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Abstract

We continue our computation, using a combinatorial method based on
Gronthendieck’s dessins d’enfant, of the number of (weak) equivalence
classes of surface branched covers matching certain specific branch
data. In this note we concentrate on data with the surface of genus g as
source surface, the sphere as target surface, 3 branching points, degree
2k, and local degrees over the branching points of the form [2, . . . , 2],

[2h+1, 3, 2, . . . , 2], π = [di]
ℓ

i=1
. We compute the corresponding (weak)

Hurwitz numbers for several values of g and h, getting explicit arith-
metic formulae in terms of the di’s.

MSC (2010): 57M12.

This paper is a continuation of [17], and it is based on the same methods,
but the results that we obtain here refer to a topologically more complex
situation, so the required arguments are more elaborate. In this introduction
we quickly review the subject matter, making the paper independent of [17],
and we state our results.

Surface branched covers A surface branched cover is a map

f : Σ̃ → Σ

where Σ̃ and Σ are closed and connected surfaces and f is locally modeled
on maps of the form

(C, 0) ∋ z 7→ zm ∈ (C, 0).
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If m > 1 the point 0 in the target C is called a branching point, and m is
called the local degree at the point 0 in the source C. There are finitely many
branching points, removing which, together with their pre-images, one gets
a genuine cover of some degree d. If there are n branching points, the local
degrees at the points in the pre-image of the j-th one form a partition πj of
d of some length ℓj, and the following Riemann-Hurwitz relation holds:

χ
(
Σ̃
)
− (ℓ1 + . . .+ ℓn) = d (χ (Σ)− n) .

Let us now call branch datum a 5-tuple

(
Σ̃,Σ, d, n, π1, . . . , πn

)

and let us say it is compatible if it satisfies the Riemann-Hurwitz relation.
(For a non-orientable Σ̃ and/or Σ this relation should actually be com-
plemented with certain other necessary conditions, but we restrict to an
orientable Σ in this paper, so we do not spell out these conditions here.)

The Hurwitz problem The very old Hurwitz problem asks which com-
patible branch data are realizable (namely, associated to some existing sur-
face branched cover) and which are exceptional (non-realizable). Several
partial solutions to this problem have been obtained over the time, and we
quickly mention here the fundamental [3], the survey [16], and the more
recent [13, 14, 15, 2, 18]. In particular, for an orientable Σ the problem
has been shown to have a positive solution whenever Σ has positive genus.
When Σ is the sphere S, many realizability and exceptionality results have
been obtained (some of experimental nature), but the general pattern of
what data are realizable remains elusive. One guiding conjecture in this
context is that a compatible branch datum is always realizable if its degree
is a prime number. It was actually shown in [3] that proving this conjecture
in the special case of 3 branching points would imply the general case. This
is why many efforts have been devoted in recent years to investigating the
realizability of compatible branch data with base surface Σ the sphere S and
having n = 3 branching points. See in particluar [14, 15] for some evidence
supporting the conjecture.

Hurwitz numbers Two branched covers

f1 : Σ̃ → Σ f2 : Σ̃ → Σ
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are said to be weakly equivalent if there exist homeomorphisms g̃ : Σ̃ → Σ̃
and g : Σ → Σ such that f1 ◦ g̃ = g ◦ f2, and strongly equivalent if the
set of branching points in Σ is fixed once and forever and one can take
g = idΣ. The (weak or strong) Hurwitz number of a compatible branch
datum is the number of (weak or strong) equivalence classes of branched
covers realizing it. So the Hurwitz problem can be rephrased as the question
whether a Hurwitz number is positive or not (a weak Hurwitz number can
be smaller than the corresponding strong one, but they can only vanish
simultaneously). Long ago Mednykh in [10, 11] gave some formulae for the
computation of the strong Hurwitz numbers, but the actual implementation
of these formulae is rather elaborate in general. Several results were also
obtained in more recent years in [4, 7, 8, 9, 12].

Computations In this paper we consider branch data of the form

(♥)
(
Σ̃,Σ = S, d = 2k, n = 3, [2, . . . , 2], [2h + 1, 3, 2, . . . , 2], π = [di]

ℓ
i=1

)

for h > 0. Here we employ square brackets to denote an unordered array of
integers with repetitions. A direct calculation shows that such a datum is
compatible for h > 2g − 1, where g is the genus of Σ̃, and ℓ = h − 2g + 2.
We compute the weak Hurwitz number of the datum for g = 0, 1, 2 and
for some of the smallest possible h’s, namely in the following cases: for
g = 0 and h = 0, 1, 2; for g = 1 and h = 1, 2; for g = 2 and h = 3. More
values could be obtained using the same techniques as we employ below, but
the complication of the topological and combinatorial situation grows very
rapidly, and the arithmetic formulae giving the weak Hurwitz numbers are
likely to be rather intricate for larger values of g and/or h.

We will denote by T the torus and by 2T the genus-2 surface.

Theorem 0.1. • (g = 0, h = 0) The number of weakly inequivalent
realizations of

(S, S, 2k, 3, [2, . . . , 2], [1, 3, 2, . . . , 2], π)

(with ℓ(π) = 2) is 0 if π contains k, and 1 otherwise.

