only if (�a + k)(�b + k) = 1 if and only if either 
(�a +k) = (�b +k) = 1 or (�a +k) = (�b +k) = −1. In the former case a = b = u = −k−1

� , 
and in the latter case a = b = u′ = −k+1

� and so u′ ���,ku
′ = u.

(5). An element a �= z = − �
k has finite order if and only if �a + k �= 0 has finite order 

in (S�,k, · ). But then it must be either �a + k = 1 and hence a = u, or �a + k = −1 and 
hence a = u′ = −k+1

� .
(6). If a, b �= −k

� and c = a ���,kb then (�c + k) = (�a + k)(�b + k) �= 0 and so 
c �= −k

� . This proves that Z \ {−k
� } is a subsemigroup. Let us now show that every 

b �= −k
� is cancellative. By definition, a ���,kb = a′ ���,kb if and only if (�a + k)(�b + k) =

(�a′ +k)(�b +k). Since b �= −k
� , we can conclude that �a +k = �a′ +k, and hence a = a′.

(7) and (8). Notice that Z \{−1, 0} and Z \{−1, 0, 1} are multiplicative sub-semigroups 
of Z, and hence S�,k \ {−1, 0} and S�,k \ {−1, 0, 1} are sub-semigroups of (S�,k, · ). Since 
T�,k(u′) = −1, T�,k(z) = 0, and T�,k(u) = 1, it follows that Z \ {u′, z} and Z \ {u′, z, u}
are sub-semigroups of (Z, ���,k).

(9). Since � > 0, one has that x > −k
� ⇔ (�x + k) > 0. If a, b > −k

� and c = a ���,kb

then (�c + k) = (�a + k)(�b + k) > 0 and so also c > −k
� .

(10). Similarly as in the previous point, since � > 0 one has that x ≥ −k
� + N

� ⇔
(�x +k) ≥ N . If a, b ≥ −k

� + N
� and c = a ���,kb then (�c +k) = (�a +k)(�b +k) ≥ N2 ≥ N , 

and hence also c ≥ −k
� + N

� .
Finally, notice that the semigroups considered in (7), (8), (9), and (10) are cancellative 

as sub-semigroups of Z \ {−k
� }. �

5. The proofs

In this section we briefly review several general properties of algebra in the Stone-Čech 
compactification of semigroups, and then apply them to the semigroups determined by 
associative operations ���,k. The reader is referred to the fundamental book [12] for a 
comprehensive presentation of all notions and results recalled here.
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5.1. Algebra in the Stone-Čech compactification

The primary observation on which the theory is grounded is the fact that any asso-
ciative operation � on a discrete set S can be extended to an associative operation on 
its Stone-Čech compactification βS = {U | U ultrafilter on S}. Recall that a base of 
open and closed sets of the topology on βS is given by the family {OA | A ⊆ S} where 
OA = {U ∈ βS | A ∈ U}. It is assumed that S ⊆ βS by identifying each element a ∈ S

with the principal ultrafilter Ua = {A ⊆ S | a ∈ A}.
For all U , V ∈ βS, the ultrafilter U � V is defined by letting for every A ⊆ S:

A ∈ U � V ⇐⇒
{
a ∈ S | a−1A ∈ V

}
∈ U

where a−1A := {b ∈ S | a � b ∈ S}. Notice that the above is an actual extension of the 
operation on S, since Ua � Ub = Ua�b. The resulting semigroup (βS, �) has the structure 
of a compact right topological semigroup (see [12, §4.1]), that is, for every V ∈ βS the 
“product on the right” ρV : U �→ U � V is a continuous function.

The most considered examples are (βN, ⊕) and (βN, �), namely the semigroups ob-
tained on the Stone-Čech compactification of the natural numbers from the additive 
semigroup (N, +) and the multiplicative semigroup (N, ·), respectively. In fact, the study 
of those ultrafilter semigroups have produced a remarkable amount of results in arith-
metic Ramsey Theory, as evidenced by the extensive monograph [12]. It is worth noticing 
that in virtually all significant examples, including S = (N, +) and S = (N, ·), the ul-
trafilter semigroup (βS, �) is not commutative (see [12, §4.2]).

