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Abstract. Boolean Networks (BNs) are established models to qualita-
tively describe biological systems. The analysis of BNs might be infeasi-
ble for medium to large BNs due to the state-space explosion problem.
We propose a novel reduction technique called Backward Boolean Equiv-
alence (BBE), which preserves some properties of interest of BNs. In
particular, reduced BNs provide a compact representation by grouping
variables that, if initialized equally, are always updated equally. The re-
sulting reduced state space is a subset of the original one, restricted to
identical initialization of grouped variables. The corresponding trajecto-
ries of the original BN can be exactly restored. We show the effectiveness
of BBE by performing a large-scale validation on the whole GINsim BN
repository. In selected cases, we show how our method enables analyses
that would be otherwise intractable. Our method complements, and can
be combined with, other reduction methods found in the literature.

Keywords: Boolean Network · State Transition Graph · Attractor Anal-
ysis · Exact Reduction · GinSim Repository

1 Introduction

Boolean Networks (BNs) are an established method to model biological sys-
tems [28]. A BN consists of Boolean variables (also called nodes) which repre-
sent the activation status of the components in the model. The variables are
commonly depicted as nodes in a network with directed links which represent
influences between them. However, a full descriptive mathematical model un-
derlying a BN consists of a set of Boolean functions, the update functions, that
govern the Boolean values of the variables. Two BNs are displayed on top of
Fig. 1. The BN on the left has three variables x1, x2, and x3, and the BN on
the right has two variables x1,2 and x3. The dynamics (the state space) of a BN
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is encoded into a state transition graph (STG). The bottom part of Fig. 1 dis-
plays the STGs of the corresponding BNs. The boxes of the STG represent the
BN states, i.e. vectors with one Boolean value per BN variable. A directed edge
among two STG states represents the evolution of the system from the source
state to the target one. The target state is obtained by synchronously applying
all the update functions to the activation values of the source state. There exist
BN variants with other update schema, e.g. asynchronous non-deterministic [47]
or probabilistic [43]. Here we focus on the synchronous case. BNs where variables
are multivalued, i.e. can take more than two values to express different levels of
activation [46], are supported via the use of booleanization techniques [18], at
the cost, however, of increasing the number of variables.

x1(t+ 1) = ¬x3(t) ∨ x1(t)
x2(t+ 1) = x1(t) ∨ x2(t) ∨ ¬x3(t)
x3(t+ 1) = x2(t) ∧ ¬x3(t)

=========⇒
x1, x2 : BBE

x1,2(t+ 1) = ¬x3(t) ∨ x1,2(t)
x3(t+ 1) = x1,2(t) ∧ ¬x3(t)

Fig. 1: A BN (top-left), its STG (bottom-left), the BBE-reduced BN (top-right)
and its (reduced) STG (bottom-right).

BNs suffer from the state space explosion problem: there are exponentially
many STG states with respect to the number of BN variables. This hampers BN
analysis in practice, calling for reduction techniques for BNs. There exist manual
or semi-automated ones based on domain knowledge. Such empirical reductions
have several drawbacks: being semi-automated, they are error-prone, and do
not scale. Popular examples are those based on the idea of variable absorption,
proposed originally in [34, 48, 41]. The main idea is that certain BN variables
can get absorbed by the update functions of their target variables by replacing
all occurrences of the absorbed variables with their update functions. Other
methods automatically remove leaf variables (variables with 0 outgoing links)
or frozen variables (variables that stabilize after some iterations independently
of the initial conditions) [39, 4]. Several techniques [23, 2] focus on reducing the
STGs rather than the BN generating them. This requires to construct the original
STG, thus still incurring the state space explosion problem.

Our research contributes a novel mathematically grounded method to au-
tomatically minimize BNs while exactly preserving behaviors of interest. We
present Backward Boolean Equivalence (BBE), which collapses backward Boolean
equivalent variables. The main intuition is that two BN variables are BBE-
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equivalent if they maintain equal value in any state reachable from a state
wherein they have the same value. In the STG in Fig. 1 (left), we note that for all
states where x1 and x2 have same value (purple boxes), the update functions do
not distinguish them. Notably, BBE is that it can be checked directly on the BN,
without requiring to generate the STG. Indeed, as depicted in the middle of Fig. 1
, x1 and x2 can be shown to be BBE-equivalent by inspecting their update func-
tions: If x1, x2 have the same value in a state, i.e. x1 (t) = x2 (t), then their update
functions will not differentiate them since x2(t + 1) = x1(t) ∨ x2(t) ∨ ¬x3(t) =
x1(t) ∨ x1(t) ∨ ¬x3(t) = x1(t) ∨ ¬x3(t) = x1(t + 1). We also present an iter-
ative partition refinement algorithm [36] that computes the largest BBE of a
BN. Furthermore, given a BBE, we obtain a BBE-reduced BN by collapsing all
BBE-equivalent variables into one in the reduced BN. In Fig. 1, we collapsed
x1 , x2 into x1 ,2 . The reduced BN faithfully preserves part of the dynamics of the
original BN: it exactly preserves all states and paths of the original STG where
BBE-equivalent variables have same activation status. Fig. 1 (right) shows the
obtained BBE-reduced BN and its STG. We can see that the purple states of
the original STG are preserved in the one of the reduced BN.

