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ABSTRACT
We construct general relativistic models of stationary, strongly magnetized neutron stars. The
magnetic field configuration, obtained by solving the relativistic Grad–Shafranov equation,
is a generalization of the twisted-torus model recently proposed in the literature; the stellar
deformations induced by the magnetic field are computed by solving the perturbed Einstein’s
equations; stellar matter is modelled using realistic equations of state. We find that in these
configurations the poloidal field dominates over the toroidal field and that, if the magnetic field
is sufficiently strong during the first phases of the stellar life, it can produce large deformations.
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1 IN T RO D U C T I O N

After the discovery of the soft gamma repeaters and anomalous
X-ray pulsars (Mazets et al. 1979; Mereghetti & Stella 1995), a
model of these sources was proposed according to which they are
neutron stars with a very strong magnetic field; these magnetars
would have a surface field as large as ∼1014–1015 G, and internal
fields about 10 times larger (Duncan & Thompson 1992). However,
a clear picture of the structure, dynamics and evolution of magnetars
is still missing. For instance we do not know whether the toroidal
components of the field prevail on poloidal ones and how intense
they are. Consequently, we do not know how large the deformation
induced by the magnetic field on the star is, an information which
is essential if one is interested in the gravitational wave emission
of these sources. A deeper knowledge of the structure of strongly
magnetized neutron stars would also help understanding various
astrophysical processes involving magnetars (intense activity in the
X-ray and gamma-ray spectra, quasi-periodic oscillations and even-
tually gamma-ray bursts).

In a recent paper (Ciolfi et al. 2009), to be referred to as Paper I
hereafter, we constructed stationary models of non-rotating neutron
stars endowed with a strong magnetic field, in the framework of
general relativity (GR). In these models the poloidal field extends
throughout the star and in the exterior, whereas the toroidal field
is confined into a torus-shaped region inside the star, where the
field lines are closed. It is worth reminding that these twisted-torus
configurations have been found to be a quite general outcome of
dynamical simulations of the early evolution of magnetized stars, in
the framework of Newtonian gravity. Furthermore, due to magnetic
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helicity conservation, they appear to be stable on dynamical time-
scales (Braithwaite & Spruit 2004; Braithwaite & Nordlund 2006;
Braithwaite & Spruit 2006), are not significantly affected by rotation
(Yoshida, Yoshida & Eriguchi 2006), and do not depend on the
initial angle between the rotation and the magnetic axes (Geppert
& Rheinhardt 2006).

In Lander & Jones (2009) twisted-torus configurations were stud-
ied in Newtonian gravity; the maximal relative strength of the
toroidal and poloidal components and the induced stellar defor-
mation were evaluated using a polytropic equation of state (EOS)
to model neutron star matter.

In Paper I, we studied the twisted-torus configurations in GR,
including the contributions of higher order multipoles, and using a
more realistic EOS. We considered a relation between the poloidal
and the toroidal components of the field which is linear in the flux
function, and estimated their ratio by determining the configuration
of minimal energy at fixed magnetic helicity, under the assumption
that the contribution of the l > 1 multipoles is minimum outside the
star.

In this paper, we reconsider the above assumptions: the higher
multipole contribution is not assumed a priori to be minimum out-
side the star, and we allow for a more general parametrization of
the relation between toroidal and poloidal fields. We determine the
configuration of minimal energy at fixed magnetic helicity, and
evaluate the stellar deformations induced by the twisted-torus field
by solving the perturbed Einstein equations including all relevant
higher order multipoles.

As in Paper I, the magnetized fluid is described in the frame-
work of ideal magnetohydrodynamics (MHD), which is accurate
only in the first few hours of the star life when the crust is still
liquid and the matter in the core has not yet undergone a phase
transition to the superfluid state. Since the characteristic Alfvèn
time is of the order of ∼0.01–10 s, the magnetized fluid could
reach a stationary state while the matter is still liquid and not yet
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superfluid.1 The magnetic field induces quadrupolar deformation
on the stellar shape and, as we shall later show, for magnetic fields
as high as those observed in magnetars this deformation would be
large; when the crust forms, it would maintain this deformed shape.
The magnetic field would subsequently evolve on time-scales of the
order of ∼103–105 yr due to dissipative effects like Ohmic decay,
ambipolar diffusion and Hall drift (Goldreich & Reisenegger 1992;
Woods & Thompson 2006; Pons & Geppert 2007).

The structure of the paper is as follows. In Section 2 we gener-
alize the twisted-torus magnetic field configurations introduced in
Paper I by dropping the assumption that the contribution from the
l > 1 multipoles outside the star is minimum, and using a more
general parametrization of the functional relation between toroidal
and poloidal fields. In Section 3 we determine the stellar defor-
mations induced by the magnetic field. In Section 4 we draw our
conclusions.

2 TW I S T E D - TO RU S M AG N E T I C F I E L D
C O N F I G U R AT I O N

In this section we briefly describe the formalism and the basic
equations we solve to determine the twisted-torus magnetic field
configuration; furthermore, we discuss the modifications introduced
with respect to the analysis carried out in Paper I.

2.1 The model

We assume that the magnetized star is non-rotating, stationary and
axisymmetric. The magnetized fluid is described in the framework
of ideal MHD, in which the effects of electrical conductivity are
neglected. Furthermore, we assume a vacuum exterior. We follow
the same notation and conventions as in Paper I. We treat the mag-
netic field as a stationary, axisymmetric perturbation of a spherically
symmetric background with metric

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2(dθ 2 + sin2 θdφ2), (1)

where ν(r) and λ(r) are solutions of the unperturbed Einstein equa-
tions; the unperturbed four-velocity is uµ = (e−ν/2, 0, 0, 0).

