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Artificial Pancreas: In Silico Study Shows No Need
of Meal Announcement and Improved Time in

Range of Glucose with Intraperitoneal vs
Subcutaneous Insulin Delivery
Chiara Toffanin, Lalo Magni, and Claudio Cobelli, Fellow, IEEE

Abstract—Contemporary Artificial Pancreas (AP) consists of
a subcutaneous (SC) glucose sensor, a SC insulin pump and a
control algorithm. Even the most advanced systems are far from
optimal, in particular due to the non-physiologic nature of SC
route. While SC insulin delivery is convenient and minimally
invasive, it introduces delays to insulin action that make tight
control difficult, particularly during meals. In addition frequent
patient interventions are needed, e.g. at mealtime. The intraperi-
toneal (IP) insulin delivery could address this major challenge
since it exhibits a faster pharmacokinetics/pharmacodynamics,
hence making easier to quickly respond to glycemic disturbances.
A 1-day hospital closed-loop study has shown significant im-
provements of IP glucose control vs SC AP, and that meal
announcement is not necessary. However, the IP AP has not been
tested in more realistic everyday life conditions. In this work we
have performed an in silico study of 14 days of an IP AP by using
the UVA/Padova simulator which includes intra- and inter-day
variability of insulin sensitivity and several real life scenarios.
We show superiority of IP AP vs SC AP in terms of quality of
glucose control (time in range 87% IP vs 80% SC) without the
need of a meal announcement.

Index Terms—Closed-loop glucose control, Model Predictive
Control (MPC), Mathematical modeling, Simulation, Automated
insulin delivery systems

I. INTRODUCTION

Diabetes mellitus is a life-threatening disease and its global
prevalence is dramatically increasing as a result of population
ageing, urbanization and associated lifestyle changes [1],
[2]. Between 1980 and 2017, the number of people with
diabetes has more than doubled reaching 425 million people
worldwide and it is projected to rise to 629 million by 2045
[3], [4]. In people with Type 1 Diabetes (T1D) - 10-15% of
the diabetes population - the pancreas is no longer able to
secrete insulin and T1D subjects face a lifelong challenging
problem to reach near-normal glycemic control without
increasing their risk of hypoglycemia [5]. The current T1D
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therapy requires the patient to compute and self-inject an
appropriate amount of insulin, resulting in multiple daily
procedures (including painful finger-pricking and frustrating
computation) with a therapeutic effectiveness that strongly
depends on the patient’s skill. The standard insulin therapy for
T1D patients is the so-called subcutaneous (SC) basal-bolus
therapy: the combination of a piecewise constant insulin
infusion, the basal (ub), to supply to the insulin needs during
fasting periods, and of impulse-like infusions, the insulin
boluses (uB), realising a feed-forward action performed to
compensate perturbations, i.e. meals. As result the quality
of glucose control is highly dependent on the chosen basal
intervals and on the estimation by the T1D subject of the
carbohydrate content of each meal. It has been estimated that
only about half of the patients meet the targets recommended
by the scientific societies clinical guidelines [6] despite the
exorbitant number of therapeutic actions (100.000-500.000)
in one patient’s life. Not meeting the target recommendations
has dramatic consequences: persistent hyperglycemia (Blood
Glucose, BG, > 180 mg/dl) can lead to eye, heart, kidney,
and nerve injuries, whereas acute hyperglycemia (BG > 250
mg/dl) can result in ketoacidosis, which is still the most
frequent cause of death in people with T1D aged under
50 years [7]. On the other side of the glucose spectrum
hypoglycemia (BG < 70 mg/dl) may result in convulsions,
coma and even death. Patients constantly fear hyperglycemia
or forthcoming acute hypoglycemia. These and other disease
associated burden triplicates depression in T1D subjects [8].
The economic burden of diabetes is remarkable: a diabetic
subject cost is twice as much as for a non-diabetic subject,
560 billion C/year or 2600 C/year per patient in Western
countries.
Some solutions to automatically manage insulin administration
exist, but they are still far from being optimal. The forefront
diabetes research in the EU and US consists of a SC wearable
Automated Insulin Delivery systems (AID), often referred to
as Artificial Pancreas (AP) [9] with three external-to-the-body
devices: a SC glucose sensor, a SC insulin pump and a
control algorithm implemented either on a tablet or directly
on the pump. However, even the most advanced AP systems
are far from optimal [10]–[15] due to the non-physiologic
nature of SC route. While SC insulin delivery is convenient
and minimally invasive, it introduces delays in insulin action
and clearance [16] that make tight control difficult. The
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hurdles to glycemic control caused by these delays are very
critical and frequent interventions are required by the patient,
e.g. any time there is a meal or an exercise, to improve
postprandial glucose control [17]–[19], thus rendering system
full automation impossible. In summary, the SC insulin
delivery route is the bottleneck of AP technology and the
cause of the major limitations of this approach. Although
improving glucose control with respect to manual insulin
delivery, AP reaches an unsatisfactory glucose control,
especially during meals and SC AP is still not able to avoid
the acute complications of diabetes and reducing disease
associated burdens.
The intraperitoneal (IP) site for insulin delivery could address
this major challenge and is a promising alternative to the
conventional SC route. Delivering insulin to the IP space
results in faster pharmacokinetics/pharmacodynamics [20],
[21] as shown in Fig. 1, hence it could be easier for an
AP controller to quickly respond to glycemic disturbances.
Preliminary studies of closed-loop control using implanted
IP insulin technology in 1-day hospital studies, with a
Proportional, Integral, Derivative (PID) controller [22] and
a Model Predictive Controller (MPC) [23], have shown
clinical feasibility and the potential to improve significantly
glucose control with respect to SC AP. However, they
have not been tested in the more realistic and challenging
everyday life condition of outpatients. In addition to improved
pharmacokinetics and pharmacodynamics, IP delivery also
better mimics physiological insulin delivery by including a
first liver pass and thus a higher insulin concentration in
the portal system than in the peripheral system. This results
in better insulin/glucagon balance and glycemic variability
[24]. Some recent studies [25], [26] indicate that prolonged
use of IP infusion does not adversely affect insulin-like
growth-factor-1 (IGF-1) concentrations, as observed with
prolonged SC use [27]. The use of IP insulin delivery also
reduces frequency and severity of hypoglycemic episodes
[28], [29].
Even if the advantages of the IP route is an accepted
notion, its long-term usage is not widespread due to some
major issues: the safety and the stability of the implant,
the long-term power supply, the invasive refill procedure,
the fluid leakage and contamination, and the frequency of
catheter occlusions. Recently, several research groups have
addressed these aspects to make the IP pumps a valuable
alternative to SC ones. For example, Lee at al [30] designed
a novel implantable insulin infusion system actuated by a
magnetic pen. Peristaltic rotary pumps are also under study
[31] since they can ensure low voltage actuation and low
impact on fluid properties, solving the issue of the contact
between fluids and pump mechanisms and thus avoiding
leakages and fluid contaminations [32]. Catheter occlusions is
an additional problem and active research is carried out. Less
traumatic catheter tips and catheter components or coatings
reducing inflammatory reactions at the catheter tip could
provide solutions to minimize occlusions [33]. Recent studies
reported catheter obstructions improvements moving from
8-57 to 4 occlusions per 100 patient-years [34]. Research
on stable highly concentrated insulin analogues is also in

