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In myo-control, for computational and setup constraints, the measurement of a high

number of muscles is not always possible: the choice of the muscle set to use in

a myo-control strategy depends on the desired application scope and a search for

a reduced muscle set, tailored to the application, has never been performed. The

identification of such set would involve finding the minimum set of muscles whose

difference in terms of intention detection performance is not statistically significant when

compared to the original set. Also, given the intrinsic sensitivity of muscle synergies

to variations of EMG signals matrix, the reduced set should not alter synergies that

come from the initial input, since they provide physiological information on motor

coordination. The advantages of such reduced set, in a rehabilitation context, would

be the reduction of the inputs processing time, the reduction of the setup bulk and

a higher sensitivity to synergy changes after training, which can eventually lead to

modifications of the ongoing therapy. In this work, the existence of aminimummuscle set,

called optimal set, for an upper-limb myoelectric application, that preserves performance

of motor activity prediction and the physiological meaning of synergies, has been

investigated. Analyzing isometric contractions during planar reaching tasks, two types

of optimal muscle sets were examined: a subject-specific one and a global one. The

former relies on the subject-specific movement strategy, the latter is composed by the

most recurrent muscles among subjects specific optimal sets and shared by all the

subjects. Results confirmed that the muscle set can be reduced to achieve comparable

hand force estimation performances. Moreover, two types of muscle synergies namely

“Pose-Shared” (extracted from a single multi-arm-poses dataset) and “Pose-Related”

(clustering pose-specific synergies), extracted from the global optimal muscle set, have

shown a significant similarity with full-set related ones meaning a high consistency of the

motor primitives. Pearson correlation coefficients assessed the similarity of each synergy.

The discovering of dominant muscles by means of the optimization of both muscle set

size and force estimation error may reveal a clue on the link between synergistic patterns

and the force task.
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1. INTRODUCTION

Myoelectric control or myo-control is an advanced human-
machine interface technique to control robots and devices
in rehabilitative and assistive applications. Myo-control
decodes human motor intention in the form of analyzed
electromyographic (EMG) signals into a computed control
signal that drives robots or machines. The rise of myo-control
was initially started by the need to drive prosthetic devices,
reproducing a set of distinct muscle activity patterns after
performing certain contractions of the residual limb (Lowery
et al., 2003; Hargrove et al., 2007). Facing the challenge of
controlling multiple degrees of freedom (DoFs), the application
of pattern recognition of spatio-temporal patterns of muscle
activities for prostheses control significantly increased user
performance in 3D movements making it more comfortable
and intuitive than direct control (Hargrove et al., 2017). As
a result, the classification of movements associated to daily
activities reached high performance (Sensinger et al., 2009;
Young et al., 2011; Adewuyi et al., 2015). Nevertheless, the
intrinsic on-off and sequential nature of this control strategy
determined a gradual growing interest toward simultaneous and
proportional control (SPC) or simply proportional control. In
the context of myoelectrical controls, a proportional control
theoretically allows for a continuous support of limb or hand
movements, continuously producing a control signal to an
external device (e.g., robotic device) based on user’s residual
muscular activity. Fougner et al. defined the proportional
control as a strategy with which “the user can control at least
one mechanical output variable of the prosthesis within a
finite and essentially continuous interval by varying his/her
control input within a corresponding continuous interval”
(Fougner et al., 2012). The “essentially continuous” term
refers to a digital sampling interval, small enough to not affect
human perception thus being negligible. The SPC paradigm
opened new possibilities to design prostheses control strategies
following the way human neuromuscular system activates
DoFs simultaneously and proportionally (Battye et al., 1955;
Bottomley, 1965; Jiang et al., 2013). In the last decade several
studies have been conducted on the proportional control of
robotic devices and prostheses, using linear or non-linear
regression algorithms, within isometric or dynamic setups
(Cheung et al., 2012; Jiang et al., 2013; Berger and d’Avella,
2014; Roh et al., 2015; Buongiorno et al., 2018). Here, muscle
activations have been used for continuously estimating either

articulation torques or hand force during planar reaching tasks.
Also, following the trail of bio-inspired strategy development,

dimensionality-reduction algorithms have been used to extract
motor primitives, aiming at explaining how the human brain
produces low-dimensional perceptual representations of a high
number of sensory information distributed in the whole body
(Hayward, 2011; Beckerle et al., 2017). These primitives, called
muscle synergies or synergies, have been theorized as a way to
explain motor control and learning by the central nervous system
(CNS), given the abundant number of motor units in human
beings and animals (d’Avella et al., 2003; Bizzi and Cheung,
2013; d’Avella, 2016). Muscle synergies have applications in a

variety of fields, for example clinical assessments (Cheung et al.,
2012; Roh et al., 2015) and control in robotics (Jiang et al., 2009;
Berger and d’Avella, 2014): in the latter context, synergy-based
myo-control was designed to exploit muscle activation patterns
during task-related movements, reflecting the concept of CNS
motor control. Synergy-based myo-controls have been tested
in the hand force or articulation torques prediction, with
linear-regression models, in a fixed (Berger and d’Avella, 2014)
or multiple configurations of the limb (Buongiorno et al., 2017;
Camardella et al., 2020a) with different synergies extraction
algorithms. Most of the experiments in the literature exploited
either isometric (in a virtual environment) or dynamic reaching
tasks. In a work by Lunardini et al., synergy-based torque
estimation algorithms revealed to be less sensitive to signal noise
and no differences were found between isometric and dynamic
protocols (Lunardini et al., 2015). They, thus, suggested that
synergy-based estimations perform better than muscles-pair
in a dynamic protocol in which signals are more likely to be
corrupted by artifacts. In another work, Roh et al. found that
synergy composition was conserved across isometric tasks with
different bio-mechanical constraints (Roh et al., 2012). Similarly
Muceli et al. found that synergies extracted from dynamic
tasks were robust against electrode shifts, being suitable for
an intensive clinical usage (Muceli et al., 2013). In both cases,
synergies were useful to identify muscle activation patterns when
extracted from reaching-movements EMG.

