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Abstract: We consider linear gravitational perturbations of the Kerr brane, an exact

solution of vacuum Einstein’s equations in dimensions higher than four and a low-energy

solution of string theory. Decomposing the perturbations in tensor harmonics of the trans-

verse Ricci-flat space, we show that tensor- and vector-type metric perturbations of the

Kerr brane satisfy respectively a massive Klein-Gordon equation and a Proca equation on

the four-dimensional Kerr space, where the mass term is proportional to the eigenvalue

of the harmonics. Massive bosonic fields trigger a well-known superradiant instability on

a Kerr black hole. We thus establish that Kerr branes in dimensions D ≥ 6 are gravi-

tationally unstable due to superradiance. These solutions are also unstable against the

Gregory-Laflamme instability and we discuss the conditions for either instability to occur

and their rather different nature. When the transverse dimensions are compactified and

much smaller than the Kerr horizon, only the superradiant instability is present, with a

time scale much longer than the dynamical time scale. Our formalism can be also used to

discuss other types of higher-dimensional black objects, taking advantage of recent progress

in studying linear perturbations of four-dimensional black holes.
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1 Introduction

In recent years, higher-dimensional black holes have come to play an essential role in

understanding fundamental theories — not only of gravitation but also of various different

areas in physics — thanks to the celebrated gauge-gravity duality. It is by now well known

that — even in purely vacuum Einstein gravity — there exists a large variety of higher

dimensional black objects, whose classification is still underway. Among these solutions,

an interesting class is that of black branes, i.e., extended black objects taking the form of a

direct product of a (4 or higher dimensional) black hole and some transverse, homogeneous

extra-dimensions, which naturally arise in string theory.

It is clearly important to study the stability of such higher dimensional black ob-

jects. A peculiar feature of the stability problem of black branes is the Gregory-Laflamme

(GL) instability [1, 2], which is attributed in an essential way to the existence of uniform

transverse-dimensions. Roughly speaking, this instability occurs when the length scale

of compactification along the transverse dimensions is larger than the Schwarzschild ra-

dius. If the black hole is rotating, one can also expect another type of instability — i.e.,

superradiant (SR) instability — to occur. The latter instability is attributed to the com-

bination of superradiant amplification [3] of incident waves by the black-hole rotation and

a certain reflection mechanism that makes the scattered waves go back toward the hole

repeatedly [see e.g., ref. [4] and references therein]. Several different reflection mechanisms

have been considered: for example, a “mirror” surrounding the hole imposed as a boundary

condition [5–10], the mass of perturbation fields [11–19], nonminimal couplings [20–22], and

the spacetime curvature itself for asymptotically AdS black holes [23–27].

For black branes with rotation, a possible reflection mechanism is played by the effective

Kaluza-Klein mass due to excitations along the transverse dimensions [28–30]. As such,
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in contrast to the GL instability, the superradiant instability is expected to occur even

when the length scale of the transverse dimensions is smaller than the horizon radius of

the rotating hole. There have already been a number of studies on the instabilities of black

branes; most of which, however, have focused on the GL instability of nonrotating black

branes. For rotating black branes, we are naturally led to ask which one — either the GL or

the SR instability — becomes dominant and/or under what circumstances such instabilities

become relevant, and we therefore have to address both the GL and SR instabilities.

The purpose of this paper is to study the superradiant instability of rotating black

branes against gravitational perturbations. For concreteness, we focus on the Kerr branes,

which are the direct product of the 4-dimensional Kerr metric and the transverse, n-

dimensional, Ricci flat extra-dimensions. The complete solution satisfies the (4 + n)-

dimensional vacuum Einstein equations. Since the Kerr metric is believed to accurately

describe black holes in astrophysical circumstances, analyzing perturbations of the Kerr

brane would also be interesting in the context of exploring evidence for extra dimen-

sions in our observable universe by exploiting recent developments of “precision black-hole

physics” [4, 31–33]. The effects of extra dimensions may appear as massive bosonic fields

and trigger a superradiant instability on the 4-dimensional part of a Kerr brane, i.e., the

