
 

 
 

 

 
ISPRS Int. J. Geo-Inf. 2022, 11, 490. https://doi.org/10.3390/ijgi11090490 www.mdpi.com/journal/ijgi 

Article 

Climate Justice in the City: Mapping Heat-Related Risk for  

Climate Change Mitigation of the Urban and Peri-Urban Area 

of Padua (Italy) 

Valeria Todeschi 1, Salvatore Eugenio Pappalardo 2,3,*, Carlo Zanetti 1, Francesca Peroni 4 and Massimo De Marchi 3 

1 Advanced Master GIScience and UAV, Department of Civil, Environmental and Architectural  

Engineering (ICEA), University of Padua, 35100 Padua, Italy 
2 Laboratory GIScience and Drones for Good, Department of Civil, Environmental and Architectural  

Engineering (ICEA), University of Padua, 35100 Padua, Italy 
3 Centre of Excellence Jean Monnet Climate Justice, Department of Civil, Environmental and Architectural 

Engineering (ICEA), University of Padua, 35100 Padua, Italy 
4 Department of Civil Environmental and Architectural Engineering (ICEA), University of Padua,  

35100 Padua, Italy 

* Correspondence: salvatore.pappalardo@unipd.it 

Abstract: The mitigation of urban heat islands (UHIs) is crucial for promoting the sustainable de-

velopment of urban areas. Geographic information systems (GISs) together with satellite-derived 

data are powerful tools for investigating the spatiotemporal distribution of UHIs. Depending on the 

availability of data and the geographic scale of the analysis, different methodologies can be adopted. 

Here, we show a complete open source GIS-based methodology based on satellite-driven data for 

investigating and mapping the impact of the UHI on the heat-related elderly risk (HERI) in the 

Functional Urban Area of Padua. Thermal anomalies in the territory were mapped by modelling 

satellite data from Sentinel-3. After a socio-demographic analysis, the HERI was mapped according 

to five levels of risk. The highest vulnerability levels were localised within the urban area and in 

three municipalities near Padua, which represent about 20% of the entire territory investigated. In 

these municipalities, a percentage of elderly people over 20%, a thermal anomaly over 2.4 °C, and a 

HERI over 0.65 were found. Based on these outputs, it is possible to define nature-based solutions 

for reducing the UHI phenomenon and promote a sustainable development of cities. Stakeholders 

can use the results of these investigations to define climate and environmental policies. 

Keywords: urban heat island; GIS-based methodology; satellite imagery; land cover; heat-related 

elderly risks; functional urban area; mitigation strategies; spatial equity; climate change adaptation; 

climate justice 

 

1. Introduction 

The Intergovernmental Panel on Climate Change Sixth Assessment Report [1] states 

that in the next 20 years, the global temperature will increase by 1.5 °C or more. Record-

breaking temperatures will be more frequent, intense and last longer due to climate 

change [2]. As climate change proceeds, urban heat-related health risks are likely to in-

tensify over the next decade. In fact, urban heat islands (UHIs) have a significant impact 

on health by increasing mortality [3]. Recently, Europe was identified as a heat wave 

(HW) hotspot, and it is speculated that temperatures may rise three to four times faster 

than in the rest of the northern mid-latitudes [4]. 

The UHI phenomenon is strongly influenced by the land cover/land use and the 

built-up environment. The reduction in vegetated areas and urban expansion promote an 

increase in the land surface temperature (LST), thus exacerbating the UHI phenomenon 

[5,6]. 
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Since the number of people in urban areas tends to increase, it is essential to promote 

climate-resilient development to improve liveability and reduce risks related to atmos-

pheric conditions, such as climate change and UHI. In applying adaptation policies and 

strategies to mitigate the impact of extreme events, the most degraded areas are often pe-

nalised. 

To date, few studies have documented obstacles to climate justice or assessed how 

emerging adaptation plans impact marginalised groups. To address the issue of climate 

justice, participation in adaptation planning should be broadened, with a focus on fast-

growing/low-budget cities, by integrating justice into urban design processes [7]. 

Defining methodologies for reducing the LST and spatially assessing UHI hotspots 

could help urban planners and decision makers develop climate-resilient policies 

grounded in nature-based solutions (NBSs) as well as participative and inclusive pro-

cesses. 

1.1. Research Background 

Various methods and techniques for assessing UHI can be found in the literature. 

The main criteria for defining the methodology largely depend on the geographical scale 

of the analysis and the availability and quality of data. 

The following subsections describe (i) the methods used to assess and quantify the 

UHI phenomenon, (ii) the strategies for UHI mitigation and assessing their impacts on the 

territory (iii) and a description of some representative study cases. 

In general, it is necessary to develop an optimised analysis method for UHI estima-

tion [8]. Currently, there are a lack of protocols for establishing UHI classification criteria 

and for determining data collection methods that can efficiently estimate and analyse 

UHIs [9]. 

1.1.1. Urban Heat Island (UHI) Assessment 

The most commonly used methods for assessing UHIs are integrated geographic in-

formation system (GIS) and remote-sensing techniques based on processing satellite im-

ages [10,11]. 