A fundamental tool in this area of research is provided by

• Ellis’ Lemma [8]: In every compact right topological semigroup there exist idempotent 
elements x � x = x.7

In consequence, for every semigroup (S, �) there exist idempotent ultrafilters U = U�U
in (βS, �).

For any sequence (an)∞n=1 of elements in a semigroup (S, �), denote by FP(an)∞n=1 the 
corresponding set of finite products:

FP(an)∞n=1 := {an1 � · · · � ans
| n1 < . . . < ns} .

The relevance of idempotent ultrafilters in Ramsey Theory is based on the following 
crucial fact:

• Galvin’s Theorem: Let (S, �) be a semigroup, and let U = U � U be an idempotent 
ultrafilter in the Stone-Čech compactification (βS, �). Then for every A ∈ U there 
exists a sequence (an)∞n=1 such that the set of finite products FP(an)∞n=1 ⊆ A.

7 This is Theorem 2.5 of [12].
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To our purposes, we need the following general property about non-principal ultrafil-
ters and injective sequences.

Theorem 5.1. Let (S, �) be a semigroup, and assume that there is a left cancellable sub-
semigroup (S′, �) where S \S′ is finite. Then a set A ⊆ S includes a set of finite products 
FP(an)∞n=1 ⊆ A for some injective sequence (an)∞n=1 if and only if A ∈ U for some non-
principal idempotent ultrafilter U = U � U on S.

Proof. This is just a variant of [12, Thm. 5.12], where one considers non-principal ul-
trafilters and injective sequences. However, for completeness, we outline the proof here.

Notice first that our hypothesis on S guarantees that the non-principal ultrafilters 
βS\S form a sub-semigroup. Indeed let U , V ∈ βS\S and let c ∈ S. By left cancellativity, 
for every a ∈ S′ the set {b ∈ S′ | a � b = c} contains at most one element, and so {b ∈ S |
a � b = c} /∈ V, because it is finite. Then {a ∈ S | {b ∈ S | a � b = c} /∈ V} ∈ U , since it 
includes S′, which is a cofinite subset of S. This means that {c} /∈ U � V. As c ∈ S was 
arbitrary, we can conclude that U �V is non-principal. Now recall that given any sequence 
(xn)∞n=1, the intersection X :=

⋂
{OFP(xn)∞n=s

| s ∈ N} is a closed sub-semigroup of 
(βS, �) (see [12, Lemma 5.11]). Then also (X ∩ (βS \ S), �) is a closed sub-semigroup 
of (βS, �). Notice that, since (xn)∞n=1 is injective, the family of sets {FP(xn)∞n=s | s ∈
N} ∪ {N \ {s} | s ∈ N} has the finite intersection property and so, by compactness of 
βS, its intersection is nonempty:

(βS \ S) ∩X =
⋂
s∈N

OFP(xn)∞n=s
∩

⋂
s∈N

ON\{s} �= ∅.

Then, by Ellis’ Lemma, there exist idempotent elements U ∈ (βS \ S) ∩ X. Such non-
principal ultrafilters U contains FP(xn)∞n=1 ∈ U , and hence A ∈ U .

For the other direction, it is readily seen that the sequence (xn)∞n=1 as constructed 
in Glazer’s Theorem (see [12, Thm. 5.8]) can be made injective by assuming that the 
idempotent ultrafilter U is non-principal. �
5.2. Proof of Theorem 2.4

This is similar to the ultrafilter proof of Hindman Theorem where the associative 
operation ���,k is considered instead of the sum operation, the only difference being 
that one has to consider suitable subsets of the integers so as to have cancellative sub-
semigroups of (Z, ���,k).

Let (xn)∞n=1 be an injective sequence of integers, and let S�,k(xn)∞n=1 = C1 ∪ . . .∪Cr

be a finite coloring of the corresponding (�, k)-symmetric system. By the hypothesis that 
� �= 0 divides k(k−1), we have that (Z, ���,k) is a semigroup; besides, by Proposition 4.3, 
the set of finite ���,k-products FP(xn)∞n=1 coincides with the (�, k)-symmetric system 
S�,k(xn)∞n=1. Since (Z, ���,k) has Z \ {− �

k} as a cancellative sub-semigroup, by Theo-
rem 5.1 we can pick a non-principal idempotent ultrafilter U = U ���,kU on Z such that 
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S�,k(xn)∞n=1 ∈ U . Then one color of the partition Ci ∈ U and so, again by Theorem 5.1, 
S�,k(yn)∞n=1 ⊆ Ci for a suitable injective sequence (yn)∞n=1.