Kerr metric. Then, comparisons with astrophysical observations, such as spin measure-

ments of massive black holes, may provide some important pieces of information about

compactified extra dimensions.1

Our strategy is as follows. We first note that metric perturbations of the Kerr brane

in D = 4 + n ≥ 7 dimensions can in general be classified into three types according to

their tensorial behavior on the n-dimensional transverse Ricci flat dimensions: the tensor-,

vector-, and scalar-type in terminology of ref. [37]. (For n = 2, only two classes exist: the

vector- and scalar-type, whereas for n = 1, i.e., Kerr-string, only scalar-type perturbations

can be defined.2) In the present paper, we will focus on tensor- (n ≥ 3) and vector- (n ≥ 2)

type perturbations. Next, we show that the linearized Einstein equations for the tensor-

and vector-type metric perturbations of the Kerr brane reduce, respectively, to equations of

motion for a massive scalar and massive vector field on the 4-dimensional Kerr spacetime,

where the effective mass term is associated with the eigenvalue of harmonics along the

n-dimensional space. Then, by exploiting already available results for the superradiant

instability in 4-dimensions, we establish the gravitational superradiant instability of the

D ≥ 6 Kerr branes. In 4-dimensional Kerr spacetime, superradiant instabilities triggered

by ultralight massive scalar and vector fields have recently been studied in refs. [13, 15–17],

and has been used to impose strong constraints on ultralight bosonic fields predicted in,

e.g., the string axiverse scenario [4, 31, 32]. As the Kerr branes can also be unstable against

the GL instability, we discuss the conditions for either — GL or SR — instability to occur

and their rather different nature.

1See also, e.g., refs. [34–36] for possible alternative mechanisms to reveal signatures of extra-dimensions

in astrophysical systems.
2It is claimed in ref. [38] that all types — tensor, vector, and scalar — of perturbations have been

considered for the GL instability of a static black string, i.e., in the n = 1 case. Note however that the way

of decomposition adopted in [38] is based on the spherical section of the static black hole and is completely

different from the method adopted in the present work.
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It is worth mentioning that our method for dealing with the perturbations described

above can be applied not only to the Kerr branes but also to a much wider class of black

objects, including Myers-Perry black branes and Myers-Perry black holes. Indeed, by em-

ploying a similar decomposition of the metric perturbations, the tensor-type perturbations

with respect to the n = D − 4 section of the D ≥ 7 singly rotating Myers-Perry metric

and the associated superradiant instability have been previously studied in refs. [39–41].

However, the vector-type metric perturbations for rotating black objects are analyzed for

the first time in the present paper and are shown to cause a stronger instability than

tensor-type perturbations.

In the next section we establish the notations by describing our methods and formulas

for perturbing black branes. In section 3, we first review the GL instability of black branes,

and then discuss the superradiant instability of the Kerr brane by using the results of

refs. [13, 15–17]. We then compare the two instabilities and show that, when the transverse

dimensions are compactified and much smaller than the Kerr horizon, only the superradiant

instability is present, with an associated time scale much longer than the dynamical time

scale. Section 4 is devoted to summary and discussions, where we also discuss how our

present analysis can be extended to more general black-brane cases.

2 Linear perturbations of the Kerr brane

The Kerr brane is the direct product of the four-dimensional spacetime described by the

Kerr metric and an n-dimensional Ricci-flat space K,

ds2 = gMNdxMdxN = gKerr
ab dyadyb +R2γijdz

idzj , (2.1)

where (for instance, in Boyer-Lindquist coordinates) ya = (t, r, θ,φ), γij is the metric of K,

and R is a constant with dimensions of a length. The Ricci-flatness of γij and the fact that

gKerr
ab is a solution of the four-dimensional vacuum Einstein’s equations guarantee that the

full metric gMN is a solution of theD = (4+n)-dimensional Einstein’s equations in vacuum.