We implemented BBE in ERODE [10], a freely available tool for reducing bi-
ological systems. We built a toolchain that combines ERODE with several tools
for the analysis, visualization and reduction of BNs, allowing us to apply BBE
to all BNs from the GINsim repository (http://ginsim.org/models repository).
BBE led to reduction in 61 out of 85 considered models (70%), facilitating STG
generation. For two models, we could obtain the STG of the reduced BN while
it is not possible to generate the original STG due to its size. We further demon-
strate the effectiveness of BBE in three case studies, focusing on their asymptotic
dynamics by means of attractors analysis. Using BBE, we can identify the at-
tractors of large BNs which would be otherwise intractable.

The article is organized as follows: Section 2 provides the basic definitions
and the running example based on which we will explain the key concepts. In
Section 3 , we introduce BBE, present the algorithm for the automatic compu-
tation of maximal BBEs, and formalize how the STGs of the original and the
reduced BN are related. In Section 4, we apply BBE to BNs from the literature.
In Section 5 we discuss related works, while Section 6 concludes the paper.

2 Preliminaries

BNs can be represented visually using some graphical representation which, how-
ever, might not contain all the information about their dynamics [29]. An ex-
ample is that of signed interaction (or regulatory) graphs adopted by the tool
GinSim [31]. These representations are often paired with a more precise descrip-
tion containing either truth tables [39] or algebraic update functions [45]. In this
paper we focus on such precise representation, and in particular on the latter.
However, in order to better guide the reader in the case studies, wherein we ma-
nipulate BNs with a very large number of components, we also introduce signed
interaction graphs.
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xFgf8 (t+1 ) = xFgf8 (t) ∧ ¬xEmx2 (t) ∧ xSp8 (t)
xPax6 (t+1 ) = ¬xEmx2 (t) ∧ xSp8 (t) ∧ ¬xCoup tfi(t)
xEmx2 (t+1 ) = ¬xFgf8 (t) ∧ ¬xPax6 (t) ∧ ¬xSp8 (t) ∧ xCoup tfi(t)
xSp8 (t+1 ) = xFgf8 (t) ∧ ¬xEmx2 (t)

xCoup tfi(t+1 ) = ¬xFgf8 (t) ∧ ¬xSp8 (t)

Fgf8

Pax6

Emx2

Sp8

Coup_tfi

Fig. 2: (Left) the BN of cortical area development from [25]; (Right) its signed
interaction graph.

We explain the concepts of current and next sections using the simple BN
of Fig. 2 (left) taken from [25]. The model refers to the development of the
outer part of the brain: the cerebral cortex. This part of the brain contains
different areas with specialised functions. The BN is composed of five variables
which represent the gradients that take part in its development: the morphogen
Fgf8 and four transcription factors, i.e., Emx2, Pax6, Coup tfi, Sp8. During
development, these genes are expressed in different concentrations across the
surface of the cortex forming the different areas.

Fig. 2 (right) displays the signed interaction graph that corresponds to the
BN. The green arrows correspond to activations whereas the red arrows corre-
spond to inhibitions. For example, the green arrow from Sp8 to Pax6 denotes
that the former promotes the latter because variable xSp8 appears (without nega-
tion) in the update function of xPax6 , whereas the red arrow from Pax6 to Emx2
denotes that the former inhibits the latter because the negation of xPax6 appears
in the update function of xEmx2 .

We now give the formal definition of a BN:

Definition 1. A BN is a pair (X,F ) where X = {x1, ..., xn} is a set of variables
and F = {fx1

, ..., fxn
} is a set of update functions, with fxi

: Bn → B being the
update function of variable xi.

A BN is often denoted as X(t + 1) = F (X, t), or just X = F (X). In Fig. 2
we have X = {xFgf8 , xPax6 , xEmx2 , xSp8 , xCoup tfi}.

The state of a BN is an evaluation of the variables, denoted with the vector
of values s = (sx1

, . . . , sxn
) ∈ Bn . The variable xi has the value sxi

. When the
update functions are applied synchronously, we have synchronous transitions
between states, i.e. for s, t ∈ Bn we have s −→ t if t = F (s) = (fx1 (s), . . . , fxn (s)).

Suppose that the activation status of the variables xFgf8 , xEmx2 , xPax6 , xSp8 ,
xCoup tfi is given by the state s = (1, 0, 1, 1, 1). After applying the update func-
tions, we have t = F (s) = (0, 0, 0, 0, 0).

The state space of a BN, called State Transition Graph (STG), is the set of
all possible states and state transitions.
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(a) STG of BN in Fig. 2
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(b) STG of BN in Fig. 4

Fig. 3: The STGs of the BN of Fig. 2 and of its BBE-reduction in. Fig. 4. We use
GINsim’s visual representation, where self-loops are implicit in nodes without
outgoing edges.