progress.
On the market two IP insulin systems are available:
the Medtronic implantable programmable system (model
MMT-2007D; Medtronic Diabetes, Northridge, CA) and
the DiaPort system by Roche (Second Generation, Roche
Diagnostics, Mannheim, Germany), which is provided with
a transcutaneous access allowing direct IP insulin delivery
from an external portable device. However, new and more
advanced systems are under study. For example, Iacovacci
et al [35] developed a device equipped with a mechatronic
system for noninvasive refilling that relieves the patient
to periodically visit the hospital for pump refilling. The
FET Proactive FORGETDIABETES EU funded project (n.
951933) aims at realising a fully-implanted IP sensor and
IP pump system; in particular, the miniaturised IP pump has
a noninvasive refill strategy and wireless battery recharging
that is immuno-optimised and biocompatible in order to
minimise adverse reactions and occlusions. Novel control
algorithms using IP sensor and IP insulin delivery are being
also developed within the project.
In this manuscript we propose a fully-automated IP MPC, i.e.
unannounced meals, (MPC-IP-U) and compare it in silico to
the SC hybrid MPC [36], i.e. with meal announcement, (MPC-
SC-A) that was successfully employed in our long-period
outpatient clinical trials [37]–[39]. In order to single out the
improvements due to the new IP route, no further changes
have been introduced in the MPC-IP-U with respect to the
clinical validated MPC-SC-A. The glucose measurements
are obtained using CGM (Continuous Glucose Monitoring)
devices available on the market, which measure SC glucose.
The delay due to this kind of measurements affect the AP
performance in both cases (IP and SC). The MPC has been
optimised for both IP with unannounced meals and SC with
announced meals. The key point of the proposed IP approach
is the possibility, thanks to the new technologies, to relieve
the patient from counting the carbohydrate contents and
announcing the meal. This is possible thanks to the fast IP
route used for insulin delivery and the optimal action of the
MPC-IP-U controller.
In addition, results obtained with the fully-automated SC
MPC, i.e. no meal announcement (MPC-SC-U) have been
reported for completeness and to understand the nature of
the improvements obtained with the proposed method. The
performance has been evaluated in silico on 100 virtual adult
patients using using the most recent version of the FDA
accepted UVA/Padova Type 1 Diabetes Simulator [40], [41].
that accounts for intra- and inter-patient variability of insulin
sensitivity. All the results are based on the SC glucose sensor
included in the simulator.