• (g = 0, h = 1) The number of weakly inequivalent realizations of

(S, S, 2k, 3, [2, . . . , 2], [3, 3, 2, . . . , 2], π)

(with ℓ(π) = 3) is 0 if π contains k, and 1 otherwise.
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• (g = 0, h = 2) The number ν of weakly inequivalent realizations of

(S, S, 2k, 3, [2, . . . , 2], [5, 3, 2, . . . , 2], π)

(with ℓ(π) = 4) is as follows:

– If π = [p, p, p, p] or π = [p, p, q, q] for distinct p, q then ν = 0;

– If π = [p, p, p, q] for distinct p, q then ν = 0 if k is in π, and ν = 1
otherwise;

– If π = [p, p, q, r] for distinct p, q, r then ν = 1 if k is in π or the
sum of two entries of π, and ν = 3 otherwise;

– If π = [p, q, r, s] for distinct p, q, r, s then ν = 2 if k is the sum of
two entries of π, while ν = 3 if k is in π, and ν = 6 otherwise.

Theorem 0.2. • (g = 1, h = 1) The number of weakly inequivalent
realizations of

(T, S, 2k, 3, [2, . . . , 2], [3, 3, 2, . . . , 2], [2k])

is 1
2k(k − 1).

• (g = 1, h = 2) The number of weakly inequivalent realizations of

(T, S, 2k, 3, [2, . . . , 2], [5, 3, 2, . . . , 2], [p, 2k − p])

is 0 for p = k, otherwise it is

2

[
1

4
(k − p− 1)2

]
+

[p
2

]
· (k − p− 1) +

[
1

4
(p − 1)2

]
.

Theorem 0.3. (g = 2, h = 3) The number of weakly inequivalent realiza-
tions of

(2T, S, 2k, 3, [2, . . . , 2], [7, 3, 2, . . . , 2], [2k])

is given by

1

48

(
7k4 − 70k3 + 290k2 − 515k + 288

)
−

5

8
(2k − 5)

[
k

2

]
.
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1 Weak Hurwitz numbers and dessins d’enfant

In this section we quickly recall the machinery described in [17], omitting
all the (rather easy) proofs. Our techniques are based on the notion of
dessin d’enfant, popularized by Grothendieck in [5] (see also [1]), but actually
known before his work and already exploited to give partial answers to
the Hurwitz problem (see [6, 16] and the references quoted therein). Here
we explain how to employ the dessins d’enfant to compute weak Hurwitz
numbers. Let us fix until further notice a branch datum

(♠)
(
Σ̃,Σ = S, d, n = 3, π1 = [d1i]

ℓ1
i=1 , π2 = [d2i]

ℓ2
i=1 , π3 = [d3i]

ℓ3
i=1

)
.

A graph Γ is bipartite if it has black and white vertices, and each edge joins
black to white. If Γ is embedded in Σ̃ we call region a component R of
Σ̃ \Γ, and length of R the number of white (or black) vertices of Γ to which
R is incident (with multiplicity). A pair (Γ, σ) is called dessin d’enfant
representing (♠) if σ ∈ S3 and Γ ⊂ Σ̃ is a bipartite graph such that:

• The black vertices of Γ have valence πσ(1);

• The white vertices of Γ have valence πσ(2);

• The regions of Γ have length πσ(3).

We will also say that Γ represents (♠) through σ.

Remark 1.1. Let f : Σ̃ → S be a branched cover matching (♠) and take
σ ∈ S3. If α is a segment in S with a black and a white end at the branching
points corresponding to πσ(1) and πσ(2), then

(
f−1(α), σ

)
represents (♠),

with vertex colours of f−1(α) lifted via f .

Reversing the construction described in the previous remark one gets the
following:

Proposition 1.2. To a dessin d’enfant (Γ, σ) representing (♠) one can
associate a branched cover f : Σ̃ → S realizing (♠), well-defined up to
equivalence.

We define the equivalence relation ∼ on dessins d’enfant generated by:

• (Γ1, σ1) ∼ (Γ2, σ2) if σ1 = σ2 and there is an automorphism g̃ : Σ̃ → Σ̃
such that Γ1 = g̃ (Γ2) matching colours;

• (Γ1, σ1) ∼ (Γ2, σ2) if σ1 = σ2 ◦ (1 2) and Γ1 = Γ2 as a set but with
vertex colours switched;
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• (Γ1, σ1) ∼ (Γ2, σ2) if σ1 = σ2 ◦ (2 3) and Γ1 has the same black vertices
as Γ2 and for each region R of Γ2 we have that R ∩ Γ1 consists of
one white vertex and disjoint edges joining this vertex with the black
vertices on the boundary of R.

Theorem 1.3. The branched covers associated as in Proposition 1.2 to two
dessins d’enfant are equivalent if and only if the dessins are related by ∼.

When the partitions π1, π2, π3 in the branch datum (♠) are pairwise
distinct, to compute the corresponding weak Hurwitz number one can stick
to dessins d’enfant representing the datum through the identity, namely one
can list up to automorphisms of Σ̃ the bipartite graphs with black and white
vertices of valence π1 and π2 and regions of length π3. When the partitions
are not distinct, however, it is essential to take into account the other moves
generating ∼. In any case we will henceforth omit any reference to the
permutations in S3.