Regarding the input data (i.e., satellite images), Landsat satellite images are most of-

ten used to estimate the LST and land cover; thermal bands are used (i.e., TIRS1 and TIRS2 

of Landsat 8) at a spatial resolution of 100 m. However, their application may be limited 

due to satellite revisit time and, therefore, cloud cover. Sentinel satellite images can ad-

dress this issue, as they provide high-temporal-frequency data, but they have a spatial 

resolution of 1 km [12]. More specifically, the Sea and Land Surface Temperature Radi-

ometer (SLSTR) on-board Sentinel-3 satellites provides high-quality observations that can 

be used to estimate the LST. Sentinel-3 images have been used in various studies, despite 

their low spatial resolution. For example, Yang et al. [13] defined a series of algorithms to 

estimate the LST at six sites in northwest China, using Sentinel-3 images and land cover 

data with a spatial resolution of 1 km2. In another work, Landsat 8 and Sentinel-3 images 

were used in combination to calculate the LST through algorithms. The investigation was 

carried out in the metropolitan area of Granada, which has a territorial surface area of 

880,000 km2. In both cases, reliable results were obtained [14]. Other works [15,16] have 

also confirmed that Sentinel-3 provides reliable results. In general, Sentinel-3 LST values 

are slightly higher than LST values measured in situ. Therefore, based on the geographical 

and temporal scale on which analyses are performed, certain data might be more suitable 

than others. 

Different GIS software programs are currently in use. ESRI ArcGIS® is one of the most 

popular for spatial data processing and modelling despite being a paid, proprietary pro-

gram. Open source software programs, such as QGIS, have shown similar performance 

and are increasingly popular [17]. 
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Currently, the main methods for assessing UHI phenomenon are historical data from 

ground weather stations, computer modelling and simulations and remote-sensing tech-

nologies. Correlations between UHI-related variables and UHI phenomenon using re-

mote-sensing data are the most commonly used technique [11]. Moreover, by carrying out 

sensitivity analyses, it is possible to identify the parameters that influence the develop-

ment of UHIs. These parameters include the albedo, the presence of vegetation, the pop-

ulation density and the urban morphology, which is described using street widths, canyon 

orientation and building heights [18,19]. 

1.1.2. Mitigation Strategies and Their Impacts 

Green infrastructures (GIs) can be used to mitigate the effect of UHIs. Through evap-

otranspiration and shading, GIs improve outdoor thermal comfort. For example, Emman-

uel and Loconsole [20] predicted that a 20% global increase in green cover could reduce 

surface temperatures by 2 °C by 2050. 

More specifically, there are different GI strategies that are implemented in spatially 

based urban planning, including the use of trees (the most used GI strategy), grass, shrubs, 

green roofs and walls and parks [21]. A tree cover of at least one-third of the total surface 

area reduces the temperature by about 1 °C [22], and the use of trees can reduce the tem-

perature, on average, from a minimum of 0.5 to a maximum of 1.5 °C [21,23,24]. The com-

bined use of trees and grass can reduce the external air temperature up to 2–2.3 °C [25,26]. 

Meanwhile, the use of shrubs generates a moderate, sometimes minimal reduction in tem-

perature. The impact of green roofs on temperatures is significantly lower than that of 

trees, in some cases even nil, whereas green walls have a greater impact on reducing tem-

peratures [22,27]. Finally, green parks, have significantly lower temperatures than the ur-

banised surrounding area, with differences of 5 to 12 °C, and they can also reduce the 

temperatures of the surrounding buildings [28]. 

In general, the benefits of GIs on temperatures vary considerably depending on the 

geographical scale (city or building level), the extent of the greenery (shape and size of the 

park) and the type of vegetation [29]. Further, to be effective and usable, mitigation strat-

egies must be defined in conjunction with climate policies [30]. However, they are usually 

defined separately, without interaction. 

1.1.3. Case Studies 

Almost all studies have used a remote-sensing approach, although some studies have 

used a more traditional approach. For example, Martinelli et al. [31] investigated the UHI 

in a Mediterranean coastal city, Bari, in Italy. As input data, the authors processed the 

urban canopy layer and the air temperature data recorded by four weather stations lo-

cated in the metropolitan area of the city. 

Conversely, the following studies used a remote-sensing approach and spatially 

based software to process data and investigate climate scenarios, such as GIS and ENVI-

met©. Cocci Grifoni et al. analysed the impacts of climate change on the UHI in Ascoli 

Piceno City using remote sensing, spatial data, satellite images and computational fluid 

dynamics (CFD) simulations (i.e., ENVI-met©) [32]. Kikon et al. [33] used Landsat satellite 

images to assess the UHI in the city of Noida in India. In particular, a spatiotemporal 

analysis of LST was carried out, and correlations between LST and other land cover indi-

cators, such as the Normalised Difference Vegetation Index (NDVI) and albedo, were 

found. In another work [34], Landsat 8 satellite images were used to study not only the 

LST and NDVI but also the Normalised Difference Built-up Index (NDBI). This method 

was applied to the Colombo metropolitan area in Sri Lanka. In a case study near Colombo 

in Kurunegala, NBSs for mitigating the UHI were defined using Landsat data series from 

1996 to 2019 [35]. A similar remote-sensing approach was applied to a Bogor case study 

to assess the LST distribution from 1990 to 2017 [36] and to a Guangzhou case study in 

China to investigate the spatial distribution of the LST and the anthropogenic heat flux 

from 2004 to 2020 [37]. For these analyses, Landsat 5 and Landsat 8 satellite images were 
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processed. Similarly, Landsat 8 images and land cover data were used in an analysis of 

Paris and Geneva [38]. 

1.2. Study Area: The Functional Urban Area (FUA) of Padua 

The area under study is the urban and peri-urban area of Padua (NE of Italy), which 

include 31 municipalities, with a total population of 530,322 (data updated to 2020) and a 

territorial area of over 600 km2. We adopted a geographical scale, including whole func-

tional urban area (FUA) of Padua into the spatial analyses. The European Commission 

identifies an FUA as an extension of a city’s population density and work-related flows. 

In fact, an FUA consists of a densely populated city, in this case, Padua (209,730 inhabit-

ants in 2020), and a surrounding area (commuting zone, 320,592 inhabitants in 2020). Fig-

ure 1 shows the municipalities included in the FUA and the reference official ground 

weather station (yellow dot in the municipality of Legnaro) used in this work to identify 

time windows of HWs (see Section 2.1). The local climate is humid subtropical, with cold 

winters and hot summers. 

