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ABSTRACT 

We develop a pre-stack inversion algorithm that combines a Discrete Cosine Transform (DCT) 

reparameterization of data and model spaces with a Convolutional Neural Network (CNN). The CNN 

is trained to predict the mapping between the DCT-transformed seismic data and the DCT-

transformed 2-D elastic model. A convolutional forward modeling based on the full Zoeppritz 

equations constitutes the link between the elastic properties and the seismic data. The direct sequential 

co-simulation algorithm with joint probability distribution is used to generate the training and 

validation datasets under the assumption of a stationary non-parametric prior and a Gaussian 

variogram model for the elastic properties. The DCT is an orthogonal transformation that is here used 

as an additional feature extraction technique that reduces the number of unknown parameters in the 

inversion and the dimensionality of the input and output of the network. The DCT reparameterization 

also acts as a regularization operator in the model space and allows for the preservation of the lateral 

and vertical continuity of the elastic properties in the recovered solution. We also implement a Monte 

Carlo simulation strategy that propagates onto the estimated elastic model the uncertainties related to 

both noise contamination and network approximation. We focus on synthetic inversions on a realistic 

subsurface model that mimics a real gas-saturated reservoir hosted in a turbiditic sequence. We 

compare the outcomes of the implemented algorithm with those provided by a popular linear 

inversion approach and we also assess the robustness of the CNN inversion to errors in the estimated 

source wavelet and to erroneous assumptions about the noise statistic. Our tests confirm the 

applicability of the proposed approach, opening the possibility to estimate the subsurface elastic 

parameters and the associated uncertainties in near real-time while satisfactorily preserving the 

assumed spatial variability and the statistical properties of the elastic parameters. 



INTRODUCTION 

The estimation of elastic properties from processed pre-stack seismic data can be solved through a 

deterministic or probabilistic inversion process. The former approach starts from an initial guess of 

the subsurface model and uses gradient-descent algorithms to find an optimal solution in the least-

squares sense (e.g. a solution that minimizes the difference between observed and predicted seismic 

gathers). Probabilistic approaches combine prior assumptions with information brought by the 

recorded data to infer the so-called posterior probability density (PPD) function in the model space 

(Tarantola, 2005; Sen and Stoffa, 2013) that fully quantifies the ambiguities in the retrieved solution 

(Rimstad et al. 2012; Aleardi 2015; Grana et al. 2017; de Figueiredo et al. 2018; Aleardi et al. 2018). 

However, the PPD can be analytically computed only for Gaussian distributed data and model 

parameters and for linear forward operators. For non-Gaussian assumptions and non-linear forward 

operators, numerical Markov Chain Monte Carlo (MCMC) algorithms can be used to draw samples 

from the PPD (Sambridge and Mosegaard, 2002). In any case, the estimation of elastic properties 

from pre-stack data is an ill-posed inverse problem in which many models reproduce the observed 

data, and for this reason model regularization strategies and a-priori information are often infused 

into the inversion framework to stabilize the solution. However, the inclusion of 2-D or 3D spatial 

constraints severely increases the computational cost of both analytical and MCMC inversions, 

especially in high-dimensional parameter spaces. For this reason, this inverse problem is often solved 

for each seismic gather independently (e.g. for each pre-stack time-migrated gather) thus neglecting 

the lateral correlations of the sought elastic properties (Grana and Della Rossa, 2010; Aleardi and 

Salusti, 2020). Geostatistical inversion approaches (Doyen 2007; Bosch et al. 2009; Azevedo and 

Soares 2017) guarantee that the assumed spatial variability pattern is preserved in the retrieved 

solution, but their considerable computational cost often hampers the extensive sampling of the model 

space needed for accurate uncertainty appraisals.  

Model reparameterization techniques are commonly used to reduce the dimensionality and the 

computational complexity of inverse problems and several methods have been proposed using 



different orthogonal basis functions (e.g. principal component analysis, wavelet transforms, Legendre 

polynomials, Discrete Cosine Transform). After such reparameterization, the unknown parameters 

become the numerical coefficients that multiply the basis functions. Some examples of applications 

of these methods to geophysical problems can be found in Fernández Martínez et al. (2011), 

Dejtrakulwong et al. (2012), Satija and Caers (2015), Fernández Martínez et al. (2017), Lochbühler 

et al. (2018), Aleardi (2019), Szabó and Dobróka (2019), Qin et al. (2019), Aleardi (2020). These 

compression techniques must be applied taking in mind that part of the information in the original 

(unreduced) parameter space could be lost in the reduced space and for this reason, the model 

parameterization must always constitute a compromise between model resolution and model 

uncertainty (Malinverno, 2000; Grana et al. 2019). 

In addition to the previously described conventional inversion techniques, over the last years, the 

recent advent of high-speed multi-core CPUs and GPUs have promoted the applications of machine 

learning approaches (Monajemi et al., 2016; Goodfellow et al. 2016) to solve geophysical problems. 

In particular, Convolutional Neural Networks (CNNs) have recently gained attention (Krizhevsky et 

al. 2012) because overcome some limitation of artificial neural networks such as local minima, 

overfitting, vanishing gradient, significant computational cost (Schmidhuber, 2015). The hierarchy 

of local convolution filters and different convolutional layers used by CNN define an ensemble of 

non-orthogonal basis functions that are used to extract essential features from the training dataset (2-

D or 3-D image-like data or 1-D vector signals) or to approximate the function that maps the input 

into the associated output response. Training a CNN is a supervised learning task that requires a 

sufficiently large training set to iteratively refine and update the internal network parameters. This 

learning is an optimization process that minimizes a difference criterion between predicted and 

desired output. Even though the training is often computationally intensive, once the network is fully 

trained it can convert an input dataset into the corresponding output response in real-time. In 

geophysics, CNNs have been initially applied to aid structural interpretation of geophysical data such 

as seismic horizon and fault interpretation, and seismic texture identification (Xiong et al. 2018; 



Waldeland et al. 2018). Then, they have been extended to quantitatively solve geophysical problems 

such as velocity estimation (Araya-Polo et al. 2018), full-waveform inversion (Lewis and Vigh 2017; 

Richardson, 2018; Wu and McMechan, 2019; Yang and Ma, 2019), impedance inversion (Das et al. 

2019), electromagnetic inversion (Puzyrev, 2019), lithology prediction (Raeesi et al. 2012; Hall, 

2016) seismic deblending (Richardson and Feller, 2019; Sun et al. 2020), missing trace interpolation 

and noise attenuation (Liu et al. 2018; Mandelli et al. 2019; Wang et al. 2018; Kaur et al. 2019), 

multiple attenuation (Ma, 2018),  pre-stack seismic waveform classification and first-break picking 

(Yuan et al. 2018), automatic velocity analysis (Park and Sacchi, 2020), elastic inversion and 

reservoir characterization studies (Zhang et al. 2018; Zhong et al. 2019; Biswas et al. 2019). One 

common issue of machine-learning methods is that their performances sensibly worsens if the target 

and training data are significantly different. To overcome this issue the transfer learning can be used  

(Pan and Yang, 2010; Yosinski et al., 2014; Li et al. 2020; Yuan et al. 2020), which consists in an 

additional training process with a small portion of target data.  

