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Abstract. Early-stage diagnosis of laryngeal squamous cell carcinoma (SCC) is of primary importance for lowering
patient mortality or after treatment morbidity. Despite the challenges in diagnosis reported in the clinical literature,
few efforts have been invested in computer-assisted diagnosis. The objective of this paper is to investigate the use
of texture-based machine-learning algorithms for early-stage cancerous laryngeal tissue classification. To estimate
the classification reliability, a measure of confidence is also exploited. From the endoscopic videos of 33 patients
affected by SCC, a well-balanced dataset of 1320 patches, relative to 4 laryngeal tissue classes, was extracted. With
the best performing feature, the achieved median classification recall was 93% (inter-quartile range (IQR) = 6%).
When excluding low-confidence patches, the achieved median recall was increased to 98% (IQR = 5%), proving
the high reliability of the proposed approach. This research represents an important advancement in the state of art
of computer-assisted laryngeal diagnosis and the results are a promising step toward a helpful endoscope-integrated
processing system to support the early-stage diagnosis.
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1 Introduction

Squamous cell carcinoma (SCC) is the most common cancer of the laryngeal tract, arising from

95% to 98% of all cases of laryngeal cancer.1 It is well know from medical literature that early-

stage SCC diagnosis can lower mortality rate and preserve both laryngeal anatomy and vocal fold

function.2 Histopathological examination of tissue samples extracted with biopsy is currently the

gold-standard for diagnosis. However, the relevance of tissue visual analysis for screening pur-

pose has led, in the past few years, to the development of new optical-biopsy techniques, such as

narrow-band imaging (NBI) endoscopy,3 which has become the state of the art for laryngeal tract

inspection. The identification of suspicious tissues during the endoscopic examination is, however,

challenging due to the late onset of symptoms and to the small modifications of the mucosa, which
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Fig 1: Visual samples of narrow-band imaging laryngeal endoscopic frames of patients affected by squa-
mous cell carcinoma.

can pass unnoticed to the human eye.4 Main modifications occur to the mucosa vascular tree,

with the presence of longitudinal hypertrophic vessels and dot-like vessels, known as intraepithe-

lial papillary capillary loops (IPCL).3 Changes in the epithelium aspect not related to the vascular

tree, such as thickening and whitening of the epithelial layer (leukoplakia), are associated with

increased risk of developing SCC, too.5 Visual samples of laryngeal endoscopic video frames of

patients affected by SCC are given in Fig. 1.

Considering the clinical challenges in diagnosis, some preliminary attempts of computer-assisted

diagnosis have been presented (Refs. 6,7), despite only Barbalata et al.6 specifically focus on early-

stage diagnosis. The study proposes an algorithm for the classification of early-stage vocal fold

cancer based on the segmentation and analysis of blood vessels. Vessel segmentation is performed

with matched filtering (MF) coupled with first order derivative of Gaussian. Vessel tortuosity,

thickness and density are used as features to discriminate between malignant and benign tissue by

means of linear discriminant analysis (LDA). Despite the good results (overall classification accu-

racy = 84%), the classification proposed in Ref. 6 is strongly sensitive to a-priori set parameters,
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e.g., vessel width and orientation. Moreover, focusing on vessels alone does not allow to take into

account epithelial modifications that do not affect the vascular tree (i.e., in case of leukoplakia).

The emerging and rich literature on surgical data science for tissue classification outside the

field of laryngoscopy has recently focused on more sophisticated techniques, which mainly exploit

machine learning algorithms to classify tissues according to texture-based information.8 In Ref. 9,

the histogram of local binary patterns (LBP) is exploited to classify ulcer and healthy regions in

capsule endoscopy images using multilayer perceptron. In Ref. 10, the LBP histogram is combined

with intensity-based features to classify abdominal tissues in laparoscopic images by means of

support vector machines (SVM). Similarly, in Ref. 11, intensity-based features and LBP histogram

are used to characterize lesions in gastric images. In Ref. 12, the LBP histogram is combined with

gray-level co-occurrence matrix (GLCM)-based features to classify gastroscopy images. AdaBoost

is used to perform the classification. In Ref. 13, Gabor filter-based features are used to classify

healthy and cancerous tissue in gastroscopy images by means of SVM. A recent work14 exploits

NBI data for colorectal image analysis. Colorectal tissues are classified as neoplastic or healthy by

means of GLCM-based features and SVM.