To model neutron star matter in the core we use the Akmal,
Pandharipande, Ravenhall EOS, named APR2 (Akmal,
Pandharipande & Ravenhall 1998), and the Glendenning
EOS named GNH3 (Glendenning 1985); the crust is modelled
using a standard EOS which accounts for the density–pressure
relation in the crustal region, but not for its elastic properties (see
Benhar, Ferrari & Gualtieri 2004). For a neutron star with mass
M = 1.4 M$, the APR2 star has a large compactness (R =
11.58 km), whereas the compactness of the GNH3 star is small (R
= 14.19 km).

As shown in Colaiuda et al. (2008), an appropriate gauge choice
allows us to write the potential Aµ, in terms of which the Maxwell
tensor (Fµν = ∂νAµ − ∂µAν) is written as

Aµ =
(
0, e(λ−ν)/2&, 0,ψ

)
; (2)

the two functions &(r, θ ) and ψ(r, θ ) describe the toroidal and
the poloidal fields, respectively. Here Aµ is considered as a first-
order quantity, O(B). Furthermore, the φ-component of Euler’s

1 We remark that even in presence of a stable stratification of the chemical
composition, a magnetic field as strong as B !1015 is still allowed to evolve
throughout the star on a dynamical time-scale (Thompson & Murray 2001).

equation yields −ψ ,r Jr − ψ ,θJθ = O(B4). Using Maxwell’s equa-
tions and neglecting higher order terms one finds the integrability
condition
(
sin θ&,θ

)
,θ
ψ,r −

(
sin θ&,θ

)
,r
ψ,θ = 0, (3)

which implies that sin θ&,θ is a function of ψ :

sin θ&,θ ≡ β(ψ) = ζ (ψ)ψ. (4)

The function ζ (ψ) = β(ψ)/ψ represents the ratio between the
toroidal and poloidal components of the magnetic field and char-
acterizes the kind of field configuration we want to model. For
instance, configurations with ζ = constant have been studied in
Ioka & Sasaki (2004), Colaiuda et al. (2008) and Haskell et al.
(2008). If the space outside the star is assumed to be vacuum, the
toroidal field, and consequently ζ , must vanish for r > R, where R is
the neutron star radius; in this case, the choice ζ = constant yields
an inconsistency, unless one assumes that surface currents can-
cel the toroidal field outside the star, or imposes that the constant
ζ assumes very particular values.

These problems do not arise with the twisted-torus configurations
[see for instance Paper I or Lander & Jones (2009), Yoshida et al.
(2006)] since the toroidal field is confined in a region inside the
neutron star, and the magnetic field is continuous everywhere. For
these configurations the function β(ψ) is continuous, and has the
form

β(ψ) ∼ *(|ψ/ψ̄ | − 1), (5)

where ψ̄ ≡ ψ(R, π/2) is the value of function ψ , which describes
the poloidal field, on the stellar surface, and* is the Heaviside step
function. If β(ψ) satisfies equation (5), the magnetic field

Bµ =
[

0,
e−λ/2

r2 sin θ
ψ,θ ,−

e−λ/2

r2 sin θ
ψ,r ,−

e−ν/2β(ψ)
r2 sin2 θ

]
(6)

for r > R becomes purely poloidal, consistently with the assumption
of vacuum outside the star.

To find the field configuration we need to solve the relativistic
Grad–Shafranov (GS) equation, which follows from Euler’s and
Maxwell’s equations (see Paper I for details) and has the form

− e−λ

4π

[
ψ ′′ + ν ′ − λ′

2
ψ ′

]
− 1

4πr2

[
ψ,θθ − cot θψ,θ

]

− e−ν

4π
β

dβ
dψ

= (ρ + P )r2 sin2 θ [c0 + c1ψ]. (7)

The constants c0, c1 characterize the φ-component of the current
density inside the star, which has the form

Jφ = e−ν

4π
β

dβ
dψ

+ (ρ + P )r2 sin2 θ [c0 + c1ψ + O(B2)]. (8)

If we now define ψ(r, θ ) ≡ sin θ a(r, θ ),θ , expand the function
a(r, θ ) in Legendre polynomials

a(r, θ ) =
∞∑

l=1

al(r)Pl(cos θ ) (9)

and project the GS equation on to the different harmonic compo-
nents, we find a system of coupled ordinary differential equations
for the functions al(r). These equations are solved by imposing the
following boundary conditions. (i) The functions al(r) have a reg-
ular behaviour at the origin; an asymptotic expansion of the GS
equation shows that this implies

al(r → 0) = αl r
l+1. (10)
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(ii) The functions al(r) and their derivatives a′
l(r) are continuous

across the stellar surface where they match with the solutions in
vacuum, which are known in an analytical form (see Paper I); there-
fore, the ratios a′

l/al computed at r = R in terms of the interior and
exterior numerical solutions must coincide. (iii) The overall nor-
malization of the field is fixed by requiring the l = 1 component of
the magnetic field at the pole to be Bpole = 1016 G; this corresponds
to a1(R) = 1.93 × 10−2 km.

Once the form of the function β(ψ) and the number n of multi-
poles we want to include have been assigned, the field is determined
when we fix n + 2 arbitrary constants: the n constants αl and the
two constants c0 and c1 defined in equation (8). n + 1 of them
are determined by imposing the boundary conditions. In Paper I
the last constant was fixed assuming that the contribution of higher
order multipoles outside the star is minimum, i.e. by minimizing
the function (

∑
l>1 a2

l )/a2
1 , for r ≥ R. In this paper we remove this

assumption, thus exploring a larger parameter space, and fix the
last constant by finding the configurations which are energetically
favoured (this is discussed in detail in the next section).