In both robotics and clinical assessment contexts, synergies
extracted with the non-negative matrix factorization have always
shown a physiological meaning, giving important insights on
human motor control strategies (Dipietro et al., 2007; Cheung
et al., 2009, 2012; Safavynia et al., 2011). As an example, in
the cited works of Tropea et al. and Camardella et al., stroke
survivors’ synergies were compared to healthy subjects’ ones
to investigate whether the patterns similarity reflect patients’
cerebrovascular injuries and consequent functional recovery
(Tropea et al., 2013; Camardella et al., 2020b). In another work
of Steele et al., the authors checked how the choice of muscles
can influence the synergy analysis by computing the similarity
of synergies among different sets (Steele et al., 2013). In all
these works, physiological meaning of altered synergies was
assessed through the comparison with reference ones (healthy
or unaltered).

For better accuracy and sensitivity in force estimation,
featuring reaching tasks with either the whole upper limb or
the wrist, simultaneous and proportional myo-control studies
typically include 8–14 muscles, mainly large accessible muscles
for surface EMGs. In the previous studies mentioned above, the
rationale behind the number of chosenmuscles was mainly based
on human bio-mechanics. Attaching several EMG electrodes to
the subject may be feasible in an experimental setting, but not
comfortable for the subject. The absence of time constraints also
makes such a set-up acceptable in an experimental environment.
In rehabilitation robotics applications, the use of a large muscle
set is not practical both for the subject and the therapist given the
limited amount of time and resources.

The hypothesis of this study is that, given a specific
myo-control application, the number of muscles to record
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can be reduced to a minimum set, concurrently preserving
the performance of motor activity prediction and the
physiological meaning of synergies. This will lead to three
main achievements: (1) the reduction of inputs in a myo-control
strategy and, consequently, a lower control processing time
(i.e., computational cost), (2) the reduction in the number
of EMG electrodes to apply on the subject, improving the
comfort and ease of the setup, and (3) a higher sensitivity
to changes of synergies, which could lead to a more evident
motor function evolution and, if applied, to an ongoing
modification of rehabilitation therapies. Nevertheless, the
reduction in the muscle set size may affect the prediction
capabilities of linear/non-linear models, and information on
motor coordination that synergies provide. This last aspect
comes from the fact that non-negative matrix factorization,
used for synergies extraction, operates on the minimization of
the root mean square residuals, between the input matrix and
the product of output matrices, without any constraint on how
muscle activities will be arranged in synergies: this means that
any modification to the input matrix leads to different output
patterns whose information on motor coordination may be
altered. Thus, the objective of this study is to demonstrate that a
minimum set of muscles, called optimal set, can be found, and
that this set preserves performance of force/torque prediction
and motor coordination information contained in synergies. The
optimality is evaluated through the comparison between optimal
and initial (namely full set) sets with two indexes: the difference
in the prediction error (e.g., root mean square error, RMSE) and
the correlation of synergies.

To do so, isometric contractions of nine healthy subjects,
toward four directions in the horizontal plane, have been used to
train a linear EMG-to-forcemodel, for each possible combination
of muscles in a total of 15, decreasing the size of the muscle set
at each iteration. The authors searched for the optimal muscle
set based on the RMSE of the EMG-to-force estimation in
global and subject-specific conditions. These conditions depict
how much a certain muscle is relevant for both all subjects
(global condition) and for a specific subject (subject-specific
condition), relying on a RMSE-based score. The preservation of
force prediction performance has been evaluated through non-
parametric statistical tools, assessing the absence of differences
on the RMSE, between optimal and full set groups in both
conditions. After that, the authors extracted muscle synergies
from optimal and full sets and compared them through the
Pearson correlation coefficient: the role of muscle synergies
in this study has the aim of confirming the consistency of
motor patterns generated by the optimal set. Moreover, two
types of synergies have been tested for this purpose, in order
to understand if the extraction process may influence the
consistency of optimal set synergistic patterns.

2. MATERIALS AND METHODS

2.1. Participants
Nine healthy individuals (age 24.9± 1.3 years, weight 73.4± 14.0
kg and height 177.1 ± 5.7 cm, all males) participated in the
study. All subjects were self-reported right hand dominant and

at the moment of the experiment had no neurological, muscular,
and orthopedic impairments. The experiment was their first
experience with a setup that included EMG recording sessions.
All subjects gave an informed consent prior to the study. The
study has been approved by the Joint Chinese University of Hong
Kong—New Territories East Cluster Research Ethics Committee
and conducted in accordance with Declaration of Helsinki.