Inspired by these recent and promising studies, in this paper we aim at investigating if texture-

based approaches applied to laryngeal tissue classification in NBI images can provide reliable

results, to be used as support for early-stage diagnosis. Specifically, we investigate the following

two hypotheses:

• Hypothesis 1 (H1): Machine-learning techniques can classify laryngeal tissues in NBI im-

ages by exploiting textural information;

• Hypothesis 2 (H2): By estimating the level of classification confidence and discarding low-
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Fig 2: Workflow of the proposed approach to laryngeal tissue classification in narrow-band imaging endo-
scopic video frames.

confidence samples, the number of incorrectly classified cases can be lowered.

The importance of estimating the level of classification confidence with a view to improving

system performance has been widely highlighted in several research fields, such as face recog-

nition,15 spam-filtering,16 and glioma and colon cancer recognition.17 In particular, is has been

reported that allowing a system to produce “don’t know” results can potentially reduce the number

of incorrectly classified cases.18 In the analyzed scenario, estimating the classification confidence

would be beneficial since tissue biopsy would be required only for low-confidence regions in the

image.

To the best of our knowledge, we are the first to investigate the use of texture-based classifica-

tion algorithms for laryngeal tissue analysis.

2 Material and methods

This section explains the proposed approach to automatic laryngeal tissue classification (Sec. 2.1),

as well as the evaluation protocol (Sec. 2.2) used to investigate the two hypotheses introduced in

Sec. 1.
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2.1 Automatic laryngeal tissue classification

The proposed method consists of the following steps: (i) Pre-processing (Sec. 2.1.1), (ii) Feature

extraction (Sec. 2.1.2), (iii) Classification (Sec. 2.1.3) and (iv) Confidence estimation (Sec. 2.1.4).

The workflow of the approach is shown in Fig. 2.

2.1.1 Pre-processing

Anisotropic diffusion filtering19 is used to lower noise while preserving sharp edges in NBI images.

Specular reflections (SR), usually present due to the wet and smooth laryngeal surface, are auto-

matically identified exploiting their low saturation and high brightness and then masked.6 After

denoising, squared patches are selected from the image, as described in Sec. 2.2.

SR masking is necessary because it may not always be possible selecting patches without SR.

This is due to the small extension of early-stage cancerous tissues in the image, which may overlap

with SR (especially for the case of intra-papillary capillary loop-like vessels).

2.1.2 Feature extraction

As laryngeal endoscopic images are captured under various illumination conditions and from dif-

ferent viewpoints, the features that encode the tissue texture information should be robust to the

pose of the endoscope as well as to the lighting conditions. Furthermore, with a view of a real-time

computer-aided application, they should be computationally cheap. In this paper, we investigate

the use of the following descriptors to characterize the texture of laryngeal tissues:

Texture-based global descriptors Among classic texture-based global descriptors, LBP are

widely considered as the state of the art for medical image texture analysis.20 LBP are gray-scale
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invariant and provide low-complexity, well matching the requisite of this application. The first for-

mulation of LBP (LBPR,P ) introduced in the literature requires to define, for a pixel c = (cx, cy), a

spatial circular neighborhood of radius R with P equally-spaced neighbor points ({pn}n∈(0,P−1)):

LBPR,P (c) =
P−1∑
n=0

s(gpn − gc)2n (1)

where gc and gpn denote the gray values of the pixel c and of its nth neighbor pn, respectively, and

s is defined as:

s(gpn − gc) =

{
1, gpn ≥ gc

0, gpn < gc

(2)

The most often adopted LBP formulation is the uniform rotation-invariant one (LBP riu2
R,P ).21 Ro-

tation invariance is suitable for the purpose of this paper since the endoscope pose during the lar-

ynx inspection is constantly changing. From LBP riu2
R,P , the L2-normalized histogram of LBP riu2

R,P

(HLBP riu2
) is computed and used as feature vector.