In this work, we train a CNN to solve the amplitude versus angle (AVA) inverse problem, in which 

the subsurface elastic properties of P-wave velocity (Vp), S-wave velocity (Vs), and density are 

inferred from partially stacked seismic data at different incidence angles. We also combine the CNN 

with a Discrete Cosine Transform (DCT; Lochbühler et al. 2014) reparameterization of both data and 

model spaces. The DCT expands a signal (e.g. expressing the subsurface Vp model) into a series of 

cosine functions oscillating at different frequencies. Usually, most of the variability of the original 

signal is expressed by the first DCT coefficients (low-order coefficients) and for this reason, this 

mathematical transformation can be used for model and/or data compression, which is accomplished 

by setting the coefficients of the basis functions beyond a certain threshold equal to zero. In our 

application, the DCT constitutes an additional feature extraction technique that reduces both the 

number of unknown parameters in the elastic inversion and the number of pixels in the images input 

and output of the CNN.  



A crucial aspect of AVA inversion is the preservation of both the mutual and spatial/temporal 

relationships between the elastic parameters as inferred, for example, from available well log data. In 

this context, the use of the DCT parameterization in the model space also guarantees that the assumed 

spatial and temporal variabilities are satisfactorily preserved in the retrieved solution. Indeed, the 

order of the retained non-zero DCT coefficients determines the wavelength of the recovered elastic 

model along the spatial and temporal directions. The mutual and spatial/temporal dependencies of the 

elastic properties are also imposed on the training and validation datasets and to this end, we employ 

the Direct Sequential Co-Simulation method with joint probability distribution (Co-DSSj; Horta and 

Soares, 2010). This geostatistical method also allows us to draw random simulations from a non-

parametric elastic prior distribution that properly models the non-Gaussian behavior of the elastic 

parameters. The exact, non-linear Zoeppritz equations constitute the forward modeling operator that 

computes the observed data associated with each generated model.  

The CNN inversion is combined with a Monte Carlo simulation approach to estimate the uncertainties 

affecting the retrieved solution. To this end, we propagate onto the model space not only the 

uncertainties related to noise contamination but also the so-called modeling error introduced by the 

CNN. Indeed, the trained network learns an approximated function that maps the observed data into 

the associated model and this approximation introduces an additional source of uncertainty. We focus 

on synthetic inversion experiments in which the reference (true) model mimics a real gas-saturated 

reservoir hosted in a turbiditic sequence. Different inversion tests that realistically simulate errors in 

the estimated wavelet and in the assumed noise distribution are carried out to properly assess the 

robustness and applicability of the implemented approach. The CNN predictions are also compared 

with those yielded by the popular linear inversion algorithm proposed by Buland and Omre (2003).  

In the following, we illustrate that the proposed approach provides more accurate estimates of the 

elastic properties than the standard inversion approach and we illustrate that the CNN inversion is 

quite robust to erroneous assumptions about the noise statistics and errors in the estimated source 



wavelet. We will also illustrate that transfer learning can be successfully employed when the 

statistical properties of the target differ from those assumed during the learning process.  

 

METHODS 

Discrete Cosine Transform 

The DCT is a linear and orthogonal transformation that projects an N-length signal (e.g. vector of 

model parameters) to an N-length vector containing the coefficients of N different cosine (base) 

functions. This approach concentrates most of the information of the original signal into the low-

order DCT-coefficients so that only q<N coefficients can be used to accurately approximate the input 

signal. In the context of geophysical inversion, this means that the numerical values of these q DCT 

coefficients become the unknowns to be inferred from the data. Estimating the retained DCT-

coefficients reduces the parameter space dimensionality and can significantly improve the 

computational efficiency of the inversion procedure. 

Several variants of DCT exist with slightly modified definitions, but in this work, we use the so-

called DCT-2 formulation that is the most common. Hereafter we simply refer to the DCT-2 

transformation as the DCT. The DCT is a Fourier-related transform that uses only real numbers to 

express a finite signal in terms of the sum of cosine functions oscillating at different frequencies. The 

DCT transformation of a 1-D signal x of length N, can be written as follows: 

𝑦(𝑘) = √
2

𝑁
∑ 𝑥(𝑛)

𝑁

𝑛=1
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cos (
𝜋

2𝑁
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where 𝛿𝑘1 represents the Kronecker delta, y are the N coefficients of the transformation that fully 

describe the original signal x in the transformed DCT space, and k represents the order of each DCT 

coefficient. In matrix form, equation 1 becomes: 

𝐲 = 𝐁𝐱 ,     (2) 

where the vectors x and y represent the original and the transformed signal, respectively, and B is a 

N-by-N matrix containing the cosine functions (basis function) spanning the DCT space. Some 



examples of 1-D DCT basis functions of different orders k are represented in Figure 1. The DCT is a 

linear transformation expressed by the orthonormal matrix B (so that 𝐁𝐁𝑇 = 𝐈, where I is the identity 

matrix). An approximation of the signal 𝐱 can be obtained by considering only the first q DCT basis 

functions: 

𝐱̃ = 𝐁𝑞
𝑇𝐲𝑞 ,     (3) 

where 𝐱̃ is the approximated signal, 𝐁𝑞
𝑇 is a partition of the matrix 𝐁, with N rows and q columns 

representing the first q DCT basis functions, whereas the vector 𝐲𝑞 contains the first q coefficients 

that multiply the basis functions. These coefficients become the unknown parameters to be 

determined in a DCT reparameterization of the inverse problem. Note that the approximated signal 

𝐱̃ tends toward the original signal 𝐱 as the number of considered coefficients q tends to N. 

The DCT can be also extended to multi-dimensional signals (i.e. 2-D matrices) and such multi-

dimensional DCT transform follows straightforwardly from the one-dimensional definition because 

it is simply a separable product (equivalently, a composition) of DCTs along each dimension. For 

example Figure 2 shows some DCT basis functions of different orders in a 2-D space. Note that the 

variability of the solution along each dimension is directly determined to the orders of the retained 

DCT coefficients. 