Now let us assume that � ∈ N is positive, and let N = C1∪ . . .∪Cr be a finite coloring. 
Pick a natural number N ∈ N with N > −k

� . By Proposition 4.4, if we consider the 
subset N ′ := {a ∈ Z | a > −k

� + N
� } ⊆ N then (N ′, ���,k) is a cancellative semigroup, 

and so we can pick a non-principal idempotent ultrafilter U = U ���,kU on N ′. By the 
property of ultrafilter, there exists i such that Ci ∩ N ′ ∈ U , and so, by Theorem 5.1, 
there exists an injective sequence (xn)∞n=1 with S�,k(xn)∞n=1 ⊆ Ci ∩N ′ ⊆ Ci, as desired.

5.3. Proof of Theorem 2.7

We will use a generalization of Deuber Theorem for commutative semirings that has 
been recently proved by V. Bergelson, J.H. Johnson, and J. Moreira. In particular, we 
will use the following result (see [4, Corollary 3.7]):

Theorem 5.2 (Bergelson-Johnson-Moreira). Let (S, �) be a commutative semigroup, and 
for j = 1, . . . , m let Fj be a finite set of endomorphisms f : Sj → S.8 Then for every 
finite coloring S = C1 ∪ . . . ∪ Cr there exist a color Ci and elements a0, a1, . . . , am �= u

different from the identity, such that a0 ∈ Ci and f(a0, . . . , aj−1) � aj ∈ Ci for every 
j = 1, . . . , m and for every f ∈ Fj.

Notice that when c = 1 the above property actually generalizes Deuber Theorem. 
Indeed, given m and p, let (S, �) = (N, +), and for j = 1, . . . , m let

Fj =
{
f(n0,...,nj−1)

∣∣∣n0, . . . , nj−1 ∈ {−p, . . . , p}
}

where f(n0,...,nj−1) : Nj → N is the homomorphism of semigroups given by the linear 
combinations f(n0,...,nj−1)(a0, . . . , aj−1) =

∑j−1
s=0 nsas. Then, for every finite coloring of 

N, one obtains the existence of elements a0, . . . , am ∈ N such that a0 and aj+
∑j−1

s=0 nsas
are monochromatic for every j = 1, . . . , m and for all n0, . . . , nj−1 ∈ {−p, . . . , p}.

Let Z′ := Z \ {−k+1
� , −k

� }. By the properties in Proposition 4.4, (Z′, ���,k) is a can-
cellative commutative semigroup without zero element and, since � divides k − 1, with 
identity u = −k−1

� ∈ Z′.
Recall that for a ∈ Z and n ∈ N, we denoted by a(n) (not to be confused with an) 

the n-th power of a with respect to the operation ���,k:

8 The Cartesian product Sj has the natural structure of semigroup inherited from (S, �). Precisely, the 
associative operation �j on Sj is defined coordinatewise:

(s1, . . . , sj) �j (s′1, . . . , s
′
j) := (s1 � s

′
1, . . . , sj � s

′
j).
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a(n) := a ���,k · · · ���,ka︸ ︷︷ ︸
n times

Extend the above notation to n = 0 by setting a(0) = u, the identity element. For every 
j-tuple ν = (ν0, . . . , νj−1) ∈ (N ∪ {0})j of non-negative integers, let ϕν be the function 
where

ϕν : (a0, . . . , aj−1) �−→ a
(ν0)
0 ���,k · · · ���,k a

(νj−1)
j−1 .

Since Z′ is commutative, ϕν : (Z′)j → Z′ is a semigroup homomorphism. Now apply 
the above Theorem 5.2 with (S, �) = (Z′, ���,k), and with the following sets of homomor-
phisms for j = 1, . . . , m:

Fj =
{
ϕν : (Z′)j → Z′ ∣∣ ν = (ν0, . . . , νj−1) ∈ {0, 1, . . . , L}j

}
Then for every finite coloring Z = C1 ∪ . . . ∪ Cr there exist a color Ci and elements 

a0, a1, . . . , am �= u different from the identity such that:

• a0 ∈ Ci ∩ Z′;
• a

(ν0)
0 ���,k · · · ���,k a

(νj−1)
j−1 ���,k aj ∈ Ci ∩ Z′ for every j = 1, . . . , m and for all 

ν0, . . . , νj−1 ∈ {0, 1, . . . , L}.