Definition 2. Let B = (X,F ) be a BN. We define the state transition graph of
B, denoted with STG(B), as a pair (S, T ) with S ⊆ Bn being a set of vertices
labelled with the states of B, and T = {s −→ t | s ∈ S, t = F (s)} a set of directed
edges representing the transitions between states of B.

We often use the notation s −→+ t for the transitive closure of the transition
relation. The cardinality of the set of states is 2n, which illustrates the state
space explosion: we have exponentially many states on BN variables. Fig. 3(a)
displays the STG of the BN in Fig. 2.

Several BN properties are identified in STGs, e.g. attractors, basins of at-
traction, and transient trajectories [42]. Attractors are sets of states towards
which a system tends to evolve and remain [27]. They are often associated with
the interpretation of the underlying system; for example, Kauffman equated at-
tractors with different cell types [20]. Hence, the main reduction methods that
have been developed in the literature so far concentrate on how they affect the
asymptotic dynamics i.e. the number of attractors and the distribution of their
lengths. We define an attractor as follows:

Definition 3. (Attractor) Let B = (X,F ) be a BN with STG(B) = (S, T ).
We say that a set of states A ⊆ S is an attractor iff

1. ∀s, s′ ∈ A, s −→+ s′, and
2. ∀s ∈ A,∀s′ ∈ S, s −→+ s′ implies s′ ∈ A.

Attractors are hence just absorbing strongly connected components in the
STG. An attractor A such that |A| = 1 is called a steady state (also named point
attractor). We also denote with |A| the length of attractor A.
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3 Backward Boolean Equivalence

Our reduction method is based on the notion of backward equivalence, recast
for BNs, which proved to be effective for reducing the dimensionality of ordinary
differential equations [9, 13] and chemical reaction networks [11, 6, 8]. Section 3.1
introduces Backward Boolean Equivalence (BBE), which is an equivalence rela-
tion on the variables of a BN, and use it to obtain a reduced BN. Section 3.2
provides an algorithm which iteratively compute the maximal BBE of a BN.
Section 3.3 relates the properties of an original and BBE-reduced BN.

We fix a BN B = (X,F ), with |X| = n. We use R to denote equivalence
relations on X and XR for the induced partition.

3.1 Backward Boolean Equivalence and BN Reduction

We first introduce the notion of constant state on an equivalence relation R.

Definition 4. (Constant State) A state s ∈ Bn is constant on R if and only
if ∀(xi, xj) ∈ R it holds that sxi

= sxj
.

Consider our running example and an equivalence relation R given by the
partition XR = {{xSp8, xFgf8}, {xPax6}, {xEmx2}, {xCoup tfi}}. The states con-
stant on R are colored in purple in Fig. 3. For example, the state s = (1, 0, 1, 1, 1)
is constant on R because sSp8 = sFgf8 (the first and fourth positions of s, re-
spectively). On the contrary, (1, 0, 1, 0, 1) is not constant on R.

We now define Backward Boolean Equivalence (BBE).

Definition 5. (Backward Boolean Equivalence) Let B = (X,F ) be a BN,
XR a partition of the set X of variables, and C ∈ XR a class of the partition.
A partition XR is a Backward Boolean Equivalence (BBE) if and only if the
following formula is valid:

ΦXR ≡

 ∧
C∈XR
x,x′∈C

(
x = x′

) −→ ∧
C∈XR
x,x′∈C

(
fx(X) = fx′(X)

)

ΦXR says that if for all equivalence classes C the variables in C are equal,
then the update functions of variables in the same equivalence class stay equal.

In other words, R is a BBE if and only if for all s ∈ Bn constant on R it
holds that F (s) is constant on R. BBE is a relation where the update functions F
preserve the “constant” property of states. The partition XR = {{xSp8, xFgf8},
{xPax6}, {xEmx2}, {xCoup tfi}} described above is indeed a BBE. This can be ver-
ified on the STG: all purple states (the constant ones) have outgoing transitions
only towards purple states.

We now define the notion of BN reduced up to a BBE R. Each variable in
the reduced BN represents one equivalence class in R. We denote by f{a/b} the
term arising by replacing each occurrence of b by a in the function f .
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Definition 6. The reduction of B up to R, denoted by B/R, is the BN (XR, FR)
where FR = {fxC

: C ∈ XR}, with fxC
= fxk

{xC′/xi
: ∀C ′ ∈ XR,∀xi ∈ C ′} for

some xk ∈ C.

The definition above uses one variable per equivalence class, selects the up-
date function of any variable in such class, and replaces all variables in it with a
representative one per equivalence class. Fig. 4 shows the reduction of the corti-
cal area development BN. We selected the update function of xSp8 as the update
function of the class-variable x{Fgf8 ,Sp8}, and replaced every occurrence of xSp8

and xFgf8 with x{Fgf8 ,Sp8}. The STG of such reduced BN is given in Fig. 3(b).

x{Fgf8 ,Sp8}(t+ 1) = x{Fgf8 ,Sp8}(t) ∧ ¬x{Emx2}(t)
x{Pax6}(t+ 1) = ¬x{Emx2}(t) ∧ x{Fgf8 ,Sp8}(t) ∧ ¬x{Coup tfi}(t)
x{Emx2}(t+ 1) = ¬x{Fgf8 ,Sp8}(t) ∧ ¬x{Pax6}(t) ∧ ¬x{Fgf8 ,Sp8}(t) ∧ x{Coup tfi}(t)

x{Coup tfi}(t+ 1) = ¬x{Fgf8 ,Sp8}(t) ∧ ¬x{Fgf8 ,Sp8}(t)

Fig. 4: The BBE-reducion of the cortical area development network of Fig. 2.