2.2. Experimental Setup
The experimental setup was comprised of: (a) A 3D-printed
cylindrical stationary joystick with ATI Gamma IP65 six-axis
force/torque sensor (ATI Industrial Automation, Apex, NC,
USA) with 65 N maximum load, that recorded forces generated
at the hand and sampled at 125 Hz, fixed on a height-adjustable
table, (b) an Ergorest elbow rest device for anti-gravity support
(Ergorest Oy, Siilinjarvi, Finland) to lift tonic EMG signals
resulted from sitting up with the arm raised to a table level,
(c) a 16-channels surface EMG acquisition system with built-
in band-pass and notch filters using two g.USBamp Biosignal
Amplifiers (g.tec Medical Engineering GmbH, Austria), (d) a
game environment shown on a monitor screen with a small
golden ball representing the force generated cursor and a large
white sphere representing the task target force (see Figure 1).
The cylindrical stationary joystick was securely fixed in a certain
position of the table. The central position (Position 5, in Figure 1)
distance from the subject was calculated to be reachable with the
subject’s elbow at a 90 degree position. Surface EMG electrodes
were placed after a thorough skin preparation based on the
Surface Electromyography for the Non-Invasive Assessment
of Muscles-European Community Project recommendations.
Fifteen muscles from the dominant arm and torso were recorded
for analyzing contralateral and ipsilateral contractions, as well
as pushing and pulling actions, often related to reach-and-
grasp movements. The full muscle set included: flexor digitorum
(HAND FLEX), extensor digitorum (HAND EXT), biceps long
head and short head (BI LO and BI SH), brachialis (BRACH),
triceps lateral head and long head (TRI LAT and TRI LON),
anterior deltoid (DELT A), medial deltoid (DELT M), posterior
deltoid (DELT P), pectoralis major (PECT M), infraspinatus
(INFRASP), upper trapezius (TRAP), latissimus dorsi (LAT
DORSI), and teres major (TER MAJ). Ground electrodes were
placed on the clavicle and the scapular acromion. Maximum
voluntary contractions (MVC) for all muscles were observed
at the beginning of the data collection for the EMG signals
normalization. Each MVC was performed with a 1-min rest in
between to avoid the effects of fatigue. EMG signals were acquired
at a 1,200 Hz sampling frequency, as well as band-pass (5–
500 Hz) and notch (50 Hz) filtered. The EMG acquisition PC
was synchronized with the game environment and the PC that
recorded the force/torque sensor using a User Datagram Protocol
(UDP) connection between the two PCs.

2.3. Study Protocol
Subjects had to perform isometric contractions with the upper-
limb in position, grabbing the handle in 5 sites of the horizontal
workspace (see Figure 1). Subjects were seated on a stationary
chair that was positioned to align the sternum with test positions
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FIGURE 1 | The experimental setup. Subject is seated in front of the workspace table, with the force sensor handle fixed in position. The bottom-right figure shows

the five experimental sites. The subject shoulder joint is aligned with the central workspace position so the points are symmetrically placed with respect to the

dominant arm. The workspace size is adapted on subject biometrics, having the width equal to the double of the neck-to-shoulder measure and the height such that

the arm is never fully extended when reaching the furthest position.

2 and 3, having the center of the shoulder joint approximately
aligned with position 5. Subjects’ neck-to-shoulder, arm and
forearm measures were acquired to create a feasible workspace,
symmetrical with respect to the dominant hand. Subjects grabbed
the joystick, after placing their elbow on the anti-gravity support
attached to an height-adjustable table. All subjects maintained
their elbow at height with the help of the arm support and
their distance from the workspace was computed using arm
and forearm measures, in such a way that the furthest position
was always reachable without the arm being in singularity. In
each test position, subjects had to move the small golden ball
cursor by generating force at the hand toward the target force
(indicated by a large white sphere) in 4 different directions
(forward, backward, right, and left). Each direction was repeated
two times making a total of 8 trials. Subjects performed isometric
muscle contractions to generate the force on the joystick. Target
reach was deemed successful if the subjects could maintain the
center of the ball cursor in the white sphere for 2 s. When subjects
relaxed, meaning zero force input on the joystick, the small
golden ball cursor returned to its original rest position. The start
of the trial was indicated by the white sphere target appearing
and the end was indicated by the white sphere disappearing. The
white sphere target area is larger than the small golden ball cursor,
indicating a tolerance of 5 N on the force target. A spring model
PC = K ∗ FJ has been used to compute the position of the cursor
(PC) using the measurements from isometric force exerted on the
joystick (FJ) with K as the elastic constant of the virtual spring
(Berger and d’Avella, 2014).

2.4. Signal Processing and Dataset
Splitting
Before training and testing the model, raw EMG signals were
rectified and filtered using a 4Hz 2nd order Butterworth low-pass
filter and then normalized using the MVC. Then, the processed
EMG dataset was split in training and test sets. Since each subject

performed two contractions for each direction (see section 2.3),
in every test of this study, one was randomly selected to be part
of the training set and the other one to be part of the test set. For
each subject, a datetime-dependent seed was used to determine
a random sequence of numbers, as wide as the total number
of combinations of muscle sets. Each value of this sequence
uniquely selected a specific combination of contractions, to be
used in the training set, taken as a 4-digits binary combination
(one digit for each direction): if 0 the first contraction was used,
otherwise the second one was included. The complementary
sequence was used for building the test set. The training set
was used for training the linear regressor only (see section 2.5)
while the test set was used to build force estimations and extract
performance indexes (see section 2.6.1): these indexes were used
for the selection of optimal sets (sections 2.6.2 and 2.6.3) and the
statistical analysis (section 2.6.4).

2.5. Model Building and Force Estimation
Muscle activations were always lower than the MVC value
and in each workspace position the arm pose was fixed.
Following this, the relation between the force exerted at the hand
and the aforementioned filtered and normalized EMG signals,
measured from elbow and shoulder muscles, was approximately
linear (Buchanan et al., 2004; Berger and d’Avella, 2014;
Buongiorno et al., 2018). The multi-variate linear regression
algorithm (MVLR), that assumes a direct relation between
muscle activations and hand-force exertion, has been used as the
EMG-to-force model, currently being the most used in the state
of art. Thus, the evaluation of performance of eachmuscle set was
achieved comparing the forcemeasurements with the estimations
that resulted from the linear model, trained as following:

H = argmin
H∈Rn

‖ Hmt(t)− Ft(t) ‖2 (1)
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where mt is the training EMG data matrix (M × N where N is
the number of samples) and Ft is the training forces data matrix
(2 × N matrix): thus, H will be a 2 × M matrix. In the case of a
full muscle set M was equal to 15, otherwise it was equal to the
chosen optimal muscles number. The subscript “t” in Equation
(1) means that training set signals only should be used as the
regressor training process relies on the training set only. Under
the linear force-EMG relationship, the force estimation can be
computed using the following equation:

Fest(t) = H ·m(t), (2)

where Fest(t) is the estimated 2-dimensional force, m(t) is
the processed test EMG signal and H is the aforementioned
regression matrix. Force prediction (i.e., Fest) could be potentially
computed for both training and test sets, for example for RMSE
computation on the training set, if needed.