Relevant data and repeated partitions We now specialize again to a
branch datum of the form (♥). We will compute its weak Hurwitz number
ν by enumerating up to automorphisms of Σ̃ the dessins d’enfant Γ repre-
senting it through the identity, namely the bipartite graphs Γ with black
vertices of valence [2, . . . , 2], the white vertices of valence [2h+1, 3, 2, . . . , 2],
and the regions of length π. Two remarks are in order:

• In all the pictures we will only draw the two white vertices of Γ of
valence (2h + 1, 3), and we will decorate an edge of Γ by an integer
a > 1 to understand that the edge contains a black and a − 1 white
valence-2 vertices;

• Enumerating these Γ’s up to automorphisms of Σ̃ already gives the
right value of ν except if two of the partitions of d in coincide.

Proposition 1.4. In a branch datum of the form (♥) two of the partitions
of d coincide precisely in the following cases:

• g = 0, h > 0, k = h+ 2, with partions [2, . . . , 2], [2k − 3, 3], [2, . . . , 2];

• Any g, h > 2g, k = 2h + 2 − 2g, with partitions [2, . . . , 2], [2h +
1, 3, 2, . . . , 2], [2h + 1, 3, 2, . . . , 2].

Proof. The lengths of the partitions π1, π2, π in (♥) are ℓ1 = k, ℓ2 = k − h
and ℓ = h + 2 − 2g. We can never have π1 = π2. Since k > h + 2 we can
have ℓ1 = ℓ only if g = 0 and k = h + 2, whence the first listed item. We
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Figure 1: The only (1, 3) graph and the two (3, 3) graphs in S.

can have ℓ2 = ℓ only for k = 2h + 2 − 2g, whence h > 2g and the data in
the second listed item.

This result implies that the data (♥) relevant to Theorems 0.1 to 0.3
and containing repetitions are precisely

(S, S, 4, 3, [2, 2], [1, 3], [2, 2])

(S, S, 6, 3, [2, 2, 2], [3, 3], [2, 2, 2])

(S, S, 8, 3, [2, 2, 2, 2], [5, 3], [2, 2, 2, 2])

(S, S, 4, 3, [2, 2], [1, 3], [1, 3])

(S, S, 8, 3, [2, 2, 2, 2], [3, 3, 2], [3, 3, 2])

(S, S, 12, 3, [2, 2, 2, 2, 2, 2], [5, 3, 2, 2], [5, 3, 2, 2])

(T, S, 8, 3, [2, 2, 2, 2], [5, 3], [5, 3]).

Moreover we have ν = 0 in the first and third cases by the very even data
criterion of [15], while the other cases will be taken into account below.

2 Genus 0

In this section we prove Theorem 0.1, starting from the very easy case h = 0,
for which there is only one homeomorphism type of relevant graph and
only one embedding in S, as shown on the left in Fig. 1 —here and below
(2h+1, 3) graph abbreviates graph with vertices of valence (2h+1, 3). This
graph gives a unique realization of π = [p, 2k − p] for p < k, while [k, k] is
exceptional. Note that a single graph emerges for the realization of the case
with repeated partitions (S, S, 4, 3, [2, 2], [1, 3], [1, 3]), so its realization is a
fortiori unique up to equivalence (and it is also immediate to check that the
last move generating ∼ leads this graph to itself).

Turning to the case h = 1 we note that there are two (3, 3) graphs, both
with a unique embedding in S, shown in Fig. 1-center/right and denoted
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by I(a, b, c) and II(a, b, c). Remark that I(a, b, c) has a b ↔ c symmetry,
while II(a, b, c) is fully symmetric in a, b, c. Moreover I(a, b, c) realizes π =
[2a+ b+ c, b, c] while II(a, b, c) realizes [a+ b, a+ c, b+ c].

Now we observe that the partition π satisfies one and only one of the
following:

(i) π contains k;

(ii) π = [2k − 2q, q, q] with (a) 1 6 q < k
2 or (b) k

2 < q < k;

(iii) π = [2k − q − r, q, r] with

(a) 1 6 r < k
2 and r < q < k − r, or

(b) 1 6 r < k
2 and k − r < q < k − r

2 , or

(c) k
2 6 r < 2

3k and r < q < k − r
2

(the conditions 2k− q− r > q > r readily imply that r < 2
3k and q < k− r

2 ).
Since we always have a+ b+ c = k, it is immediate that neither I(a, b, c) nor
II(a, b, c) can realize (i). We now claim that for all the other listed cases there
always is a single realization. For π = [2k − 2q, q, q] there is a realization as
I(a, b, c) precisely if

{
2a+ b+ c = 2k − 2q
b = c = q

⇔

{
a = k − 2q
b = c = q

for 1 6 q <
k

2

so we have case (ii-a), while there is a realization as II(a, b, c) if





a+ b = 2k − 2q
a+ c = q
b+ c = q

⇔





a = k − q
b = k − q
c = 2k − q

for
k

2
< q < k

whence case (ii-b). Turning to [2k− q− r, q, r] with 2k− q− r > q > r there
is a realization as I(a, b, c) for





2a+ b+ c = 2k − q − r
b = q
c = r

⇔





a = k − q − r
b = q
c = r

for r < q < k − r

whence r < k
2

and case (iii-a), while there is one as II(a, b, c) if





a+ b = 2k − q − r
a+ c = q
b+ c = r

⇔





a = k − r
b = k − q
c = q + r − k

for
max{r, k − r} < q < k
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Figure 2: Graphs equivalent under ∼.

bb

aaa b

d

c

c

d

dc

Figure 3: The (5, 3) graphs in S.

and depending on whether max{r, k − r} is k − r or not we get (iii-b) and
(iii-c). To conclude the case h = 1, we must deal with the data with repeated
partitions, namely

(S, S, 6, 3, [2, 2, 2], [3, 3], [2, 2, 2])

(S, S, 8, 3, [2, 2, 2, 2], [3, 3, 2], [3, 3, 2]).