2.1 The Kodama-Ishibashi formalism

Before discussing the gravitational perturbations of a Kerr brane, we will present the

relevant formulas in a rather generic setup. We follow the formalism of [37, 42] (see also

the review [43]), hereafter KI, which allows to study linear perturbations of a (d + n)-

dimensional spacetime M = N × K, where the d-dimensional space N is endowed with a

Lorentzian metric gab(y), and K is an n-dimensional Einstein space with metric γij(z), i.e.,

R̂ij [γ] = (n − 1)Kγij ; R̂ij is the Ricci tensor on K and K = 0,±1. The metric of the full

space, in the coordinates xM = (ya, zi), has the form

gMNdxMdxN = gab(y)dy
adyb +R2(y)γij(z)dz

idzj , (2.2)

where now R(y) can be a generic function of the coordinates ya. We denote by ∇M , ∇a, D̂i

the covariant derivatives on M, N , K, respectively. We also define ∆̂ = D̂iD̂i. It is clear

that the Kerr-brane metric (2.1) is included as a special case of the metric ansatz (2.2).
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Metric perturbations hNM = δgMN of (M, g) are decomposed in tensor harmonics on

K, i.e., in scalar harmonics (S), transverse vector harmonics (Vi) and transverse-traceless

tensor harmonics (Tij), that satisfy the following relations:

∆̂S = −k2SS (2.3)

∆̂Vi = −k2V Vi (2.4)

∆̂Tij = −k2TTij (2.5)

and

D̂iV
i = 0 ; D̂iT

i
j = 0 ; T

i
i = 0 . (2.6)

Since we are interested in vector and tensor perturbations, which exist for n ≥ 2 and n ≥ 3,

respectively, hereafter we assume n ≥ 3 (although our results are qualitatively valid also

for n = 2, see conclusions).

Perturbations are also expanded in “longitudinal” harmonic functions:

Si = −
1

kS
D̂iS (2.7)

Sij =
1

k2S
D̂iD̂jS+

1

n
γijS (2.8)

Vij = −
1

2kV
(D̂jVi + D̂iVj) . (2.9)

Eqs. (2.3)–(2.5) can also be expressed in terms of the Lichnerowicz operator which, in an

Einstein space, can be written as ∆̂L = −∆̂+2nK; if −k2 is the eigenvalue of the Laplace

operator ∆̂, the eigenvalue of the Lichnerowicz operator is k2 + 2nK.

Metric perturbations are decomposed in scalar-type, vector-type and tensor-type per-

turbations, i.e., hµν = hSµν + hVµν + hTµν , which are expanded in the sets of harmonics

(S, Si, Sij), (Vi,Vij), and (Tij), respectively; it turns out that these three groups of pertur-

bations are decoupled in Einstein’s equations. In the following we shall focus on tensor-type

and vector-type perturbations only.

Tensor-type perturbations are expanded in terms of tensor harmonics as follows:

hTab = 0, hTai = 0, hTij = 2R2ΦTTij . (2.10)

The scalar function ΦT (y) on the d-dimensional spacetimeN is gauge invariant with respect

to an infinitesimal coordinate transformation. Linearized Einstein’s equations in vacuum

yield [37]:

∇a∇aΦT + n
∇aR

R
∇aΦT −

k2T + 2K

R2
ΦT = 0 . (2.11)

Vector-type perturbations are expanded in terms of vector harmonics as follows:

hVab = 0, hVai = RfaVi, hVij = 2R2HTVij (2.12)

where fa and HT are functions of ya. The quantity

Aa =
fa
R

+
1

kV
∇aHT (2.13)
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is gauge invariant with respect to an infinitesimal coordinate transformation. Linearized

Einstein’s equations in vacuum yield [37]:

1

Rn+2
∇a

(

Rn+2Fab

)

−
k2V − (n− 1)K

R2
Ab = 0 , (2.14)

where Fab = ∇aAb −∇bAa, and also

kV ∇a(R
nAa) = 0 . (2.15)

Note that Aa and Fab above are different from those defined in [37]. Here we use Aa to be

reminiscent of a Proca field. One can find the corresponding formulas, eq. (33), (35) and

(36) in [37] by replacing Aa → Fa/R.

2.2 Vector and tensor gravitational perturbations of the Kerr brane

The Kerr brane belongs to the set of spacetimes considered in the KI formalism. When

d = 4, N is the Kerr spacetime, K = 0 (i.e., K is Ricci-flat) and R(y) = R constant (i.e.,

the product N ×K is not warped), the metric (2.2) reduces to the D = (4+n)-dimensional

Kerr brane metric (2.1).