Finally, notice that for every j = 1, . . . , m and for all non-negative integers 
ν0, . . . , νj−1, one has

c = a
(ν0)
0 ���,k · · · ���,k a

(νj−1)
j−1 ���,k aj ⇐⇒

(�c + k) = (�a0 + k)ν0 · · · (�aj−1 + k)νj−1(�aj + k) ⇐⇒

c = 1
�

(
(�aj + k) ·

j−1∏
s=0

(�as + k)νs − k

)
.

For every j = 0, 1, . . . , m, since aj �= u = −k−1
� and since aj /∈ {−k+1

� , −k
� }, we have 

that �aj + k �= 0, 1, −1, as desired.
Now assume that � ∈ N is positive, and let N = C1 ∪ . . .∪Cr be a finite coloring. By 

Proposition 4.4, (N ′, ���,k) where N ′ := {a ∈ Z | a > −k
� } is a cancellative commutative 

semigroup without zero element and with identity u = −k−1
� . If k < 0, then N ′ ⊆ N, 

and we can proceed exactly as above. If k > 0 then consider the finite coloring N ′ =
C1 ∪ . . . ∪ Cr ∪ F , where F = {0, −1, . . . , −�k

� �} is finite. Notice that for large enough 
m and L, the monochromatic configuration cannot be included in the finite set F , since 
elements �aj + k �= 0, 1, −1. Then proceeding as done above one finds a monochromatic 
configuration in one of the Ci.



22 M. Di Nasso / Journal of Combinatorial Theory, Series A 189 (2022) 105610
5.4. Proof of Theorem 2.9

Let Z′ := Z \{−k+1
� , −k

� }. By Proposition 4.4, (Z′, ���,k) is a commutative cancellative 
semigroup with identity u = −k−1

� , where u is the only invertible element, and where 
all elements except u have infinite order. For j = 0, 1, . . . , L + 1 let fj : Z′ → Z′

be the endomorphism where fj(b) = b(j). By Theorem 5.2, for every finite coloring 
Z = C1 ∪ . . .∪Cr there exist a color Ci and elements b, a′ �= u different from the identity 
such that

b , a′ , a′ ���,kb , a′ ���,kb ���,kb , . . . , a′ ���,kb
(L+1) ∈ Ci ∩ Z′.

If we let a := a′ ���,kb, we have the following monochromatic pattern

b , a , a ���,kb , . . . , a ���,kb
(L) ∈ Ci ∩ Z′

where elements are pairwise distinct. Indeed, by cancellativity, a′ �= u implies that a :=
a′ ���,kb �= u ���,kb = b. If it was a = a ���,kb

(s) for some s ≥ 1 then, by cancellativity, 
we would have b(s) = u, a contradiction because b �= u has infinite order; and if it was 
b = a ���,kb

(s) for some s ≥ 1 then, again by cancellativity, we would have a ���,kb
(s−1) = u, 

and hence a = b(s−1) = u, a contradiction. Finally, notice that for every j ∈ N:

c = a ���,kb
(j) ⇐⇒ (�c + k) = (�a + k)(�b + k)j ⇐⇒ c = 1

�

(
(�a + k)(�b + k)j − k

)
.

Now assume that � ∈ N. Similarly as done in the proof of the previous Theorem 2.7, 
consider the cancellative semigroup N ′ := {a ∈ Z | a > −k

� } with identity u = −k−1
� , 

and where all elements except u have infinite order. If k < 0 then N ′ ⊆ N and we 
can proceed as in the first part of this proof. If k > 0, consider the finite coloring 
N = C1 ∪ . . . ∪ Cr ∪ Cr+1 where Cr+1 := {0, −1, . . . , −�k

� �}. Without loss of generality 
we can assume that L > |Cr+1|. By using Theorem 5.2, as already done in the first part 
of the proof, we see that there exist a color Ci and elements b, a �= u such that

b , a , a ���,kb , a′ ���,kb ���,kb , . . . , a, ���,kb
(L′) ∈ Ci

where the above are pairwise different. Clearly i �= r+1 because we assumed |Cr+1| > L, 
and so we obtain the desired result.