We begin with the former, noting that only one dessin d’enfant Γ arises from
the previous argument for its realization, so we must have ν = 1, as in the
statement. As a confirmation, we check that of the 6 potentially different
graphs equivalent to Γ under ∼, for the other one Γ′ with black and white
vertices of valence [2, 2, 2] and [3, 3] respectively, we actually have Γ′ = g̃(Γ)
for some g̃ : S → S, as apparent from Fig. 2-left. For the latter datum with
repetitions, the conclusion is analogous: only one graph Γ arises, so ν = 1,
and if Γ′ is the graph equivalent to Γ under ∼ with black and white vertices
of valence [2, 2, 2, 2] and [3, 3, 2] respectively, we have have Γ′ = g̃(Γ), as
shown in Fig. 2-right.

As an example, we provide in Table 1 an application of Theorem 0.1 for
the case h = 1 and k = 8, showing that all the listed cases actually occur.

Now we concentrate on the case h = 2, that requires considerable work.
We first note that there are two abstract (5, 3) graphs, one of which has two
inequivalent embeddings in S, as shown in Fig. 3. Denoting these graphs by
I(a, b, c, d), II(a, b, c, d), III(a, b, c, d), we note that they realize the partitions
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π Case ν Realizations

(14,1,1) (ii-a) 1 6 q = 1 < k

2
= 4 1 I(6,1,1)

(13,2,1) (iii-a) 1 6 r = 1 < k

2
= 4

r = 1 < q = 2 < k − r = 7
1 I(5,2,1)

(12,3,1) (iii-a) 1 6 r = 1 < k

2
= 4

r = 1 < q = 3 < k − r = 7
1 I(4,3,1)

(12,2,2) (ii-a) 1 6 q = 2 < k

2
= 4 1 I(4,2,2)

(11,4,1) (iii-a) 1 6 r = 1 < k

2
= 4

r = 1 < q = 4 < k − r = 7
1 I(3,4,1)

(11,3,2) (iii-a) 1 6 r = 2 < k

2
= 4

r = 2 < q = 3 < k − r = 6
1 I(3,3,2)

(10,5,1) (iii-a) 1 6 r = 1 < k

2
= 4

r = 1 < q = 5 < k − r = 7
1 I(2,5,1)

(10,4,2) (iii-a) 1 6 r = 2 < k

2
= 4

r = 2 < q = 4 < k − r = 6
1 I(2,4,2)

(10,3,3) (ii-a) 1 6 q = 3 < k

2
= 4 1 I(2,3,3)

(9,6,1) (iii-a) 1 6 r = 1 < k

2
= 4

r = 1 < q = 6 < k − r = 7
1 I(1,6,1)

(9,5,2) (iii-a) 1 6 r = 2 < k

2
= 4

r = 2 < q = 5 < k − r = 6
1 I(1,5,2)

(9,4,3) (iii-a) 1 6 r = 3 < k

2
= 4

r = 3 < q = 4 < k − r = 5
1 I(1,4,3)

(8,7,1) (i) 0

(8,6,2) (i) 0

(8,5,3) (i) 0

(8,4,4) (i) 0

(7,7,2) (ii-b) k

2
= 4 < q = 7 < k = 8 1 II(6,1,1)

(7,6,3) (iii-b) 1 6 r = 3 < k

2
= 4

k − r = 5 < q = 6 < k −
r

2
= 6.5

1 II(5,2,1)

(7,5,4) (iii-c)
k

2
= 4 6 r = 4 < 2

3
k = 5.3

r = 4 < q = 5 < k −
r

2
= 6

1 II(4,3,1)

(6,6,4) (ii-b) k

2
= 4 < q = 6 < k = 8 1 II(4,2,2)

(6,5,5) (ii-b) k

2
= 4 < q = 5 < k = 8 1 II(3,3,2)

Table 1: The genus-0 case with h = 1 and k = 8.
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[2a + b + c + d, b, c, d], [2a + b + c, c + d, b, d], [a + c + d, b + c, b + d, a]
respectively, and that their only symmetries are I(a, b, d, c) = I(a, b, c, d)
and III(a, b, d, c) = III(a, b, c, d).

The form of the partitions realized by I, II, III readily shows that π =
[p, p, p, p] cannot be realized. Moreover, π = [p, p, q, q] for p > q of course
cannot via I, and it also cannot via II or III, since it only could as





2a+ b+ c = p
c+ d = p
b = k − p
d = k − p

⇒ a = 0,





a+ c+ d = p
b+ c = p
b+ d = k − p
a = k − p

⇒ d = 0.