In this case, since R is a constant, the perturbation equations for tensor-type and

vector-type perturbations, eqs. (2.11), (2.14), (2.15) reduce to

∇a∇aΦT −
k2T
R2

ΦT = 0 , (2.16)

∇bFab −
k2V
R2

Aa = 0 , (2.17)

kV ∇aA
a = 0 . (2.18)

For k2V , k
2
T > 0, these are the equations of a massive scalar field and of a massive vector

field, i.e., the massive Klein-Gordon and the Proca equations with the Lorenz condition,

respectively, propagating on a four-dimensional Kerr background. The effective masses are

proportional to the eigenvalues of the harmonics, namely

µT =
kT
R

, µV =
kV
R

. (2.19)

It is well known that these perturbations trigger a superradiant instability of the Kerr

metric and therefore admit unstable modes, as discussed in section 3.2 below (see refs. [12,

13, 15, 18, 29] and also the recent review [4]). Therefore, this establishes that Kerr brane

is subject to the superradiant instability.3

3A similar instability has been discussed in refs. [28, 29] for the case of probe massless scalar perturbations

of the Kerr brane. The novelty of our approach consists in the fact that the instability directly arises from

the gravitational sector in the form of effective massive Klein-Gordon and Proca equations. As we discuss

below, in this case the instability time scale is also shorter than for a probe scalar field.

– 5 –
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3 Superradiant and Gregory-Laflamme instabilities of the Kerr brane

It is well known that the Kerr brane, like all black strings and black branes, is also subject

to the Gregory-Laflamme (GL) instability [1, 2] (see also ref. [38], the review [44] and

references therein). In this section, we summarize and compare the main features of the

superradiant instability and of the GL instability of the Kerr brane.

3.1 The Gregory-Laflamme instability of black strings and branes

The GL instability is a linear instability in the directions transverse to the brane (those

described by the Ricci-flat space K). It has first been studied for nonrotating, neutral

black strings and branes [2], for which the space N is the d-dimensional Tangherlini [45]

spacetime (which reduces, for d = 4, to the Schwarzschild spacetime); subsequently, it has

been generalized to charged [1] and to slowly-rotating [46] strings and branes.

The black string/brane manifold is given by the metric (2.2) with R(y) = R constant,

ds2 = gab(y)dy
adyb +R2γij(z)dz

idzj , (3.1)

on M = N × K with K taken to be a Ricci flat space, and N a d-dimensional black hole

manifold. If N describes a static, spherically symmetric black hole, gab is the Tangherlini

metric, i.e.,

gabdy
adyb = −fdt2 + f−1dr2 + r2dΩ2

d−2 (3.2)

where dΩ2
d−2 is the line element on Sd−2, f = 1− (r0/r)d−3, and r0 is the horizon radius; in

d = 4, r0 = 2M , where M is the black-hole mass. More generally, N can be any black-hole

spacetime; in particular, when d = 4 and gab = gKerr
ab , we have the Kerr brane (2.1).

The GL instability affects perturbations invariant under Sd−2 rotations, with the form

hai = hij = 0 and

hab(t, r, z) = h̃ab(r)S(z)e
Ωt , (3.3)

where hab(r) is invariant under Sd−2-rotations, and S(z) are eigenfunctions of the Laplace

operator ∆̂ on K defined by (2.3). Let us focus on stationary perturbations, i.e. those with

Ω = 0 which, as we discuss below, describe the onset of the instability. With an appropriate

gauge choice, the perturbation equations have the form

∆Lhab = S(z)∆d
Lh̃ab − h̃ab∆̂S(z) = 0 , (3.4)

where ∆L is the Lichnerowicz operator on M, and ∆d
L is the Lichnerowicz operator on the

d-dimensional manifold N . Using eq. (2.3), the perturbation equation on N reads

∆d
Lh̃ab(r) = −k2Ω=0h̃ab(r) . (3.5)

When N is the Tangherlini spacetime, this equation admits the eigenvalue

k2Ω=0 =
k2c
r20

, (3.6)