5.5. Generalizations of Milliken-Taylor theorem

Several different generalizations of Milliken-Taylor Theorem to arbitrary semigroups 
have been demonstrated in recent years (see [3, §3] and [15, Thm. 6.3]). Before stating 
the result that we need, let us recall a few more notions about ultrafilters.

If U and V are ultrafilters on a set I, the tensor product U ⊗ V is the ultrafilter on 
I × I defined by setting
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X ∈ U ⊗ V ⇐⇒ {i ∈ I | {j ∈ I | (i, j) ∈ X} ∈ V} ∈ U .

If one identifies – as it is usually done – the Cartesian products (I×I) ×I and I×(I×I), 
then it is shown that ⊗ is an associative operation, that is (U⊗V) ⊗W = U⊗(V⊗W). In 
consequence, one can consider iterated tensor products U1⊗· · ·⊗Um with no ambiguity.

We will use the following characterization of sets in tensor products of idempotent 
ultrafilters, which directly implies a general version of Milliken-Taylor Theorem. It is 
a special case of the more general [3, Corollary 3.5], with the variant that cancellativ-
ity is also assumed so as to obtain non-principal idempotent ultrafilters and injective
sequences.

Theorem 5.3 (Bergelson-Hindman-Williams). For j = 1, . . . , m, let ∗�j be an associa-
tive and cancellative operation on the set S. Then for every set B ⊆ Sm the following 
properties are equivalent:

(1) B ∈ U1 ⊗ . . . ⊗ Um, where Uj = Uj ∗�jUj is a non-principal idempotent ultrafilter of 
(βS, ∗�j) for every j, and where Uj = Uj′ whenever ∗�j = ∗�j′ ;

(2) For j = 1, . . . , m there exist injective sequences (xj,n)∞n=1 with xj,n = xj′,n whenever 
∗�j = ∗�j′ , and such that{(

x
(1)
F1

, . . . , x
(m)
Fm

) ∣∣∣F1 < . . . < Fm

}
⊆ B

where for finite F = {n1 < . . . < ns} and 1 ≤ j ≤ m we denoted x(j)
F :=

xj,n1 ∗�j · · · ∗�jxj,ns
.

Recall that if W is an ultrafilter on a set X and f : X → Y is any function, then the 
image ultrafilter f(W) on Y is defined by setting

f(W) := {B ⊆ Y | f−1(B) ∈ W}.

Notice that A ∈ W ⇒ f(A) ∈ f(W), but not conversely.
If � is an associative operation on S, and we denote by f� : S×S → S the correspond-

ing binary function f� : (a, b) �−→ a � b, then it is readily verified that the extension of �
to the Stone-Čech compactification βS is given by ultrafilter images of tensor products. 
Precisely, for all U , V ∈ βS:

U � V = f�(U ⊗ V).

For instance, if f : N × N → N is the sum function f(n, m) = n + m, then the im-
age ultrafilter f(U ⊗ V) = U ⊕ V is the usual extension of the sum in the Stone-Čech 
compactification βN.

We will use the following straightforward consequence of the previous theorem, that 
seems never to have been formulated explicitly.
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Corollary 5.4. Let f : Sm → T be any function, and let A ⊆ T . Then the equivalence 
given by the previous theorem also holds in the modified formulation where in (1) we 
consider the condition A ∈ f(U1 ⊗ . . .⊗Um), and where in (2) we consider the condition{

f
(
x

(1)
F1

, . . . , x
(m)
Fm

) ∣∣∣F1 < . . . < Fm

}
⊆ A

Proof. Given A ∈ f(U1 ⊗ · · · ⊗ Um), apply Theorem 5.3 to the preimage B := f−1(A) ∈
U1 ⊗ · · · ⊗ Um. �

If U is an ultrafilter on N and a ∈ N, then the ultrafilter aU is defined by setting:

A ∈ aU ⇐⇒ A/a := {n ∈ N | na ∈ A} ∈ U .

We remark that aU is not the same as Ua � U , where Ua is the principal ultrafilter 
generated by a.