The partition π = [p, p, p, q] for p > q, so q = 2k − 3p and k
2 < p < 2

3k,
cannot be realized via I or II, while it can via III only as





a+ c+ d = p
b+ c = p
b+ d = p
a = 2k − 3p

⇔





a = 2k − 3p
b = k − p
c = 2p− k
d = 2p− k

which gives positive a, b, c, d, so there is a unique realization. Note that π
cannot contain k, so our finding is in agreement with the statement.

Turning to π = [p, q, q, q] for p > q, so p = 2k − 3q and 0 < q < k
2 , we

get realizations via I as

{
2a+ b+ c+ d = 2k − 3q
b = c = d = q

⇔

{
a = k − 3q
b = c = d = q

for q <
k

3
,

while there is none via II, and there is one via III as

{
a+ c+ d = 2k − 3q
b+ c = b+ d = a = q

⇔





a = q
b = 3q − k
c = k − 2q
d = k − 2q

for q >
k

3

so there is a unique realization except for q = k
3 , namely p = k, as in the

statement.

Before proceeding we prove two facts that we will use a few times. Take
π = [p, q, r, s] with p > q > r > s. Then:

• If π contains k then p = k;
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• If k is the sum of two entries of π then p+ s = q + r = k.

The first assertion is obvious. For the second one, note that if p + r =
q + s = k then p = q and r = s, so we also have p+ s = q + r = k, while if
p+ q = r + s = k then p = q = r = s, and again p+ s = q + r = k.

We now study the partitions π = [p, p, q, r] with p > q > r. Note that
r = 2k − 2p − q, so q < 2k − 2p, and q > 2k − 2p − q, so q > k − p, and
finally 2p > q + r, so p > k

2 . No realization via I is possible, while one via II
would be only in one of the following ways:




2a+ b+ c = p
c+ d = p
b = q
d = 2k − 2p − q

⇒ a = k − p− q ⇒ q < k − p (impossible),





2a+ b+ c = p
c+ d = p
b = 2k − 2p − q
d = q

⇔





a = p+ q − k
b = 2k − 2p− q
c = p− q
d = q.

The first way gives nothing, and the second one gives a unique solution
without conditions. Similarly, via III we could only have





a+ c+ d = p
b+ c = p
b+ d = q
a = 2k − 2p − q

⇔





a = 2k − 2p− q
b = k − p
c = 2p − k
d = p+ q − k,





a+ c+ d = p
b+ c = p
a = q
b+ d = 2k − 2p− q

⇒ d = k−p− q ⇒ q < k−p (impossible),





b+ c = p
b+ d = p
a+ c+ d = q
a = 2k − 2p − q

⇔





a = 2k − 2p− q
b = k − q
c = p+ q − k
d = p+ q − k

where the second way gives nothing and the other two always give acceptable
solutions, so we have 2 realizations via III. The total number of realizations
of (p, p, q, r) is then always 3. To show that this is in agreement with the
statement, we note that we cannot have p = k, and we also cannot have
p+ r = p+ q = k, otherwise r = q.
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Turning to (p, q, q, r) for p > q > r, we first note that r = 2k− p− 2q, so
q < k − p

2 , and q > 2k − p− 2q, so q > 1
3 (2k − p). Moreover p > k

2 , whence
3k − 3p < 2k − p and k − p < 1

3(2k − p), therefore q > k − p, which we will
need below. The realizations via I come from





2a+ b+ c+ d = p
c = q
d = q
b = 2k − p− 2q

⇔





a = p− k
b = 2k − p− 2q
c = q
d = q

for p > k,





2a+ b+ c+ d = p
c = q
d = 2k − p− 2q
b = q

⇔





a = p− k
b = q
c = q
d = 2k − p− 2q

for p > k

whence two solutions for p > k and none otherwise. Via II we can have





2a+ b+ c = p
b = q
c+ d = q
d = 2k − p− 2q

⇔





a = k − 2q
b = q
c = p+ 3q − 2k
d = 2k − p− 2q

for q <
k

2
,





c+ d = p
2a+ b+ c = q
d = q
b = 2k − p− 2q

⇔





a = 2q − k
b = 2k − p− 2q
c = p− q
d = q

for q > k
2

(so p < k),

therefore, no solution for q = k
2 and one otherwise. Finally, from III we get





a+ c+ d = p
b+ c = q
b+ d = q
a = 2k − p− 2q

⇔





a = 2k − p− 2q
b = k − p
c = p+ q − k
d = p+ q − k

for p < k





a+ c+ d = p
b+ c = q
b+ d = 2k − p− 2q
a = q

⇔





a = q
b = k − p
c = p+ q − k
d = k − 2q

for p < k and q <
k

2





a+ c+ d = q
b+ c = p
b+ d = q
a = 2k − p− 2q

⇔





a = 2k − p− 2q
b = k − q
c = p+ q − k
d = 2q − k

for q > k
2

(so p < k).
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Summing up, for (p, q, q, r) we have 1 realization if p = k or q = k
2 , and 3

otherwise, in accordance with the statement.