– 6 –
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where kc ≈ 0.88 for d = 4, kc ≈ 1.24 for d = 5 and so on [44].4 Note that kΩ=0 = kc/r0
is the wavenumber of the marginally stable mode and has dimensions of inverse length,

whereas kc is a numerical coefficient. The wavelength of the marginally stable mode is then

λ = λGL ≡ 2πr0/kc. Gregory and Laflamme have shown that if a neutral mode — solution

of eq. (3.6) — exists, then for any wavenumber in the range 0 < k < kc/r0, i.e., for any

wavelength λ > λGL, there exists an unstable mode, with Ω > 0. Generally, the instability

time scale is τGL = Ω−1 ∼ r0 [44], therefore the instability grows on a dynamical time scale.

If K is non-compact, eq. (2.3) admits a continuum spectrum of eigenvalues k, eq. (3.6)

always has a solution, and a neutral mode with wavenumber kc/r0 and wavelength λGL

always exists. If, instead, K is a compact space, eq. (2.3) has a discrete set of eigenval-

ues, bounded from below by the critical wave number kmin, corresponding to the critical

wavelength 2π/kmin. The neutral mode exists if eq. (3.6) can be satisfied, i.e., if

kmin ≤
kc
r0

. (3.7)

In the case of a black string compactified on a circle with length L, the critical wavenumber

is kmin = 2π/L, thus — if the condition (3.7) is satisfied, i.e. if 2πr0/L ≥ kc — the critical

wavelength is L, and the instability sets in for modes with λ ≥ L. In the case of a torus

Tn [49], the critical wave vector is kmin = |⃗kmin|, where k⃗min is the shortest vector in the re-

ciprocal lattice of Tn. If, for instance the torus is a simple product of n circles with lengths

L1 ≥ L2 ≥ · · · ≥ Ln, k⃗ = 2π(m1/L1,m2/L2, . . . ) with mj \ Z/{0}, then kmin = 2π/L1,

and the critical wavelength is 2π/kmin = L1: the instability sets in (if the condition (3.7)

is satisfied) for modes whose wavelength is larger than the largest of the circles composing

the torus.

The case of a slowly-rotating black brane, in d = 4, has been studied in [46], where

the spacetime N is described by the Kerr metric in Boyer-Lindquist coordinates, expanded

in dimensionless angular momentum ã = J/M2 up to O(ã2), where M and J denote

the mass and angular momentum of the Kerr black hole. Note that since d = 4, r0 =

r+ = 2M(1 − ã2/2) + O(ã4) is the horizon radius of the slowly-rotating Kerr solution.

In this perturbative scheme, rotation only modifies the eigenvalue of the four-dimensional

equation (3.5), whereas the harmonic expansion of the perturbations (3.3) is unaffected.

The modified eigenvalue of the neutral mode reads

kΩ=0 =
krotc

r+
, (3.8)

where5

krotc = kc(1 + γã2) +O(ã4) , (3.9)

4We remark that the linearized Einstein’s equations onN can be written as∆d
Lh̃ab(r) = 0, while Eq. (3.5)

is equivalent to the massive graviton equation on N [47]. The stable and unstable modes of this equation

on a Kerr background have been discussed in detail in ref. [48].
5In the notation of [46], ã → ϵ, krot

c → µr+, and γ → µ2
2/(4µ

2
0) − 1/4. Note that in figure 1 of [46]

the wavenumber eigenvalue is rescaled with M , while in this paper, to facilitate the comparison with the

superradiant instability, it is rescaled with r+.

– 7 –



J
H
E
P
0
9
(
2
0
1
5
)
2
0
9

From figure 1 of [46], it is possible to estimate the value of the parameter γ ≃ 1.45. The rest

of the discussion on GL instability is not affected by the rotation of the black string/brane,

which — at least, for slow rotation — only increases the value of the critical wavenumber,

making the instability stronger.

3.2 The superradiant instability

In the presence of a massive bosonic field (such as a massive scalar or vector field), a Kerr

black hole is unstable [11–13, 16, 29, 48] due to superradiance (see ref. [4] for an overview).