Figure 1. Functional Urban Area of Padua (530,322 inhabitants), including 31 municipalities (Veneto 

Region, NE Italy). 

This urban territory is one of the most affected in Italy by soil sealing due to urban 

expansion and infrastructure. In fact, according to an annual report by the National Insti-

tute for Environmental Protection [39], the city of Padua was ranked as the fifth largest 

city, with more than 100,000 inhabitants, with sealed surfaces. Recent studies that adopted 

a GIS-based approach estimated that about 50% of the municipal territory is currently 

sealed by urban infrastructure, jeopardising urban vegetation [40–42]. 
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As has been widely documented [43–47], HWs, which affect urban areas that are ex-

tremely sealed by impervious surfaces, may exacerbate the impacts of UHIs on the area; 

therefore, it is crucial to map the phenomenon and identify mitigation policies. 

In accordance with other studies [48–50], in Padua and the surrounding municipali-

ties, there are uncomfortable conditions during the summer temperature peaks. Based on 

these studies, the air temperatures in these urbanised areas have increased by about 6 °C. 

1.3. Research Objectives 

This work proposes a replicable methodology to explore, assess and map UHIs and 

their impacts during heat wave periods. The general aim of this work is to investigate and 

assess the effects of HWs at the FUA geographical scale, using integrated GIS and remote-

sensing techniques based on processing Sentinel-3 satellite images. Compared to other 

methodologies adopted, we combined the use of historical data based on ground weather 

stations together with remotely sensed data. This combination allowed us to firstly screen 

the timeframe for extreme heat events described by the heat wave magnitude index daily 

(HWMId), then to identify suitable scenes from Sentinel-3. Moreover, the use of GIS com-

bined with open access satellite data such as Sentinel-3 allows to map and identify critical 

areas as a function of several variables, such as land cover/land use, surface temperatures, 

and socio-demographic data. In fact, data from remote sensing together with GIS model-

ling allow us to evaluate the temperature values, in this case, the LST, for the portion of 

the territory to be analysed (the resolution of the data varies according to the analysis 

scale, the availability of the data and the type of satellite). The specific objectives of this 

work are summarised as follows: 

I. UHI assessment by calculating the HW period and the heat wave magnitude index 

daily (HWMId) using a meteorological analysis from 2018 to 2021. 

II. Mapping the LST and NDVI and the percentage of green surfaces. 

III. Mapping urban thermal anomalies by calculating the temperature difference be-

tween the LST and the average LST in peri-urban green areas. 

IV. Mapping UHI hazard and vulnerability by modelling the heat-related elderly risk 

index (HERI). 

2. Materials and Methods 

The Materials and Methods Section is divided into five subsections. The first section 

describes the input data (i.e., weather data, satellite data, land use data, socio-demo-

graphic data) and the main tools used to process them. The other sections show the GIS-

based methodology for evaluating the thermal anomalies and the impacts of the UHI on 

the HERI in the urban and peri-urban area of Padua. 

Figure 2 shows the workflow of the GIS-based methodology; the main phases are: 

1. The collection of input data; 

2. The pre-processing of data using open source software, SNAP and QGIS; 

3. The processing phase, in which all the parameters necessary to assess the urban ther-

mal anomalies and the HERI are calculated; 

4. In the last phase, the results are mapped in QGIS. 
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Figure 2. Flowchart of the GIS-based methodology. 

The proposed methodology is based on a complete open source and open data work-

flow, making it possible to be replicated and scaled up in other contexts. However, some 

constraints might exist related to the satellite scenes’ relationship with the identified 

timeframe of extreme heat waves events. 

2.1. Input and Processing Data 

The input data and the tools used for geoprocessing and spatial modelling are free 

and open source. The weather data analyses were performed in Excel, the satellite data 

(Sentinel-3 images) were pre-processed in SNAP, and the geo-processing and the map-

ping of the results were developed in QGIS. Table 1 describes the spatial input data used 

in this work. For each layer, the source, the coordinate reference system (CRS) and a brief 

description are indicated. All data were re-projected into the reference system WSG 

84/UTM zone 32N (EPSG: 32,632). 

Table 1. Description of spatial input data. 

Data Source CRS Type Reference Year 

Functional Urban 

Area (FUA) 
Copernicus 1 

ETRS89-xtended/LAEA Eu-

rope 
Polygonal vector data 2018 

Municipalities 
Geoportal of the Veneto 

Region 2 
Monte Mario/Italy zone 1 Polygonal vector data 2018 

Corine Land Cover 

(CLC) 

Geoportal of the Veneto 

Region 2 
RDN2008/Zone 12 Polygonal vector data 2018 

Sentinel-3 satellite 

images  
Copernicus 3 not assigned 

Raster data with 1km 

spatial resolution 

2018, 2019, 2020 

and 2021 

Socio-demographic 

data 

Statistical database of the 

Veneto Region 4 
WSG 84/UTM zone 32N Polygonal vector data 2020 

1 https://land.copernicus.eu/@@register?came_from=https%3A//land.copernicus.eu/local/urban-at-

las/urban-atlas-2018%3Ftab%3Ddownload (accessed on 30 July 2022). 2 https://idt2.regione.ve-

neto.it/ (accessed on 30 July 2022). 3 https://scihub.copernicus.eu/dhus/#/home (accessed on 30 July 

2022). 4 https://statistica.regione.veneto.it/banche_dati_societa_popolazione.jsp (accessed on 30 July 

2022). 

2.1.1. Weather Data 

Ground data refer to the ‘Legnaro’ weather station of the Regional Agency for Envi-

ronmental Protection (ARPA), which is about 8 km from Padua, within the FUA. The 



ISPRS Int. J. Geo-Inf. 2022, 11, 490 7 of 30 
 

 

hourly air temperature data refer to the last 30 years, from 1992 to 2021. In this work, we 

have considered the period 2018–2021 for the analyses, years for which Sentinel-3 satellite 

images are available. 