 

Convolutional neural networks 

The relation between a CNN and its generated model is usually expressed as follows: 

𝐎 = 𝐹(𝐖, 𝐋),      (4) 

where F denotes the CNN as a function that maps the input L to the output 𝐎 through the CNN 

internal parameters W. CNNs use blocks of convolutional layers, subsampling layers, and fully 

connected layers, to extract features from 1-D, 2-D, or 3-D input maps treated as grids of pixels. The 

extracted features form the so-called feature maps. The core of CNNs is the convolutional layer, in 

which the features maps are convolved with convolution filters. This process can be written as:  
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where I represents the number of the feature maps in the (p-1)-th layer, whereas J is the total number 

of feature maps in the p-th layer, which is equal to the number of filters considered in that layer; 𝑏𝑗 is 

a scalar value representing the j-th bias of the p-th layer, ∗ represents the convolution operator, 𝑓() is 

the so-called activation function used to include non-linearity in the mapping process, 𝑂𝑗
𝑝
 is j-th 

feature map in the p-th layer, 𝑂𝑖
𝑝−1

 represents the i-th feature map in the (p-1)-th layer, and 𝑊𝑗 denotes 

the j-th filter of the p-th layer, which is the weight matrix connecting 𝑂𝑗
𝑝
 with 𝑂𝑖

𝑝−1
. This filter has a 

user-specified size and slides over the input map with a specified stride. The internal CNN parameters 

to be updated are the values associated with the filters 𝑊𝑗 and the biases 𝑏𝑗  in each layer. More in 

detail, in this example we have I input maps in the (p-1)-th layer, J outputs maps in the p-th layer and 

if we also assume that n×m is the size of each convolution filter, it results that the number of internal 

parameters to be optimized is (n×m×I+1)×J.  Note that different filters extract different features from 

the input map, or in other terms they use non-orthogonal basis functions to project the input map onto 

an alternative space. The aim of the subsampling layers (also known as pooling) is to prevent 

overfitting by reducing the dimension of the feature map generated in the convolutional layer and the 

number of features. The most common pooling strategies are the max-pooling or the average pooling 

(Scherer et al. 2010). 

After the features of the input image are extracted by the convolutional layers, they are usually fed 

into fully connected layers, which are appended to the end of the last convolutional blocks. The output 

of the fully connected layer depends on the specific research requirement and can be either continuous 

values (regression problems) or discrete values (classification problems). Differently, from the 

convolutional layers, in a fully-connected layer, each input data have a separable weight to each 

output, and a bias value is also associated with each output node. Therefore, an I-dimensional input 

and a J-dimensional output result in (I+1)×J parameters to be optimized. 



At the first iteration, the internal CNN parameters are initialized and then updated during the 

iterative learning process. The learning process aims to minimize an error (loss) function measuring 

the difference between the desired and the computed output. A back-propagation algorithm usually 

drives the minimization process and the updating of the filter values. This updating process can be 

written as follows: 

𝐖𝑖 = 𝐖𝑖−1  − 𝛾
𝜕𝜀

𝜕𝐖𝑖−1
,      (6) 

where i represents the iteration number,  𝜀 is the loss function value, and 𝛾 is the so-called learning 

rate. 

To define the CNN architecture some hyperparameters must be set: number of hidden layers and 

number of filters, kernel width and stride of the convolution operators, activation function, a method 

for weight initialization, optimization algorithm to minimize the loss function and to update the filters 

weights, number of epochs. There are no rigid rules to set these hyperparameters and the final choice 

is often dictated by personal preference and experience. However, some very general rules exist such 

as the dimension of the convolution filters must not be greater than the dimension of the features map 

to which the filter is applied. Moreover, more filters are used, the more features can be extracted, but 

the number of features is limited and specific for the problem at hand. Therefore, too many extra 

filters make the model difficult to be well trained and increase the training time. On the contrary, a 

too low number of filters can produce underfitting. We found the optimal setting through a trial and 

error procedure in which different hyperparameters are changed (i.e. number of filters, filter size, 

learning rate, batch size, and the type of activation function) and the final net architecture has been 

determined based on the net performances on the validation dataset.  

 

The implemented CNN inversion 

For the lack of available real seismic data, we discuss synthetic inversion experiments in which 

the trained CNN is used to invert a seismic dataset generated on a reference model that simulates a 



real geological context in which a turbiditic sequence hosts a gas-saturated reservoir (see Figure 3a). 

This subsurface model has been derived by integrating the borehole information provided by five 

wells with an accurate geologic interpretation. The reference model we employ represents an in-line 

section constituted by 51 time samples and 71 cross-lines. The time sampling is 0.004 s, whereas 50 

m is the distance between the cross-lines. In Figure 3a note that significant elastic contrasts at the 

interface separating the encasing shales from the reservoir sands. In our application each elastic model 

comprises 51 × 71 × 3 = 10863 parameters to be estimated from 50 × 71 × 3 = 10650 data 

points.  

To generate the training and validation datasets we must define the expected statistical properties 

of the elastic parameters in the investigated area. The prior elastic model has been inferred from the 

information provided by the five wells that have also been used to build the reference model. We 

consider this prior information as stationary over the entire study area, and given the structural 

complexity of the reference model this assumption constitutes a simplification of the actual variability 

of the elastic properties. We assume a non-parametric distribution for the elastic parameters that has 

been derived by applying the kernel density estimation algorithm (KDE; Parzen 1962) to the available 

well log data (Figure 3b). For example, for a univariate random variable 𝑟, the KDE estimates of the 

probability distribution 𝑝(𝑟) can be computed as: 

𝑝(𝑟) =
1

𝑇
∑ 𝐻 (

𝑟 − 𝑟n

ℎ𝑟
)    (7)

𝑇

𝑛=1

 

where 𝐻 is the kernel function, 𝑇 is the total number of data points, and ℎ𝑟 is the kernel width that 

controls the smoothness of the distribution and should be set assessed on the available data. In this 

work, a simple Gaussian kernel is adopted. We also assume a stationary 2D Gaussian variogram 

model in which the vertical and lateral ranges have been inferred from the vertical variability of the 

upscaled well log data and from the lateral variability of the observed seismic data, respectively. The 

ranges of the variogram are equal to 0.008 ms and 160 m along the temporal (vertical) and spatial 

(lateral) directions, respectively. The direct-sequential co-simulation method with joint probability 



distribution has been used to draw 20000 2-D elastic models from the prior distribution. A forward 

modeling based on the full Zoeppritz equations computes the observed seismic gathers by convolving 

the angle-dependent reflectivity series with a 30-Hz, zero-phase Ricker wavelet. Then, the so obtained 

observed data are contaminated with Gaussian uncorrelated noise with a standard deviation of 0.02, 

which corresponds to the 35% percent of the standard deviation of the noise-free observed dataset. 

We consider three partial angle stacks corresponding to incidence angles of 0 (near stack), 15 (mid 

stack), and 30 (far stack) degrees. Note that the use of the full Zoeppritz equations makes it possible 

to extend the considered angular range. However, the linear inversion approach used as a benchmark 

is only applicable in a narrow-angle range where the linear approximation of the Zoeppritz equation 

holds. Therefore, for comparability reasons the seismic data are computed over this limited angle 

range. The information used to define the training and validation sets are summarized in Table 1.  