In brief, the process relies on the scattering of a monochromatic wave off a spinning black

hole; the energy of the wave is amplified when its frequency satisfies the condition

0 < ω/m < ΩH , (3.10)

where |m| = 0, 1, . . . , ℓ is the azimuthal number along the axis of rotation, ℓ = 0, 1, . . . is the

harmonic index, and ΩH = ã/(2r+) is the angular velocity of the horizon. This superradiant

amplification can trigger an instability whenever the amplified radiation is confined [4].

Massive bosonic perturbations support long-lived modes with a hydrogenic spectrum

in frequency, ω ∼ µ, where µ is the mass of the field. These modes satisfy the superradiant

condition when

µ ! mΩH =
ãm

2r+
. (3.11)

In addition, the mass of the perturbation provides a potential barrier that can trap the

superradiant modes near the black hole. When the condition (3.11) is satisfied, rotational

energy is extracted from the horizon through superradiance, while the trapping due to the

mass is necessary to “keep the extraction going”, thereby triggering the instability.

In the limit r+µ ≪ 1, the instability time scale of the fundamental unstable mode

is [12, 15, 16, 48]

τSR ∼
M

γSℓ

(Mµ)−(4ℓ+5+2S)

ãm− 2r+µ
, (3.12)

where S = −s,−s + 1, . . . , s − 1, s is the spin projection, s being the spin of the bosonic

field (s = 0, 1, 2 for scalar, vector and tensor fields, respectively), and γSℓ is a numerical

coefficient depending on S, ℓ and m. In the opposite regime, when r+µ ≫ 1, the instability

time scale is [50]

τWKB
SR ∼ 107e3.7r+µr+ , (3.13)

for any type of field. A numerical analysis shows that the shortest instability time scale

occurs for highly-spinning black holes, low values of ℓ = m, and in the cross-over region

r+µ ∼ 1. For a given rotation rate and fixed value of m, the maximum instability occurs

slightly before the condition (3.11) is saturated. However, even in the most favorable case

for the instability, the time scale is always much longer than the dynamical time scale, i.e.

τSR ≫ M [4, 13]. In the scalar case, the minimum instability time scale τSR ∼ 106M occurs

for ℓ = m = 1, µM ∼ 0.42, and near-extremal black holes [13]. For ℓ = m = 2, the strongest

instability in the scalar case occurs when µM ∼ 0.9 and corresponds to τSR ∼ 107M . In

the vector case, most results were obtained in the slow-rotation limit [15, 16] (cf. ref. [51]

– 8 –
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for a review) and are valid to O(ã2), although fully-numerical results [17] are in good

quantitative agreement with an extrapolation of the slow-rotation approximation. In this

case, the strongest instability occurs for µM ∼ 0.39 for ℓ = m = 1 and corresponds to

τSR ∼ 103M [17], in good agreement with the extrapolation discussed in ref. [16]. As

expected from the fact that electromagnetic waves are more strongly amplified by black-

hole superradiance, the minimum instability time scale of Proca fields is much shorter than

that for massive scalar perturbations [15, 16]. The instability time scale for Proca field with

higher ℓ has not been investigated in detail, but it should agree with the WKB result (3.13),

because the latter is insensitive to the spin of the perturbation when ℓ,m ≫ 1.

3.3 Superradiant instability versus Gregory-Laflamme instability

When d = 4 and N is the Kerr spacetime, i.e. gab = gKerr
ab , and K is Ricci-flat and R(y) = R

constant, the metric (2.2) reduces to the Kerr brane (2.1) as explained before. In this case

r0 = r+ coincides with the horizon location of the Kerr metric.

The Kerr brane can be subject both to the GL instability and to the superradiant

instability. These instabilities are of very different nature. On the one hand, the perturba-

tions corresponding to the GL instability depend on the directions transverse to the brane,

zi, but do not depend on the angular directions (θ,φ) of Kerr spacetime.

These perturbations tend to fragment the brane into lower-dimensional objects, such as

black holes [52], similarly to the Rayleigh-Plateau instability of fluids [53, 54]. On the other

hand, the perturbations corresponding to the superradiant instability depend also on the

angular directions of the Kerr black hole. Because of the azimuthal dependence, such insta-

bility extracts angular momentum from the horizon, thus slowing the black hole down [4].