2.1.2. Satellite Data 

The use of Sentinel-3 was considered more appropriate than Landsat 8 for our re-

search due to the geographical scale of the analyses and the availability of satellite images. 

The Sentinel-3 images were selected considering the HW time windows and the five 

warmest days of each year (see Section 2.2) from 1992 to 2021. Sentinel-3 images are avail-

able since 2016, so the data download refers to the period 2016–2021. Sentinel-3 satellite 

images downloaded for 2016 and 2017 were not used in this analysis due to satellite ac-

quisition issues that made raster data not processible. Depending on the availability and 

quality of images, the analysis was conducted for the following days: 1 August 2018, 27 

June 2019, 31 July 2020 and 14 August 2021 (24 June 2016 and 2 August 2017 were excluded 

due to data inaccuracies). 

Sentinel-3 images were pre-processed in SNAP. They were re-projected using EPSG: 

32,632 (WSG 84/UTM zone 32N) as a reference system and subsequently exported in tif 

format to be processed in QGIS. Since the study area corresponds to the FUA, the centroid 

of the FUA was calculated, and a 30 km buffer was created with respect to the centroid. 

The satellite images were extracted using the 30 km buffer as the clip area. The extracted 

parameters were NDVI and LST. LST values were converted from Kelvin to Celsius. Av-

erage NDVI and LST values were then calculated for used in subsequent analyses. In 

QGIS, the GRASS tool ‘r.series’ was used to calculate the average data of four scenes. 

The LST values were mapped using Sentinel-3 data from four satellite scenes (sum-

mer period in the years 2018–2021). In particular, median LST data were calculated for 

each pixel with a resolution of 1 km × 1 km. The LST/NDVI values were mapped both 

using the original resolution of the Sentinel-3 image (Figures A1 and A3 in Appendix A), 

and the data were downscaled to a spatial resolution of 100 pixels for finer geovisualisa-

tion. To downscale data, the GRASS tool ‘r.resamp.interp’ in QGIS was used; in particular, 

data were processed according to the bilinear interpolation method. This process was car-

ried out to improve the visualisation of the data and make it more readable. 

2.1.3. Land Cover Data 

The corine land cover (CLC) at 2018 (downloaded from the Copernicus database) 

was used to identify the vegetated surfaces. The latest version of land cover data is avail-

able for 2018; this is the third edition of CLC. The previous ones refer to the years 2007 

and 2012 (updates are made every 5–6 years). The CLC we adopted was derived from 

high-resolution multispectral orthophotos (20 cm pixel size, 4 bands), at 1:10,000 nominal 

scale with a minimum mapping unit of 0.25 ha. Therefore, it was considered spatially and 

temporally appropriate for analyses carried out in the years from 2018 to 2021. The CLC 

database is in vector format, and the territorial surfaces are classified using a detail at the 

5th level (the most detailed level available). The percentage of green surfaces was calcu-

lated with a spatial resolution of 1 km in order to compare these percentages with the LST 

and NDVI values processed by satellite images, which have the same spatial resolution. 

The first step was to create a grid (format: vector) with the same spatial resolution as the 

satellite images (1 km). A spatial intersection was performed between the grid and the 

CLC layer. Subsequently, it was possible to calculate the green area percentage for 1 km2 

units (cells). The vector data were converted to raster data, and the percentage of green 

surface was mapped for each pixel with a size of 1 km2. 

2.1.4. Socio-Demographic Data 

Socio-demographic information was collected from the statistical database of the Ve-

neto Region at the municipal level (polygonal vector data), updated to 2020. 
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The population density (expressed in inhabitants per km2) and the percentage of in-

dividuals over 65 years of age were calculated from this database. These data were then 

used to assess the HERI. 

2.2. Urban Heat Island (UHI) Analysis 

The UHI analysis was carried out by screening and identifying time periods affected 

by an HW and considering the five warmest days of the year. These days were identified 

using the 2 m air temperature recorded from the official weather station in Legnaro, 8 km 

from Padua. Starting with a statistical weather analysis of a 30-year time series (from 1992 

to 2021) [51], the 2016–2021 period was selected because it is compatible with the availa-

bility of Sentinel-3 images. The most critical days from 2016 to 2021 were selected for the 

investigation. 

2.2.1. Heat Wave (HW) Period 

An HW is a period equal to or greater than three (method 1) or five (method 2) con-

secutive days with maximum air temperatures above the daily threshold for the reference 

period [52]. The reference period considered is from 1992 to 2021. 

The threshold is the 90th percentile of daily maxima, centred on a 31-day window. 

Therefore, for a specific day �, the threshold is the 90th percentile of the dataset �� de-

fined by Equation (1): 

�� = � � ��,�

����

������

����

������

 (1)

where:  

- U is the union of the datasets;  

- ��,� is the daily maximum temperature of the day � in the year �. 

2.2.2. Heat Wave Magnitude Index Daily (HWMId) 

The HWMId is an indicator used to calculate the severity of an HW [53]. The HWMId 

is defined as the sum of the magnitude of the consecutive days comprising a HW (Equa-

tion (2)), with the daily magnitude calculated by Equation (3): 

����� = � ��

�

��� � �

 (2)

with: 

��(��) = �

�� − �������

������� − �������
 �� �� > �������

0 �� �� ≤ �������

 (3)

where: 

- �� is the maximum daily temperature on day � of the HW; 

- ������� is the 25th percentile of the annual maximum temperatures recorded from 

1992 to 2021;  

- ������� is the 75th percentile of the annual maximum temperatures recorded from 

1992 to 2021. 