For comparison, the GLCM, a second widely used descriptor, is tested. GLCM calculates how

often pair of pixels (c,q) with specific values and in a specified spatial relationship occur in an

image. The spatial relationship is defined by θ and d, which are the angle and distance between

c and q. The GLCM width (W ), equal to the GLCM height (H), corresponds to the number of

quantized image intensity gray-levels. For the w = h intensity gray-level, the GLCM computed

6



Table 1: Tested feature vectors and corresponding number of features. Stat1: Intensity mean, variance,
entropy; FGLCM : Gray-level co-occurrence matrix-based descriptors; HLBP riu2 : Normalized histogram of
rotation-invariant uniform local binary patterns.

Feature vector Stat1 FGLCM FGLCM + Stat1 HLBP riu2
HLBP riu2

+ Stat1
Number of features 9 144 153 162 171

with θ and d is defined as:

GLCMθ,d(h,w) =



1, I(c) = h and I(cx + d · cos(θ), cy + d · sin(θ)) = w

1, I(c) = h and I(cx − d · cos(θ), cy − d · sin(θ)) = w

0, otherwise

(3)

From the normalized GLCMθ,d, as suggested in Ref. 22, a feature set (FGLCM ) is extracted,

which consists of GLCM contrast, correlation, energy and homogeneity. The normalizedGLCMθ,d,

which expresses the probability of gray-level occurrences, is obtained by dividing each GLCMθ,d

entry by the sum of all entries.

First order statistics Intensity mean, variance and entropy (Eq. 4) in each patch are computed

and concatenated to form a single intensity-based feature set (Stat1). The entropy is defined as:

entropy = −
∑
i

hi log2(hi) (4)

where hi refers to the image histogram counts of the i(= 0 : 255) bin. As recommended in Ref. 23,

such features are adopted to integrate the texture-based informations encoded in LBP riu2
R,P .

In addition to these descriptors, we tested two feature combinations (FGLCM+Stat1,HLBPriu2
+

Stat1), as suggested in Ref. 23 for applications in colorectal image analysis. All the tested feature
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vectors and their length are reported in Table 1.

2.1.3 Classification

To perform tissue classification, SVM are used.24 SVM are chosen since they allow overcom-

ing the curse-of-dimensionality that arises analyzing our high-dimensional feature space.25, 26 The

kernel-trick prevents parameter proliferation, lowering computational complexity and limiting

over-fitting. Moreover, the SVM decisions are only determined by the support vectors, which

makes SVM robust to noise in training data. Here, SVM with the Gaussian kernel (Ψ) are used.

For a binary classification problem, given a training set of N data {yk,xk}Nk=1, where xk is the kth

input feature vector and yk is the kth output label, the SVM decision function takes the form of:

f(x) = sign
[ N∑
k=1

a∗kykΨ(x,xk) + b
]

(5)

where:

Ψ(x,xk) = exp{−γ||x− xk||22/σ2}, γ > 0 (6)

b is a real constant and a∗k is retrieved as follow:

a∗k = max
{
− 1

2

N∑
k,l=1

ykylΨ(xk,xl)akal +
N∑
k=1

ak

}
(7)

with:
N∑
k=1

akyk = 0, 0 ≤ ak ≤ C, k = 1, ..., N (8)

In this paper, γ and C are retrieved with grid search, as explained in Sec. 2.2. To implement

multi-class SVM classification, the one-vs-one scheme is used.
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For the sake of completeness, the performance of other classifiers, such us k-nearest neighbors

(kNN),27 naive Bayes (NB),28 and random forest (RF),29 are also investigated.

Prior to classification, the feature matrices are normalized within each feature dimension.

Specifically, the feature matrices are pre-processed by removing the mean (centering) and scal-

ing to unit variance.

2.1.4 Confidence estimation

As a pre-requisite for our confidence estimation, we compute the probability (Pri(j)) of the ith

patch to belong to the jth class, with j ∈ [1, J ] and J the number of considered tissue classes.