It is therefore natural to ask in which conditions one or the other instability is present,

and which one prevails in the cases both instabilities are at work. Since the GL instability

grows on a dynamical time scale τGL ∼ M [44], while the superradiant instability grows

on a much longer time scale as discussed above, the former instability prevails when both

are present. This happens when the space K is non-compact: as discussed in section 3.1,

in this case the GL instability always occurs.

Nonetheless, there are configurations in which the GL instability is absent and the

sole process governing the dynamics of the solution is the superradiant instability. This

happens, for instance, when the space K is a compact (Ricci-flat) manifold. For simplicity,

we shall assume that K is a torus Tn, product of n identical circles, each of them with length

L (as discussed above, when the circles are different, it is the largest one that determines

the onset of the instability). The solutions of the Laplace equations on the torus are simply

S(z) ∼ ei kiz
i
with ki = 2πmi/L and mi \ Z/{0} (i = 1, . . . , n). Therefore, the minimum

eigenvalue is kmin = 2π/L. The GL instability is present when kmin ≤ krotc /r+, i.e., when

2π

L
≤

krotc

r+
. (3.14)

The KI formalism is also very simple when the internal space is the torus Tn (for simplicity,

we consider the case in which all circles have equal length L). In this case we have R =

– 9 –
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L/(2π), γij = δij , and the equations for scalar, vector and tensor harmonics reduce to

[∆̂+ k2S ]S = [∆̂+ k2V ]Vi = [∆̂+ k2T ]Tij = 0 (3.15)

where ∆̂ = δij∂i∂j , with eigenvalues kS = 0, 1, . . . and kV , kT = 1, 2, . . . , respectively. As

discussed in section 2, vector and tensor perturbations satisfy the equations of massive

vector fields and massive scalar fields, respectively, with masses µ = µT,V = kT,V /R [cf.

eq. (2.19)]. This yields a lower bound on the mass,

µ ≥
1

R
=

2π

L
. (3.16)

Combining the bound above with the superradiance condition (3.11) yields a necessary

condition for the superradiant instability:

2π

L
!

ãm

2r+
. (3.17)

By comparing eq. (3.17) with eq. (3.14), we conclude that Kerr branes such that

krotc ≤
2πr+
L

!
ãm

2
, (3.18)

are unstable only against the superradiant instability. Interestingly, the upper limit of

this condition is arbitrarily large, as m can be any integer. However, when m ≫ 1 the

instability time scale is strongly suppressed [4, 13, 50].

As an example, let us consider a slowly-rotating Kerr brane with ã = 0.2. In this case

krotc ≈ 0.93, therefore the GL instability is present when

2πr+
L

! 0.93 , (3.19)

whereas the superradiant instability is present when

2πr+
L

!
ãm

2
= 0.1m. (3.20)

When condition (3.19) is violated, condition (3.20) can still be satisfied, as long as m " 10.

To summarize, while the superradiant instability is always present (there is always

a value of m large enough to satisfy the upper bound in eq. (3.18)), the GL instability

is only present if the compactified dimensions are sufficiently large. For smaller circles,

the superradiant instability is the only one to occur. On the other hand, in this case

the superradiant instability is associated with modes of large m, and thus it is strongly

suppressed. These results have been derived for small values of the rotation rate, but it is

reasonable to expect that the qualitative description holds also for rapidly-spinning black

holes. By extrapolating eq. (3.18) to the extremal limit, we find a lower bound on m which

is necessary to have the superradiant instability but not the GL instability,

m "
2krotc

ã
∼ 4.3 . (3.21)

where in the last step we have extrapolated to ã ∼ 1. From eqs. (3.13) and (3.11), the

minimum instability time scale in this case is approximately

τWKB
SR ∼ 1011M . (3.22)
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4 Concluding remarks

We have shown that Kerr branes inD ≥ 6 are gravitationally unstable. For this purpose, we

have (i) considered the tensor- and vector-type metric perturbations with respect to the n =

D− 4 dimensional Ricci flat space, i.e., the brane direction, and (ii) reduced the linearized

Einstein equations to the equations for a massive scalar and a Proca field, and then (iii)

compared with already available results for the superradiant instability of 4-dimensional

Kerr black holes against massive scalar and Proca fields. Note that, in order to deal with

both the tensor and vector perturbations simultaneously, we have proceeded our arguments

mainly in the D ≥ 7 (n ≥ 3) case as the tensor-type perturbations exist only when n ≥ 3.