To this purpose, we minimize the total energy at fixed magnetic
helicity. As shown in Paper I, this is equivalent to minimize the ratio
δM/Hm, where Hm is the magnetic helicity,

Hm = 1
2

∫
d3x

√
−gε0βγ δFγ δAβ , (11)

and δM is the mass–energy increase due to the perturbation that
the magnetic field induces on the spherical star. This quantity is
determined in terms of the functions which characterize the far-field
limit of the space–time metric. Finally, we compute the ratio of the
magnetic energy stored in the poloidal field to the total magnetic
energy, Ep/Em. The equations to determine these quantities are
given in Appendix B.

The GS system of equations admits two particular classes of solu-
tions: the symmetric (with respect to the equatorial plane) solutions,
with vanishing even-order components (a2l ≡ 0), and the antisym-
metric solutions, with vanishing odd-order components (a2l+1 ≡ 0).
In Paper I the choice of minimizing the l > 1 multipole contribution
led naturally to symmetric solutions, i.e. those with a2l ≡ 0. It is
worth noting that even-order multipoles contribute to the energy
but not to the magnetic helicity; therefore, any solution minimiz-
ing energy at fixed magnetic helicity corresponds to a vanishing
antisymmetric component. Since in this paper we still look for min-
imal energy configurations, we shall consider only symmetric solu-
tions. In addition, as in Paper I, we shall restrict to multipoles with

l ≤ 5 (the relevance of l > 5 multipoles is discussed in Paper I,
section 5.3).

2.2 Relative strength of different multipoles

As explained in the previous section, since we remove the condition
of minimal contribution from higher order multipoles, the boundary
conditions are not sufficient to fix all the parameters of the problem
and we are left with a free arbitrary constant. We choose c1 as a
‘free’ parameter. In this section we shall choose the function β(ψ)
as in Paper I:

β(ψ) = ψζ (ψ) = ψζ0
(
|ψ/ψ̄ | − 1

)
*(|ψ/ψ̄ | − 1), (12)

where ζ 0 is a real parameter. In the next section we shall consider
a more general form of β(ψ) compatible with equation (5). The
constant ζ 0 determines the ratio between the amplitudes of the
toroidal and poloidal fields. Thus, we minimize the energy with
respect to two parameters: c1 and ζ 0. We proceed as follows. For
assigned values of ζ 0:

(i) we solve the equations for the al values for different values of
c1;

(ii) we compute δM/Hm – the quantity to minimize – for the
corresponding configurations;

(iii) we compute the quantity
√

a2
3 (R) + a2

5 (R), which represents
the surface contribution of the multipoles higher than l = 1.

In Fig. 1 we plot the ratio δM/Hm as a function of√
a2

3 (R) + a2
5 (R). In the left-hand panel we fix ζ 0 = 0.61 km−1.

In Paper I we showed that, under the assumption of minimal con-
tribution of higher order multipoles, i.e.
√

a2
3 + a2

5 minimum for r ≥ R

[hereafter, this will be named the minimum high multipole (MHM)
condition], the quantity δM/Hm is minimum for this value of ζ 0.
This MHM configuration corresponds to the point A on the curve
plotted in Fig. 1.

Since we now drop the MHM condition, the minimum of δM/Hm

occurs for a different value of
√

a2
3 (R) + a2

5 (R) (point B in Fig. 1),
which corresponds to the energetically favoured configuration for
ζ 0 = 0.61 km−1. For an assigned value of Hm, the relative variation
of the total energy of the configuration B with respect to A is of the
order of 13 per cent. Fig. 1 refers to a star with EOS APR2. Similar
results are obtained for the GNH3 star.

In the right-hand panel of Fig. 1 we plot δM/Hm for selected
values of ζ 0, and compare the different profiles. We have explored

Figure 1. The function δM/Hm is plotted as a function of
√

a2
3 (R) + a2

5 (R): on the left-hand panel ζ 0 = 0.61 km−1, on the right-hand panel the cases ζ 0 =
0.65, 0.61, 0.59, 0.58 and 0.52 km−1 are shown together for comparison.
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Figure 2. The profiles of the tetrad components of the magnetic field B(r)(θ = 0), B(θ)(θ = π/2), B(φ)(θ = π/2) are plotted as functions of the radial distance
normalized to the stellar radius. The left-hand panel refers to the MHM configuration (energy is minimized assuming that the contribution of the multipoles
higher than l = 1 is minimum for r > R); in this case ζ 0 = 0.61 km−1. The right-hand panel refers to the minimal energy configuration ME1, obtained with no
assumption on the relative strengths of the different multipoles, and for ζ 0 = 0.59 km−1.

the parameter space (ζ0,
√

a2
3 (R) + a2

5 (R))[equivalent to (ζ 0, c1)],
finding that the function δM/Hm has a minimum (δM/Hm = 0.0817)
for ζ 0 = 0.59 km−1 and

√
a2

3 (R) + a2
5 (R) = 3.6 × 10−3 km. It is

worth reminding that the l = 1 contribution is a1(R) = 1.93 ×
10−2 km. We shall refer to this configuration as the minimal energy
1 (ME1) configuration.