In the last case with repetitions, namely π = [p, q, r, r] with p > q > r,
we note that p − q is even, and we denote it by 2j, so q = p − 2j and
r = k − p + j, with p − 2j > k − p + j, so p − k < j < 1

3(2p − k). We also

note that p > k
2 , which readily implies that 1

3(2p − k) < p − k
2 , therefore

j < p− k
2 , which we will need soon. The realizations of π via I come as





2a+ b+ c+ d = p
b = p− 2j
c = d = k − p+ j

⇔





a = p− k
b = p− 2j
c = d = k − p+ j

for p > k,





2a+ b+ c+ d = p
b = d = k − p+ j
c = p− 2j

⇔





a = p− k
b = d = k − p+ j
c = p− 2j

for p > k

so there are 2 of them for p > k and none otherwise. Now II gives





2a+ b+ c = p
c+ d = p− 2j
b = d = k − p+ j

⇔





a = j
b = d = k − p+ j
c = 2p − k − 3j,





2a+ b+ c = p− 2j
c+ d = p
b = d = k − p+ j

⇒ a = −j (impossible)

whence always a unique realization. From III we get instead





a+ c+ d = p
b+ c = p− 2j
b+ d = a = k − p+ j

⇔





a = k − p+ j
b = k − p
c = 2p − 2j − k
d = j

for p < k,





a+ c+ d = p
a = p− 2j
b+ c = b+ d = k − p+ j

⇔





a = p− 2j
b = k − p
c = d = j

for p < k,





a+ c+ d = p− 2j
a = b+ d = k − p+ j
b+ c = p

⇒ d = −j

whence 2 realizations for p < k and none otherwise. Summarizing the case
π = [p, q, r, r], we have one realization for p = k and 3 otherwise, which
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agrees with the statement, since for such a π the conditions p+r = q+r = k
implies p = q.

We are only left to deal with the general case π = [p, q, r, s] for p >
q > r > s, so s = 2k − p − q − r with 0 < 2k − p − q − r < r, so
k− 1

2(p+ q) < r < 2k− p− q. Note that we also have p+ q > p+ r > k and
r + s < q + s < k. From I we get





2a+ b+ c+ d = p
b = q
c = r
d = 2k − p− q − r

⇔





a = p− k
b = q
c = r
d = 2k − p− q − r

for p > k

plus two more instances with b = r, {c, d} = {q, s} and b = s, {c, d} = {q, r},
always with an acceptable solution with a = k − p, so I gives 3 realizations
of π if p > k and none otherwise. From II we get instead





2a+ b+ c = p
b = q
c+ d = r
d = 2k − p− q − r

⇔





a = k − q − r
b = q
c = p+ q + 2r − 2k
d = 2k − p− q − r

for q + r < k





2a+ b+ c = p
c+ d = q
b = r
d = 2k − p− q − r

⇔





a = k − q − r
b = r
c = p+ 2q + r − 2k
d = 2k − p− q − r

for q + r < k,

(note that p+ 2q + r − 2k > p+ q + 2r − 2k > 0),





2a+ b+ c = p
c+ d = q
d = r
b = 2k − p− q − r

⇔





a = p+ r − k
b = 2k − p− q − r
c = q − r
d = r,





c+ d = p
2a+ b+ c = q
b = r
d = 2k − p− q − r

⇒ a = k − p− r ⇒
p+ r < k
(impossible),





c+ d = p
2a+ b+ c = q
d = r
b = 2k − p− q − r

⇔





a = q + r − k
b = 2k − p− q − r
c = p− r
d = r

for q + r > k,
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



c+ d = p
d = q
2a+ b+ c = r
b = 2k − p− q − r

⇔





a = q + r − k
b = 2k − p− q − r
c = p− q
d = q

for q + r > k

whence 1 realization of π for q + r = k and 3 otherwise. Finally, from III we
get





a+ c+ d = p
a = q
b+ c = r
b+ d = 2k − p− q − r

⇔





a = q
b = k − p
c = p+ r − k
d = k − q − r

for p < k
and q + r < k,





a+ c+ d = p
b+ c = q
a = r
b+ d = 2k − p− q − r

⇔





a = r
b = k − p
c = p+ q − k
d = k − q − r

for p < k
and q + r < k,





a+ c+ d = p
b+ c = q
b+ d = r
a = 2k − p− q − r

⇔





a = 2k − p− q − r
b = k − p
c = p+ q − k
d = p+ r − k

for p < k,





b+ c = p
a+ c+ d = q
a = r
b+ d = 2k − p− q − r

⇒ d = k − p− r ⇒
p+ r < k
(impossible),





b+ c = p
a+ c+ d = q
b+ d = r
a = 2k − p− q − r

⇔





a = 2k − p− q − r
b = k − q
c = p+ q − k
d = q + r − k

for q + r > k,





b+ c = p
b+ d = q
a+ c+ d = r
a = 2k − p− q − r

⇔





a = 2k − p− q − r
b = k − r
c = p+ r − k
d = q + r − k

for q + r > k.

Since q + r > k implies p < k, we conclude that III yields 3 realizations of π
for p < k and q + r 6= k, only 1 if p < k and q + r = k, and none if p > k.
Noting that the conditions q + r = k and p = k are mutually exclusive,
we conclude that we have the number of realizations of π is as follows: 2 if
q+ r = k (1 from II and 1 from III), then 3 if p = k (from II), and 6 otherwise
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Figure 4: Graphs mapped to themselves by the move generating ∼.