After the generation of the training and validation examples, the next step involves the estimation 

of the optimal number of DCT coefficients needed to approximate the elastic models and the 

associated seismic response. The optimal number of DCT coefficients in the data and model spaces 

are determined by decomposing some of the 20000 Vp, Vs, and density models and seismic gathers 

previously computed. Figure 4 shows an example of a DCT transformation of a seismic dataset and 

the associated Vp, Vs, and density model, whereas Figure 5 illustrates the explained variability of the 

seismic data and elastic properties as the number of the considered DCT coefficients increases. We 

observe that 500 and 2000 coefficients explain almost the total variability of the original, un-

compressed elastic models and seismic data, respectively. Therefore, to approximate the Vp, Vs, and 

density we retain the first 24 rows and columns of the associated DCT matrices, while in the seismic 

domain we consider the first 30 rows and 30 columns of the first two slices forming the DCT cube 

(see the green box and rectangles in Figures 4). Therefore, the use of DCT allows us to compress the 

10863-D full elastic space into a 1728-D space, while the 10650-D data domain has been 

compressed into an 1800-D space. In the implemented approach the DCT transformation acts as an 

additional feature extraction layer that reduces both the number of unknown parameters to invert for 



and the dimensionality of the input and output of the network. Therefore, the use of the DCT allows 

for a reduction of the complexity of the CNN architecture (i.e. number of hidden layers) needed to 

accurately convert the input into the associated output response. This translates into an easier CNN 

hyperparameter setting and a faster training phase because less CNN parameters must be adjusted.  

Figure 6 describes the entire workflow of the implemented CNN inversion that starting from the 

observed partially stacked data retrieves the elastic properties. However, one crucial step should be 

the assessment of the uncertainty affecting the estimated solution. In particular, we must project onto 

the model space both the noise affecting the seismic data and the so-called modeling error introduced 

by the CNN approximation. In the following discussion we describe our Monte Carlo approach to 

quantify and project such errors: Let M represent the ensemble subsurface elastic models forming the 

training dataset, while N is the associated ensemble of models predicted by the trained CNN. A 

sample of the modelings error can be obtained as 𝐄 = 𝐌 − 𝐍 (Hansen and Cordua, 2017). Assuming 

a Gaussian distribution, the modeling error can be defined as 𝒩(0, Ce), where Ce is the covariance of 

E. This error together with the noise term 𝒩(0, 𝐂𝑛) (also assumed Gaussian-distributed) are 

propagated onto the final prediction with an iterative MC approach. Now, let d be the vector 

expressing the observed data input to the CNN, whereas n represents the number of MC simulations. 

The implemented MC approach for uncertainty propagation comprises the following six steps: 

1) Use the trained CNN to compute the predicted elastic model 𝐦b from the observed data vector 

𝐝; 

2) Run a forward modeling to compute the noise-free 𝐝b data associated to 𝐦b;  

3) Draw 𝐧 from 𝒩(0, 𝐂𝑛)  and compute 𝐝n = 𝐝b + 𝐧; 

4) Use the trained CNN to compute the predicted model 𝐦n from 𝐝n; 

5) Draw 𝐞 from 𝒩(0, 𝐂𝑒)  and compute 𝐦e = 𝐦n + 𝐞; 

6) Store 𝐦e and repeat from 3) to 6) for n times. 

Each generated vector 𝐦e can be considered a possible subsurface elastic model that is in 

accordance with the observed data, the trained CNN, and the assumed distributions for the noise and 



modeling errors. The posterior statistic (e.g. uncertainty on the estimated elastic model) can be 

numerically derived from the ensemble of n MC simulations. For simplicity, we assume that both 

the error terms (noise and modeling errors) are Gaussian, but the implemented approach can be 

applied to whatever parametric or non-parametric error distributions. Note that the previous MC 

approach is extremely fast because the network predicts a model from an input data (steps 1 and 4) 

in real-time. The most time-consuming step of this procedure is represented by the fifth step that 

draws spatially correlated realizations from 𝒩(0, 𝐂𝑒). To reduce the computational cost of this step 

we adopt the FFT-MA simulation algorithm (Ravalec and Noetinger, 2000).  

 

The CNN architecture 

We randomly select 18000 out of 20000 models and associated seismic datasets to train the CNN, 

whereas the remaining 2000 examples constitute the validation set. The CNNs usually consists of one 

input layer, one or more hidden convolutional layers, one or several fully connected layers, and one 

output layer. In our case, the training ensemble is constituted by a tensor of 30 × 30 × 2 × 18000 

where 18000 is the number of training examples, whereas 30 × 30 × 2 = 1800 is the number of the 

retained DCT basis functions in the data space. The corresponding output is a vector of 

24 × 24 × 3 × 18000 DCT coefficients where 24 × 24 × 3 = 1728 represents the number of 

DCT basis functions used to compress the elastic parameters (576 coefficients for elastic property). 

We perform different experiments to optimally set the main CNN hyperparameters, and the final 

CNN architecture (represented in Figure 7) has been chosen according to the best fit on the validation 

set. It consists of two convolutional blocks and a fully connected layer. The two convolutional blocks 

use 5 convolution filters of size 3 × 3, and a stride of 1. After each convolutional layer, we use the 

LeakyRelu activation function with a slope of 0.1 (Krizhevsky et al., 2012). Batch normalization is 

used within each convolution block because Santurkar et al. (2018) suggested that it guarantees a 

more predictive and stable behavior of the gradients and faster training. Note that applying batch 

normalization to a given layer associated with N features maps, adds 𝑁 × 2 trainable parameters. 



After the convolutional blocks, max-pooling of size 2 × 2 and a stride 1 is applied for subsampling. 

In the fully connected layer, the feature maps are flattened to 1-D vectors, whereas a dropout of 0.1 

is used to prevent overfitting. We adopt the RMSprop optimizer (i.e. an unpublished, adaptive 

learning rate method) running for 20 epochs to minimize the root-mean-square-error (RMSE) 

between the expected and the predicted outputs. The He method is used to initialize the network 

weights (He et al., 2015). We use a batch size of 64, and an initial learning rate of 0.001 that is 

multiplied by 0.9 every epoch. We chose this batch size and initial learning rate because they 

guaranteed the best performances in the experiments we carried out. In particular, the benefit of small 

batch sizes has been discussed in many studies (e.g. Masters and Luschi, 2018). The selected network 

configuration results in 4978713 learnable parameters. Only 325 of these parameters ((3 × 3 × 2 +

1) × 5 + (3 × 3 × 5 + 1) × 5 = 325) pertain to the convolution filters in the two convolutional 

blocks, 20 parameters are associated with the batch normalization within the two blocks ((5 +

5) × 2 = 20), while the remaining 4978368 ((2880 + 1) × 1728 = 4978368) pertain to the fully-

connected layer. From the evolution of the RMSE values on the training and the validation sets, we 

observe that the network successfully converges after 15-16 epochs (Figure 8).  