In Fig. 2 we compare the profiles of the tetrad components of the
magnetic field for the MHM and the ME1 configurations. We see
that, whereas for the MHM configuration B(θ) and B(r) are signifi-
cantly different from zero throughout the star, for the ME1 configu-
ration, obtained with no assumption on the relative strengths of the
different multipoles for r > R, these field components are strongly
reduced near the axis. Conversely, the toroidal component B(φ) has
a similar behaviour in both configurations. The two panels of Fig. 2
illustrate how the magnetic field rearranges inside the star when
the MHM condition is removed. The situation can be explained as
follows. The magnetic helicity Hm can be written as

Hm = −2π

∫ R

0
dr

∫ π

0
(Arψ,θ − ψAr,θ ) dθ ; (13)

therefore, Hm vanishes if either ψ = 0, i.e. the poloidal field van-
ishes, or Ar = 0, i.e. the toroidal field vanishes. In the twisted-torus
model the toroidal field is zero in the inner part of the star; there-
fore Hm receives contributions only from the magnetic field in the
region where B(φ) -= 0. Since in that region the field components of
the MHM and ME1 configurations are similar, these configurations
have nearly the same magnetic helicity Hm. On the other hand,
the energy δM receives contributions from the field components
throughout the entire star, and these contributions are not vanish-
ing in the region where B(φ) = 0. When we minimize the function
δM/Hm in the ME1 configuration, the l > 1 multipoles, which
were kept minimum in the MHM configuration, do not change Hm

significantly, but they change δM, and since we require δM to be
minimum, they combine as to reduce the field in the inner region of
the star.

2.3 A more general choice of the function β(ψ)

In this section we construct twisted-torus configurations, choosing
two different forms of the function β, namely

β(ψ) = ψζ0
(
|ψ/ψ̄ | − 1

)σ
*(|ψ/ψ̄ | − 1) (14)

(note that σ = 1 corresponds to equation 12), and

β(ψ) = −β0
(
|ψ/ψ̄ | − 1

)σ
*(|ψ/ψ̄ | − 1), (15)

where β0 is a constant of order O(B). A choice similar to (14)
has been considered by Lander & Jones (2009), who have studied
the field configurations in a Newtonian framework. Although equ-
ations (14) and (15) do not exhaust all possible choices of the
function β(ψ), they are general enough to capture the main features
of the stationary twisted-torus configurations.

For β given by equation (14) the magnetic field components and
the GS equation are

Bµ =
(

0,
e−λ/2

r2 sin θ
ψ,θ , − e−λ/2

r2 sin θ
ψ,r ,

−
e−ν/2ζ0ψ

(
|ψ/ψ̄ | − 1

)σ

r2 sin2 θ
*(|ψ/ψ̄ | − 1)

)
(16)

and

− e−λ

4π

[
ψ ′′ + ν ′ − λ′

2
ψ ′

]
− 1

4πr2

[
ψ,θθ − cot θψ,θ

]

− e−νζ 2
0

4π
ψ

[(
|ψ/ψ̄ | − 1

)2σ + σ |ψ/ψ̄ |
(
|ψ/ψ̄ | − 1

)2σ−1
]

×*(|ψ/ψ̄ | − 1)

= (ρ + P )r2 sin2 θ [c0 + c1ψ]. (17)

For β given by equation (15) they are

Bµ =
(

0,
e−λ/2

r2 sin θ
ψ,θ , − e−λ/2

r2 sin θ
ψ,r ,

e−ν/2β0
(
|ψ/ψ̄ | − 1

)σ

r2 sin2 θ
*(|ψ/ψ̄ | − 1)

)
(18)

and

− e−λ

4π

[
ψ ′′ + ν ′ − λ′

2
ψ ′

]
− 1

4πr2

[
ψ,θθ − cot θψ,θ

]

− e−νβ2
0

4πψ
σ |ψ/ψ̄ |

(
|ψ/ψ̄ | − 1

)2σ−1
*(|ψ/ψ̄ | − 1)

= (ρ + P )r2 sin2 θ [c0 + c1ψ]. (19)

The field configurations are now identified by three parameters:
(σ , c1, ζ 0) for choice (14), and (σ , c1, β0) for choice (15). As in
the previous section, we look for the minimal energy configuration
at fixed magnetic helicity; furthermore, we compute the ratio of the
poloidal magnetic energy to the total magnetic energy. We solve
the system of GS equations for l = 1, 3, 5 (they are given in Ap-
pendix A for both cases), with the boundary conditions discussed
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Figure 3. The profiles of the tetrad components of the magnetic field [B(r)(θ = 0), B(θ)(θ = π/2), B(φ)(θ = π/2)] are shown (upper panels). In the lower
panels we show the projection of the field lines in the meridional plane. Left- and right-hand panels refer, respectively, to the configuration ME1 and ME2.

in Section 2.1. For each configuration we compute the magnetic
helicity Hm, the correction to the total energy δM and the poloidal
and toroidal contributions to the magnetic energy Em. The equations
to determine δM and Em are given in Appendix B. The energeti-
cally favoured configurations are found by minimizing δM/Hm with
respect to the three parameters.

Let us first consider the case in which the relation between
toroidal and poloidal fields is given by equation (14). We find that
the minimal energy configuration (for the APR2 EOS) corresponds
to

σ = 0.18, ζ0 = 0.20 km−1,
√

a2
3 (R) + a2

5 (R) = 3.4 × 10−3 km. (20)

We shall refer to this configuration as the ME2 configuration. In
Fig. 3 the configurations with σ = 1 (ME1) and σ = 0.18 (ME2) are
compared. In ME2 the magnetic field has a slightly different shape:
in particular, the toroidal component is larger near the surface of the
star, and the extension of the toroidal field region along the y-axis
is smaller. The ratio of the poloidal magnetic energy to the total
magnetic energy inside the star is

Ep/Em = 0.91 for ME1,

Ep/Em = 0.87 for ME2.