Now consider the semigroup (S, �) = (N, +). If we take as f : Nm → N the linear 
function f(x1, . . . , xm) = a1x1+. . .+amxm where ai ∈ N, then the corollary above yields 
an arithmetic formulation of Milliken-Taylor Theorem that is well-known, namely:

• “Arithmetic” Milliken-Taylor Theorem. Let a1, . . . , am ∈ N. Then the following prop-
erties are equivalent for every A ⊆ N:
(1) A ∈ a1U ⊕ · · · ⊕ amU for a suitable non-principal idempotent ultrafilter U on N.
(2) There exists an injective sequence (xn)∞n=1 such that

{a1 · xF1 + . . . + an · xFm
| F1 < . . . < Fm} ⊆ A

where for F = {n1 < . . . < ns} we denoted xF := xn1 + . . . + xns
.

Indeed, it is easily verified that for every ultrafilter U on N one has that the image 
ultrafilter f(U ⊗ · · · ⊗ U) = a1U ⊕ . . .⊕ amU .9

5.6. Proofs of Theorems 3.2 and 3.4

We will use the following general properties of tensor products of ultrafilters.

Lemma 5.5. Let X ⊆ Nm.

9 f(z1, . . . , zm) = a1z1+. . .+amzm is just one simple example of a function that is “coherent” with respect 
to tensor products. Indeed, for every polynomial P (z1, . . . , zm) over N there is a canonical polynomial 
function P̃ : (βN)m → βN such that the image ultrafilter P (U1 ⊗ · · · ⊗ Um) = P̃ (U1, . . . , Um) for all 
ultrafilters U1, . . . , Um. The definition of P̃ is obtained from the definition of P by replacing the sum + and 
the product · on N with their canonical extensions ⊕ and  on βN, respectively (see [20]). More generally, 
in [3, §3] the class of extended polynomials f(z1, . . . , zm) is introduced for any given set of associative 
operations on a set S in such a way that one can naturally define the corresponding functions f̃ that satisfy 
f(U1 ⊗ · · · ⊗ Um) = f̃(U1, . . . , Um) for all ultrafilters U1, . . . , Um on S.
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(1) Assume that: ∃ n1 ∀n1 ≥ n1 ∃ n2 ∀n2 ≥ n2 . . . ∃ nm ∀nm ≥ nm one has 
(n1, n2, . . . , nm) ∈ X. Then for all non-principal ultrafilters U1, . . . , Um on N, it 
is X ∈ U1 ⊗ · · · ⊗ Um.

(2) Assume that: ∃ n1, N1 ∀n1 ≥ n1 ∃ n2, N2 ∀n2 ≥ n2 . . . ∃ nm, Nm ∀nm ≥ nm one 
has (n1N1, n2N2, . . . , nmNm) ∈ X. Then for all ultrafilters U1, . . . , Um on N such 
that tN := {tn | n ∈ N} ∈ Uj for every j = 1, . . . , m and for every t ∈ N, it is 
X ∈ U1 ⊗ · · · ⊗ Um.

Proof. (1). This proof is obtained from the proof of property (2) below, by letting Nj = 1
for all j = 1, . . . , m.

(2). We proceed by induction on m. In the base case m = 1, one has X ∈ U1 because 
X is a superset of tN where t := n1N1. At the inductive step m + 1, for every a ∈ N

consider the set

X(a) := {(a2, . . . , am, am+1) ∈ Nm | (a, a2, . . . , am, am+1) ∈ X}.

It is easily seen that for every n1 ≥ n1 the set X(n1N1) ⊆ Nm satisfies the inductive 
hypothesis, and so X(n1N1) ∈ U2 ⊗ · · · ⊗ Um ⊗ Um+1. But then {a ∈ N | X(a) ∈
U2 ⊗ · · ·⊗Um⊗Um+1} ∈ U1, since it includes the set t1N where t1 := n1N1. This means 
that X ∈ U1 ⊗ (U2 ⊗ · · · ⊗ Um ⊗ Um+1), as desired. �
Proof of Theorem 3.2. If �j �= 0 divides k(k−1), then by Proposition 4.4, (Z, ���j ,kj

) is a 
semigroup that has Z \ {−kj

�j
} as a cancellative subsemigroup. So, by Lemma 5.1 we can 

pick a non-principal idempotent ultrafilter Uj = Uj ���j ,kj
Uj on Z. If (�j , kj) = (0, 1), then 