Figure 9 shows some comparisons between two elastic models extracted from the validation set and 

the corresponding CNN predictions. The good quality of the results seems to demonstrate the 

reliability of the implemented CNN inversion. Just for comparison, Figure 10 represents the evolution 

of the RMSE error for a CNN with the same architecture previously described (Figure 7) but now the 

DCT has not been applied to compress the input and output responses, while the training and the 

validation sets are the same previously used. In other terms, in this experiment, the CNN has been 

trained to directly predict the 10863 elastic properties form the 10650 data points. By comparing 

Figure 10 with Figure 8, we observe a much slower convergence rate and higher errors on the training 

and validation sets that indicate the poor generalization capability of the network. If we applied this 

trained network to the validation set we estimate the elastic models shown in Figure 11. These 

severely scattered and unrealistic predictions prove that a much more sophisticated network and a 



longer training are now needed to directly map the seismic response into the associated elastic 

properties. This example clearly illustrates the benefits provided by the DCT compression. 

Figure 12 compares the lateral and vertical correlation functions used to generate the training and 

validation datasets with those computed on the predicted elastic models of Figure 9a. We observe that 

the number of retained DCT coefficients in the model space guarantees a satisfactory preservation of 

the assumed spatial/temporal continuity in the recovered solution. However, all the previous results 

refer to elastic models that perfectly honor the statistical characteristics of the prior used to generate 

the training dataset. For this reason, in the following section, we describe the application of the CNN 

inversion to the more realistic reference model (test set) previously described (see Figure 3a). The 

CNN results will be also compared with the predictions of the popular linear inversion approach 

proposed by Buland and Omre (2003). We will also assess the robustness of the CNN inversion to 

errors in the estimated source wavelet and erroneous assumptions about the statistical properties of 

the noise. Finally, we will show an application of transfer learning. 

 

INVERSION EXAMPLES 

In this section, we describe the application of the trained CNN to invert synthetic seismic data 

computed on the test model shown in Figure 3a. We assess the robustness and the applicability of the 

trained CNN inversion by performing several inversion tests that mimic realistic conditions than can 

be encountered in real data applications. The details of the seven inversion experiments are given in 

the following and also summarized in Table 2: 

Test 1: The noise standard deviation and the source wavelet used to generate the observed data 

input to the CNN are the same previously used to generate the training and validation sets (see Table 

1).  This test is aimed at assessing the network performance in the most optimal case. 

Test 2: The standard deviation of the Gaussian and uncorrelated noise that contaminates the data 

is higher than that assumed in the training phase. The numerical value of the standard deviation is 

0.05, which corresponds to the 88%, approximately, of the standard deviation of the noise-free 



observed data. This test illustrates the network performances in case of an underestimation of the 

actual noise contamination in the data. 

Test 3: In this case, we add to the observed data both uncorrelated and spatially-temporarily 

correlated Gaussian noise. Both types of noise have a standard deviation equal to 0.03. This test 

illustrates the network performances in case of correlated noise affecting the data.  Indeed, the popular 

assumption of uncorrelated noise constitutes an oversimplification and correlated noise can be 

ascribed, for example, to residual of multiple reflections than have been not successfully removed 

during the processing phase. 

Test 4: The source wavelet used to generate the data has a peak frequency of 25 Hz that is smaller 

than that used to generate the training set. The noise statistic and the source wavelet phase are the 

same used for the learning process.  

Test 5: The source wavelet is derived by applying a phase rotation of 30 degrees to the wavelet 

used in the training process.  

Test 6: The source wavelet is characterized by a peak frequency of 25 Hz and a phase rotation of 

30 degrees with respect to the zero-phase wavelet used in the training phase. Examples 4, 5, and 6 

investigates the stability of the network predictions in case of errors in the estimated source wavelet.  

Test 7: The last example is a combination of Tests 3 and 6. We generate the observed data with a 

source wavelet with a peak frequency of 25 Hz and a 30°-phase rotation. The observed data are also 

contaminated with both uncorrelated and coherent noise with standard deviations of 0.03.  

 

Figure 13 shows a comparison between the source wavelet used to generate the training examples 

and those employed in Tests 4, 5, 6, and 7 to generate the observed dataset. In all the 7 tests the CNN 

outcomes are compared with the maximum-a-posteriori solution provided by the linear inversion 

approach of Buland and Omre (2003) that inverts each seismic gather separately. For brevity in the 

following discussion, we refer to this inversion method as the standard approach (SA). Many methods 

can be used to quantitatively compare the true and predicted models (Wang et al. 2004; Zujovic et al. 



2013; Yang and Duan, 2018). In this work, the normalized cross-correlation (Rao et al. 2014) is used 

to assess the quality of the CNN and SA outcomes. Note that the linear inversion assumes a log-

Gaussian distribution for the elastic properties and imposes vertical constraints on the recovered 

model, while it neglects the lateral correlation of elastic parameters. In all the linear inversions the 

data covariance matrix has been computed assuming the noise statistic used to generate the training 

examples (i.e. Gaussian uncorrelated noise with a standard deviation of 0.02). The vertical correlation 

range included in the a-priori model covariance matrix is equal to that used to generate the training 

and validation sets (8 ms).  

For the first inversion experiment, both the CNN and the linear inversion retrieve similar results 

that accurately reproduce the lateral and vertical variability of the true Vp, Vs, and density models 

(Figures 14a, 15a). However, the noise contamination generates some lateral scattering in the SA 

solution, while the DCT parameterization preserves the lateral continuity in the CNN estimated 

model. The lateral scattering affecting the SA results aggravates in the second test in which we 

underestimate the noise affecting the data (Figures 14b, and 15b). It is expected that this 

underprediction generates overfitting with the observed data that significantly deteriorates the overall 

quality of both the CNN and SA predictions. The inclusion of coherent noise results in biased 

predictions, which are particularly visible around the reservoir zone where the elastic contrasts 

between the encasing shales and the reservoir sands are mispredicted (Figures 14c and 15c). As 

expected, errors in the source wavelet yield biased predictions (Figures 14d-f and 15d-f) characterized 

by both overpredicted or underpredicted elastic contrasts (e.g. see the results of Test 6 in which we 

simulate errors in both the source wavelet peak frequency and phase). The combined presence of 

errors in the wavelet estimation and coherent noise in the data significantly deteriorates the quality of 

the retrieved elastic models (Figures 14g and 15g). However, also in this unfavorable scenario the 

CNN approach satisfactorily preserves the lateral continuity of the Vp, Vs, and density predictions, 

thereby facilitating the mapping of the lateral and vertical formation boundaries. In all the tests and 

for both the CNN and SA approaches, the erroneous assumptions about source wavelet and noise 



particularly affect the density estimates, which is the parameter least constrained by the observed 

data. 