The paper is organised as follows. In Section II the fully-
automated MPC algorithm is presented together with the
hybrid MPC. In Section III the UVA/Padova simulator, the
scenario, the controller parameters and the metrics used for the
tests are presented. In Section IV the results achieved by both
controllers are reported. In Section V results are discussed. In
Section VI some conclusions are drawn.
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Fig. 1. Schematic diagram illustrating glucose metabolism and the two insulin
delivery route: the state-of-art subcutaneous (SC) and the novel intraperitoneal
(IP) route.

II. FULLY-AUTOMATED INTRAPERITONEAL MPC
ARTIFICIAL PANCREAS

In this Section, the proposed MPC algorithm designed to be
used with an intraperitoneal insulin pump is introduced. The
meal is not announced to the system allowing less interaction
and stress for the patient, but requiring the use of a more
invasive implanted pump. The model used in the MPC is
a linearization of the average model of the UVA/Padova
simulator [40], [41] and no constraints are considered in order
to allow a closed-form solution easily implementable on the
devices. Note that, as in [36] the model is a 13-states linear
model obtained via linearisation from the metabolic nonlinear
model [42]. The model is not personalised to the specific
patient: the parameters are the ones of the average in silico
patient. The personalisation is performed only via the tuning
of the MPC aggressiveness, as described in Section II-C, and
using the conventional basal-bolus therapy specific of each
patient. The detailed design procedure is described in the
following.

A. Design of the MPC-IP-U

The MPC-IP-U algorithm proposed in this work is a Linear
Model Predictive Controller (LMPC) since it is based on the
linear discrete time Model of the Average in silico Patient
(MoAP) obtained from the linearization of the physiological
model of the UVA/Padova simulator. The equilibrium point
used for the linearisation is the one associated with the basal
insulin (ub) for the input and zero for the meal. This model
can be written in the following form:{

x(k + 1) = Ax(k) +Bu(k)
y(k) = Cx(k)

(1)

where
• x(k) ∈ Rn, is the vector of n states;
• y(k) = CGM(k)−Gb (mg/dl), is the difference between

the subcutaneous glucose (CGM ) measured by a SC
CGM device and the basal value (Gb);

• u(k) = i(k)−ub(k) (pmol/kg), is the difference between
the injected insulin (i) and its basal value (ub), typically

a step-wise constant amount. The insulin is normalized
by the patient weight.

Note that the meal contribution is not included in the model
since no meal information is provided to the MPC-IP-U
algorithm. The triplet (A, B, C) is both stabilizable and
detectable for the considered MoAP. The predictions obtained
through the MoAP are exploited to find the optimal insulin
profile minimizing the following cost function:

J(x(k), u(·), k) =
∑N−1

i=0 (q(y(k + i)− yo(k + i))2

+u(k + i)2) + ‖x(k +N)‖2P
(2)

where q is a positive scalar weight to be tuned and N is
the prediction horizon. Parameter q represents the aggressive-
ness of the controller here proposed. The final cost term is
||x(k+N)||P = x(k+N)′Px(k+N), where P is the unique
nonnegative solution of the discrete time Riccati equation

P = A′PA+ qC ′C −A′PB (1 +B′PB)B′PA

and
• yo(k) = ỹ(k)−Gb (mg/dl), is the difference between the

reference value (ỹ) of the subcutaneous glucose and the
glucose basal value (Gb).