2.6. Data Analysis
2.6.1. Performance Indexes
Two different indexes have been used for assessing the force
estimation performance of each method in each condition: Root
Mean Square Error and Coefficient of Determination.

• Root Mean Square Error (RMSE)
This index is used to measure the difference between

the measured and the estimated forces and it is calculated
as follows:

RMSE =

√

∑N
i=1(x

2
x,i−x̂2x,i)

N +

√

∑N
i=1(x

2
y,i−x̂2y,i)

N

2
(3)

The xx,i and xy,i are the x and y components of the xi 2D
measured force sample, respectively. The x̂x,i and x̂y,i are the
x and y components of the x̂i 2D estimated force sample,
respectively. N stands for the number of samples. The lower
the value of the RMSE the closer the estimated force matches
the measured force signal amplitude.

• The Coefficient of Determination (R2)
The R2 index is used to highlight a signal total variation

explained by the estimates. The R2 is computed as follows:

R2 = 1−
SSres

SStot
= 1−

∑N
i=1(xi − x̂i)

2

∑N
i=1(xi − xi)2

, (4)

where xi is the original signal and x̂i is the estimated output
sample. N stands for the number of samples. The index ranges
from minus infinite to 1 (equal to 1 in case of a perfect
estimation with an error equal to zero).

2.6.2. Muscle Scores
It was necessary to evaluate the performance of all muscle set
combinations given the initial full set. To do so a loop was
implemented defining the muscle set size at each iteration and
then cycling on all combinations of muscles: the number of
muscles was iteratively decreased from 15 to a minimum set of
4. For each muscle set a linear model was trained (see section

2.5) and tested on a different set of contractions (see section 2.4).
Then a force estimation was built, according to 2, using test set
signals, and compared to the measured ones through the RMSE
index. Each time a performance index was computed, themuscles
involved got a score equal to the RMSE value (averaged on the
two force components) and summed to the previous score value.
At the end of this loop, muscles with the lowest score were the
most significant for that subject as they were always included in
the sets that achieved the lowest estimation RMSE. A “ranking”
of muscles was created, following the ascending order of RMSE
scores and assigning to each muscle a rank equal to the ranking
position: the first muscle in the ranking got a rank equal to 1, the
second one a rank equal to 2 etc. This loop was repeated for all
the participants. At the end of this analysis, all the muscles scores
and ranks, for all the participants, were available to be used. A
step-by-step procedure is shown below in the Algorithm 1.

2.6.3. Selection of Optimal Sets
Once the ranks of muscles have been obtained for all the subjects,
actual performance of muscle sets could be computed without
considering all of their combinations. This next step is divided
in two analyses: a subject-specific one and a global one. In this
step, RMSE of force estimation is computed iterating on all
combinations of train/test datasets and on the number of muscles
from 15 (full) to 4 (minimum).

• Subject-specific: At each iteration, the muscles to be used in
the set were chosen by first discardingmuscles with the highest
rank (i.e., highest RMSE) in the subject-specific ranking.

• Global: This analysis differed from the previous one by the
muscles choice criterion. In this case, a single global ranking
was created summing all subject-specific rankings. The same
loop as the previous point (i.e., subject-specific) was then
performed: this time, at each iteration, the muscles to be used
in the set were chosen by first discarding muscles with the
highest rank (i.e., the highest RMSE) in the global ranking.

Eventually, from 15 to 4 muscles, a complete picture of the
force estimation performance, for all the participants in both
conditions, was depicted. The minimum number of muscles that
showed a comparable amount of error (in terms of mean and
standard deviation of the RMSE) w.r.t the full set, was chosen
to be the optimal set. This optimal set then underwent both
synergies computation process and statistical analysis, to assess
its usability in a myo-control application.

2.6.4. Statistics
The aim of the statistical study was to assess the expected
similarity between optimal and full muscle sets force estimation
performance. Thus, after choosing the optimal set to be analyzed,
an ANOVA 1-way test was performed on the two populations:
the acceptance of the null hypothesis would have confirmed the
absence of significant differences among the two groups. Before
launching the ANOVA test, Shapiro-Wilk normality test and χ

2

homogeneity of variance test were performed on the two datasets,
fulfilling parametric-test requirements. The analysis was repeated
for both subject-specific and global optimal sets, compared to the
full set.
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Algorithm 1: Set of operations for evaluating muscle scores
and ranks (i.e., importance) for a given subject. A “for” loop
was implemented decreasing the i-th muscle set size from
15 to a minimum set of 4 at each iteration and then cycling
on all combinations of muscles of the i-th set size. First
operations concern the signal processing: envelope() refers
to the low-pass filter used to extract the signal envelope
and linreg() refers to the linear regressor training function.
comb() function selects the j-th combination of muscles
with i elements, while datasplit() randomly divides the
dataset into training and test set. rmse() computes the RMSE
index from measured and estimated forces. sort() function
extracts the sorting indexes of the input, following either
the ascending or descending option: for example, with the
ascending option, if the forth muscle got the lowest score,
the first element of ranks was equal to 4. This algorithm is
repeated for all the participants. Ranks variable refers to the
subject-specific rank values.