If, as in Paper I, we include also the exterior field we find
Ep/Em = 0.93, 0.90, respectively, for the configurations ME1 and
ME2. Furthermore, we find that the minimal energy configuration
is nearly the configuration with smaller ratio Ep/Em, i.e. with larger
toroidal component (confirming the results of Paper I): thus, the
σ = 0.18 case also corresponds to the minimum value of Ep/Em

which can be obtained with choice (14). We can conclude that if σ
is not assumed to be 1, we can obtain configurations with a larger
toroidal contribution, but only by a small amount.

Figure 4. The profiles of the tetrad components of the magnetic field are
shown for the configuration ME3, corresponding toβ given by equation (15);
the values of the parameters are given in equation (21).

We now consider choice (15) for the function β. In this case the
minimal energy configuration (for the APR2 EOS) corresponds to

σ = 0.42, β0 = 9 × 10−4,
√

a2
3 (R) + a2

5 (R) = 3.7 × 10−3 km. (21)

This configuration, which is shown in Fig. 4, will be referred to as
the ME3 configuration. A comparison with the right-hand panel of
Fig. 3 shows that the ME2 and ME3 configurations are very similar.
Inside the star Ep/Em = 0.88 and, as in the previous case, it is
the minimum value which can be obtained for this choice of the
function β.

For the GNH3 EOS, we obtain similar results. The minimal en-
ergy configuration is obtained with choice (14), and

σ = 0.30, ζ0 = 0.13 km−1,
√

a2
3 (R) + a2

5 (R) = 5.1 × 10−3 km. (22)
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The ratio of the poloidal energy to the total magnetic energy inside
the star, for this configuration, is Ep/Em = 0.93.

We conclude that when we allow for a non-minimal contribution
of the l > 1 multipoles and for a more general parametrization of the
function β(ψ), the magnetic field changes with respect to the MHM
configuration found in Paper I as follows: the poloidal field near the
axis of the star is smaller, and the toroidal field near the stellar
surface is larger. In all cases the toroidal field never contributes to
more than ∼13 per cent of the total magnetic energy stored inside
the star.

3 ST RU C T U R E D E F O R M AT I O N S

In this section we compute the quadrupole deformation induced
by the magnetic field for the twisted-torus configurations previ-
ously obtained. To this purpose we solve Einstein’s equations with
a perturbative approach: the magnetic field and the deformations
it induces are considered as perturbations of a static, spherically
symmetric background. The relevant equations are described in Ap-
pendix C. The quantity which is relevant to estimate the gravitational
wave emission of the deformed star is the quadrupole ellipticity

εQ = Q

I
, (23)

where Q is the mass–energy quadrupole moment (see equation C2),
and I the mean value of the star’s moment of inertia. Indeed, if
the star rotates about an axis misaligned with the symmetry (or
magnetic) axis with a wobble angle α, it emits gravitational waves
with amplitude (Bonazzola & Gourgoulhon 1996)

h0 . 4G

rc4
22I |εQ| sinα, (24)

where 2 is the star angular velocity. We remind that we normalize
the magnetic field by fixing its value at the pole as Bpole = 1016 G
(see Section 2), and that the quadrupole ellipticity scales as B2

pole.
Furthermore, it is interesting to determine the sign of the

quadrupole ellipticity because, if εQ < 0 (corresponding to a pro-
late shape), a ‘spin-flip’ mechanism associated to viscous forces
may arise, as suggested in Jones (1975) and Cutler (2002). In this
scenario, the angle between the magnetic axis and the rotation axis
would grow on a dissipation time-scale, until they become orthog-
onal, and this process would be associated to a large gravitational
wave emission, potentially detectable by the advanced generation
of ground-based detectors Virgo and LIGO.

It is well known that while the poloidal field tends to make the
star oblate, the toroidal field tends to make it prolate. Since in our
configurations the poloidal field dominates over the toroidal one,
εQ is always positive. Therefore, twisted-torus configurations are
not compatible with the spin-flip mechanism, and |εQ| is larger
for configurations in which the toroidal contribution is smaller. We
find that, for the APR2 EOS, εQ = 3.5 × 10−4 and 3.7 × 10−4,
respectively, for the ME2 and ME3 configurations.

It is also interesting to consider twisted-torus configurations
which do not correspond to minimal energy. Indeed, it is not guaran-
teed that the star sets in the minimal energy configuration before the
crust forms and the stellar matter becomes superfluid. Therefore,
we have determined the entire range of possible ellipticities for the
twisted-torus configurations analysed in this paper; we find 3.5 ×
10−4 ! εQ ! 4.8 × 10−4 for the APR2 EOS, and 8.1 × 10−4 !
εQ ! 9.6 × 10−4 for the GNH3 EOS. As discussed above, the larger
ellipticities are obtained in the purely poloidal limit, whereas the
smaller ellipticities refer to the minimal energy configurations. We
note that, as expected, given the mass (1.4 M$ in our case), less

Figure 5. Ellipticities versus β0 for σ = 1, with β(ψ) given by (15).

compact stars (GNH3) have larger ellipticities. We also note that
the values of εQ we find for the purely poloidal case are similar to
the maximal ellipticity found in Lander & Jones (2009), where a
polytropic EOS was employed.