The direct comparison of the normalized cross-correlation coefficients associated with the CNN 

and SA inversions demonstrates that in all the considered examples the implemented approach 

guarantees final predictions closer to the true elastic model (Figure 16). As expected, for both 

inversions the quality of the final results usually decreases passing from Vp, Vs, and density in 

accordance with the different sensitivity of the observed data to the three elastic properties. These 

results confirm the applicability of the CNN inversion and its suitability to invert seismic data also in 

realistic scenarios of heavy noise contamination and errors in the assumed noise statics and estimated 

source wavelet.  

In Figures 17-20 we compare for the Tests 2 and 3 the observed and predicted data computed on 

the final models yielded by the CNN and SA inversions. The sample-by-sample difference between 

the observed and predicted seismic responses appear slightly lower in the SA example. However, 

note that the solution provided by this approach corresponds to the minimum of an error function that 

is expressed as a linear combination of data misfit and a-priori model constraints. Differently, the 

CNN solution is not driven by a minimization process but it is simply obtained by applying the 

previously trained network to the observed data. It is also important to mention that the CNN 

inversion imposes both vertical and lateral constraints to the solution, while only vertical constraints 

are imposed by the SA algorithm. Therefore, we expect that the inclusion of the additional lateral 

constraint promotes the stability of the CNN solution but at the expense of a decreased data matching 

with respect to the laterally unconstrained inversion.  

Figure 21 compares the marginal Vp, Vs, and density distributions directly computed on the true 

model and those derived from the CNN predictions for Tests 1 and 2. When the noise is correctly 

estimated (Figure 21a) the marginal distributions computed on the final predictions show good 

agreement with those derived on the true model. Otherwise, when the noise is underestimated (Figure 

21b) the predicted distributions exhibit longer tails than the true distributions, and particularly the 



retrieved density model shows more disperse values. Again, this degradation of the density prediction 

is expected since this is the least resolvable elastic property. However, also in this scenario, important 

statistical properties of the true and predicted model are very similar (i.e. the mode).  In this regard, 

note that the statistical properties of the a-priori model used to generate the training examples are not 

directly derived from the true model but they are realistically inferred from well log data recorded in 

the study area. In our opinion, this fact can explain the minor deviations between the true and 

predicted distributions, for example, the different variability ranges of the true and recovered models. 

This comparison illustrates that the implemented inversion approach can satisfactorily preserve the 

actual distribution of the elastic parameters, provided that the statistical properties of the prior 

distribution used to generate the training examples accurately capture the actual distribution of the 

Vp, Vs, and density values in the investigated area.  

To better analyze this crucial aspect we directly apply the previously trained network to invert 

seismic data computed on a completely different elastic model (i.e. a portion of the elastic Marmousi 

model). Figure 22 compares the new reference model, the CNN predictions, and the SA result. For 

comparability reason, the SA uses the same prior model previously employed in the inversion tests 

of Figure 15, while for both algorithms the noise variance is assumed perfectly known. The SA and 

CNN give congruent predictions that satisfactorily preserve the geological structure of the model, but 

both approaches significantly underestimate the true elastic contrasts at the reflecting interfaces. In 

particular, in Figure 22c note that the actual distributions of the elastic properties in this Marmousi 

example are completely different from the a-priori elastic model employed in the learning process 

(Figure 3b). This example highlights that accurate prior model assumptions, which exhaustively 

capture the actual distribution of the elastic properties in the study area, are a crucial ingredient for 

both standard and the machine-learning inversion approaches.  

However, this does not mean that the network must be retrained from scratch when applied to 

different datasets. Indeed, the transfer learning can be employed when we have an unsatisfying result 

with the previously trained CNN model (Pan and Yang, 2010, Yang and Ma, 2019; Sun et al. 2020; 



Park and Sacchi 2020). Transfer learning is commonly used in deep learning applications and it takes 

a pre-trained network and uses it as a starting point to learn a new task. Fine-tuning a network with 

transfer learning is usually much faster and easier than training a network with randomly initialized 

weights. This allows for a quick transfer of the learned features to a new task using a smaller number 

of training examples. When using transfer learning, it is important to decide which part of the already 

trained CNN model must be updated and this usually depends on the difference between the target 

and the training data. For example, only the fully connected layers are updated if this difference is 

small. In the opposite case, the entire pre-trained CNN model should be adjusted (Huot et al., 2018; 

Park and Sacchi 2020).  Now we repeat the Marmousi example but before the CNN inversion, we use 

transfer learning to update part of the internal parameters of the previously trained network, according 

to new 500 training examples with 50 examples forming the validation set.  After some tests (not 

shown here for brevity) we decided to update only the parameters associated with the second 

convolutional block and the fully-connected layer. The prior elastic model used to generate the new 

training and validation sets is numerically defined with the KDE algorithm now applied to the first, 

central, and last columns of the true elastic model shown in Figure 22a, which are now considered as 

available well log data. For simplicity, the assumed variogram model is the same previously 

employed. Figures 23a and 23b shows that transfer learning significantly improves the CNN 

predictions especially for those parameters better constrained by the data (Vp and secondarily, Vs). 

Figure 23c illustrates that transfer learning ensures a final error values on both the validation and test 

sets similar to those achieved in the previous application (Figure 8). In this case, re-training the CNN 

with transfer learning takes less than a minute. However, even though transfer learning can be applied 

to adjust the network weights when the target properties differ from those of the training examples, 

an accurate estimation of the prior is always crucial to obtain a new training set that exhaustively 

captures the target properties. 

Figures 24-25 illustrate nine MC Vp, Vs, and density realizations generated for Test 1. All these 

realizations are in accordance with the assumed noise static and with the CNN modeling error. As 



expected the differences between the nine realizations increase moving from Vp, to Vs, and density.  

Finally, Figure 26 shows for Test 1 the CNN predictions, some MC realizations, and the true Vp, Vs, 

and density profiles extracted at the horizontal coordinate of 1000 m. We observe that the estimated 

elastic properties always lie within the 95 % confidence intervals that have been numerically 

estimated from the MC simulations. This proves the reliability of the CNN results.  

 

DISCUSSION 

Often, the main practical limitations of spatially-constrained linear inversions is the high 

computational effort to invert matrices with considerable dimensions. Similarly, the applicability of 

geostatistical inversions is discouraged by their computational cost. Finally, the application of 

numerical MCMC inversions with 2-D or 3-D model constraints is hampered by the considerable 

number of forward evaluations needed to attain stable posterior estimations. The popularity of 

machine learning approaches has motivated us to develop an alternative inversion approach 

characterized by a modest computational demand while being robust and capable to also provide a 

quantification of the uncertainties affecting the final solution. Our efforts were devoted to combining 

the regression capability of CNN and the compression ability of DCT. In our application, the use of 

DCT makes it possible for a substantial dimensionality reduction of the input and output of the 

network, thereby reducing the complexity of the CNN architecture and the computational cost of the 

training phase. Other compression techniques can be used but here we apply the DCT because it has 

been proven to exhibit superior compression power over other similar methods (see Lochbühler et al. 