% scores initialized as an array of 15 elements;
% muscles initialized as an array of 15 elements with
indexes of amplifier channels (from 1 to 15);
for i=15:4 do

for j-th combination of i muscles in a group of 15 do
musclesset = comb(muscles,i,j);
% Selecting EMG of j-th combination of muscles;
rawEMG= rawEMG(musclesset);
% Processing for both train/test data;
mr = rawEMG;
mf = bandpassfilter(mr);

ma = rectification(mf );

m= envelope(ma);
[mtrain,mtest]= datasplit(m);
% Training phase;
H = linreg(F,mtrain);
% Estimation phase;
Fest = H*mtest ;
RMSE= rmse(Fmeas,Fest);
% All muscles included in the j-th combination get a
score equal to RMSE;
for k=1:15 do

if k is in musclesset then
scores(k)=scores(k)+mean(RMSE);

else

scores(k)=scores(k)+0;
end

end

end

end

ranks= sort(scores,′ascending′);

2.7. Synergies
2.7.1. Synergies Extraction
As done in previous works, muscle synergies could be extracted
from electromyographical signals using the Non-NegativeMatrix

Factorization (NNMF) algorithm (Lee and Seung, 1999). This
has been often chosen to separate the fundamental components
from the input, assuming that negative muscle activations
could not be physiologically obtained. In previous works, the
NNMF identified the correct muscle synergies and activation
coefficients in simulated data, combined with their consistency
when applied to physiological data sets. Also NNMF was able to
reconstruct the original signal in a similar way with reference
to other more complex algorithms (Tresch et al., 2006). As
noted in the literature four synergies were enough to describe
electromyographical signals total variance in planar reaching
tasks (Roh et al., 2012; Steele et al., 2013; Berger and d’Avella,
2014) with both isometric and dynamic setups. Thus, always
four were the synergies extracted from optimal and full sets.
As specified in the introduction the only role of synergies was
to assess the coherence of optimal set patterns. NNMF was
launched using the alternating least squares algorithm option in
MATLAB “nnmf” function, with a maximum of 100 iterations
and a tolerance of 10−7. According to the NNMF algorithm,
muscle synergies can be computed as following:

m = W · c+ em, (5)

wherem is the input signal (M × N matrix, beingM the number
of muscles and N the number of samples), W is the synergy
matrix (M × s matrix, being s the number of synergies), c is
the synergy activations matrix (s × N matrix) and em is the
muscle activation factorization residuals, dimensionally equal to
the input. Having multiple upper limb poses in the experimental
protocol, muscle synergies could be extracted either in each of
them or merging the information of all poses in a single synergies
set. The latter has shown to be the most feasible one in synergy-
based myo-control contexts, and it can be obtained in many ways
(Buongiorno et al., 2017, 2019, 2020). “Pose-Shared” and “Pose-
Related,” have been extensively detailed in a previous work and
compared in this study, since they showed different adherence
to the input dataset (Camardella et al., 2019). Briefly, the “Pose-
Shared” synergies (herein called Wg) are extracted running the
NNMF once on a single EMG dataset using the Equation (5), in
whichm has been taken as the result of the union of the signals of
each upper limb pose (m = [m1 ∪m2 ∪m3 ∪m4 ∪m5]). Instead,
the “Pose-Related” synergies resulted from clustering P (i.e.,
number of poses) synergies sets, using the k-means algorithm,
independently extracted from each arm pose and ordered with a
minimum cosine distance criterion:

Wc(i) = kmeans(

P
⋃

p=1

Wp(i)), i ∈ [1, s], (6)

where the output Wc(i) corresponds to the i-th element of
the “Pose-Related” synergies matrix Wc, as the i-th centroid of
the clustered synergy vectors. Wp(i) is the i-th synergy of Wp

synergies matrix extracted in the point p (i.e., an upper limb
pose): P, thus, is the total number of points (i.e., 5). The “Pose-
Related” synergies matrix, Wc, can be computed as the union of
all the s centroids, given s the number of synergies:
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Wc =

s
⋃

i=1

Wc(i). (7)

2.7.2. Synergy-Based Model Building and Force

Estimation
The synergy-based models followed the same concepts showed
in section 2.5, thus, they were based on a linear relationship
between the force at the hand and muscle activations, mapped
in the synergy space using the synergies matrix (i.e., W). EMG
signals were processed in the same way as done in section 2.5.
The model was trained as following:

H = argmin
H∈Rn

‖ Hct(t)− Ft(t) ‖2,

ct(t) = W+mt(t)
(8)

where ct is the training synergy activations data matrix (s × N
where s is the synergies number andN is the number of samples),
mt is the training EMG data matrix (M × N withM defining the
number of muscles), W+ is the pseudo-inverse of the W matrix
(s × M matrix), and Ft is the training force data matrix (2 × N
matrix): thus, H is a 2 × s matrix. In the case of a full muscle
set, M was equal to 15, otherwise it was equal to the chosen
optimal muscle number. Moreover, the synergy matrix W was
chosen as Wg when using “Pose-Shared” synergies (PSS model)
and Wc when using “Pose-Related” synergies (PRS model). Also
in this case, the subscript “t” in Equation (8) means that training
set signals only should be used as the regressor training process
relies on the training set only. Finally, the force estimation could
be obtained using the following formula:

Fest(t) = H · c(t), (9)

where Fest(t) is the estimated 2-dimensional force, c(t) is the
synergy activation signal (built using either training or test
EMG signals), and H is the aforementioned regression matrix
computed using 8. Also in this case, force prediction (i.e., Fest)
could be potentially computed for both training and test sets, for
example for RMSE computation on the training set, if needed.

