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a b s t r a c t

Magnetization dynamics in uniformly magnetized particles subject

to time-harmonic (AC) external fields is considered. The study is

focused on the behavior of the AC-driven dynamics close to saddle

equilibria. It happens that such dynamics has chaotic nature at

moderately low power level, due to the heteroclinic tangle

phenomenon which is produced by the combined effect

of AC-excitations and saddle type dy-namics. By using analytical

theory for the threshold AC excitation amplitudes necessary to create

the heteroclinic tangle together with numerical simulations, we

quantify and show how the tangle produces the erosion of the safe

basin around the stable equilibria.
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Magnetization dynamics in uniformly magnetized nano-

magnets subject to time-harmonic (AC) fields has been tradition-

ally studied in connection with ferromagnetic resonance [1]. In

this situation, AC fields produce small magnetization oscillations

around a stable equilibrium and the response of the system de-

pends on the frequency of the excitation following, in the linear

regime, the classical resonance curve peaked around the Kittel

frequency [2]. Since magnetization dynamics is usually weakly

dissipative, nonlinear effects can be excited at moderately large

powers, which can give rise to hysteretic (bistable) resonance re-

sponse owing to the fold-over effect [3].

In this paper, we investigate the effects of time-harmonic ex-

ternal fields in a wider region of the state space. In particular, we

are interested in the regions around saddle-type equilibria which

are usually at the top of the potential wells. The motivation for

studying such an unstable region is connected with the fact that

saddle equilibria and the associated heteroclinic/homoclinic

manifolds connecting the saddles, usually termed separatrices,

constitute the boundaries of basins of attraction of different at-

tractors (asymptotic regimes). It turns out that the AC perturba-

tions of the dynamics in the vicinity of saddle equilibria give rise to

phenomena incomparably more complex than those observed

close to a stable equilibrium.

These complex phenomena are due to the possibility that the

homoclinic/heteroclinic manifolds, for sufficiently large AC ex-

citations, may intersect infinitely many times forming a structure

referred to as homoclinic/heteroclinic tangle which may lead to

separatrices which have a fractal geometrical nature. As a con-



sequence, the magnetization dynamics starting inside an energy

well may, at later time, escape the well. This mechanism is called

basin erosion and starts in the vicinity of the saddle equilibria and

the associated homoclinic/heteroclinic cycles [4].

The purpose of this paper is to investigate the connection be-

tween the aforementioned tangling phenomena and basin erosion

for magnetization dynamics driven by AC external fields. In the

paper, magnetization dynamics is described by the Landau–Lif-

shitz (LL) equation. The external field is assumed to be purely si-

nusoidal with no bias. In these conditions, the entanglement of

saddle manifolds is of the heteroclinic type. The origin of hetero-

clinic tangle is first illustrated from the qualitative point of view.

Then, by using analytical formulas based on Melnikov function [5]

to characterize AC field amplitudes for the onset of the heteroclinic

tangle, we perform numerical simulations of the AC-driven mag-

netization dynamics suitable to introduce a measure for the phe-

nomenon of basin erosion. Finally, some remarks on the connec-

tion between basin erosion and microwave-assisted magnetization

switching are given.

The evolution of the magnetization M in a uniformly magne-

tized particle is described in terms of normalized vector

m M M/ s= , where Ms is the saturation magnetization and m 1| |= .

The evolution of m on the unit sphere Σ is governed by the fol-

lowing generalized Landau–Lifshitz equation [6]:

m
m

ddt
g g,

1
α= ×∇ − ∇

( )Σ Σ

where ∇Σ is the gradient operator on the unit sphere, mg g t,= ( ) is

the free energy and α is the damping. We use normalized quan-

tities so that time is measured in units of Ms
1γ( )− , (γ is the gyro-

magnetic ratio), and the energy function g in units of M Vs0

2μ (μ0 is

the vacuum permeability and V the volume of the particle). The

free energy is given by the following expression:



m m h mg t g t, , 2ac0
( ) = ( ) − ( )· ( )

where

mg D m D m D m /2, 3x x y y z z0

2 2 2( ) = ( + + ) ( )

Dx ,Dy , Dz are effective anisotropy constants. The field h tac ( ) in Eq.

(2) is the time-harmonic (AC) external field

h t h t h t he e ecos cosac x ax x y ay y z azω δ ω δ( ) = ( + ) + ( + ) +

tcos , 4zω δ( + ) ( )

where e e e, ,x y z are the cartesian unit vectors, and where

h h h, ,ax ay az , , ,x y zδ δ δ are the amplitudes and phases of the cartesian

components of h tac ( ), respectively.