Summarizing, the quadrupole ellipticity εQ corresponding to
Bpole = 1016 G would lie in the quite narrow ranges (3.5, 4.8) ×
10−4 for the APR2 EOS and (8.1, 9.6) × 10−4 for the GNH3 EOS,
i.e.

εQ . k

[
Bpole (G)

1016

]2

× 10−4, (25)

with k . 4 for the APR2 EOS and k . 9 for the GNH3 EOS.
As an example of the behaviour of εQ when the toroidal field

contribution changes, in Fig. 5 we plot εQ versus the parameter
β0 for configurations obtained choosing β(ψ) as in equation (15),
assuming that σ = 1 and that the contribution of the l > 1 multi-
poles is fixed by energy minimization. In particular, we see that the
maximal deformation is given by the purely poloidal configuration.

4 C O N C L U D I N G R E M A R K S

In this paper we construct relativistic models of non-rotating, sta-
tionary stars, with a twisted-torus magnetic field configuration. We
extend the work done in Paper I, by removing the assumption of
minimal contribution from multipoles higher than l = 1, by consid-
ering more general forms of the function β(ψ) which describes the
ratio between toroidal and poloidal components, and by evaluating
the deformation that the magnetic field induces on the star.

We find that the non-minimal contribution of the l > 1 multi-
poles, and the more general parametrization of the function β, yield
some interesting differences with respect to the magnetic field con-
figurations found in Paper I: the new configurations have a much
smaller poloidal field near the symmetry axis, and a larger toroidal
field near the stellar surface. In any event, the toroidal field never
contributes to more than ∼13 per cent of the total magnetic energy
stored inside the star.

Since the poloidal field always prevails, in the twisted-torus con-
figurations the quadrupole ellipticity of the star εQ is always positive,
and its maximum value is obtained in the purely poloidal limit. As
shown by equation (25), which summarizes our results on the stellar
deformation, εQ depends on the EOS of matter: less compact stars
can have larger deformations.

We remark that the ellipticities given by equation (25) are larger
than the bounds derived by evaluating the maximal strain that the
crust can sustain (Ushomirsky, Cutler & Bildsten 2000; Haskell,
Jones & Andersson 2006). These bounds do not apply to the case
we study, because in our case the magnetic field is assumed to

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 406, 2540–2548



2546 R. Ciolfi, V. Ferrari and L. Gualtieri

reach a stationary configuration during the first few seconds of the
neutron star life, when the star is still fluid and no crust has formed
yet; therefore, if the field is sufficiently strong, the deformation it
induces can be large, and may persist as the star cools down and
the crust freezes in a non-spherical shape (see also the discussion
in Haskell et al. 2008 and Colaiuda et al. 2008).

Recent results from the LIGO–Virgo collaboration (Abbot et al.
2008, 2009) put an upper limit on the ellipticity of the Crab pulsar,
which should be εQ ! 10−4. Our study indicates that strongly mag-
netized neutron stars with ellipticities of this order of magnitude
may exist, provided this strong deformation was built up before the
crust was formed, and the magnetic field was sufficiently strong.

In order to further substantiate this scenario, an important issue
which remains to be clarified is whether the twisted-torus configu-
rations we find are stable. This issue will be the subject of a future
investigation.
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APPENDI X A: GS EQUATI ONS

The harmonic expansion of the GS equations (17), corresponding
to choice (14) of the function β(ψ), gives (if we include the l =
1, 3, 5 components in the expansion)

1
4π

(
e−λa′′

1 + e−λ ν
′ − λ′

2
a′

1 − 2
r2

a1

)

− e−ν

4π

∫ π

0
(3/4) ζ 2

0ψ
[(

|ψ/ψ̄ | − 1
)2σ

+ σ |ψ/ψ̄ |
(
|ψ/ψ̄ | − 1

)2σ−1
]
*(|ψ/ψ̄ | − 1) sin θ dθ

=
[
c0 − 4

5
c1

(
a1 − 3

7
a3

)]
(ρ + P )r2, (A1)

1
4π

(
e−λa′′

3 + e−λ ν
′ − λ′

2
a′

3 − 12
r2

a3

)

+ e−ν

4π

∫ π

0
(7/48) ζ 2

0ψ
[(

|ψ/ψ̄ | − 1
)2σ

+ σ |ψ/ψ̄ |
(
|ψ/ψ̄ | − 1

)2σ−1
]

×*(|ψ/ψ̄ | − 1)(3 − 15 cos2 θ ) sin θ dθ

= c1(ρ + P )r2

(
2
15

a1 − 8
15

a3 + 10
33

a5

)
, (A2)

1
4π

(
e−λa′′

5 + e−λ ν
′ − λ′

2
a′

5 − 30
r2

a5

)

+ e−ν

4π

∫ π

0
(11/60) ζ 2

0ψ
[(

|ψ/ψ̄ | − 1
)2σ

+ σ |ψ/ψ̄ |
(
|ψ/ψ̄ | − 1

)2σ−1
]

×*(|ψ/ψ̄ | − 1)
(−315 cos4 θ + 210 cos2 θ − 15)

8
sin θ dθ

= c1(ρ + P )r2

(
4
21

a3 − 20
39

a5

)
,

(A3)

where

ψ =
[
−a1 + a3(3 − 15 cos2 θ )

2

+a5(−315 cos4 θ + 210 cos2 θ − 15)
8

]
sin2 θ . (A4)

The harmonic expansion of the GS equations (19), corresponding
to choice (15) of the function β(ψ), gives

1
4π

(
e−λa′′

1 + e−λ ν
′ − λ′

2
a′

1 − 2
r2

a1

)