2.7.3. Synergy Similarities
After accomplishing the analysis described in section 2.6.3,
synergies extracted from the optimal and the full muscle sets have
been compared for evaluating the consistency of each synergy.
The Pearson correlation coefficient (r) was used for evaluating the
total similarity, as the average of coefficients of each optimal-full
set pair of synergies. Given two sets (from optimal and full muscle
sets) with four synergies each, 16 different correlation coefficients
were computed. The highest calculated coefficient identified
the best match between synergy pairs. After each calculation,
the previously chosen synergies from both sets were excluded
to avoid double-counting. In each synergy, only the muscular
contributions from the same muscles of both sets were used. As
a result, 4 correlation values were obtained, indicating the best
matching synergies among the extracted ones. This process was
repeated for both global and subject-specific sets.

3. RESULTS

The main outcome of this study is that an optimal muscles set
for the analyzed myo-control application does exist. Referring
to Figure 2, global and subject-specific conditions are shown,
regarding the RMSE performance analysis. In the global
condition (Figure 2A), it was observed the RMSE value not to
suffer from strong variations, both in variance and mean when
varying the number of muscles from the full set (i.e., 15 muscles)
to 8 muscles. Thus, the 8-muscles set has been taken as the
global optimal muscle set, reporting 3.93 ± 1.10 N as its value.
Both full and optimal set observations passed the Shapiro-Wilk
normality test. The chi-squared homogeneity of variance test
was performed giving χ

2 = 114.74 and p = 0.231 as values,
confirming the homogeneity of variance null hypothesis (1.40 N
full set variance, 1.20 N optimal set variance). According to 1-
way ANOVA results, there was not a statistical difference between
optimal and full muscle set performances giving F(1, 13) = 0.02
with p = 0.886 as results. Figure 2C instead shows the variation
in force estimation performance in the subject-specific condition.
In this case the RMSE does not highlight any significant variation
until it reaches 6 muscles. Reducing the muscles number from
6 to 4 brings to an increase of the RMSE mean by 0.10 N at
5 muscles and by 0.73 N at 4 muscles. It has to be noted that
reducing the muscle set from 6 to 5 elements increases the total
variance, bringing the minimum RMSE value from 1.67 to 2.05
N. According to this, the 6-muscle set has been taken as the
subject-specific optimal muscle set, reporting 3.99 ± 1.11 N as
the force estimation RMSE. Also in this case full and optimal
set observations passed the Shapiro-Wilk normality test and the
chi-squared homogeneity of variance test with χ

2 = 121.34 and
p = 0.452 (1.40 N full set variance, 1.24 N optimal set variance).
The 1-way ANOVA test did not show any statistical difference
between optimal and full sets, with F(1, 13) = 0.35 and p = 0.561.

Concerning synergy similarities, both global and subject-
specific optimal sets were analyzed, comparing synergies
extracted from these sets to the full set ones. In the former
case, synergies showed a mean correlation value of r(6) = 0.74,
p = 0.035 for the “Pose-Shared” synergies and r(6) = 0.71, p = 0.048
for the “Pose-Related.” In the latter case, a mean correlation
value of r(4) = 0.78, p = 0.067 with “Pose-Shared” synergies and
r(4) = 0.71, p = 0.113 for “Pose-Related” synergies was found.
Figure 3 depicts the comparison of synergistic patterns between
full and global optimal muscle sets. All the values represent the
average across subjects. R2 values for “Pose-Shared” synergies
generally advantaged the subject-specific condition in almost
all cases (see Figure 4). Excluding the 4-muscles case, which
matched the number of synergies, synergies that exploited the
global sets achieved an EMG reconstruction rate ranging from a
minimum of 0.878±0.028 to a maximum of 0.972±0.016. In the
subject-specific case the R2 scored 0.880± 0.031 with 15 muscles
up to 0.982± 0.009 with 5 muscles.

The last result regards linear regression coefficients that
constitute the actual link between muscle/synergy activations
and the amplitude and direction of the generated force vectors.
With the aforementioned 8-muscles global optimal muscle set,
the mean Pearson correlations value of regression coefficients,
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FIGURE 2 | Force estimation RMSE, average of the x and y component and on the analyzed models (MVLR, PSS, and PRS), on the signals test set. Panels (A,B) are

related to the global optimal set analysis while panels (C,D) are related to the subject-specific analysis, with increasing muscle set size. Figures on the left show all the

RMSE box-plots, averaging all subjects performances on all the upper limb poses. Each box-plot show the errors quartiles with the horizontal red line representing the

group median value. The red vertical dashed line show the stop criterion of the optimal muscle set search, indicating an increasing of either the median value or the

total variance (indicated by the whiskers). Figures on the right show the 1-way ANOVA results for the 8 muscles global optimal set and the 6 muscles subject-specific

optimal set, respectively, on panels (B,C).

between the full muscle set and the optimal set, scored r(6) = 0.93,
p < 0.001 for MVLR, r(6) = 0.88, p = 0.004 for “Pose-Shared” and
r(6) = 0.89, p = 0.003 for “Pose-Related.” Instead, exploiting the 6-
muscles subject-specific optimal muscle set, the mean correlation
of regression coefficients was r(4) = 0.87, p = 0.024 for MVLR,
r(4) = 0.85, p = 0.032 for “Pose-Shared” and r(4) = 0.89, p = 0.021
for “Pose-Related.”