��0,1 is the sum operation on Z. Clearly, Z \{0} is a cancellative subsemigroup of (Z, +), 
and also in this case we can pick a non-principal idempotent ultrafilter Uj = Uj ��0,1Uj =
Uj ⊕ Uj on Z. Choose the above idempotent ultrafilters in such a way that Uj = Uj′

whenever (�j , kj) = (�j′ , kj′). Now consider the image ultrafilter W := f(U1 ⊗ · · · ⊗ Um)
on Z. Given a finite coloring Z = C1∪ . . .∪Cr, let Ci be the color such that Ci ∈ W, and 
apply Corollary 5.4 where S = T = Z, and where the considered associative operations 
are ∗�j = ���j ,kj

for j = 1, . . . , m. Then for all F1 < . . . < Fm we have that

{
f
(
x

(1)
F1

, . . . , x
(m)
Fm

) ∣∣∣F1 < . . . < Fm

}
⊆ Ci,

where if Fj = {n1 < . . . < ns} ⊂ N, we denoted

x
(j)
Fj

= xj,n1 ���j ,kj
. . . ���j ,kj

xj,ns
= S�j ,kj

(x(j)
n1

, · · · , x(j)
ns

).

Let us now turn to the case when all �j ≥ 0 and the function f : Nm → Z satisfies 
condition (†). Pick M ∈ N such that M ≥ 1−kj

�j
for all j with �j �= 0. Then N ′ := {a ∈

Z | a ≥ M} is a cancellative sub-semigroup of (Z, ���j ,kj
) for every j. Indeed, if �j = 0

then kj = 1 and ���,k is the sum operation, and clearly (N ′, +) is a subsemigroup. If 
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�j �= 0, then notice that M = −kj

�j
+ Nj

�j
where Nj := �jM + kj ≥ 1 is a natural number, 

and hence (N ′, ���j ,kj
) is a cancellative sub-semigroup of (Z, ���,k) by Proposition 4.4

(10). Then we can pick non-principal idempotent ultrafilters Uj = Uj ���j ,kj
Uj on N ′, in 

such a way that Uj = Uj′ whenever (�j , kj) = (�j′ , kj′). Now consider the tensor product 
U1 ⊗ · · · ⊗ Um on (N ′)m, and let W = g(U1 ⊗ · · · ⊗ Um) be its image ultrafilter on Z
under the restriction g := f |(N′)m : (N ′)m → Z.

Without loss of generality, one can assume that in property (†) one has nj ≥ M for 
every j = 1, . . . , m, and so the set

X := g−1(N) = {(n1, . . . , nm) ∈ (N ′)m | g(n1, . . . , nm) ∈ N} =

{(n1, . . . , nm) ∈ Nm | nj ≥ M for all j = 1, . . . ,m and f(n1, . . . , nm) ∈ N}

satisfies the hypothesis of Lemma 5.5 (1). Then N ∈ g(U1 ⊗ · · · ⊗ Um) = W, and given 
any finite coloring N = C1 ∪ . . . ∪ Cr, one of the colors Ci ∈ W. We reach the thesis 
by applying Corollary 5.4 where S = N ′, T = Z, A = Ci, and where the considered 
associative operations are ∗�j = ���j ,kj

for j = 1, . . . , m. �
For the next proof, we will need the existence of idempotent ultrafilters with an 

additional property.

Lemma 5.6. Let � ∈ N and k ∈ {0, 1}. Then there exist idempotent ultrafilters U =
U ���,kU in the semigroup (βN, ���,k) such that tN ∈ U for every t ∈ N.

Proof. Fix any � ∈ N. Since k ∈ {0, 1}, both (N, ���,0) and (N, ���,1) are cancellative 
semigroups: this is easily checked directly, or can be derived from the general properties 
(9) and (10) of Proposition 4.4.