The proposed algorithm does not explicitly include constraints
in order to avoid on-line optimization and the computational
and memory burden of an explicit MPC for constrained sys-
tems. Hence, a closed form solution is available by exploiting
the Lagrange formula. Defining:

Y (k) = [y(k + 1) . . . y(k +N − 1) x(k +N)]
′

U(k) = [u(k) . . . u(k +N − 2) u(k +N − 1)]
′

the predicted vector Y (k) can be written as a function of the
initial state x(k) and the vector of future insulin administra-
tions U(k) as follows:

Y (k) = Acx(k) + BcU(k) (3)

where
Ac =

[
CA . . . CAN−1 AN

]′

Bc =


CB 0 · · · 0
CAB CB · · · 0
· · · · · · · · · · · ·
CAN−2B CAN−3B · · · 0
AN−1B AN−2B · · · B


Defining the reference vectors Yo ∈ R(N−1+n)×1

Yo(k) = [yo(k + 1) . . . yo(k +N − 1) 0]
′

and setting the matrix:

Q =


q 0 · · · 0 0
0 q · · · 0 0
...

...
. . .

...
...

0 0 · · · q 0
0 0 · · · 0 P

 (4)

the cost in (2) can be rewritten as
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J(x(k), u(·), k) = (Acx(k) + BcU(k)− Yo(k))′Q
(Acx(k) + BcU(k)− Yo(k)) + U(k)′U(k)

The terms that do not affect the solution of the optimization
problem because they are not dependent on u(k+j), j ≥ 0, i.e.
qy2(k), have been dropped. Zeroing the gradient, the vector
of future optimal inputs is

Uo(k) = (B′cQBc +R)
−1

(−B′cQAcx(k) + B′cQYo(k)) (5)

which depends on the state at sample time k, the output future
reference. The future optimal inputs can be expressed in a
compact form defining the following gain matrices:

Kx = (B′cQBc + I)
−1 B′cQAc

KYo
= (B′cQBc + I)

−1 B′cQ

so that
Uo(k) = (−Kxx(k)KYo

Yo(k)) (6)

and the time-invariant LMPC control law (uMPC-IP-U) is
obtained applying the receding horizon principle as:

uMPC-IP-U(k) =
[
1 0 · · · 0

]
(−Kxx(k) +KYo

Yo(k)) (7)

Note that differently from [36] a posteriori constraints can be
relaxed in view of the fast response to the IP delivery. Hence,
only the pump physical minimum and maximum limitations
are considered.

Usually the state x(k) of the model is not measurable. In
partcular, in the considered application it includes the internal
state of the 13 compartments of the Padova model [42] that
describe the metabolism of insulin and meal of a diabetes
patient, not measurable by their nature.
The use of a non minimal state-space realization of the input-
output model, whose state is made by past input and output
values, was investigated in [43]. However, also in that case,
closed-loop performance were affected by the not negligible
sensor noise present in the output measurements. So, in this
paper, we followed the approach presented in [44] using a
Kalman Filter, to exploit the knowledge included in the model
and the past injected insulin, in order to improve the quality
of the state estimation provided to the LMPC algorithm.

B. Kalman Filter design

The noises affecting the system have to be considered in
order to design the Kalman Filter (KF). So, the linear system
description (1) is enriched with noises on the state (vx) and
on the output (vy) as follows:{

x(k + 1) = Ax(k) +Bu(k) + vx(k)
y(k) = Cx(k) + vy(k)

(8)

The vector v = [vx vy] is a multivariate zero-mean white
Gaussian noise with covariance matrix:

V =

[
QKF 0
0 RKF

]
, QKF > 0 RKF > 0 (9)

and the initial state x0 = x(0) is assumed to be a zero mean
Gaussian random variable independent of v.
Under these assumption, the steady-state KF has the following
equations:

x̂(k + 1|k) =Ax̂(k|k) +Bu(k)

x̂(k|k) =x̂(k|k − 1) + L (y(k)− Cx̂(k|k − 1)) (10)

where
L = PKFC

′ [CPKFC
′ +RKF]

−1 (11)

with PKF the unique positive definite solution of the Riccati
equation

PKF = APKFA
′ +QKF

−APKFC
′ [CPKFC

′ +RKF ]
−1
CPKFA

′

According to the separation principle, the estimated state is
plugged into the control law (7)

uMPC-IP-U(k) =
[
1 0 · · · 0

]
(−Kxx̂(k) +KYoYo(k)) (12)

The main advantage of using the Kalman filter is that, by
properly tuning QKF and RKF , the controller can be made
less sensitive to sensor noise.