2.3. Thermal Anomalies Analysis 

For the evaluation of thermal anomalies, the median LST data of the four selected 

scenes were used as the reference surface temperature. To identify the areas with high 

LST values, the temperature difference (ΔT) was calculated between the median LST value 
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of each pixel and the average value of pixels (‘pins’) located in non-urban areas and 15–

20 km away from the centroid of Padua.  

The buffer size of 15–20 km used was defined according to the typical configuration 

of land cover/land use of the study area, which is the FUA. The ΔT was defined as the 

‘urban thermal anomaly’ value. The main steps along with the tools used in QGIS are 

described below: 

1. Creation of a circular crown (15–20 km) 15 km distant from the FUA with an exten-

sion of 5 km. 

2. Extraction of the CLC layer using a 15–20 km circular crown level. 

3. From the extracted CLC database (15–20 km), identification of the points the maxi-

mum distance from the edge of the polygons classified as ‘vegetation’. 

4. Selection of points at least 400 m away for the 15–20 km circular crown. 

5. Extraction of the value from the LST raster corresponding to the identified ‘pins’. 

6. Calculation of an average temperature value of the ‘pins’, which was then used to 

evaluate the thermal anomaly. 

2.4. Relationship between Land Cover and Satellite Data 

As previously mentioned, a raster database with a spatial resolution of 1 km was 

organised in order to overlay information from different sources (i.e., land cover and sat-

ellite data). The statistical analysis was carried out by overlying median LST and NDVI 

values (processed from four scenes from Sentinel-3), with the percentage of green areas 

extracted from the CLC database (resampled with a spatial resolution of 1 km). Using the 

GRASS tool ‘r.regression.line’ in QGIS, two correlations were performed, the first between 

the LST and percentage of green areas and the second one between the NDVI and per-

centage of green areas. 

2.5. Heat-Related Urban Risk Assessment 

Areas most at risk during HWs are those with high levels of thermal anomalies and 

a higher population density than other areas. Further, the most vulnerable people are the 

elderly (over 65) and children (younger than 5). Based on the literature [54–59], a GIS-

based method was defined to identify urban and peri-urban areas in Padua most at risk. 

In particular, we focused on the elderly (the most vulnerable) by analysing the summer 

period (June–August). The HERI was calculated and mapped for the 31 municipalities 

located in the FUA by combining climate risk data—the thermal anomaly—and popula-

tion data (i.e., population density and people over 65 years of age). 

2.5.1. Exposure and Vulnerability Parameters 

The exposure (E) and vulnerability (V) parameters were calculated for all municipal-

ities within the FUA. The exposure parameter was assessed by computing the population 

density (inhabitants per km2). The vulnerability (%) parameter was assessed by compu-

ting the percentage of the population aged 65 or over, the population most vulnerable to 

HWs. 

The population data were collected from the statistical database of the Veneto Region 

(updated to 2020) at the municipal scale. Therefore, E and V values were calculated for 

each municipality. 

2.5.2. Hazard Parameter 

The hazard (H) parameter was obtained using the thermal anomaly values deter-

mined using the methodology presented in Section 2.3. The data included hourly air tem-

peratures recorded by a weather station located near Padua, in Legnaro, and to four sat-

ellite images. The satellite images covered the following days: 1 August 2018, 27 June 2019, 

31 July 2020 and 14 August 2021 (sensing hour UTC: 9.00–9.45 a.m.). The images had a 
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spatial resolution of 1 km2 per pixel. Therefore, an average thermal anomaly value was 

calculated for each municipality. 

2.5.3. Heat-Related Elderly Risk Index (HERI) 

To quantify and map the HERI, the parameters E, V and H were normalised from 0 

to 1 to enable comparison (�����, �����, �����). The normalisation procedure followed the 

‘max–min method’ [60], which is described by Equation (4): 

�� =
[�� − ���(�)]

[���(�) − ���(�)]
 (4)

where: 

- ��  is the normalised value in the dataset, which varies between 0 and 1 

(�����, �����, �����); 

- �� is the value in the dataset; 

- ���(�) is the minimum value in the dataset;  

- ���(�) is the maximum value in the dataset. 

Next, these values were combined into one index, the HERI, by assigning a weight to 

each parameter. Specifically, the parameters were combined by weighting E and V as 25%, 

respectively, and H as 50%: 

���� = (0.25 ∙ �����) + (0.25 ∙ �����) + (0.50 ∙ �����) (5)

Finally, the HERI was normalised (��������) from 0 to 1 (always using the max–min 

method) and mapped at the municipal level. 

Based on the literature [56], the HERI parameter was mapped by splitting it into five 

risk levels: very low ( ��������  ≤ 0.2), low (0.2 < ��������  ≤ 0.4), moderate (0.4 < 

��������  ≤ 0.6), high (0.6 < ��������≤ 0.8) and very high (�������� > 0.8). 

3. Results 

The results section is divided into five subsections. The first section presents the re-

sults of the UHI analysis, the identification of HW periods and the selection of satellite 

images. In Section 2, the indicators used to investigate the spatiotemporal distribution of 

the UHI phenomena are mapped. The third section describes the correlations between 

land cover and satellite data. The last two sections show the mapping of thermal anoma-

lies and the HERI. 

3.1. Urban Heat Island (UHI) Analysis 

Based on a previous work [51], the HW periods were identified, and two indicators 

were calculated to investigate the UHI intensity. Subsequently, the satellite images were 

selected for the identified hot days based on the availability and quality of the Sentinel-3 

images. 

Table 2 lists the hottest days for each year (from 2016 to 2021), which also fit into an 

HW time window. 

Table 2. Identification of Sentinel-3 satellite images according to HW time windows. 

