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Abstract: A recent computational paper (Kalita et al., Phys. Chem. Chem. Phys. 2020, 22, 24178–24180)
reports the existence of a quadruple bond between a carbon and an iron atom in the FeC(CO)3

molecule. In this communication, we perform several computations on the same system, using both
density functional theory and post-Hartree–Fock methods and find that the results, and in particular
the Fe-C bond length and stretching frequency depend strongly on the method used. We ascribe
this behavior to a strong multireference character of the FeC(CO)3 ground state, which explains the
non-conclusive results obtained with single-reference methods. We therefore conclude that, while
the existence of a Fe-C quadruple bond is not disproved, further investigation is required before a
conclusion can be drawn.
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In a recent paper [1], a computational investigation on FeC(CO)3 revealed the unprece-
dented result that in such a molecule, a quadruple Fe-C bond may be present. Unfortunately,
FeC(CO)3 has never been synthetized, and therefore no experimental characterization exists
to confirm such a result: a computational investigation is therefore, at the moment, the only
tool available to investigate such a system. In their work, Kalita et al. use the Fe-C bond
length and the associated stretching force constant to assess the existence of a quadruple
bond. They use Density Functional Theory (DFT), and in particular the M062X exchange
correlation functional together with the Def2-TZVP basis set to perform such an analysis.
As DFT calculations may be unreliable for multireference systems, they perform CASSCF
and CCSD(T) single point calculations on the DFT geometry to confirm the single-reference
character of the wavefunction, and thus the reliability of the DFT results.

Given the exceptionality of the results found by Kalita et al., we decided to perform
further calculations on FeC(CO)3 to confirm their results. We performed three different
analyses. First, we compared the Fe-C bond distance and harmonic stretching frequency
computed with different DFT exchange-correlation functionals to assess the robustness
of the results with respect to the latter choice. In particular, we compare results obtained
using five popular hybrid functionals: M062X [2], B3LYP [3], MN15 [4], PBE0 [5], and
ωB97X-D [6]. All the DFT calculations were run using the Gaussian 16 [7] suite of programs,
employing Dunning’s cc-pVTZ basis set [8,9], using analytical first and second derivatives
and a pruned (99,590) grid for the integration of the exchange-correlation potential. The
DFT results are reported in Table 1.

The DFT results show a large variability, with bond distances ranging from 1.481 Å
to 1.526 Å and harmonic stretching frequencies ranging from 1113 to 1211 wavenumbers,
with the M062X functional predicting the shortest and strongest bond and the B3LYP one
the longest and weakest. We therefore decided to extend our computational investigation
by performing, to the best of our ability, high-level post-HF calculations, increasing the
accuracy of the methods systematically. We performed calculations at the Hartree–Fock
(HF), second-order Møller–Plesset perturbation theory [10] (MP2), coupled cluster theory
with single and double excitations [11] (CCSD), and with single, doubles, and perturbative
triples [12] (CCSD(T)), using Dunning’s cc-pVTZ basis set and the frozen-core approxi-
mation. Analytical gradients [13–15] were used for all the geometry optimizations, while

Computation 2021, 9, 95. https://doi.org/10.3390/computation9090095 https://www.mdpi.com/journal/computation

https://www.mdpi.com/journal/computation
https://www.mdpi.com
https://orcid.org/0000-0002-9543-6127
https://orcid.org/0000-0002-4947-3912
https://doi.org/10.3390/computation9090095
https://doi.org/10.3390/computation9090095
https://doi.org/10.3390/computation9090095
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/computation9090095
https://www.mdpi.com/journal/computation
https://www.mdpi.com/article/10.3390/computation9090095?type=check_update&version=2


Computation 2021, 9, 95 2 of 5

harmonic frequencies were computed by numerically differentiating analytical gradients.
All the post-HF calculations were performed using the CFOUR [16,17] suite of programs.
The results are reported in Table 2.

Table 1. Equilibrium Fe-C distance (Re, in Å) and harmonic vibrational Fe-C stretching frequencies
(in cm−1) computed with various DFT exchange-correlation functionals. The values reported with a
“*” are taken from Reference [1] and reported here for comparison.

Method Re ω

M062X 1.482 1208
M062X * 1.481 1211
B3LYP 1.526 1113
MN15 1.501 1165
PBE0 1.514 1146

ωB97X-D 1.510 1154

Table 2. Equilibrium Fe-C distance (Re, in Å) and harmonic vibrational Fe-C stretching frequencies
(in cm−1) computed at systematically more accurate levels of theory.