− e−ν

4π

∫ π

0
(3/4)

β2
0

ψ
σ |ψ/ψ̄ |

(
|ψ/ψ̄ | − 1

)2σ−1

×*(|ψ/ψ̄ | − 1) sin θ dθ

=
[
c0 − 4

5
c1

(
a1 − 3

7
a3

)]
(ρ + P )r2, (A5)

1
4π

(
e−λa′′

3 + e−λ ν
′ − λ′

2
a′

3 − 12
r2

a3

)

+ e−ν

4π

∫ π

0
(7/48)

β2
0

ψ
σ |ψ/ψ̄ |

(
|ψ/ψ̄ | − 1

)2σ−1

×*(|ψ/ψ̄ | − 1)(3 − 15 cos2 θ ) sin θ dθ

= c1(ρ + P )r2

(
2
15

a1 − 8
15

a3 + 10
33

a5

)
, (A6)
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1
4π

(
e−λa′′

5 + e−λ ν
′ − λ′

2
a′

5 − 30
r2

a5

)

+ e−ν

4π

∫ π

0
(11/60)

β2
0

ψ
σ |ψ/ψ̄ |

(
|ψ/ψ̄ | − 1

)2σ−1

×*(|ψ/ψ̄ | − 1)
(−315 cos4 θ + 210 cos2 θ − 15)

8
sin θ dθ

= c1(ρ + P )r2

(
4
21

a3 − 20
39

a5

)
, (A7)

where ψ is the same as in (A4).

A P P E N D I X B : E N E R G Y A N D M AG N E T I C
HE LICITY

The magnetic helicity is given by equation (13) where, if β(ψ) is
given by equation (14), Ar,θ and Ar are

Ar,θ = e(λ−ν)/2

sin θ
ψζ0

(
|ψ/ψ̄ | − 1

)σ
*(|ψ/ψ̄ | − 1),

Ar = e(λ−ν)/2ζ0

∫ θ

0

ψ

sin θ ′

(
|ψ/ψ̄ | − 1

)σ

×*(|ψ/ψ̄ | − 1)dθ ′. (B1)

The total energy of the system is E = M + δM, where M is the mass
of the (spherically symmetric) star without magnetic field and δM is
the contribution induced by the magnetic field. It can be determined
by considering the far-field limit of the space–time metric (Misner
et al. 1973; Thorne 1980), in terms of the function m0(r) defined in
equation (C1):

δM = lim
r→∞

m0(r). (B2)

The components of the perturbed Einstein’s equations relevant for
the determination of m0(r) give, for choice (14) of the function
β(ψ),

m′
0 − 4πr2 ρ

′

P ′ δp0 = 1
3

(a′
1)2e−λ + 6

7
(a′

3)2e−λ

+15
11

(a′
5)2e−λ + 2

3r2
a2

1 + 72
7r2

a2
3 + 450

11r2
a2

5

+ e−ν

4

[∫ π

0
ζ 2

0

(
|ψ/ψ̄ | − 1

)2σ
*(|ψ/ψ̄ | − 1)

ψ2

sin θ
dθ

]
,

δp′
0 +

[
ν ′

2

(
ρ ′

P ′ + 1
)

+ 4πreλ(ρ + P )
]
δp0

+ e2λm0(ρ + P )
(

1
r2

+ 8πP

)

= (ρ + P )




 − 2
3
a′

1

[
c0 − 4

5
c1

(
a1 − 3

7
a3

)]

−12
7

a′
3c1

(
2
15

a1 − 8
15

a3 + 10
33

a5

)

−10
11

a′
5c1

(
4
21

a3 − 20
39

a5

)
− 1

3r
(a′

1)2 − 6
7r

(a′
3)2

− 15
11r

(a′
5)2 + 2eλ

3r3
a2

1 + 72eλ

7r3
a2

3 + 450eλ

11r3
a2

5

− eλ−ν

4r

[∫ π

0
ζ 2

0

(
|ψ/ψ̄ | − 1

)2σ
*(|ψ/ψ̄ | − 1)

ψ2

sin θ
dθ

] 


 (B3)

(where δp0 is the l = 0 component of the pressure perturbation).

Finally, the magnetic energy is (Straumann 2004; Paper I)

Em = 1
2

∫ ∞

0
r2e(λ+ν)/2dr

∫ π

0
sin θB2dθ . (B4)

The above formula can be used to compute the relative amount of
magnetic energy associated with toroidal and poloidal fields.

The equations for choice (15) of the function β can be obtained
by the following substitutions: ψζ 0 → −β0 in (B1); ψ2ζ 2

0 → β2
0

in (B3).

A P P E N D I X C : QUA D RU P O L E D E F O R M AT I O N S

The perturbed metric can be written as (Ioka & Sasaki 2004;
Colaiuda et al. 2008)

ds2 = −eν {1 + 2[h0(r) + h2(r)P2(cos θ )]} dt2

+ 2 [i1(r)P1(cos θ ) + i2(r)P2(cos θ ) + i3(r)P3(cos θ )] dtdr

+ 2 sin θ
[
v1

∂

∂θ
P1(cos θ ) + v2

∂

∂θ
P2(cos θ )

+ v3
∂

∂θ
P3(cos θ )

]
dt dφ

+ 2 sin θ
[
w2

∂

∂θ
P2(cos θ ) + w3

∂

∂θ
P3(cos θ )

]
dr dφ

+ eλ
{

1 + 2eλ

r
[m0(r) + m2(r)P2(cos θ )]

}
dr2

+ r2 [1 + 2k2(r)P2(cos θ )]
(
dθ2 + sin2 θdφ2

)
.