Sentinel-3 

Sensing Date 

Hour 

UTCI 

HW Analysis 
Md (-) 

Sensing Date 
Tae,day,max (°C) 

Period Duration (Days) 
HWMId 

(-) 

24 June 2016 * n/a From 23 to 25 June 3 5.00 1.83 33.6 

2 August 2017 * n/a From 1 to 6 August 6 11.3 2.32 36.9 

1 August 2018 
9.00 

a.m. 
From 30 July to 1 August 3 4.98 1.89 35.3 
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27 June 2019 
9.45 

a.m. 
From 25 to 28 June 4 7.91 2.73 37.3 

31 July 2020 
9.30 

a.m. 
30 July to 1 August 3 5.33 1.96 35.7 

14 August 2021 
9.45 

a.m. 
From 13 to 15 August 3 4.96 1.73 34.9 

* Satellite images not applicable due to acquisition issue. 

Satellite images were processed for these selected days. Due to an acquisition issue 

in the years 2016 and 2017, this work analysed images from the following years: 2018, 

2019, 2020 and 2021. For each year, a satellite image was selected and elaborated. 

Since Sentinel-3 satellite images are acquired from two satellites, there is a greater 

availability of data than Landsat satellite images. The two in-orbit Sentinel-3 satellites en-

able a short revisit time of less than two days for OLCI and less than one day for SLSTR 

at the equator. 

3.2. Mapping Urban Heat Waves and Heat Islands 

The main data processed from the Sentinel-3 satellite images and from the CLC da-

tabase were mapped for the urban and peri-urban areas of Padua, Italy, for summers of 

2018–2021 (June–August). Using the QGIS ‘resampling’ tool, the median LST and NDVI 

values were calculated for the four selected satellite images. 

3.2.1. Mapping Land Surface Temperature (LST) 

Spatial analysis of LSTs showed that maximum LST values (44.5–45 °C) are localised 

within the municipality of Padua (Figure 3). The areas most affected by UHI are mainly 

located in the industrial zone (eastern sector) and in the central–northern neighbourhoods 

of Padua. Here, LST values ranges from about 41 to 43 °C. High LST values are also local-

ised in the NW sector, outside the city, in the municipalities of Rubano and Mestrino. 
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Figure 3. Map of the land surface temperature in the Functional Urban Area of Padua (NE Italy) 

based on four Sentinel-3 scenes (100 m raster resolution output). 

In Appendix A, the LST (median values of analysed scenes) is mapped with a nomi-

nal spatial resolution of 1 km2 per pixel (Figure A1) and at a municipal level (Figure A2). 

3.2.2. Normalised Difference Vegetation Index (NDVI) Calculation 

The NDVI was mapped using a median NDVI value based on four satellite images 

(the same procedure used for the LST). From Figure 4, it can be seen that the lowest NDVI 

values (0.3–0.2), which correspond to areas with scarce or no vegetation, are located in the 

urban area of the FUA (see Figure A3, in Appendix A for a spatial resolution of 1 km2 per 

pixel). 
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Figure 4. NDVI map (median value) geovisualising green areas in the Functional Urban Area of 

Padua (100 m raster resolution output). 

3.2.3. Urban Green Analysis: Estimation of Green Surfaces 

Spatial analysis showed that higher NDVI values (0.71–0.61) occurred mainly in areas 

located in outer sectors of the FUA, in the municipalities of Teolo and Saccolongo (eastern 

sector) and Villafranca Padovana (northern sector). On the contrary, the lowest NDVI val-

ues (0.21–0.25) were mainly distributed within the city of Padua.  

By estimating green surfaces on 1 km2 area units, it is possible to geovisualise the 

interactions among land cover (Figure 5) and surface temperature (Figure 3), where high 

LST values and low NDVI values correspond to areas with a low percentage of green 

surfaces. 
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Figure 5. Map of the percentage of green surfaces with a 1 km2 grid size in the Functional Urban 

Area of Padua in Italy using the Corinne Land Cover (CLC) in 2018. 

3.3. Correlations between Satellite Data and the Percentage of Green Surfaces 

As described in Section 2.4, the statistical analysis was carried out in QGIS using the 

GRASS tool called ‘r.regression.line’. Based on Equation (6), Table 3 shows the linear re-

gression results between the median LST and NDVI values of the four satellite images 

selected and the percentage of green surfaces. 

� = � + � ∙ � (6)

Table 3. Linear regression results between satellite data (LST and NDVI) and the percentage of 

green surfaces. 

y x a b R 1 

LSTmedian Percentage of 

green surfaces 

42.32 −4.71 −0.67 

NDVImedian 0.37 0.23 0.76 
1 R is the correlation between the predictor variable and the response variable. 

These results show that there is a correlation between the LST (R is equal to −0.67) 

and the UHI effect and the presence of vegetation. As expected, the LST also depends on 

other factors that were not considered in this first investigation. However, this liner re-

gression model can be used to evaluate how an increase in vegetation could mitigate the 
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UHI effect by reducing the LST in the FUA of Padua. Correlating the percentage of green 

surfaces with the NDVI resulted in an R value of 0.76. 

3.4. Mapping Urban Thermal Anomalies 

Based on the analysis of thermal anomalies, the most critical municipality is Padua 

(ranked first with an average anomaly of 2.9 °C), followed by Ponte San Nicolò (2.5 °C 

anomaly), Noventa Padovana and Albignasego (2.4 °C anomaly) and Abano Terme (2.3 

°C). 

In the municipality of Padua, the most critical areas are the historic centre in the north 

part of the city, which is a densely built-up district with few green areas, and the industrial 

zone in the northeast of the municipality. These areas have the highest thermal anomaly 

values, equal to about 6–7 °C. Meanwhile, the lowest thermal anomaly values are in the 

peri-urban areas of Padua, where the building density is lower and the percentage of 

greenery is significantly higher than in the urban area. The areas least at risk are located 

in the municipality of Teolo, with minimum thermal anomaly values of −5.5 °C. In fact, 

Teolo is a municipality entirely included in the Regional Park of the ‘Colli Euganei’, dom-

inated by forest in a gently hilled area. Urban thermal anomalies are shown in Figure 6. 