Method Re ω

HF 1.489 1041
MP2 1.654 591

CCSD 1.539 1039
CCSD(T) 1.559 926

The harmonic frequencies obtained at every level of theory are all real, confirming
thus that the structure is a minimum. Unfortunately, it is apparent from the results that
the treatment of electronic correlation that we could achieve is not sufficient to obtain
converging results. The MP2 method fails to give a correct description of the system, with
a very long bond distance and an unphysically very low stretching frequency. Going
from MP2 to CCSD and CCSD(T), the bond distance seems to approach convergence, but
the same cannot be said for the harmonic frequency. It is interesting to note that the CC
bond length is significantly longer than the DFT one. Furthermore, while the fluctuations
in the computed harmonic frequencies leave us unable to give a quantitative estimate,
the converged value is likely to be in between the CCSD and CCSD(T) result, and in
any case lower than all the DFT predictions. Unfortunately, the CCSD(T) calculation is
already stretching the limits of computational feasibility: a more accurate treatment of
correlation, including full triples excitations or even quadruples ones, seems at the moment
out of reach.

The large oscillations observed in the results motivated us to investigate whether the
source of the lack of robustness of both the DFT and post-HF results stems from static
correlation. We therefore performed further complete active space self-consistent field
(CASSCF) calculations [18,19]. Using Dunning’s cc-pVDZ basis set, which is sufficient
for qualitatively correct results, and the CFOUR suite of programs, we optimized the
geometry of FeC(CO)3 using analytical gradients and computed harmonic frequencies,
again by numerically differentiating analytical gradients. CASSCF calculations can be
an important source of insight in the electronic structure of a molecule; however, the
results depend strongly on the choice of the active space, which therefore introduces some
elements of arbitrariness. The choice of the active orbitals can be motivated by chemical
considerations, as done by Kalita et al. [1], who include in the active space all the orbitals
involved in Fe-C bonds, resulting in a CASSCF calculation with 12 correlated electrons in
12 orbitals. Here, we adopt a different strategy, based on an automatic, a priori strategy
to select the active orbitals. In particular, we select the active space according to the
Unrestricted-Natural-Orbitals (UNO) criterion [20,21]. In this procedure, symmetry-broken
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unrestricted HF solutions are first found. An average density matrix is computed using all
the independent UHF solution and then diagonalized to obtain the UNO. The active space
is built by including all the UNO with occupation between 0.01 and 1.99. The Restricted
HF wavefunction of FeC(CO)3 presents six triplet instabilities; the resulting active space
consists in 10 electrons in 10 orbitals, whose representation is given in Figure 1. The active
space mostly involves the d orbitals of the metal and the p orbitals of the investigated
C atom.

Figure 1. The (10,10) initial active space as obtained from the UNO procedure. Below the labels, the
fractional occupations of the converged CASSCF natural orbitals. Carbon atoms are shown in grey,
oxygens in red, and the iron atom in orange. Orbitals are visualized with the IboView software [22,23].

Looking at the orbitals and at their occupation numbers, obtained by diagonalizing the
final CASSCF one-body density matrix at the CASSCF equilibrium geometry, we note that
the system definitely exhibits a relevant static correlation. Looking closer at the CASSCF
wavefunction, we find that the contribution of the HF determinant has a weight of just
0.64, confirming the multireference nature of the molecule. This is in contrast to what
was found by Kalita et al., who found a CASSCF wavefunction dominated by the HF
reference (they report a coefficient of 0.952). We believe that this contradiction could be
due to the fact that their calculation was performed on the DFT-optimized geometry, while
we relaxed the geometry. Furthermore, our choice of the active space, resulting from a
well-established automated procedure, is different, and in particular slightly more compact.
While this may accentuate the multireference character of our CASSCF description, we
believe that our choice of active space is robust, which is confirmed empirically by the
smooth convergence of the CASSCF wavefunction optimization, which is performed using
a second-order method. The CASSCF calculations predict a Fe-C distance of 1.573 Å and an
associated harmonic stretching frequency of 1016 cm−1, which is in qualitative agreement
with the CC results.

We believe that our results show that it is too soon to conclude that there exists a
quadruple Fe-C bond in FeC(CO)3. The evanescent nature of the concept of bond order
itself has stimulated many discussions in the literature [24,25], which makes the topic
particularly interesting. However, assessing something as unprecedented as the existence
of a quadruple Fe-C bond requires a very careful validation of the results. Therefore, we
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conclude that the possibility of such a quadruple bond can, at the moment, be neither
confirmed nor denied, and further, more accurate calculations are required.

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1.
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