For the probability computation, the Platt scaling method revised for multi-class classification

problems is used.30 The Platt scaling method consists of training the parameters of an additional

sigmoid function to map SVM outputs to probabilities.

To estimate the reliability of the SVM classification of the ith patch, inspired by the work in

Ref. 31 for abdominal tissue classification applications, we evaluate the dispersion of Pri among

the J classes using the Gini coefficient (GC):32

GC = 1− 2

∫ 1

0

L(x)dx (9)

where L is the Lorentz curve, which is the cumulative probability among laryngeal classes rank-

ordered by decreasing values of their individual probabilities. The GC has value 0 if all the proba-

bilities are equally distributed (maximum uncertainty) and 1 for maximum inequality (the classifier

is 100% confident in assigning the label). The classification of a patch is considered to be confident
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Table 2: Evaluation dataset. For each of the 33 patients’ video, 10 images are used for a total of 330 images.
From each image, 4 tissue patches are extracted for a total of 1320 patches relative to the 4 considered tissue
classes: healthy tissue, tissue with hypertrophic vessels, leukoplakia, tissue with intraepithelial papillary
capillary loop-like vessels. For a robust evaluation, the dataset is split at patient level to perform 3-fold
cross-validation. In each fold, 11 patients are included, for a total of 110 images per fold. Each fold
contains 440 patches equally distributed among the laryngeal tissue classes.

Fold 1 Fold 2 Fold 3 Total
patient ID 1-11 12-22 23-33 33

n. of images 110 (10 per patient) 110 (10 per patient) 110 (10 per patient) 330
n. of patches 440 patches (4 per image) 440 patches (4 per images) 440 patches (4 per image) 1320

if GC is higher that a threshold (τ ):


Patch(i) is confident, GC ≥ τ ;

Patch(i) is not confident, otherwise.

2.2 Evaluation

In this study, four tissue classes, which are typically evaluated during early-stage diagnosis with

NBI laryngoscopy, are considered: (i) tissue with IPCL-like vessels, (ii) leukoplakia, (iii) tissue

with hypertrophic vessels, and (iv) healthy tissue. We retrospectively analyzed 33 NBI videos,

which refer to 33 different patients affected by SCC. SCC was diagnosed with histopathological

examination. Videos were acquired with a NBI endoscopic system (Olympus Visera Elite S190

video processor and an ENF-VH rhino-laryngo videoscope) with frame rate of 25fps and image

size of 1920× 1072 pixels.

A total number of 330 in-focus images (10 per video) was manually selected from the videos,

in such a way that the distance between the endoscope and the tissue could be considered constant

and approximatively equal to 1 mm for all the images. This distance is suggested in clinics for

correct evaluation of tissues during NBI endoscopy examination.33

The NBI images were pre-processed as in Sec. 2.1.1. The parameters used for anisotropic
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Fig 3: Four patches, relative to the four analyzed laryngeal tissue classes, are manually cropped from the im-
age. Blue: tissue with intraepithelial papillary capillary loop-like vessels; Yellow: tissue with Leukoplakia;
Green: healthy tissue; Red: tissue with hypertrophic vessels.

diffusion filtering were set as in Ref. 34. The saturation and brightness thresholding values used to

mask SR were set as in Ref. 6.

For each of the 330 images, 4 patches were manually cropped with a size of 100× 100 pixels,

for a total of 1320 patches, equally distributed among the four classes (Table 2). Each patch

was cropped from a portion of tissue relative to only one of the four considered classes (tissue

with IPCL-like vessels, leukoplakia, hypertrophic vessels and healthy tissue), thus avoiding tissue

overlap in one patch. The selection was performed under the supervision of an expert clinician

(otolaryngologist specialized in head and neck oncology). A visual example of 4 patches cropped

from a NBI frame is shown in Fig. 3. We decided to select only one patch per tissue class because,

in most of the images, we were not able to select more than a single patch for the IPCL-like class.