4. DISCUSSIONS

The search for an optimal muscle set, in the planar myo-
control application, gave a positive answer. The analysis on a

pool of 9 healthy subjects led to two different optimal muscle
sets, depending on the selected muscles choice criteria. If a
subject-specific optimal muscle set was chosen, muscles could
be reduced up to a minimum of 6, resulting in a loss of
correlation significance with full set synergies while keeping
similar estimation performance, and significant muscles-to-
force and synergies-to-force coefficients coherence. This comes
from the statistical analysis results from which no statistical
significance was found between 6-muscles and 15-muscles
groups (p= 0.350), regarding force estimation RMSE, while force
fields showed a statistically significant correlation (p = 0.024
for MVLR, p = 0.032 for Pose-Shared, and p = 0.021 for
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FIGURE 3 | Synergies composition for “Pose-Shared” and “Pose-Related” extraction methods for both full and global optimal sets. Subject-specific synergy patterns

could not be compared since subjects’ muscle scores are generally different leading to different compositions of sets. Figures on the left (A,B) show the full set

synergies composition, figures on the right (C,D) the global optimal sets composition. Each row (i.e., synergy) contains all muscle contributions, showing all the

subjects’ coefficients of that muscle in that synergy, previously ordered, as a gray bar. The light green bars represent the mean contribution values. Whiskers represent

their total variance.

Pose-Related). The global optimal muscle set, i.e., 8 muscles
shared across all the subjects, revealed to be a reliable subset on
all analyzed indexes. This means having a similar force estimation
error (no statistically significant differences between groups with
p = 0.886) and significant synergy similarities with respect to
the full set ones (Pearson correlation between synergies scoring
p = 0.035 for “Pose-Shared” and p = 0.048 for “Pose-Related”).
Also a statistical significance on the muscle-to-force and synergy-
to-force mapping coefficients was found, enforcing the coherence

of the optimal set composition. The global set, thus, counted
two more muscles with respect to the subject-specific one
but synergy similarities were comparable, reaching a statistical
significance. Nevertheless, the force estimation performance
given by the two optimal sets were comparable both in mean
and standard deviation. This result suggests that although a
subject-specific optimal set is functional in estimating the force
in a certain application, synergies change their composition (i.e.,
the contribution of each muscle) when lowering the number of
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FIGURE 4 | R2 ongoing mean and standard deviation values for increasing muscle set size, on “Pose-Shared” and “Pose-Related” synergies. Each value is computed

by reconstructing training EMG signals using NMF outputs (see Equation 5) without residuals. The R2-value is computed on EMG signals merged from all the

experimental workspace sites. The smaller the muscle size is, the higher the difference is in the EMG variance explained between Global and Subject-Specific

conditions: for a lower number of muscles the choice of the muscle set, for each subject, that achieves the lowest estimation error, determines a higher reconstruction

rate in terms of R2. This behavior is more evident when the number of muscles is lower than 8.

muscles under a certain threshold. In any case the global optimal
set does not seem an obstacle to a fully working myo-control
application, rather reducing the computational cost of the overall
force estimation process when synergies are not used.

In the R2 graph shown in Figure 4, global and subject-
specific optimal set synergies generally explain the original signal
total variance in a comparable way, for both “Pose-Shared”
and “Pose-Related,” until the 8-muscles set is reached. Below
this threshold, as expected, synergies in the subject-specific set
achieve a higher R2 value, since every subject could exploit a
slightly different movement strategy that led to optimal sets that
are different from the most shared one. This aspect leads to
important implications in the rehabilitation context if synergies
are used as an assessment tool. Without exploiting an optimal
set, synergies already have shown to be important markers for
detecting cortical damages or new skills acquisitions (Safavynia
et al., 2011; Cheung et al., 2012; Tropea et al., 2013). The optimal
muscle set, specifically selected for a stroke individual, could
better highlight abrupt variations in synergy correlation with
respect to initial patterns, after rehabilitation, meaning a change
in movement strategy. As explained before, this is given by
the computation of a similarity index of synergies that involves
sub-computations on each muscle. Moreover, this specific set
could better reflect how motor units in muscles are recruited
for that specific subject, differently from the global set that
may depict a generalized behavior. These suggestions will be
deeply investigated in future studies, involving rehabilitation
training in the analysis. Moreover, no strong differences have
been found between “Pose-Shared” and “Pose-Related” synergies,
with Shared synergies slightly outperforming the Related ones.
In a previous work, with a larger workspace and a similar setup,

the ability of “Pose-Related” synergies to reconstruct the initial
EMG dataset was higher than “Pose-Shared” ones (Camardella
et al., 2020a). This discrepancy in results may confirm the ability
of “Pose-Related” synergies to better explain datasets that include
limb poses that are very different, since synergies are extracted
independently on each pose and clustered together.

The subject discomfort deriving from bulky setups and long-
lasting preparations with a high number of electrodes could be
alleviated thanks to reduced sets. Although subjects benefit from
a subject-specific set, this would inevitably require at least one
training session with a full set, to find his/her specific movement
strategy and, thus, his/her optimal set. In the case of altered
motor patterns, subjects would require multiple training sessions
each time an abrupt drop in correlation with the initial patterns
is detected. Moreover a global optimal set could be of difficult
usage in this context, since stroke generally induces unpredictable
alterations and a priori muscle set does not seem suitable
(Dipietro et al., 2007; Roh et al., 2013, 2015; Camardella et al.,
2020b). Nevertheless, a representative healthy global optimal set
could be helpful as a comparison with physiological patterns.