2014; Kotsi et al. 2020). The choice of the number of DCT coefficients to approximate the data and 

the elastic model should always constitute a compromise between the desired temporal and spatial 

resolution, and the dimensionality reduction of the parameter space. However, our examples showed 

that such a threshold level can be accurately determined from the elastic models and associated 

seismic responses extracted from the training set.  



The implemented method does not require the regularization in its common-sense meaning (i.e. 

inclusion of model constraints into the error function), but the network is trained on a data set 

containing realistic subsurface scenarios and thus learns how to reproduce a similar model that fits 

the input data. In machine learning applications, regularization aims at reducing the generalization 

error of a learning algorithm and at making the network performances more stable during the learning 

phase, often by sacrificing the training error. The most popular regularization approaches are dropout, 

early stopping, and batch normalization. Following the recent trend in modern convolutional 

architectures (Puzyrev, 2019) we used dropout only on the fully-connected layer, while batch 

normalization was applied in the convolutional blocks.   

The main advantage of the CNN-based inversion is its high computational efficiency. Indeed, all 

the examples discussed in this paper used Matlab codes running on a common notebook equipped 

with a quad-core intel(R) Core(TM) i-7 7700HQ CPU@2.80 GHz with 16 Gb RAM.  The 

implemented inversion consists of four stages: data generation, learning process, model prediction 

from a given data input, and Monte Carlo simulation for posterior model generation. The first stage 

can be performed in various ways and here we use the Co-DSSj geostatistical simulation algorithm 

that can handle non-parametric prior models while preserving the joint distribution of the elastic 

properties to be simulated. In this work we use a non-parametric and stationary elastic prior model 

and a Gaussian variogram to generate the training and validation datasets, but if needed the method 

can be easily extended to whatever stationary or non-stationary prior distribution and spatial 

correlation pattern provided that appropriate geostatistical simulation codes are available to generate 

the training and validation examples.  This first stage can be very time consuming although it is 

perfectly parallelizable. The computing time for generating the ensemble of 20000 training models 

with the Co-DSSj method was 6 hours approximately, whereas the training phase took only 10 

minutes. It is to mention that the computing time for the ensemble generation can be drastically 

reduced if more scalable codes and a computer cluster are employed. The CNN inversion gives 

predictions in real-time, while the MC simulation of the nine elastic models shown in Figures 24-26 



runs in less than 2 seconds. As a side note, we point out that the computing time for training the CNN 

without the DCT compression (Figures 10 and 11) was 70 minutes, approximately. This value is more 

than 10 times longer than that needed for training the CNN model after the DCT compression. This 

highlights another outstanding benefit provided by the DCT. Indeed, in this case, many networks with 

different hyperparameter settings can be evaluated rapidly, thereby reducing the human and 

computational efforts required for the network configuration.  

In view of 3-D CNN inversions, much effort must be devoted to decreasing the computational 

effort of the data generation process, although there is still room for a substantial decrease of its 

computational cost, for example by adopting more efficient geostatistical simulation codes. To this 

end, we are also exploring the possibility to train a Generative Adversarial Neural Network to quickly 

generate 2-D and 3-D elastic models (Laloy et al. 2018). Additional tests we carried out (not shown 

here for brevity) demonstrated that similar results to those shown here can be obtained by employing 

only 10000 models for the training phase. This possibility halves the computing time of the Co-DSSj 

simulation process.  

Our experiments also highlighted that the quality of the predictions significantly decreases if the 

actual subsurface parameter distributions differ from those used to generate the training examples. 

However, transfer learning can be employed to update the internal network weights when the 

statistical properties of the target differ from those of the training examples. Anyway, as for any 

standard Bayesian inversion approach, a high-quality and rich suite of well log data and/or borehole 

information is needed for an accurate and robust estimation of the a-priori statistical properties of the 

target. In view of field data applications, such well log information and blind well tests are of primary 

importance to also compare the quality of the CNN predictions with those provided by other inversion 

approaches.  

In this work, we did not perform an extensive and quantitative analysis of how errors in the 

assumed prior model properties (e.g. error on the a-priori mean and variance, erroneous variogram 

model, incomplete well log information) affect the CNN predictions. A comprehensive analysis of 



these aspects would have required many additional figures and tables and certainly deserves a paper 

of its own. Preliminary tests we are carrying out demonstrate that, as expected, the quality of the CNN 

predictions is much more affected by errors in the prior model than by erroneous assumptions on the 

noise statistic. However, we also found that the implemented CNN inversion provides satisfactory 

predictions, comparable to those yielded by the SA method, if the error, for example, on the a-priori 

mean and variance is less than the 15%-20%.  

 

CONCLUSIONS 

We proposed a CNN inversion method that presents an alternative to the conventional AVA 

inversions approaches. Instead of minimizing an error function or sampling from a posterior 

probability distribution, the proposed approach employs a trained CNN to reconstruct the elastic 

parameters from the observed pre-stack seismic gathers. We use a Discrete Cosine Transform (DCT) 

reparameterization of data and model spaces to reduce the computational effort of the training phase. 

In our case, the DCT constitutes an additional feature extraction tool that uses orthogonal basis 

functions to compress the dimensionality of the input and output of the CNN. On the other hand, the 

DCT reparameterization also acts as a model regularization strategy that reduces the number of 

unknown parameters to be estimated and satisfactorily preserves the assumed lateral continuity in the 

recovered solution. The CNN inversion is combined with a subsequent Monte Carlo simulation 

process for uncertainty appraisals, which takes into account both the noise affecting the observed data 

and the modeling error associated with the network approximation.  

Our synthetic experiments showed very promising results and demonstrated that a convolutional 

neural network can effectively approximate the inverse of a nonlinear operator that is very difficult 

and expensive to compute analytically especially when vertical and lateral constraints are imposed 

on the recovered solution. The learned network achieved satisfactory predictions when realistic 

conditions were simulated (e.g. errors in the estimated source wavelet or erroneous assumptions about 

the noise statistic). In all the tests we carried out the CNN provided more accurate predictions than 



the standard, laterally-unconstrained AVA inversion approach (SA). Notably, the quality of the CNN 

predictions seemed less affected by erroneous assumptions on the noise statistic and errors in the 

estimated source wavelet than the outcomes provided by the SA method. We illustrated that transfer 

learning can be used to update the network weights when the properties of the target model differ 

from those of the training examples. In any case, reliable prior model assumptions, and high-quality 

seismic data are essential for a successful application of the implemented inversion approach to field 

datasets.  
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FIGURES AND CAPTIONS 

 

Figure 1: Some examples of 1-D DCT basis functions of different orders k. 



 

Figure 2: 2-D DCT basis functions of different orders. Dark and light colors code low and 

high numerical values, respectively. 