Now consider the nonempty closed subspace X :=
⋂

t∈N OtN of βN. Notice that if 
a, b ∈ tN then also a ���,0b = �ab ∈ tN and a ���,1b = �ab +a +b ∈ tN. In consequence, it is 
easily seen that X is a sub-semigroup of both (βN, ���,0) and (βN, ���,1). Then, by Ellis’ 
Lemma, there exist idempotent ultrafilters U = U ���,0U in (X, ���,0), and idempotent 
ultrafilters V = V ���,1V in (X, ���,1). �
Proof of Theorem 3.4. The proof is entirely similar to the above proof of Theorem 3.2. 
When (�j , kj) = (0, 1), that is, when the operation ���j ,kj

is the sum on the integers, 
pick a non-principal ultrafilter Uj = Uj ⊕ Uj on the natural numbers N. It is a well-
known fact that every idempotent ultrafilter U in (βN, ⊕) is such that tN ∈ U for every 
t ∈ N (see e.g. [12, Lemma 5.19.1]). When �j ∈ N and kj ∈ {0, 1}, by Lemma 5.6
we can pick an idempotent ultrafilter Uj = Uj ���j ,kj

Uj on N such that tN ∈ U for 
every t ∈ N. Choose the above idempotent ultrafilters in such a way that Uj = Uj′

whenever (�j , kj) = (�j′ , kj′). Then consider the ultrafilter U1 ⊗ · · · ⊗Um on Nm, and let 
W = f(U1 ⊗ · · · ⊗ Um) be its image ultrafilter on Z under the function f . Property (‡)
says that the set
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X := f−1(N) = {(n1, . . . , nm) ∈ Nm | f(n1, . . . , nm) ∈ N}

satisfies the hypothesis of Lemma 5.5 (2). So, f−1(N) ∈ U1⊗· · ·⊗Um, and hence N ∈ W. 
Then, given any finite coloring N = C1 ∪ . . . ∪ Cr, one of the colors Ci ∈ W, and we 
reach the thesis by applying Corollary 5.4 where S = T = N, A = Ci, and where the 
considered associative operations are ∗�j = ���j ,kj

for j = 1, . . . , m. �
6. Final remarks

We close this paper with a list of remarks about possible directions for future research.

(1) The associative operations ���,k that we defined in this paper over the integers Z
also make sense in any commutative ring (R, +, ·), and (part of) our results could 
be extended to that framework. Are there meaningful examples that would justify 
such a generalization?

(2) In Theorems 3.2 and 3.4 we considered polynomials in several variables with positive 
leading coefficient as functions that satisfy condition (†) or (‡). Are there are other 
meaningful classes of functions that satisfy those conditions?

(3) The results of this paper are grounded on generalized versions of Hindman’s, Deu-
ber’s, and Milliken-Taylor’s Theorems in the framework of semigroups. Recently, 
also several generalizations of the Central Set Theorem have been demonstrated for 
semigroups (see [11] for a historical survey about central sets). Can the study of cen-
tral sets in semigroups (βN, ���,k) lead to meaningful results in arithmetic Ramsey 
Theory?

(4) The problem of partition regularity of non-linear Diophantine equations have been 
recently investigated, producing interesting results. (Note that partition regularity of 
equations corresponds directly to finite monochromatic patterns.) In 2017, J. Moreira 
[17] demonstrated that the configuration {a, a + b, a · b} is monochromatic in the 
natural numbers; this year 2021, the existence of similar monochromatic patterns, 
including {a, a + b, a · b + a + b}, has been proved by J.M. Barrett, M. Lupini, and 
J. Moreira [1]. It seems worth investigating to what extent the results presented 
in this paper can be used to address the general problem of partition regularity of 
non-linear Diophantine equations.

(5) If (S, ∗) is any countable semigroup, then every bijection ϕ : N → S determines an 
associative operation ∗�ϕ on the natural numbers by setting:

a ∗�
ϕ
b = c ⇐⇒ ϕ(a) ∗ ϕ(b) = ϕ(c).

Similar arguments to those used in this article may also be applied to such operations 
to produce partition regularity results. In particular, operations on N induced by 
multiplicative subgroups of the integers (such as the set of sums of two squares) seem 
worth investigating.
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(6) A topic of research in arithmetic Ramsey Theory is about the partition regularity 
of infinite image partition regular matrices. The known examples are rather limited 
(see the recent paper [13] and references therein), and mostly rely on Hindman 
Theorem. Starting from the Finite Product Theorem for the operations ���,k, it may 
be worth investigating whether some new interesting classes of infinite partition 
regular matrices could be isolated.
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