Regarding differences between “Pose-Shared” and “Pose-
Related” synergies, the former achieved a higher correlation
on both subject-specific and global optimal sets. “Pose-Related”
synergies keep a comparable correlation value between subject-
specific and global optimal set. This suggests that “Pose-Shared”
may suffer the changing of muscles in the set, instead of
the “Pose-Related” ones that seemed more robust to those
variations. In a previous work by Camardella et al. (2019),
synergy-based myo-control strategies, with “Pose-Shared” and
“Pose-Related” synergies, were compared on the test set on both
RMSE of force estimation and EMG reconstruction performance.
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FIGURE 5 | Amplitude and direction of pulling vectors of recorded muscles and extracted synergies (force fields), in the global optimal muscle set. Each force field

interpolates the information of the columns of the H matrix (see sections 2.5, 2.7.1). Each red sphere represents the action of a muscle/synergy in one experimental

point. Arrows are then interpolated in a 6 by 6 grid. The section (A) shows the force field of each muscle in the full and optimal set: muscle force fields are taken from

columns of H matrix trained with Equation (1). The background tile of each muscle explains the synergy of influence: multiple tiles refer to as many synergies of the

same color in the section (B,C). The section (B) shows the force field of each synergy in the full and optimal set: synergy force fields are taken from columns of H

matrix trained with Equation (9). The right panel illustrates the “Pose-Related” synergies force fields while the left one the “Pose-Shared” ones. The section (C)

summarizes force fields and involved muscles, depicting the frame color and the muscle ellipses as the synergy color of the section (B).
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In this instance “Pose-Related” seemed to better trace upper
limb features on different workspace sites, when using a full
muscle set, as well as to better estimate the force at the
hand. In another work (Camardella et al., 2020a), “Pose-Related”
synergies were used in a synergy-based myo-control during an
online virtual session, suggesting the feasibility of such method
in estimating the hand force in real-time. In this study, the
coherence of “Pose-Shared” and “Pose-Related” synergies have
been investigated in the case of a reduced muscle set, under
similar protocol and signal processing conditions. “Pose-Shared”
synergies revealed to be more similar to the full set ones, with
correlation values always higher than “Pose-Related” ones. Also,
referring to Figure 4, they better reconstruct the original EMG
signals, mostly having higher values of R2 with smaller muscle
set size. This outcome may suggest that “Pose-Related” could
be preferable in the case of a large muscle set, when directly
involved in a synergy-based myo-control application trying to
exploit the modular organization of the musculoskeletal system
and projecting it onto the force task, rather than using it as an
assessment tool.

As proposed by Steele et al. (2013), it is possible to label
as dominant those muscles that have the highest contribution
in a specific synergy. Looking at the Figure 3, synergies do
not show a big difference in the correspondence of dominant
muscles between full and optimal sets, at a glance. In particular,
as showed in Figure 5, it is important to associate muscle pulling
vectors to synergies that group them and, eventually, to have a
quick overview of how a specific synergy act in task-oriented
movements such as reaching motions. When dominant muscles
are included, a good variance accounted for can be achieved
even with a low number of muscles, better than choosing
them randomly. Although the task, from which the EMGs were
recorded, was different, the optimal sets that have been found
include most of the muscles showed to be important in the
work of Steele et al. (2013) (TER MAJ, LAT DORSI, TRI LAT,
and BRACH). Moreover the number of muscles found to be
the most representative in the muscle set, corresponds to the
minimal one found, which includes 5/6 muscles. According to
this outcome, force estimation performance revealed to be a
good muscles choice criterion, highlighting the link between
synergies and force task. The global optimal set information
showed in Figure 5 reveal the field of action of each muscle and
synergy in the experimental workspace. Both the composition
of synergies and their field of influence, in the global optimal
set, trace common features already stated in the state-of-art. In a
previous work by Cheung et al. (2009), synergies extracted from
more than 12 muscles, during dynamic tasks, on a pool of seven
out of eight total stroke subjects, revealed a strong similarity
between affected arm and unaffected arm patterns. Among those
patterns, there were synergies including co-activations of the
brachialis and the triceps lateral head, the pectoralis major
and the deltoid anterior, and the infraspinatus with the deltoid
posterior and the teres major, as stated previously. Another
work by Berger and d’Avella (2014), showed similar synergy
compositions coming from eight healthy subjects, extracted
from 13 muscles during isometric contractions, keeping a fixed
pose of the upper limb. In all the cases, it is interesting to

notice how some muscles (e.g., the pectoralis major or the
infraspinatus) are not fully included in a single synergy but
participate in multiple synergies (for example acting as rotator
or stabilizer of the shoulder joint) with different contributions.
Moreover, muscle and synergy force fields did not show strong
differences between full and optimal sets, confirming that the
global optimal set owned the most important features of the
full set, concurrently bringing the aforementioned advantages.
Also “Pose-Shared” and “Pose-Related” synergy differences did
not seem remarkable, suggesting that both extraction methods
may present consistent outcomes and be used wisely judging the
right application field.

5. CONCLUSIONS

In this work, the existence and feasibility of an optimal muscle
set to be used in a myo-control application has been investigated.
An 8-muscles global optimal set, the best trade-off in terms
of myo-control performance and the muscle set size, shared
among the analyzed pool of subjects, has been found. The
optimal set has shown no statistical differences in terms of
force estimation performance and a high correlation with
the initial (full muscle set) synergistic patterns. Also muscle
and synergy force fields in the optimal set resulted to be
coherent with the full counterpart. Tailoring the muscle choice
to the specific subject, the optimal set could get to include
up to 6 muscles, nevertheless loosing statistical similarity on
synergies but retaining the ability to explain a higher variance
of EMG signals, with respect to the global one, with the same
number of muscles and synergies. A link between synergies
and force task was identified, thus, dominant muscles that
cover an important role in the chosen protocol can be found
through the minimization of the force estimation error. Future
studies will involve an actual usage of optimal sets in either
a real-time myo-control application or an assessment tool
for rehabilitation.
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