3.2 Computation of the maximal BBE

A crucial aspect of BBE is that it can be checked directly on a BN without
requiring the generation of the STG. This is feasible by encoding the logical
formula of Definition 5 into a logical SATisfiability problem [3]. A SAT solver
has the ability to check the validity of such a logical formula by checking for
the unsatisfiability of its negation (sat(¬ΦXR)). A partition XR is a BBE if
and only if sat(¬ΦXR) returns “unsatifiable”, otherwise a counterexample (a
witness) is returned, consisting of variables assignments that falsify ΦXR . Using
counterexamples, it is possible to develop a partition refinement algorithm that
computes the largest BBE that refines an initial partition.

The partition refinement algorithm is shown in Algorithm 1. Its input are a
BN and an initial partition of its variablesX. A default initial partition that leads
to the maximal reduction consists of one block only, containing all variables. In
general, the modeller may specify a different initial partition if some variables
should not be merged together, placing them in different blocks. The output of
the algorithm is the largest partition that is a BBE and refines the initial one.

We now explain how the algorithm works for input the cortical area develop-
ment BN and the initial partition XR = {{xFgf8 , xEmx2 , xPax6 , xSp8 , xCoup tfi}}.

Iteration 1. The algorithm enters the while loop, and the solver checks if ΦXR is
valid. XR is not a BBE, therefore the algorithm enters the second branch of the if
statement. The solver gives an example satisfying ¬ΦXR : s = (sxFgf8

, sxPax6 , sxEmx2 ,
sxSp8

, sxCoup tfi
) =(0, 0, 0, 0, 0). Since t = F (s) = (0, 0, 0, 0, 1), the for loop par-

titions G into XR1
= {{xFgf8 , xPax6 , xEmx2 xSp8}, {xCoup tfi}}. The state t =

(0, 0, 0, 0, 1) is now constant on XR1
.
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Algorithm 1: Compute the maximal BBE that refines the initial par-
tition XR for a BN (X,F )

Result: maximal BBE H that refines XR

H ← XR;
while true do

if ΦH is valid then
return H ;

else
s← get a state that satisfy ¬ΦH ;
H ′ ← ∅;
for C ∈ H do

C0 = {xi ∈ C : fxi(s) = 0};
C1 = {xi ∈ C : fxi(s) = 1};
H ′ = H ′ ∪ {C1} ∪ {C0};

end
H ← H ′ \ {∅};

end

end

Iteration 2. The algorithm checks if ΦXR1 is valid (i.e. if XR1
is a BBE). XR1

is not a BBE. The algorithm gives a counterexample with s = (0, 0, 0, 0, 1) and
t = F (s) = (0, 0, 1, 0, 1). The for loop refines XR1 into XR2 = {{xFgf8 , xPax6

xSp8}, {xEmx2}, {xCoup tfi}}. XR2 makes t = (0, 0, 1, 0, 1) constant.

Iteration 3. The algorithm checks if G2 is a BBE. The formula ¬ΦXR2 is sat-
isfiable, so G2 is not a BBE, and the solver provides an example with s =
(1, 1, 0, 1, 1) and F (s) = (1, 0, 0, 1, 0). Hence, XR2 is partitioned into XR3 =
{{xFgf8 , xSp8}, {xPax6} {xEmx2}, {xCoup tfi}}.

Iteration 4. The SAT solver proves that ΦXR3 is valid.
The number of iterations needed to reach a BBE depends on the counterex-

amples that the SAT solver provides. As for all partition-refinement algorithms,
it can be easily shown that the number of iterations is bound by the number
of variables. Each iteration requires to solve a SAT problem which is known to
be NP-complete, however we show in Section 4 that we can easily scale to the
largest models present in popular BN repositories.

We first show that given an initial partition there exists exactly one largest
BBE that refines it. 1

After that, we prove that Algorithm 1 indeed provides the maximal BBE
that refines the initial one.

Theorem 1. Let BN = (X,F ) and XR a partition. There exists a unique max-
imal BBE H that refines XR.

Theorem 2. Algorithm 1 computes the maximal BBE partition refining XR.
1 All proofs are given in the extended version of this paper [1].
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3.3 Relating Dynamics of Original and Reduced BNs

Given a BN B and a BBE R, STG(B/R) can be seen as the subgraph of STG(B)
composed of all states of STG(B) that are constant on R and their transitions.
Of course, those states are transformed in STG(B/R) by “collapsing” BBE-
equivalent variables in the state representation. This can be seen by comparing
the STG of the our running example (left part of Fig. 3) and of its reduction
(right part of Fig. 3). The states (and transitions) of the STG of the reduced
BN correspond to the purple states of the original STG.