C. Calibration procedure for MPC individualisation

The significant inter-individual variability that affects the
diabetes population calls for patient-tailored AP systems. The
limited amount of information that can be collected and the
limitation about the test feasible on each single subject in
order to guarantee his/her safety make the individualization
task not trivial. The less critical parameters of the algorithm
are then kept fixed, while the personalization of the control
action is obtained by tailoring the cost function (2). This
choice is justified by the low correlation between parameters
like the control horizon N or the KF weights with the single
patients, since they are mainly related to the quality of the
sensor and the model included in the filter. For this reason,
in the algorithm proposed in this work the control horizon N
is kept equal to 1 hour and the KF weights (QKF, RKF) are
set on the base of simulated and clinical insulin-meal glucose
profiles as reported in [36]. These weights should be retuned
if the quality of the model or the sensor changes significantly.
Note that the use of the solution of the Riccati equation in the
final cost term, as reported in equation (2), brings the tail of
the cost function from N to ∞.
The elements that can be individualized in the cost function
are the model and the aggressiveness of the control. Since a
patient-tailored model is still not available for each patient -
even if the authors are exploring different approaches with this
aim [45]–[47] - the approach proposed in this work is based
on the individualization of the scalar weight q that represents
the aggressiveness of the controller. An appropriate trade-off
between a too mild control and the risk of hypoglycemic
episods induced by a too aggressive regulator is the final goal
of the calibration procedure.
Exploiting the possibility to perform potentially dangerous test



IEEE TRANSACTIONS ON MEDICAL ROBOTICS AND BIONICS 5

LMPC

Tunable
parameter q

Model for Control Synthesis

Control Law parameter q

Bad

Good

Model for
Control Testing

TESTING
(performance

Index)

Fig. 2. Control Design Procedure

on the in silico patients of the UVA/Padova simulator, the
tuning of q is done through the iterative procedure represented
in Fig. 2 on the in silico population. Several simulation are
performed using different values of q for each in silico subject,
in order to find the optimal qo for the specific individual. The
performance is evaluated using the Control Variability Grid
Analysis (CVGA) [44], where a single point represents the
couple of 2.5 and 97.5 percentiles of BG values reached by
the virtual patient during the considered week. As index we
choose the distance between the point representing the subject
under control and the optimal point on the bottom left corner
of the grid where max(BG) = min(BG) = 110 mg/dl. The
optimal weight can be formally describe as

qo = argmin
q

∥∥[ XCV GA YCV GA

]∥∥
2

(13)

At the end of this procedure, an optimal qo is obtained for each
in silico subject. Then, a linear regression function is identified
in order to correlate the obtained optimal q values with some
clinical well-known parameters of the in silico subjects. The
linear tuning rule for the weight q is defined as

qo(i) = φ(i)′θ + ε(i), i = 1, . . . , 100 (14)

where qo is his/her optimal weight computed during the
calibration procedure, φ(i) is the vector of clinical parameters
for the i−th patient, θ is the parameter vector to be estimated
and ε(i) is an error term. Using a linear stepwise regression,
the most correlated parameters of φ and the values of vector θ
are derived. Then, the qo for a real patient j can be estimated
as

qo(j) = αφ(j)′θ (15)

where α ∈ (0; 1] is a tunable parameter to increase the
conservativeness of the controller. Both MPC-IP and MPC-SC
have been calibrated using the simulators described in details
in Section III-A. The MPC-SC design is reported in [36] with
α = 0.85, while in the MPC-IP version, the vector φ contains
the body weight (BW) of the patient, and the optimal weight
qo is computed as qoIP = e(−0.1315 BW+19.0586).

III. SIMULATIONS

A. The UVA/Padova Simulator with Intraperitoneal Insulin
Delivery

The most recent version of the FDA-accepted UVA/Padova
T1D simulator [40], [41] which includes a SC insulin delivery
model was used to test the MPC with announced (MPC-
SC-A) and unannounced (MPC-SC-U) meals. A novel T1D
simulator was developed to account for IP insulin delivery.
The metabolic core of the FDA-accepted UVA/Padova T1D
simulator [40], [41] was retained and equipped with a novel
IP insulin delivery module. Since the insulin subsystem of
the simulator consists of two compartments, the liver and
the plasma compartment, we have assumed that the insulin
infusion predicted by the controller enters directly into the
liver compartment [20]. New models of the intraperitoneal
insulin kinetics are currently under study and will be taken
into consideration for a future development of this work.
All the metabolic features of the most recent version of the
simulator including the possibility of implementing multiple-
day scenarios with intra- and inter-day variability of insulin
sensitivity and new distributions of carbohydrate-to-insulin
ratio (CR) at breakfast, lunch and dinner are present. This
novel IP simulator was used to test the MPC with unannounced
meals (MPC-IP-U).