(always 3 from II, plus 3 from I is p > k and 3 from III if p < k. This is
precisely what the statement says.

To conclude the case h = 2 we must take into account the datum with
repeated partitions (S, S, 12, 3, [2, 2, 2, 2, 2, 2], [5, 3, 2, 2], [5, 3, 2, 2]), for which
the statement gives ν = 3, coming from the realizations of the datum via
the graphs II(1, 2, 1, 2), III(3, 1, 1, 1), III(2, 1, 2, 1) according to the above ar-
gument. So to verify that our computation of ν = 3 is correct also in this
case we must show that these graphs are pairwise inequivalent under ∼,
which amounts to showing that by applying to each of them the last move
generating ∼ we always get the same graph again, and not one of the other
two. This is done in Fig. 4.

3 Genus 1

In this section we prove Theorem 0.2, starting from the case h = 1. We
have to consider the embeddings in T of the (3, 3) graphs of Fig. 1 with a
single disc as a region. For the first graph, of course neither of the closed
edges can be trivial in T , so the situation must be as in Fig. 5-left, but then
the complement has disconnected boundary. One also easily sees that the
second graphs embeds only as shown in Fig. 5-right and with a full S3×Z/2
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Figure 5: The only (3, 3) graph that embeds in T with a single disc as region.
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c
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d d

d d

Figure 6: The (5, 3) graphs in T with two regions.

symmetry, so ν is the number of ways to write k as the sum of 3 unordered
positive integers, which is

(
k−1
2

)
as claimed.

Let us now consider the case h = 2, whence ℓ = 2. We first recall that
there are two abstract (5, 3) graphs, already shown in Fig. 3 (we can ignore
here the graph in the centre, that represents a different embedding in S of
that on the left). We now claim that they have exactly the inequivalent
embeddings in T shown in Fig. 6 and denoted by I(a, b, c, d), II(a, b, c, d),
III(a, b, c, d) and IV(a, b, c, d). To this end, we first note that the graph of
Fig. 3-left cannot embed with the loop b being non-trivial in T , otherwise
one of the regions would not be a disc. Knowing that b is trivial we easily
get the only embedding I(a, b, c, d). Turning to the graph of Fig. 3-right, we
ask ourselves whether the loop a is trivial in T or not. If it is, we easily
get II(a, b, c, d). If a is non-trivial, the edges a, b, c cannot leave the vertex
of a from the same side, so assume b leaves from one side and c, d from the
opposite side. It is then easy to see that the only possibilities are III(a, b, c, d)
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and IV(a, b, c, d).
We next claim that all four graphs have the only symmetry c ↔ d.

Checking that there cannot be any other one is immediate, while we prove
that c ↔ d exists for IV(a, b, c, d), which is the hardest case to visualize.
Note that, with suitable orientations, the attaching maps of the comple-
mentary discs to IV(a, b, c, d) are described by the words bc−1db−1a−1 and
acd−1. Now we consider the automorphism of IV(a, b, c, d) that maps a, b, c, d
to a−1, b, d, c. This transforms the attaching words into bd−1cb−1a and
a−1dc−1, whose inverses are a−1bc−1db−1 and cd−1a, which are cyclically
identical to the initial ones. So the automorphism of IV(a, b, c, d) extends to
T , and we are done.

To count the realizations of a partition (p, 2k−p) with p 6 k, we note that
I(a, b, c, d) and II(a, b, c, d) both realize [a+2b+2c+2d, a], while III(a, b, c, d)
realizes [2a+2b+c+d, c+d], and IV(a, b, c, d) realizes [a+2b+c+d, a+c+d].
The conclusion is now easy. Of course ν = 0 if p = k, while for p < k in I
and II we must have a = p, so they both contribute with

k−p−2∑

b=1

[
k − p− b

2

]
=

[
1

4
(k − p− 1)2

]
;

in III we must have c+ d = p and a+ b = k − p, whence
[p
2

]
· (k − p− 1);

finally, in IV we must have a+ c+ d = p and b = k − p, whence

p−2∑

a=1

[
p− a

2

]
=

[
1

4
(p − 1)2

]
.

To conclude the case h = 2 we need to consider the datum with repetitions

(T, S, 8, 3, [2, 2, 2, 2], [5, 3], [5, 3]),

but the previous discussion implies that only the graph IV(1, 1, 1, 1) can
realize it, so the value ν = 1 already obtained is correct. In particular, the
graph must be mapped to itself by the last move generating ∼, which one
can verify rather easily.

4 Genus 2

We start by showing in Fig. 7 the only two abstract (7, 3) graphs, Γ1 and
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Figure 7: The abstract (7, 3) graphs.

aa

bb

cc

Figure 8: Fattenings of the graph θ.

Γ2. Next, we note that Γ1 cannot embed in the genus-2 surface 2T with a
single disc discal region: if a bounds in 2T a disc disjoint from the rest of
Γ1, then there is more than one region, otherwise a regions is non-discal.