Let B be a BN with n variables, S ⊆ Bn be the states of its STG, and
R a BBE for B. We use S|R to denote the subset of S composed by all and
only the states constant on R. With STG(B)|R we denote the subgraph of
STG(B) containing S|R and its transitions. Formally STG(B)|R = (S|R, T|R),
where T|R = T ∩ (S|R × S|R).

The following lemma formalizes a fundamental property of STG(B)|R, namely
that all attractors ofB containing states constant onR are preserved in STG(B)|R.

Lemma 1. (Constant attractors) Let B(X,F ) be a BN, R be a BBE, and
A an attractor. If A ∩ S|R 6= ∅ then A ⊆ S|R .

We now define the bijective mapping mR : S|R ↔ SR induced by a BBE R,
where SR are the states of STG(B/R), as follows: mR(s) = (vC1 , . . . , vC|X/R|)
where vCj = sxi for some xi ∈ Cj . In words mR bijectively maps each state of
STG(B)|R to their compact representation in STG(B/R). Indeed, STG(B)|R
and STG(B/R) are isomorphic, with mR defining their (bijective) relation. We
can show this through the following lemma.

Lemma 2. (Reduction isomorphism) Let B(X,F ) be a BN and R be a BBE.
Then, it holds

1. For all states s ∈ S|R it holds FR(mR(s)) = mR(F (s)).

2. For all states s ∈ SR it holds F (m−1R (s)) = m−1R (FR(s)).

The previous Lemma ensures that BBE does not generates spurious trajec-
tories or attractors in the reduced system. We can now state the main result
of our approach, namely that the BBE reduction of a BN for a BBE R exactly
preserves all attractors that are constant on R up to renaming with mR.

Theorem 3. (Constant attractor preservation) Let B(X,F ) be a BN, R
a BBE, and A an attractor. If A∩S|R 6= ∅ then mR(A) is an attractor for B/R.

4 Application to BNs from the Literature

We hereby apply BBE to BNs from the GINsim repository. Section 4.1 validates
BBE on all models from the repository, while Section 4.2 studies the runtime
speedups brought by BBE on attractor-based analysis of selected case studies,
showing cases for which BBE makes the analysis feasible. Section 4.3 compares
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BoolSim

Step 1

Step 2

Step 2

Step 3

Step 3

Step 3

Step 2

Fig. 5: BBE toolchain. (Step 1) We use GINsim [15] to access its model repository,
and (Step 2) export it in the formats of the other tools in the toolchain to
perform: STG generation (PyBoolNet [30]), attractor analysis (BoolSim [19]),
and BBE reduction (ERODE [10]). (Step 3) We export the reduced models for
analysis to PyBoolNet and BoolSim, or to GINsim.

BBE with the approach based on ODE encoding from [11], showing how such
encoding leads to scalability issues and to the loss of reduction power.

The experiments have been made possible by a novel toolchain (Fig. 5)
combining tools from the COLOMOTO initiative [33], and the reducer tool
ERODE [10] which was extended here to support BBE-reduction. For Algo-
rithm 1 we use the solver Z3 [17] which was already integrated in ERODE.

All experiments were conducted on a common laptop with an Intel Xeon(R)
2.80GHz and 32GB of RAM. We imposed an arbitrary timeout of 24 hours for
each task, after which we terminated the analysis. We refer to these cases as
time-out, while we use out-of-memory if a tool terminated with a memory error.

4.1 Large Scale Validation of BBE on BNs

We validate BBE on real-world BNs in terms of the number of BNs that can be
reduced and the average reduction ratio.

Configuration. We conducted our investigation on the whole GINsim model
repository which contains 85 networks: 29 are Boolean, and 56 are multivalued.
In multivalued networks (MNs), some variables have more than 2 activation
statuses, e.g. {0, 1, 2}. These models are automatically booleanized [18, 14] by
GinSim when exporting in the input formats of the other tools in the tool-chain.

Most of the models in the repository have a specific structure [32] where
a few variables are so-called input variables. These are variables whose update
functions are either a stable function (e.g. x(t + 1) = 0, x(t + 1) = 1) or the
identity function (e.g. x(t + 1) = x(t)). These are named ‘input’ because their
values are explicitly set by the modeler to perform experiments campaigns. We
investigate two reduction scenarios relevant to input variables. In the first one,
Algorithm 1 starts with initial partitions that lead to the maximal reduction, i.e.
consisting of one block only. In the second scenario, we provide initial partitions
that isolate inputs in singleton blocks. Therefore, we prevent their aggregation
with other variables, and obtain reductions independent of the values of the
input variables (we recall that BBE requires related variables to be initialized
with same activation value). We call this case input-distinguished (ID) reduction.
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Results. By using the maximal reduction setting, we obtained reductions on 61
of the 85 models, while we obtained ID reductions on 38 models. We summarize
the reductions obtained for the two settings in Fig. 6, displaying the distribution
of the reduction ratios rm = Nm/N and ri = Ni/N , where N , Nm and Ni are
the number of variables in the original BN, in the maximal BBE-reduction, and
in the ID one, respectively. We also provide the average reduction ratios on
the models, showing that it does not substantially change across Boolean or
multivalued models. No reduction took more than 3 seconds.
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Fig. 6: (Left) Distribution of reduction ratios (reduced variables over original
ones) on all models from the GINsim repository using the maximal and ID
reduction strategy. Each bar counts the number of models with that reduction
ratio, starting from 15% up to 90%, with step 5%. (Right) Average reduction
ratios for Boolean, Multivalued and all models.