However, our results concerning the vector-type perturbations also hold for the D = 6

(n = 2) case. We have found that the instability is stronger for the vector perturbations

than the tensor perturbations, as shown in (3.12). However, this is only true for low m and

ℓ, as in the eikonal limit, eq. (3.13) should be valid for all perturbations. When the Ricci

flat brane direction, K, is non-compact, the GL instability always occurs and grows on a

dynamical time scale, and eventually prevails over the superradiant instability, whose time

scale is much longer than the dynamical time scale. However, when the brane direction K

is compactified in sufficiently small length scale, the GL instability becomes absent. We

have compared the two instabilities, and derived the condition (3.18) under which Kerr

branes become unstable only due to superradiant instability.

In the present paper, we focused on the tensor- and vector-type perturbations since

for these two cases we could take advantage of already available results [13, 15–17] for

the superradiant instability in 4-dimensional Kerr spacetimes. We can also apply our

formalism to the scalar-type gravitational perturbations for Kerr-strings/branes with n ≥ 1,

in which the linearized Einstein equations reduce to equations for a massive tensor field

on 4-dimensional Kerr spacetime. Although the equations of motion become much more

complicated, by applying the slow-rotation approximation [15, 16, 51], one should be able

to simplify the equations of motion for the massive tensor field on the Kerr spacetime (see

ref. [18]) and study its superradiant instability. This analysis is left for future work.

Our formalism can also be used to study perturbations of other types of higher-

dimensional black objects. For example, the 4-dimensional Kerr subspace of our Kerr brane

can be replaced with a d-dimensional Myers-Perry metric, thereby obtaining D = d + n

Myers-Perry branes (MP-branes). Then, as in the Kerr brane case examined here, tensor-

and vector-type metric perturbations of the MP-branes reduce to a massive scalar and

Proca fields on the d-dimensional MP black-hole metric. This type of reduction would

help us to compute, e.g., quasi-normal modes of (d + n)-dimensional MP branes by ex-

ploiting quasi-normal mode analysis on d-dimensional MP black hole. We can also apply

our method to analyze perturbations of the MP black hole itself. It is known that when

D-dimensional MP black hole admits only a single angular momentum, its metric is writ-

ten as the warped product form M = N ×K of the metric ansatz (2.2). More concretely,

let us take ya = (t, r, θ,φ) as the coordinates on 4-dimensional spacetime N , and set the

n = (D − 4)-dimensional metric on K as the spherical metric, γijdzidzj = dΩ2
(n) times the

square of the warp factor R(y) = r cos θ. Then the D = (4+n)-dimensional MP black hole

– 11 –
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with a single rotation parameter is given by setting the 4-dimensional metric gab on N as

the following Kerr-like metric:

gabdy
adyb = −dt2 + sin2 θ(r2 + a2)dφ2 +

µ

rn−1ρ2
(dt− a sin2 θdφ)2

+
ρ2

r2 + a2 − µr1−n
dr2 + ρ2dθ2 , (4.1)

where µ and a denote the mass and spin parameters, respectively, and ρ2 := r2 + a2 cos2 θ.

As mentioned before, when D ≥ 7, one can consider tensor-type perturbations with respect

to the n(≥ 3)-sphere, for which the linearized Einstein equations reduce to a massive

Klein-Gordon equation on the 4-dimensional Kerr-like spacetime (4.1).6 This case has

been studied previously in refs. [40, 41]. When D = 6, there are no tensor perturbations

but instead, the vector and scalar-type perturbations become relevant. Then, problems

of computing, e.g., quasi-normal modes of MP black holes (see e.g. ref. [58]) for these

types of metric perturbations would reduce to the problem of analyzing massive vector and

2nd-rank tensor fields on the 4-dimensional Kerr-like spacetime (N , gab).
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