In most situations of practical and physical interest, it happens

that h h h h h, 1ac ac ax ay az
2 2 2

α ⪡ ( = + + ). This leads to the following

perturbative form of Eq. (1):

m
v m v m v m

t
t t

dd
, , , ,

50 1ε ε= ( ) + ( ) = ( )
( )

where v m m mg0 0
( ) = ×∇ ( )Σ is the unperturbed Hamiltonian vector

field and v m m h mt t g t, ,ac1ε α( ) = − × ( ) − ∇ ( )Σ . The parameter ε is

formally introduced in preparation of a perturbation analysis of

the dynamics based on the assumption that 1ε⪡ .One can interpret

ε as a parameter which controls the amplitude of all small quan-

tities in the problem, and more specifically, the amplitude of AC

excitations. In the form (5), the equation governing magnetization

dynamics is a perturbed Hamiltonian dynamics on the unit sphere

with Hamiltonian given by the function mg0 ( ).

The non-autonomous dynamical system (5) can be analyzed by

introducing the stroboscopic map [7]:

m mP , , 6n n1 ε= [ ] ( )+



where m m t nTn 0= ( + ), and T 2 /π ω= , which maps an initial

magnetization m t0( ) to the magnetization m t T0( + ) obtained by

integrating Eq. (5), over a time interval equal to T. Notice that the

stroboscopic map (6) is a time-discrete dynamical system and thus

its trajectories are sequence of points on Σ. Analytical treatment of

P[·] is based on the following Taylor expansion:

�P P
P

m m m, , 0 ,0 .
7n n n

2ε
ε

ε ε[ ] = [ ] +
∂∂

[ ] + ( )
( )

The zero order term of the expansion gives the unperturbed map

whose trajectories are curves with constant value of mg0 ( ) which

can be determined in closed form [6]. This implies that the saddles

of the unperturbed map P m ,0n[ ] coincide with the saddle equili-

bria associated with the vector field v m0 ( ).The qualitative features

of the phase portrait of v m0 ( ) are represented in Fig. 1(a) in cy-

lindrical coordinates m, zϕ( ). The two saddles xd1 and xd2 are

connected through heteroclinic trajectories, which are invariant

sets of the map P m ,0n[ ].We recall that an invariant set A of a map

P[·] is such that P A A[ ] ⊆ . Heteroclinic trajectories are typical only

in conservative systems and they are not structurally stable with

respect to generic perturbation of the system. For this reason, they





Fig. 1. Qualitative sketches of the separatrices associated to the stroboscopic map

(see Eq. (6)) in the m, zϕ( ) -plane (where ϕ is the azimuth around the z-axis).

(a) Unperturbed case; (b) damping dominated dynamics; and (c) heteroclinic

tangle formation. Legend: x x,d d1 2ε ε( ) ( ) saddle equilibria; x x,s s1 2ε ε( ) ( ) node-type

equilibria; W
s
1 ε( ) stable manifold associated with xd1 ε( ); W u

2 ε( ) unstable manifold

associated with xd2 ε( ); d splitting of the manifolds; Γ heteroclinic trajectory, and

,1 4Γ Γ… constant energy trajectories. The points x x x, ,a b c are generated by iterating

the stroboscopic map.

are immediately destroyed when nonconservative perturbations

set in. On the other hand, saddle fixed points are structurally

stable entities [7] and thus are preserved under small perturba-

tions. In the perturbed case, two invariant curves originate from

each saddle of the map: the stable manifold W
s

and the unstable

manifold W
u

[7]. In Fig. 1(b) the two manifolds W
s
1 ε( ) and W

u
2 ε( ) are

sketched and their separation (splitting) is indicated by d. This

splitting depends on the nature of perturbation and may vanish

for sufficiently large AC perturbations. When this occurs, a point of

intersection xa belonging to both invariant set W
s
1 ε( ) and W

u
2 ε( ) is



realized (see Fig. 1(c)). This implies that forward and backward

iterates of P[·] starting from xa must belong to W W
s u
1 2ε ε( ) ∩ ( ) and

thus that the two curves, W
s
1 ε( ) and W

u
2 ε( ),must intersect an in-

finite number of times (see Fig. 1(c)). This phenomenon is referred

to as heteroclinic tangle and it is at the origin of chaotic and un-

predictable dynamic behavior of the system near the saddles. In

order to find when this occurs, one must be able to compute the

splitting d of W
s
1 ε( ) and W

u
2 ε( ). By using the expansion (7), the
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Fig. 2. Threshold values of ac fields for creation of heteroclinic tangle versus ω for

the various polarizations. Values of parameters: 0.01α = , D 0.3x = − , Dy ¼ 0, and

Dz ¼ 1.



splitting has been analytically derived [8] and allows one to derive

the threshold values for the AC excitation which give rise to the

tangling phenomenon.

Such threshold values of hac for the onset of the heteroclinic

tangle, for linear polarization along each of the coordinate axes

are, respectively [8]:

h
u

2
,

8
ac j

d

j

,
crit αΩω

=
| ( )| ( )

where j x y z, ,= { }, k D D D D/z y z x
2

= ( − ) ( − ), k k1
2 2′ = − ,

D D D Dd z y y xΩ = ( − )( − ) , q / dω Ω= and

u e e es k s k
q

q
s s

q

q
s s

i

cosh
2

sinh
2

, , 1.