  



 

Figure 3: a) The elastic properties of Vp, Vs, and density of the reference model. In a) the 

black arrows point toward the main sand reservoir body, whereas the dotted black lines 

depict the trajectory of 3 out 5 wells that have used to build the model and to define the a-

priori elastic distribution. b) The marginal non-parametric prior distributions for the three 

elastic properties derived from the five available wells. 

 

  



 

 

Figure 4: Some examples showing three sections from a DCT-transformed seismic data (a) 

and the associated DCT-transformed Vp (b), Vs (c), and density (d) models. The green boxes 

and green rectangles enclose the retained DCT coefficients in the data and model space, 

respectively (see the text for additional explanations). In a) the 1st, 2nd, and 3rd dimensions 

refer to the cross-line, time, and incidence angle directions, respectively. In b)-d) the 1st and 

2nd dimensions refer to the cross-line and time axes, respectively. 

  



 

 

Figure 5: Close-ups showing the explained variability versus the number of DCT coefficients 

for a seismic dataset (a) and the associated Vp (b), Vs (c), and density (d) models extracted 

from the a-priori distribution. 

 

 



 

Figure 6: Workflow of the implemented CNN inversion approach. The Monte Carlo method 

for uncertainty propagation is not represented in this figure. The CNN architecture is detailed 

in the next Figure 7. 



 

Figure 7: Schematic representation of the adopted CNN architecture. The image on the far 

left is the input of the network that is a 3-D cube expressing the 1800 DCT coefficients used 

for data compression. The image on the far right is the output of the network that is a vector 

containing the 1728 DCT coefficients expressing the elastic properties (576 coefficient for 

each elastic property). The intermediate rectangles represent convolutional layers and are 

annotated with key parameters. In the grey rectangles the initial value in brackets (e.g. 5) 

indicates the number of filters. This is followed by the filter size (i.e. 3 × 3). In the green 

rectangles it is also indicated the dimension of the max-pooling filter (2×2). The cyan 

rectangle represents the fully connected layer (FCL). The number on the bottom of each 

rectangle indicates the dimension of the input and output to each layer.  

  



 

Figure 8: Evolution of the RMSE error on the training and validation sets during the learning 

process. 

  



 

Figure 9: a), and b) show a comparison between two elastic models extracted from the 

validation set and the corresponding CNN prediction. In a) and b) from left to right we 

represent Vp, Vs, and density.  

  



 

 

Figure 10: Evolution of the RMSE error for a CNN without DCT compression. 

  



 

 

Figure 11: a) An elastic model extracted from the validation set (also shown in Figure 9a). 

b) The elastic model predicted by a trained CNN with the same architecture previously 

described (Figure 7) but in this case the DCT has not been used to compress the input and 

output responses.  

 

  



 

Figure 12: Examples of comparison between the normalized lateral (a) and temporal (b) 

correlation functions used to generate the training examples (dashed red lines) and those 

computed on the CNN estimated model (continuous blue lines). 

  



 

Figure 13: a) Comparison between the source wavelet used to generate the training examples 

and that used to compute the observed data in Test 4. b) As in a) but for Test 5. c) As in a) 

but for Tests 6 and 7.  

  



 

Figure 14: Vp (left), Vs (center), and density (right) models estimated by the CNN approach 

in the seven inversion tests. The true model is shown in Figure 3a.  

  



 

Figure 15: Vp (left), Vs (center), and density (right) estimated by the linear inversion for the 

seven tests. The true model is shown in Figure 3a. 

  



 

Figure 16: Comparison of normalized correlation coefficients associated with the CNN and 

SA results for the seven inversion tests. 

  



 

Figure 17: Comparison between observed data (left column), predicted data (central 

column), and their sample-by-sample difference (right column) in Test 2 and for the CNN 

inversion.    

  



 

Figure 18: As in Figure 17 but for Test 3.  

  



 

Figure 19: Comparison between observed data (left column), predicted data (central 

column), and their sample-by-sample difference (right column) in Test 2 and for the SA 

inversion.    

  



 

Figure 20: As in Figure 19 but for Test 3.  

  



 

Figure 21: Comparison between the marginal distributions computed on the true Vp, Vs and 

density models, and those associated with the CNN predictions. a) for Test 1. b) for Test 2.  

  



 

Figure 22: a) Portion of the elastic Marmousi model interpolated and converted from depth 

to time and used as the reference model in this inversion test. b) Elastic properties predicted 

by the previously trained CNN and assuming a correct estimation of the source wavelet and 

noise. c) SA results. d) Comparison between the marginal distributions computed on the true 

and the CNN-predicted models for each elastic parameter. In c) note that the true parameter 

distributions in this example significantly differ from that used to generate the training 

examples (see Figure 3b).  

  



 

Figure 23: a) Portion of the elastic Marmousi model used as the reference model. b) Elastic 

properties predicted by the CNN after transfer learning and assuming a correct estimation of 

the source wavelet and noise. c) Evolution of the RMSE error during the transfer learning. 

  



 

Figure 24: Nine MC realizations of Vp models associated with Test 1. 

  



 

Figure 25: Nine MC realizations of Vs models associated with Test 1. 

  



 

Figure 26: Nine MC realizations of density models associated with Test 1.  

 

  



 

Figure 27: For the spatial location equal to 1000 m and for Test 1 we represent some 

comparisons between the true properties, the predicted properties, some MC simulations, 

and the 95 % confidence interval as estimated from the MC realizations. a) Vp, b) Vs, c) 

Density. 

  



 

TABLES 

Seismic data generation Elastic model generation 

Uncorrelated noise 

standard deviation 

0.02 

Type of prior 

distribution 

Non-parametric 

Correlated noise 

standard deviation 

0 

Vertical range of the 

Gaussian variogram 

model 

0.008 s 

Source wavelet phase 0 

Lateral range of the 

Gaussian variogram 

model 

160 m 

Source wavelet peak 

frequency 

30   

Table 1: Principal characteristics of the observed seismic data and of the elastic prior 

model that has been used to generate the training and validation datasets.  

  



 

 

Parameters Training #1 #2 #3 #4 #5 #6 #7 

Uncorrelated 

noise standard 

deviation 

0.02 0.02 0.05 0.03 0.02 0.02 0.02 0.03 

Correlated noise 

standard 

deviation 

0 0 0 0.03 0 0 0 0.03 

Source wavelet 

phase 

0° 0° 0° 0° 0° 30° 30° 30° 

Source wavelet 

peak frequency 

30 Hz 30 Hz 30 Hz 30 Hz 25 Hz 30 Hz 25 Hz 25 Hz 

Vertical range of 

correlated noise 

/ / / 12 ms / / / 12 ms 

Lateral range of 

correlated noise 

/ / / 150 m / / / 150 m 

Table 2: Characteristics of the noise distribution and assumed source wavelet in the 

training datasets and in the seven different inversion experiments. 

 

 

 

 

 