B. Scenario

All the algorithms considered in this work are tested on
the 100 in silico adults of the simulators described in Section
III-A. A 2-week realistic in silico scenario is considered where
a constant random ±50% variation of the nominal insulin
sensitivity is applied from the beginning and throughout the
trial. For the announced algorithm this variation is applied
together with a uncertainty of ±30% about the carbohydrate
content announced at mealtime: 66% of the patients tends to
underestimate the meal (consumed a +30% of carbohydrates
with respect to the announced amount due to the fear of
hypoglycaemia) while 34% to overestimate it (applying a -
30% meal variation with respect to the announcement). The
CGM sensor is affected by the error noise described in [36].
The patient diet involves three meals per day: breakfast at 7:30
am, lunch at 2:00 pm, and dinner at 8:30 pm containing 50
g, 60 g, and 70 g of CHO, respectively. These settings are
chosen in order to mimic the habits occurring in real life, like
those observed in [37]. In case of potentially dangerous low
BG values (BG < 65 mg/dl), the protocol prescribes a rescue
carbohydrate dose of 16 g, the so called hypo-treatment (ht).
Two ht are separated by at least 30 minutes.

C. Controller parameters

The model used in both the MPC-IP-U and MPC-SC-A is a
13-state (n = 13) model obtained by linearising the glucose-
insulin model [42] around the equilibrium associated with the
working point [ub, 0], where ub is the basal insulin profile of
the specific patient. The parameter Gb is the basal glucose of
the patient, i.e. the ideal glucose value reached delivering ub to
the patient in fasting conditions. Gb is known for each patient
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in real life. The references ỹ, ũ are set equal to 120 mg/dl
and to the basal-bolus therapy, respectively. The prediction
horizon N is equal to 1 hour. The KF matrices are set as in
[36]: RKF = 0.0283 and QKF is a diagonal matrix whose
entries qi are equal to 10 for i = 4, 5 and qi = 0.1 otherwise.

D. Metrics and statistical analysis

The performance metrics used in this work has been selected
following the consensus endpoints for AP trial described in
[48], [49]. They consists in average BG (A), standard deviation
(SD) and coefficient of variation (CV) of BG, percentage
of time spent in euglycemic range [70-180] mg/dl (Tr),
percentage of time spent in tight range [80-140] mg/dl (Ttr),
percentage of time spent above 180 mg/dl (Ta), percentage of
time spent below 70 mg/dl (Tb), Low Blood Glucose Index
(LBGI) and High Blood Glucose Index (HBGI).
These metrics are computed during day & night (D&N),
during night (N, 0:00 pm - 8:00 am), and as an average of
all the Post-Prandial (PP) periods (4h) of the whole period.
Median [25th, 75th] percentiles for non-Gaussian distributed
data and mean (± standard deviation) otherwise are reported
for the various indices. The gaussianity and homoscedasticity
of the data distributions are assessed by the Lilliefors test
and two-sample F-test, respectively. In order to evaluate the
significant differences, the more appropriated statistical test is
selected based on the characteristics of the data distributions.
If at least one distribution is non-Gaussian, the Wilcoxon
rank sum test is used; if both distributions are Gaussian and
homoscedastic, a two-sample t-test is performed; otherwise,
if the homoscedasticity is not satisfied, the two-sample t-test
with Satterthwaites approximation is used.
Finally, the daily mean glucose profiles of the 100 in silico
patients for the MPC-IP-U vs MPC-SC-A configurations on
the 2-week scenario are calculated.

IV. RESULTS

The results of MPC-IP-U and MPC-SC-A are presented
in Table I: even if the meal is unannounced, the MPC-IP-
U algorithm is able to reduce the mean BG with respect to
the MPC-SC-A overall, but also in the post-prandial period.
Moreover, the standard deviation of the BG is reduced by 17%.
The time in range and in tight range are improved (by 9% and
68%, respectively), reducing the time above 180 mg/dl by 48%
without increasing hypoglycemia (the time below 70 mg/dl
remains negligible). All these improvements are statistically
significant (p-value<0.001).

The performance improvement obtained by MPC-IP-U with
respect to MPC-SC-A can be also observed in Fig. 3: the
mean daily glucose profiles of the the 100 in silico patients
are represented in terms of median [25th, 75th] percentiles.
The superior performance of the intraperitoneal version of the
MPC are evident. The SC approach is not able to properly
compensate the meal effects due to the intrinsic delay of the
SC route. In particular, it is interesting to note that BG is
particularly high after midnight in the SC case: this is the
effect of the poor glucose control of the dinner in the previous
day.

The mean daily insulin profiles are not reported because,
considering the high variability both from one day to the other
(in terms of carbohydrate content) and from one patient to the
other (in terms of insulin requirements), this comparison would
not be significant.