Interpretation. BBE reduced a large number of models (about 72%). In partic-
ular, this happened in 24 out of the 29 (83%) Boolean models and in 37 out
of 56 (66%) multivalued networks. The average reduction ratio for the maximal
and ID strategies are 0.67 and 0.91, respectively. For the former strategy, we
get trivial reductions in 22 models wherein only input variables are related. In
such trivial cases, the ID strategy does not lead to reduction. In other cases,
the target variables of inputs (i.e. variables with incoming edges only from input
variables considering the graphical representation of variables) appeared to be
backward equivalent together with the input variables. This results in reductions
with large equivalence classes consisting of input variables and their descendants.
These are interesting reductions which get lost using the ID approach, as the
input variables get isolated.

4.2 Attractor analysis of selected case studies

Hypothesis. We now investigate the fate of asymptotic dynamics after BBE-
reduction, and test the computational efficiency in terms of time needed for
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attractor identification in the original and reduced models. We expect that BBE-
reduction can be utilized to (i) gain fruitful insights into large BN models and
(ii) to reduce the time needed for attractor identification.

Configuration. Our analysis focuses on three BNs from the GINsim repository.
The first is the Mitogen-Activated Protein Kinases (MAPK) network [26] with
53 variables. The second refers to the survival signaling in large granular lympho-
cyte leukemia (T-LGL) [52] and contains 60 variables. The third is the merged
Boolean model [40] of T-cell and Toll-like receptors (TCR-TLR5) which is the
largest BN model in GINsim repository with 128 variables.

Results. The results of our analysis are summarized in Table 1 for the original,
ID- and maximal-reduced BN. We present the number of variables (size) and
of Attractors (Attr.), the time for attractor identification on the original model
(An. (s)) and that for reduction plus attractor identification (Red. + An. (s)).

Original model ID reduction Maximal reduction

Size Attr. An.(s) Size Attr. Red.+An.(s) Size Attr. Red.+An.(s)

MAPK Network 53 40 16.50 46 40 15.33 39 17 3.49
T-LGL 60 264 123.43 57 264 86.84 52 6 3.49

TCR-TLR 128 —Time Out— 116 —Time Out— 95 2 31.29

Table 1: Reduction and attractor analysis on 3 selected case studies.

Interpretation. ID reduction preserves all attractors reachable from any combi-
nation of activation values for inputs. This is an immediate consequence of 2,
Theorem 3 and the fact that number of attractors in the original and the ID
reduced BN is the same (see Table 1). Maximal reduction might discard some
attractors. We also note that, despite the limited reduction in terms of obtained
number of variables, we have important analysis speed-ups, up to two orders of
magnitude. Furthermore, the largest model could not be analyzed, while it took
just 30 seconds to analyze its maximal reduction identifying 2 attractors.

4.3 Comparison with ODE-based approach from [11]

As discussed, BBE is based on the backward equivalence notion firstly pro-
vided for ordinary differential equations (ODEs), chemical reaction networks,
and Markov chains [9, 11]. Notably, [11] shows how the notion for ODEs can
be applied indirectly to BNs via an odification technique [49] to encode BNs as
ODEs. Such odification transforms each BN variable into an ODE variable that
takes values in the continuous interval [0,1]. The obtained ODEs preserve the
attractors of the original BN because the equations of the two models coincide
when all variables have value either 0 or 1. However, infinitely more states are
added for the cases in which the variables do not have integer value.
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Fig. 7: Excerpt of GINsim’s
depict of TCR-TLR.

Scalability. The technique from [11] has been
proved able to handle models with millions
of variables. Instead, the odification technique
is particularly computationally intensive. Due
to this, it failed on some models from the
GINsim repository, including two from [22],
namely core engine budding yeast CC and cou-
pled budding yeast CC, consisting of 39 and 50
variables, respectively. Instead, BBE could be ap-
plied in less than a second.