 

Figure 6. Map of urban thermal anomalies in the Functional Urban Area of Padua in Italy during 

the summers of 2018–2021 (100 m raster resolution output). 

In Appendix A, urban thermal anomalies in the FUA are mapped with a spatial res-

olution of 1 km2 per pixel (Figure A4) and at a municipal level (Figure A5). 
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3.5. Mapping the Heat-Related Elderly Risk Index (HERI) 

The results of this analysis show that the most vulnerable municipality during HWs 

is Padua, while the least vulnerable is Polverara. 

In general, the municipalities with the highest levels of population density (defined 

as exposure, E) are Padua (2217 inhabitants per km2) and Noventa Padovana (1537 inhab-

itant per km2). Meanwhile, the municipalities with the lowest E values are Bovolenta and 

Terrassa Padovana, with a population density of less than 200 inhabitants per km2. 

The municipality with the highest percentage of elderly people (defined as vulnera-

bility, V) is Teolo (32.8%), followed by Battaglia Terme (27.9%), Abano Terme (6.8%) and 

Padua (25.5%). The two municipalities with the lowest percentage, around 18%, are Mes-

trino and Terrassa Padovana. 

The highest thermal anomaly values (defined as hazard, H) during the summer pe-

riod between 2018 and 2021 were observed in Padua (2.91 °C on average), followed by 

Ponte San Nicolò (2.54 °C on average), while the lowest H values were observed in Teolo 

(−0.96 °C on average) and Poverara (−0.3 °C on average). 

Table 4 presents the non-normalised values of E, V, H and HERI for each municipal-

ity. The municipalities are sorted according to HERI values, from lowest to highest. 

Table 4. Non-normalised values of E, V, H and HERI in the urban and per-urban areas of Padua in 

Italy during the summers of 2018–2021. 

Municipality 
Exposure 

(inh./km2) 
Vulnerability (%) Hazard (°C) 

HERI 

(-) 

Padova 2255 25.5 2.91 0.88 

Abano Terme 939 26.8 2.32 0.67 

Noventa Padovana 1626 20.1 2.42 0.65 

Ponte San Nicolò 991 23.5 2.54 0.65 

Albignasego 1250 21.1 2.38 0.62 

Cadoneghe 1236 24.1 1.88 0.60 

Selvazzano Dentro 1174 24.8 1.74 0.59 

Rubano 1152 22.1 1.82 0.55 

Stra 856 24.6 1.6 0.53 

Sant’Angelo di Piove di Sacco 394 28.3 1.45 0.51 

Vigonovo 772 21.0 1.99 0.51 

Vigonza 693 21.2 1.86 0.48 

Montegrotto Terme 739 25.4 1.24 0.48 

Saonara 770 19.4 1.65 0.44 

Maserá di Padova 520 20.0 1.78 0.44 

Battaglia Terme 611 27.9 0.53 0.42 

Legnaro 618 20.1 1.41 0.40 

Due Carrare 337 20.7 1.53 0.39 

Campodarsego 575 19.3 1.37 0.38 

Casalserugo 344 23.8 0.84 0.36 

Brugine 278 25.0 0.69 0.35 

Vigodarzere 654 21.9 0.63 0.33 

Cartura 280 22.0 0.73 0.30 

Saccolongo 357 23.5 0.29 0.28 

Terrassa Padovana 182 18.7 0.94 0.26 

Mestrino 606 17.8 0.64 0.26 

Teolo 217 32.8 −0.96 0.26 

Bovolenta 153 23.3 0.27 0.25 

Limena 531 21.0 0.03 0.23 

Villafranca Padovana 438 19.3 −0.29 0.15 
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Polverara 341 19.2 −0.39 0.12 

Figure 7 shows the HERI values at the municipal level according to five risk levels: 

very low (�������� ≤ 0.2), low (0.2 < ��������≤ 0.4), moderate (0.4 < ��������  ≤ 0.6), 

high (0.6 < �������� ≤ 0.8) and very high (��������  > 0.8). The very high-risk levels are 

localised in the urban area of Padua and in three municipalities near the city (Abano 

Terme, Noventa Padovana and Ponte San Nicolò). These municipalities represent 19.8% 

of the FUA area, equal to 121.5 km2. On the contrary, 16 municipalities have low and very 

low HERI levels, representing 48.1% (395.4 km2) of the total area. 

 

Figure 7. Map of the heat-related elderly risk index (HERI) in the Functional Urban Area of Padua 

in Italy during the summers of 2018–2021 (normalised values from 0 to 1). 

In Appendix A, the three parameters used to identify the most vulnerable areas (i.e., 

E, V and H) are mapped in Figures A6–A8. 

4. Discussion 

Several studies have shown that there are different methodologies and techniques 

for investigating and mapping summer thermal anomalies in urban areas. GIS tools are 

fundamental for carrying out this type of analysis, and there are several variables that can 

be processed and mapped. For example, Guerri et al. [61] assessed different indicators 

able to describe the land cover (e.g., LST, NDVI and albedo), the urban morphology and 

the distribution of the population. The main input data are satellite images, and based on 
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the analysis scale, the type of resolution and the availability of the data, Landsat or Senti-

nel images can be used [62,63]. 

In this work, Sentinel-3 satellite images were processed and the main indicators elab-

orated to investigate the urban thermal anomalies are LST, NDVI and HERI. The results 

of this study show that the areas most at risk are those with LST values higher than 40 °C, 

NDVI lower than 0.4 and HERI higher than 0.6–0.65. In particular, HERI values higher 

than 0.8 identify high-risk areas, while values between 0.6 and 0.8 indicate areas at risk. 