V. DISCUSSION

The results obtained with MPC-SC-A are in agreement with
several AP studies, including the most recent state-of-art trial
[50]. The comparison of our MPC-IP-U results with literature
rely on the single paper [23]: the conclusion of superiority of
IP vs SC insulin delivery route are in perfect agreement with
[23], more difficult is to move to a comparison of the various
metrics, in fact the study lasted 1 vs 14 days and the three
meals differed in terms of carbohydrate content.
In order to evaluate the improvement obtained with the IP
route, the performance of the fully-automated SC MPC (MPC-
SC-U) are compared with the proposed MPC-IP-U in Table
II. Again, the IP route demonstrated its power, improving all
the indices. The LBGI slightly increases, but the Tb remains
negligible. In this work, the absorption time of the insulin
has been considered negligible due to the fast dynamics of
the intraperitoneal route. A more detailed model based on new
data is currently under development, but we do note expect a
large change in the major conclusions of the simulation, i.e.
meal announcement is not needed in contrast to SC insulin
deliver.

VI. CONCLUSION

It is an accepted notion that the IP route for insulin delivery
in T1D, being quasi-portal, is the most physiological since it
recreates a pre-liver administration of insulin (Fig. 1). While
intensive and successful research has been made on AP with
SC insulin delivery with several contributions from several
US and EU groups, only one study [23] has examined the
role of IP delivery in AP. Albeit short in duration (1 day),
the important finding was that the IP insulin delivery allows
to avoid the meal announcement (the so-called hybrid AP)
which is one of the bottleneck of hybrid AP. In this work,
we have undertaken an in silico study of 14 days of an IP
AP to confirm the 1 day clinical results and to extend them
by using the UVA/Padova simulator which includes intra- and
inter-day variability of insulin sensitivity and several real life
scenario features. Our results support the notion that an IP AP
does not necessitates the meal announcement, thus opens the
way for a fully automated AP, i.e. not requiring the patient to
announce the carbohydrate content of the meal. Further work
in this context will be the use of an IP insulin kinetic model
based on data [23] to include in the simulator in order to
design a more refined IP MPC controller. Of interest will also
be to explore the potential advantages of an IP vs SC glucose
sensor.
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D&N N PP

A (mg/dl) MPC-IP-U 141.32 [126.73, 161.61] 128.61 [116.37, 143.49] 156.43 [135.81, 182.78]
MPC-SC-A 155.11a [128.07, 193.94] 144.39a [117.62, 169.75] 168.38a [140.65, 213.37]

SD (mg/dl) MPC-IP-U 28.72 [22.37, 36.02] 14.73 [11.81, 21.22] 30.39 (± 11.03)
MPC-SC-A 34.76a [28.26, 41.10] 20.70a [15.92, 27.87] 35.69a (± 11.19)

CV (mg/dl) MPC-IP-U 0.20 (± 0.06) 0.11 [0.09, 0.17] 0.18 [0.15, 0.22]
MPC-SC-A 0.22b (± 0.07) 0.14a [0.11, 0.20] 0.20b [0.15, 0.26]

Tr (%) MPC-IP-U 87.22 [72.37, 94.56] 99.28 [90.46, 100.00] 79.88 [52.38, 91.39]
MPC-SC-A 80.32a [43.75, 87.83] 87.18a [69.83, 98.28] 69.89a [18.24, 80.85]

Ttr (%) MPC-IP-U 56.67 [26.13, 69.21] 73.77 [41.72, 89.18] 28.76 [9.34, 52.90]
MPC-SC-A 33.68a [3.53, 62.67] 34.40a [5.07, 80.98] 14.08a [2.19, 47.81]

Ta (%) MPC-IP-U 9.15 [3.31, 26.06] 0.00 [0.00, 1.13] 17.93 [6.55, 47.62]
MPC-SC-A 17.50a [8.94, 56.25] 6.63a [0.22, 29.27] 29.07a [14.65, 81.76]

Tb (%) MPC-IP-U 0.00 [0.00, 1.26] 0.00 [0.00, 0.76] 0.00 [0.00, 0.66]
MPC-SC-A 0.00 [0.00, 2.77] 0.00 [0.00, 0.61] 0.00 [0.00, 1.71]

LBGI MPC-IP-U 0.03 [0.00, 0.39] 0.03 [0.00, 0.32] 0.01 [0.00, 0.24]
MPC-SC-A 0.00 [0.00, 0.88] 0.00 [0.00, 0.45] 0.01 [0.00, 0.45]

HBGI MPC-IP-U 2.57 [1.45, 5.37] 0.97 [0.50, 2.31] 4.28 [2.47, 8.88]
MPC-SC-A 4.81a [2.26, 11.13] 2.86a [0.71, 6.24] 6.13a [3.52, 14.96]

TABLE I
PERFORMANCE METRICS OF MPC-IP-U VERSUS MPC-SC-A ON THE 2-WEEK SCENARIO. a P-VALUE < 0.001, b P-VALUE < 0.01, c P-VALUE < 0.05.