Reduction power. Another example is the TCR-
TLR model from the previous section. In this case,
both the ODE-based and BBE techniques suc-
ceeded. However, BBE led to better reductions
due to the added non-integer states in the ODEs.
Intuitively, the ODE-based technique counts in-
coming influences from equivalence classes of
nodes, while BBE only checks whether at least
one of such influence is present or not. Figure 7
shows an excerpt of the graphical representation
of the model by GINsim. We use background col-
ors of nodes to denote BBE equivalence classes
(white denotes singleton classes). We see a large equivalence class of magenta
species, 3 of which (IRAK4, IRAK1, and TAK1 ) receive two influences by ma-
genta species, while the others receive only one. This differentiates the species in
the ODE-based technique, keeping only the top four in the magenta block, while
all the others end up in singleton blocks. We compare the original equations of
MyD88 and IRAK4 which have 1 and 2 incoming influences each.

xMyD88 (t+ 1) = xTLR5 (t)

xIRAK4 (t+ 1) = (¬xMyD88 (t) ∧ xTICAM1 (t)) ∨ (xMyD88 (t))

We see that the two variables are BBE because their update functions de-
pend only on the BBE-equivalent variables TLR5 and MyD88, respectively. For
IRAK4, the three variables in the update function are BBE. Therefore, they
have same value allowing us to simplify the update function to just MyD88. The
ODEs obtained for the 2 variables are, where x′− denotes the derivative of x−:

x′MyD88 = xTLR5 − xMyD88

x′IRAK4 = xMyD88 + xTICAM1 − xMyD88 · xTICAM1 − xIRAK4

Given that all variables appearing in the equations are backward equivalent,
the two equations coincide with the original ones when all variables have values
either 0 or 1. However, they differ for non-integer values. For example, in case
all variables have value 0.5, we get 0 for the former, and 0.25 for the latter.
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5 Related Work

BN reduction techniques belong to three families according to their domain
of reduction: (i) they reduce at syntactic level (i.e. the BN [34, 48, 39, 4, 32, 41,
51]), (ii) at semantic level (i.e. the STG [23, 2]), or (iii) they transform BNs
to other formalisms like Petri Nets [16, 44] and ordinary differential equations
[50] offering formalism-specific reductions. However, (semantic) STG-reduction
does not solve the state space explosion whereas the transformation to other
formalisms has several drawbacks as shown in Section 4.3.

Syntactic level reduction methods usually perform variable absorption [4, 34,
48, 41] at the BN. BN variables can get absorbed by the update functions of
their target variables by replacing all occurrences of the absorbed variables with
their update functions. This method was first investigated in [34] wherein update
functions are represented as ordinary multivalued decision diagrams. The authors
consider multivalued networks with updates being applied asynchronously and
iteratively implement absorption. The process, despite preserving steady states
in all synchronization schemas [48], might lead to loss of cycle attractors in the
synchronous schema. However, absorption of variables might lead to introduction
of new attractors in the asynchronous case, i.e., by reducing the number of
variables the number of attractors can stay the same or increase (attractors can
split or new attractors can appear).

A similar study [48] presents a reduction procedure and proves that it pre-
serves steady states. This procedure includes two steps. The first refers to the
deletion of links between variables on their network structure. Deletion of pseudo-
influences is feasible by simplifying the Boolean expressions in update functions.
The second step of the procedure refers to the absorption of variables like in [34].

The difference between studies [48], [34] is that [48] exploits Boolean algebra
instead of multivalued decision diagrams to explain absorption. Moreover, they
refer only to Boolean networks, and do not consider any update schema. In
studies [34, 48, 41], self-regulated BN variables (i.e. variables with a self-loop in
the graphical representation) can not be selected for absorption. The inability to
absorb self-regulated variables is inherent in the implementation of absorption
in contrast to our method where the restrictions are encoded by the user at the
initial partition and self-regulated variables can be merged with other variables.

In [41] the authors presented a two step reduction algorithm. The first step
includes the absorption of input variables with stable function and the second
step the absorption of single mediator variables (variables with one incoming and
outgoing edge in the signed interaction graph). The first step of the algorithm
in [41] is equally useful and compatible with the first step of [48]. Moreover, if
we combine the first steps of [48] and [41], we may achieve interesting reductions
which exactly preserve all asymptotic dynamics.

The first steps of [48, 41] affect only a BN property called stability. Stabil-
ity is the ability of a BN to end up to the same attractor when starting from
slightly different initial conditions. In [4], the authors introduced the decima-
tion procedure -a reduction procedure for synchronous BNs- to discuss how it
affects stability. The crucial difference between decimation procedure and BBE-
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reduction is that the first was invented to study stability whereas the latter was
invented to degrade state space explosion. The decimation procedure is summa-
rized by the following four steps: (i) remove from every update functions the
inputs that it does not depend on, (ii) find the constant value for variables with
no inputs, (iii) propagate the constant values to other update functions and re-
move this variable from the system, and (iv) if a variable has become constant,
repeat from step (i). The study also refers to leaf variables because their pres-
ence does not play any role in the asymptotic dynamics of a BN. However, both
leaf and fixed-valued variables affect stability. Overall, the decimation procedure
exactly preserves the asymptotic dynamics of the original model since it throws
out only variables considered as asymptotically irrelevant.