The UHI phenomenon has important impacts on public health. Europe is highly vul-

nerable to HWs [64]. UHI mitigation measures should be adopted to reduce the mortality 

and vulnerability of older people as well as other weak stakeholders (i.e., poor people, 

homeless). Mitigation measures include increasing urban green spaces, installing cool 

roofs (e.g., reflective roofs) and green walls, updating building regulations to promote the 

use of passive cooling strategies and introducing financing instruments (i.e., incentives) 

to support the cost of the interventions [65]. Such measures should be integrated into cli-

mate-resilient development plans that consider both the physical impacts of UHI on urban 

territory and the spatial dimensions of the most vulnerable people. In fact, two of the main 

issues related to adaptation strategies are their effectiveness and spatial inequality. Cur-

rently, there is no mechanism for monitoring and reporting adaptation strategies, which 

would allow for the supervision and evaluation of the adaptation process and support the 

involvement of weak actors in urban planning strategies [66,67]. Regarding spatial ine-

quality, the mitigation measures might be localised in a selected area of the urban territory 

to the detriment of the most socially disadvantaged areas. In fact, social inequality affects 

the localisation of adaptation and mitigation strategies. To overcome this inequality, cities 

should promote inclusive sustainable development [7,68]. For example, encouraging the 

spatial equity of urban green spaces would be an adoptable solution to mitigate the UHI 

effect [69]. Of the various aspects that influence the UHI phenomenon, the urban form 

plays an essential role. Thus, as suggested by Mohtat and Khirfan [70], it is necessary to 

integrate climate justice into the adaptation of the urban form. The density and size of 

cities affect the UHI intensity [71]. More specifically, the urban parameter that has the 

greatest influence on LST values is the green space ratio, followed by the building cover-

age ratio, the building ratio and the height-to-width ratio [72,73]. 

5. Conclusions 

To mitigate UHI and address the problem of climate change, it is necessary to pro-

mote sustainable and resilient development. By identifying the most at-risk areas, targeted 

mitigation measures could be designed to improve the outdoor thermal conditions and 

liveability of urban spaces. 

5.1. Main Research Findings 

The present work involved mapping thermal anomalies in the urban and peri-urban 

areas of Padua, Italy, (FUA geographical scale) using an integrated GIS and remote-sens-

ing technique based on the processing of satellite images. Due to the scale of the analysis 

and the availability of data, Sentinel-3 images were used to assess the UHI and map the 

LST, NDVI, percentage of green surfaces, urban thermal anomalies and the HERI at dif-

ferent scales and raster resolutions. 

The results showed that the most critical areas with higher temperatures are in the 

municipality of Padua, with maximum thermal anomaly values of approximately 6–7 °C. 

An analysis on urban heat-related health risks was also carried out. The HERI was 

mapped at the municipal level. Hazardous HERI levels (high and very high risk) were 

localised in Padua, Abano Terme, Noventa Padovana and Ponte San Nicolò. 

Future studies could define adaptation strategies to be applied in the most vulnerable 

areas and assess their impacts on the territory in terms of outdoor thermal comfort and 

energy demand for cooling. 
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5.2. Limitations and Future Direction of the Research 

The use of satellite data such as Sentinel-3 provides an effective open-access and low-

cost monitoring system to assess and to monitor extreme heat wave events and UHI in-

tensity on urban territory at multiple scales over time. In fact, as reported in the literature, 

air temperature data with a suitable spatial distribution in urban areas of WMO certified 

ground weather stations are often not available. In fact, ground weather stations provide 

air data temperature only in a specific point of the territory and they might be costly if not 

supported by public institutions. Therefore, even with some limitations, in the case of a 

lack of spatially consistent weather stations, the use of LST derived from Sentinel-3 data 

provides, during extreme heat wave events, a synoptic assessment of UHI intensity in 

wide portions of the territory (local and supra-local geographical scales). Moreover, 

thanks to the high-frequency re-visit time of Sentinel-3, further research should focus on 

the spatial and temporal variability of thermal anomalies on the urban territory to give 

precise and practical indications for climate resilient urban planning and development. 
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Appendix A 

This section presents additional results mapped using different resolution scales. 

 

Figure A1. Map of the LSTs in the Functional Urban Area of Padua in Italy based on four Sentinel-

3 scenes (1 km raster resolution output). 
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Figure A2. Map of LSTs at the municipal level in the Functional Urban Area of Padua in Italy during 

the summers of 2018–2021 (June–August). 
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Figure A3. NDVI map (median value) geovisualising green areas in the Functional Urban Area of 

Padua (1 km raster resolution output). 



ISPRS Int. J. Geo-Inf. 2022, 11, 490 23 of 30 
 

 

 

Figure A4. Map of urban thermal anomalies in the Functional Urban Area of Padua in Italy during 

the summers of 2018–2021 (1 km raster resolution output). 
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Figure A5. Map of urban thermal anomalies at the municipal level in the Functional Urban Area of 

Padua in Italy during the summers of 2018–2021 (June–August). 
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Figure A6. Map of the exposure (E) parameter in the Functional Urban Area of Padua in Italy during 

the summers of 2018–2021 (normalised values from 0 to 1). 



ISPRS Int. J. Geo-Inf. 2022, 11, 490 26 of 30 
 

 

 

Figure A7. Map of the vulnerability (V) parameter in the Functional Urban Area of Padua in Italy 

during the summers of 2018–2021 (normalised values from 0 to 1). 
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Figure A8. Map of the hazard (H) parameter in the Functional Urban Area of Padua in Italy during 

the summers of 2018–2021 (normalised values from 0 to 1). 
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