We must then enumerate up to symmetry the embeddings of Γ2 in 2T
with a single region. We do so by describing the fattenings of Γ2 to a ribbon
having a single boundary component attaching a disc to which we get 2T .
Note that a fattening of a graph can be described by an immersion in the
plane. There are only two fattenings of the subgraph θ = a ∪ b ∪ c of Γ2,
shown in Fig. 8 and both seen to be totally symmetric. We now concentrate
on the fattenings of the subgraph ∆ of Γ2 given by a regular neighbourhood
of the 7-valent vertex union d∪e. One easily sees that there are 12 fattenings
of ∆, but 7 of them cannot give rise to fattenings of Γ2 with a connected
boundary, because a small boundary circle is already created near ∆. The
other 5 fattenings of ∆ are shown in Fig. 9. We must now combine the 2
fattenings of θ with the 5 of ∆, and thanks to the stated symmetry of those

d d d d
d

e e e e
e

Figure 9: Fattenings of ∆ without small boundary circles.
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Figure 10: Fattenings of Γ2 with a single boundary circle, capping off which we get 2T .

of θ there is only one way to combine any given pair of fattenings. Of the
resulting 10 ribbons, 4 turn out to have disconnected boundary, and the
other 6 are shown in Fig. 10.

Since 5 of the graphs of Fig. 10 have a symmetry of type (b ↔ c, d ↔ e)
and one has no symmetries, the number ν of realizations of the datum is
given by 5 times the number x of ways to express k as a+ b+ c+d+ e up to
(b ↔ c, d ↔ e), plus the number y of ways to express k as a+ b+ c+ d+ e
with no symmetries to take into account. Of course y =

(
k−1
4

)
, while

x =

k−4∑

a=1

z(k − a) =

k−1∑

h=4

z(h),

where z(h) is the number of ways to express h as b + c + d + e up to
(b ↔ c, d ↔ e).

We can now compute z(h) by distinguishing the case b < c from b =
c, d < e and from b = c, d = e. For the case b < c we can choose
j = b+ c+ d between 4 and h− 1, then i = b+ c between 3 and j − 1, and
we are left with

[
i−1
2

]
choices for b and c, so we have a contribution to z(h)

equal to

h−1∑

j=4

j−1∑

i=3

[
i− 1

2

]
=

h−1∑

j=4

j−2∑

i=2

[
i

2

]
=

h−1∑

j=4

[(
j − 2

2

)2
]
=

h−1∑

j=4

[(
j

2
− 1

)2
]
.

We can now distinguish between the odd case h = 2m+1 and the even case
h = 2m, splitting the sum between the odd and the even values of j, and
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getting respectively, after easy calculations,

1

6
m(m− 1)(4m − 5) and

1

6
(m− 1)(m− 2)(4m − 3).

For the case b = c, d < e we can choose b = c between 1 and
[
h−3
2

]
, so

we have a contribution to z(h) equal to

[h−3

2
]∑

b=1

[
h− 2b− 1

2

]
=

[h−3

2
]∑

b=1

([
h− 1

2

]
− b

)

=

[
h− 1

2

]
·

[
h− 3

2

]
−

1

2

[
h− 3

2

]([
h− 3

2

]
+ 1

)

=
1

2

[
h− 3

2

](
2

([
h+ 3

2

]
+ 1

)
−

([
h− 3

2

]
+ 1

))

=
1

2

[
h− 3

2

]([
h− 3

2

]
+ 1

)
.

Therefore we have a contribution to z(h) for h = 2m + 1 and for h = 2m
given respectively by

1

2
m(m− 1) and

1

2
(m− 2)(m− 1).

Finally, for b = c, d = e we have a contribution of 0 for odd h and of
m− 1 for h = 2m.

We can now plug these contributions to z(h) in the formula for x. Again
we distinguish between the case k = 2p+1 and the case k = 2p, splitting the
sum between the odd h = 2m+1 and the even h = 2m, getting respectively

p−1∑

m=2

(
1

6
m(m− 1)(4m − 5) +

1

2
m(m− 1)

)

+

p∑

m=2

(
1

6
(m− 1)(m − 2)(4m− 3) +

1

2
(m− 1)(m− 2) + (m− 1)

)

=
1

6
(2p4 − 6p3 + 7p2 − 3p)
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and

p−1∑

m=2

(
1

6
m(m− 1)(4m − 5) +

1

2
m(m− 1)

)

+

p−1∑

m=2

(
1

6
(m− 1)(m − 2)(4m− 3) +

1

2
(m− 1)(m− 2) + (m− 1)

)

=
1

6
(2p4 − 10p3 + 19p2 − 17p + 6).

Replacing p = 1
2 (k − 1) in the first formula and p = k

2 in the second one we
get respectively

xodd =
1

48

(
k4 − 10k3 + 38k2 − 62k + 33

)
,

xeven =
1

48

(
k4 − 10k3 + 38k2 − 68k + 48

)
.

Recalling that ν = 5x+y and replacing the expressions just found for x and
y =

(
k−1
4

)
we get

νodd =
1

48

(
7k4 − 70k3 + 260k2 − 410k + 213

)

νeven =
1

48

(
7k4 − 70k3 + 260k2 − 440k + 288

)
.

Thus

ν = νeven + 2

(
k

2
−

[
k

2

])
(νodd − νeven)

and the stated formula easily follows.
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