9

x x z z x z y x zω
π

π
π

π( ) = ( + ′ )
−

+ = ±

( )

We remark that Eq. (9) corrects a typo present in Ref. [8]. The

critical amplitudes predicted by Eq. (8) as function of the angular

frequency ω are reported in Fig. 2. They represent the threshold

values of AC fields for creation of heteroclinic tangle for typical

values of the parameters.

A direct and important consequence arising from the onset of

the heteroclinic tangle on the magnetization dynamics is the

phenomenon of erosion of the basins of attraction. The erosion has

important practical effects since it is similar to a reduction of the

depth of the potential well and thus it reduces the ‘safety region’

around a stable equilibrium state. In addition, the boundary of the

basin of attraction of asymptotic regimes inside the well acquires a

fractal nature. These phenomena might be at the basis of complex

features obtained in the measurement of Stoner–Wohlfarth astroid

in the presence of microwave fields [9].

Such a phenomenon has been studied numerically by solving



Eq. (1) for an ensemble of very large number N of particle replicas

starting from initial conditions filling the energy well around

m ex= . In particular, a given number n of iterates of the strobo-

scopic map (6) has been computed starting from an initial mag-

netization state m0 such that

mg g
D2

,
10d

y

0( ) < =
( )

where gd is the energy associated with the saddle of the un-

perturbed dynamics.

After each n-iterate, the condition (10) on the energy is checked
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Fig. 3. Degree of basin erosion η as function of frequency ω and AC field amplitude

hac for fields linearly polarized along the direction: (a) x, (b) y, (c) z. In the nu-

merical computations, N 10 5= particle replicas and n ¼ 5 iterates of the strobo-

scopic map are considered. Values of parameters: D D D0.3, 0, 1x y z= − = = , and

0.01α = .

and then, if it is not fulfilled, the initial condition associated with

that particle is removed from the energy well and the number of

escaped particles is increased.

As a measure of the strength of the phenomenon, we define the

following degree of erosion η:

N

particle escaped
.

11
η =

#

( )



The result of the numerically computed degree of erosion η as

function of the angular frequency ω and AC field amplitude hac is

reported in Fig. 3(a)–(c). It has been obtained by solving the LL

equation (5) for N 10
5

= , n ¼ 5 and linear polarizations of the AC



fields along the coordinate axes x y z, , , respectively. One can

clearly see that the erosion phenomenon is more emphasized for

AC field polarization along the intermediate anisotropy axis y of



the particle, where it almost reaches over 70%, while field polar-

izations along x and z produce a maximum degree of erosion of

25% and 20%, respectively. This is consistent with analytical pre-

dictions given by Eq. (8) for the onset of the heteroclinic tangle. In

fact, by looking at Fig. 2, one can see that, for a sufficiently large AC

field amplitude hac , there exist a range of ω such that a chaotic

dynamics region is created. Moreover, one can see that, for any

polarization of the AC field, there is always an upper bound on the

frequency which sustains the existence of such chaotic region. If



Fig. 4. Basin erosion produced for fields linearly polarized along y direction.
The figures show the region /2 /2π ϕ π− ≤ ≤ and m0.5 0.5z− ≤ ≤ of the m ,z(

ϕ )-plane. The low energy well is initially filled by N 10
5= phase points. When

the trajectory originating from a phase point escapes the well within the 5

iterations of the stroboscopic map, it is considered ‘unsafe’ and disregarded. The

phase point remaining in the well correspond to ‘safe’ initial conditions. Values



of parameters: D D D0.3, 0, 1x y z= − = = , 0.01α = , and h 0.05ac = .



one starts increasing ω from moderately low frequency, it is ex-

pected that the degree of erosion increases but, according to Eq.

(8) and Fig. 2, this behavior should not be monotone owing to the

existence outlined above an upper bound for the frequency sup-

porting the heteroclinic tangle.

As a consequence, the behavior of the degree of erosion η in

Fig. 3 resembles that of a resonant frequency response of the

particle to the AC field. We immediately observe that such re-

sponse exhibits peaks well below the Kittel frequency

D D D D 0.62y x z x( − )( − ) = associated with the stable equilibria

m 1x = ± .One can also notice that, for small AC field amplitude, the

response η exhibits a single peak, whereas as far as the AC power

is increased, multiple peaks appear which cannot be explained by

simple perturbation techniques.

In order to deeply understand the mechanism behind basin

erosion, we have studied the iterates of the stroboscopic map as

function of ω. The result is visible in Fig. 4, where the case of field

polarization along the y-axis is considered. It is apparent that, for

intermediate frequency values, a complexly shaped region (white

region in Fig. 4) traverses the energy well from left to right. Such

region exhibits a finely entangled structure which is the signature

of fractal basin boundaries produced by the intersection of stable

and unstable manifolds of the strobosopic map, as mentioned

before.

Finally, it is worth observing that there will be frequency ran-

ges for which the initial magnetization states approximately along

the x-axis will be destabilized by the AC excitation, producing the

escape from the potential well. This mechanism can explain what

is observed for microwave assisted magnetization switching in the

presence of a DC applied field [10,11].

In this respect, it is expected that the phenomena analyzed in



this paper may be relevant in the area of energy assisted magne-

tization switching.
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