STATISTICALLY SIGNIFICANT RESULTS ARE HIGHLIGHTED IN BOLD.
D=DAY; N=NIGHT; PP=POSTPRANDIAL; A=AVERAGE BG; SD=STANDARD DEVIATION BG; CV=COEFFICIENT OF VARIATION BG; Tr=TIME IN

RANGE; Ttr=TIME IN TIGHT RANGE; Ta=TIME ABOVE RANGE; Tb=TIME BELOW RANGE; LBGI=LOW BLOOD GLUCOSE INDEX; HBGI=HIGH BLOOD
GLUCOSE INDEX. FOR A COMPLETE DESCRIPTION SEE SECTION III-D.

Fig. 3. Comparison of average glucose time courses with MPC-IP-U (blue) versus MPC-SC-A (magenta) on the 2-week scenario. Continuous lines are the
median across patients, with [25th, 75th] percentiles as shading. Night (N) and Post-Prandial (PP) regions are highlighted in green and light blue, respectively.
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[41] R. Visentin, E. Campos-Náñez, M. Schiavon, D. Lv, M. Vettoretti,
M. Breton, B. P. Kovatchev, C. Dalla Man, and C. Cobelli, “The
UVA/Padova type 1 diabetes simulator goes from single meal to single
day,” Journal of diabetes science and technology, vol. 12, no. 2, pp.
273–281, 2018.

[42] C. Dalla Man, R. A. Rizza, and C. Cobelli, “Meal simulation model
of the glucose-insulin system,” IEEE Transactions on Biomedical Engi-
neering, vol. 54, no. 10, pp. 1740–1749, 2007.

[43] L. Magni, D. M. Raimondo, L. Bossi, C. Dalla Man, G. D. Nicolao,
B. Kovatchev, and C. Cobelli, “Model Predictive Control of Type 1
Diabetes: an In Silico Trial,” J Diab Sci and Tech, vol. 1, pp. 804–812,
2007.

[44] P. Soru, G. De Nicolao, C. Toffanin, C. Dalla Man et al., “MPC based
artificial pancreas: Strategies for individualization and meal compensa-
tion,” Annual Reviews in Control, vol. 36, no. 1, pp. 118–128, 2012.

[45] C. Toffanin, S. Del Favero, E. Aiello, M. Messori, C. Cobelli, and
L. Magni, “Glucose-insulin model identified in free-living conditions
for hypoglycaemia prevention,” Journal of Process Control, vol. 64, pp.
27–36, 2018.

[46] C. Toffanin, E. Aiello, S. Del Favero, C. Cobelli, and L. Magni,
“Multiple models for artificial pancreas predictions identified from free-

living condition data: A proof of concept study,” Journal of Process
Control, vol. 77, pp. 29–37, 2019.

[47] C. Toffanin, E. M. Aiello, C. Cobelli, and L. Magni, “Hypoglycemia
prevention via personalized glucose-insulin models identified in free-
living conditions,” Journal of Diabetes Science and Technology, vol. 13,
no. 6, pp. 1008–1016, 2019.

[48] D. M. Maahs, B. A. Buckingham, J. R. Castle, A. Cinar, E. R. Damiano,
E. Dassau, J. H. DeVries, F. J. Doyle, S. C. Griffen, A. Haidar et al.,
“Outcome measures for artificial pancreas clinical trials: a consensus
report,” Diabetes Care, vol. 39, no. 7, pp. 1175–1179, 2016.

[49] T. Danne, R. Nimri, T. Battelino, R. M. Bergenstal, K. L. Close,
J. H. DeVries, S. Garg, L. Heinemann, I. Hirsch, S. A. Amiel et al.,
“International consensus on use of continuous glucose monitoring,”
Diabetes care, vol. 40, no. 12, pp. 1631–1640, 2017.

[50] S. A. Brown, B. P. Kovatchev, D. Raghinaru, J. W. Lum, B. A.
Buckingham, Y. C. Kudva, L. M. Laffel, C. J. Levy, J. E. Pinsker, R. P.
Wadwa et al., “Six-month randomized, multicenter trial of closed-loop
control in type 1 diabetes,” New England Journal of Medicine, vol. 381,
no. 18, pp. 1707–1717, 2019.