6 Conclusion

We introduced an automatic reduction technique for synchronous Boolean Net-
works which preserves dynamics of interest. The modeller gets a reduced BN
based on requirements expressed as an initial partition of variables. The reduced
BN can recover a pure part of the original state space and its trajectories estab-
lished by the reduction isomorphism. Notably, we draw connections between the
STG of the original and that of the reduced BN through a rigorous mathematical
framework. The dynamics preserved are those wherein collapsed variables have
equal values.

We used our reduction technique to speed-up attractor identification. Despite
that the length of the preserved attractors is consistent in the reduced model,
some of them may get lost. In the future, we plan to study classes of initial
partitions that preserve all attractors. We have shown the analysis speed-ups
obtained for attractor identification as implemented in the tool BoolSim [24]. In
the future we plan to perform a similar analysis on a recent attractor identifica-
tion approach from [21].

Our method was implemented in ERODE [10], a freely available tool for
reducing biological systems. Related quantitative techniques offered by ERODE
have been recently validated on a large database of biological models [37, 38,
5]. In the future we plan to extend this analysis considering also BBE. We also
plan to investigate whether BBE can be extended in order to be able to compare
different models as done for its quantitative counterparts [7, 12].

Our method could be combined with most of the existing methods found
in literature. Our prototype toolchain consists of several tools from the COLO-
MOTO interoperability initiative. We aim to incorporate our toolchain into the
COLOMOTO Interactive Notebook [35], a unified environment to edit, execute,
share, and reproduce analyses of qualitative models of biological networks.

Multivalued BNs, i.e. whose variables can take more than two activation
values, are currently supported only via a booleanization technique [18, 14] that
might hamper the interpretability of the reduced model. In future work we plan
to generalize BBE to support directly multivalued networks.
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22. Fauré, A., Naldi, A., Lopez, F., Chaouiya, C., Ciliberto, A., Thieffry, D.: Modular
logical modelling of the budding yeast cell cycle. Molecular bioSystems 5, 1787–96
(2009 Dec 2009)

23. Figueiredo, D.: Relating bisimulations with attractors in boolean network models.
In: International Conference on Algorithms for Computational Biology. pp. 17–25.
Springer (2016)

24. Garg, A., Di Cara, A., Xenarios, I., Mendoza, L., De Micheli, G.: Syn-
chronous versus asynchronous modeling of gene regulatory networks. Bioinformat-
ics 24(17), 1917–1925 (07 2008). https://doi.org/10.1093/bioinformatics/btn336,
https://doi.org/10.1093/bioinformatics/btn336

25. Giacomantonio, C.E., Goodhill, G.J.: A boolean model of the gene regula-
tory network underlying mammalian cortical area development. PLOS Computa-
tional Biology 6(9), 1–13 (09 2010). https://doi.org/10.1371/journal.pcbi.1000936,
https://doi.org/10.1371/journal.pcbi.1000936

26. Grieco, L., Calzone, L., Bernard-Pierrot, I., Radvanyi, F., Kahn-Perles, B., Thief-
fry, D.: Integrative modelling of the influence of mapk network on cancer cell fate
decision. PLoS Comput Biol 9(10), e1003286 (2013)

27. Hopfensitz, M., Müssel, C., Maucher, M., Kestler, H.A.: Attractors in boolean
networks: a tutorial. Computational Statistics 28(1), 19–36 (2013)

28. Kauffman, S.: Metabolic stability and epigenesis in randomly constructed genetic
nets. Journal of Theoretical Biology 22(3), 437 – 467 (1969)

29. Klamt, S., Haus, U.U., Theis, F.: Hypergraphs and cellular networks. PLoS com-
putational biology 5(5) (2009)



18 G. Argyris, A. Lluch Lafuente, M. Tribastone, M. Tschaikowski, A. Vandin

30. Klarner, H., Streck, A., Siebert, H.: Pyboolnet: a python package for the genera-
tion, analysis and visualization of boolean networks. Bioinformatics 33(5), 770–772
(2017)

31. Naldi, A., Berenguier, D., Fauré, A., Lopez, F., Thieffry, D., Chaouiya, C.: Logi-
cal modelling of regulatory networks with ginsim 2.3. Biosystems 97(2), 134–139
(2009)

32. Naldi, A., Monteiro, P.T., Chaouiya, C.: Efficient handling of large signalling-
regulatory networks by focusing on their core control. In: International Conference
on Computational Methods in Systems Biology. pp. 288–306. Springer (2012)

33. Naldi, A., Monteiro, P.T., Müssel, C., for Logical Models, C., Tools, Kestler, H.A.,
Thieffry, D., Xenarios, I., Saez-Rodriguez, J., Helikar, T., Chaouiya, C.: Cooper-
ative development of logical modelling standards and tools with colomoto. Bioin-
formatics 31(7), 1154–1159 (2015)

34. Naldi, A., Remy, E., Thieffry, D., Chaouiya, C.: Dynamically consistent reduction
of logical regulatory graphs. Theoretical Computer Science 412(21), 2207–2218
(2011)

35. Naldi, A., Hernandez, C., Levy, N., Stoll, G., Monteiro, P.T., Chaouiya,
C., Helikar, T., Zinovyev, A., Calzone, L., Cohen-Boulakia, S., Thieffry,
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