(C1)

The quadrupole ellipticity of the star is defined as εQ = Q/I,2

where Q is the mass–energy quadrupole moment, given by the far-
field limit of metric (C1):

h2(r → ∞) ∼ Q/r3, (C2)

and I is the mean value of the moment of inertia of the star. The
value of I can be estimated from the limit 2 → 0 of the ratio J/2

in a slowly rotating star model (2 is the angular velocity and J is
the angular momentum). For M = 1.4 M$ we have I = 98.39 km3

(APR2 EOS) and I = 134.6 km3 (GNH3 EOS).
In order to compute εQ we need to solve the following system of

linearized Einstein equations (here we consider choice 14):

k′
2 + h′

2 − h2

(
1
r

− ν ′

2

)
− m2

(
ν ′

2
+ 1

r

)
eλ

r

= 5
4r2

∫ π

0
ψ,θψ,r

(3 cos2 θ − 1) cot θ
sin θ

dθ, (C3)

h2 + eλ

r
m2

= 5
4r2

∫ π

0

[
−(ψ,r )2r2e−λ + e−νζ 2

0ψ
2r2(|ψ/ψ̄ | − 1)2σ

×*(|ψ/ψ̄ | − 1)
] (3 cos2 θ−1)

sin θ dθ, (C4)

2 Note that in Colaiuda et al. (2008) equation (81) has a wrong minus sign.
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(
ν ′ + 2

r

)
k′

2 + 2
r
h′

2 − 4
r2

eλk2 − 6
r2

eλh2

−
(

1
r2

+ 8πP

)
2e2λ

r
m2 − 8πeλδp2

= 5
4r4

eλ
∫ π

0

[
− (ψ,θ )2 + (ψ,r )2r2e−λ

+ e−νζ 2
0ψ

2r2(|ψ/ψ̄ | − 1)2σ*(|ψ/ψ̄ | − 1)

]

× (3 cos2 θ − 1)
sin θ

dθ,
(C5)

where

ψ =
[
−a1 + a3(3 − 15 cos2 θ )

2

+ a5(−315 cos4 θ + 210 cos2 θ − 15)
8

]
sin2 θ .

The integration can be simplified by introducing the auxiliary func-
tion

y2 = k2 + h2 + W (r, θ ), (C6)

where

W (r, θ ) = 5e−λ

16r2

∫ π

0

[
−eλ(ψ,θ )2 + r2(ψ,r )2

− 2rψ,θψ,r cot θ
] (3 cos2 θ−1)

sin θ dθ . (C7)

This generalizes the variable change adopted in Ioka & Sasaki
(2004), Colaiuda et al. (2008). With the above substitution we are
left with two coupled equations

y ′
2 + ν ′h2 = W ′ + 5

4r2

∫ π

0

{
ψ,θψ,r cot θ +

(
ν ′

2
+ 1

r

)

×
[
−(ψ,r )2r2e−λ + e−νζ 2

0ψ
2r2(|ψ/ψ̄ | − 1)2σ

×*(|ψ/ψ̄ | − 1)
]
}

(3 cos2 θ−1)
sin θ dθ, (C8)

h′
2+

4
ν ′r2

eλy2+
[
ν ′− 8πeλ

ν ′ (ρ+P )+ 2
ν ′r2

(eλ−1)
]

h2

= 5
8r2

∫ π

0

[
− ν ′e−λr2(ψ,r )2 + 2ψ,rψ,θ cot θ

+ e−νζ 2
0ψ

2

(
ν ′r2 − 2

ν ′ eλ
)

(|ψ/ψ̄ | − 1)2σ

×*(|ψ/ψ̄ | − 1)

]
(3 cos2 θ − 1)

sin θ
dθ

+10π

ν ′ eλ(ρ + P )
∫ π

0
[c0 + c1ψ]ψ,θ sin2 θ cos θdθ, (C9)

where we have used the following relation (arising from Tθν
;ν = 0):

δp2 = −(ρ + P )
(

h2 + 5
4

∫ π

0
[c0 + c1ψ]ψ,θ sin2 θ cos θdθ

)
.

(C10)

Equations (C8) and (C9) can be solved using the same proce-
dure described in Colaiuda et al. (2008). If we adopt choice
(15) for the relation between toroidal and poloidal fields, we pro-
ceed in the same way. In this case the final system of equations
writes

y ′
2 + ν ′h2 = W ′ + 5

4r2

∫ π

0

{
ψ,θψ,r cot θ +

(
ν ′

2
+ 1

r

)

×
[
−(ψ,r )2r2e−λ + e−νβ2

0 r2(|ψ/ψ̄ | − 1)2σ

×*(|ψ/ψ̄ | − 1)
]
}

(3 cos2 θ−1)
sin θ dθ, (C11)

h′
2+

4
ν ′r2

eλy2+
[
ν ′− 8πeλ

ν ′ (ρ+P )+ 2
ν ′r2

(eλ−1)
]

h2

= 5
8r2

∫ π

0

[
− ν ′e−λr2(ψ,r )2 + 2ψ,rψ,θ cot θ

+ e−νβ2
0

(
ν ′r2 − 2

ν ′ eλ
)

(|ψ/ψ̄ | − 1)2σ

×*(|ψ/ψ̄ | − 1)

]
(3 cos2 θ − 1)

sin θ
dθ

+ 10π

ν ′ eλ(ρ + P )
∫ π

0
[c0 + c1ψ]ψ,θ sin2 θ cos θdθ . (C12)
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