This is due to the small extension of this vascular alteration in early-stage cancer.

For the feature extraction described in Sec. 2.1.2, the LBP riu2
R,P were computed with the follow-

ing (R;P ) combinations: (1; 8), (2; 16), (3; 24), and the corresponding HLBP riu2
were concate-

nated. Such choice allows a multi-scale, and therefore a more accurate description of the texture,

as suggested in Ref. 10. Twelve GLCMθ,d were computed using all the possible combinations of

(θ, d), with θ ∈ {0◦, 45◦, 90◦, 135◦} and d ∈ {1, 2, 3}, and the corresponding FGLCM sets were
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concatenated. The chosen interval of θ allows to approximate rotation invariance, as suggested in

Ref. 22. The values of d were chosen to be consistent with the scale used to compute LBP riu2
R,P .

LBP riu2
R,P , GLCMθ,d and Stat1 were computed for each channel in the NBI image.

As for performing the classification presented in Sec. 2.1.3, the SVM hyper-parameters (γ, C)

were retrieved via grid-search and cross-validation on the training set. The grid-search space for γ

and C was set to [10−7, 10−1] and [10−3, 103], respectively, with six values spaced evenly on log10

scale in both cases. Similarly, we retrieved the number of neighbors for kNN with a grid-search

space set to [2,10] with nine values spaced evenly, and the number of trees in the forest for RF with

a grid-search space set to [40,100] with six values spaced evenly.

The computation of HLBPriu2
, FGLCM and Stat1 was implemented using OpenCv 1. The clas-

sification was implemented with scikit-learn 2.

Investigation of H1 In order to assess our hypothesis that machine-learning techniques can char-

acterize laryngeal tissues in NBI images by exploiting textural information, we first evaluated the

classification performance of the texture descriptors without confidence estimation (Base case).

To obtain a robust estimation of the classification performance, 3-fold cross-validation was

performed, separating data at patient level to prevent data leakage. The 1320-patch dataset was split

to obtain well-balanced folds both at patient-level and tissue-level, as shown in Table 2. Each time,

two folds were used for training and the remaining one for testing purpose only. This evaluation

does not lead to biased results since our dataset is balanced over the three folds.

Inspired by Ref. 10, we computed the class-specific recall (Recclass = {Recclassj}j∈[1,J=4]) to

1http://docs.opencv.org /3.1.0/index.html
2http://scikit-learn.org/stable/ index.html
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evaluate the classification performance, where:

Recclassj =
TPj

TPj + FNj

(10)

being TPj the number of elements of the jth class correctly classified (true positive of the jth class)

and FNj the number of elements of the jth class wrongly assigned to one of the three left classes

(false negative of the jth class). We further evaluated the class-specific precision (Precclass =

{Precclassj}j∈[1,J=4]), where:

Precclassj =
TPj

TPj + FPj
(11)

beingFPj the number of false positive of the jth class, and the F1 score (F1class{F1classj}j∈[1,J=4]),

where:

F1classj = 2
Precclassj ×Recclassj
Precclassj +Recclassj

(12)

For a comprehensive analysis, we computed the area (AUC) under the receiver operating char-

acteristic (ROC) curve. Since our task is a multi-class classification problem and our dataset is

balanced, we computed the macro-average ROC curve. The gold-standard classification was ob-

tained by labeling the patches under the supervision of an expert clinician.

We used the Wilcoxon signed-rank test (significance level α = 0.05) for paired sample to as-

sess whether the classification achieved with our best performing (highest Recclass median value)

feature vector significantly differs from the ones achieved with the other feature sets in Table 1.

Similarly, we evaluated whether the classification achieved with SVM differs (Wilcoxon signed-

rank test with α = 0.05) from the ones achieved with the other tested classifiers (kNN, NB, RF).

For the sake of completeness, we compared the performance of our best-performing feature set
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Table 3: Median (first quartile - third quartile) class-specific recall (Recclass), precision (Precclass), and
F1-score (F1class) obtained testing different feature vectors for the Base case (i.e., without the inclusion
of confidence on classification estimation). Classification is obtained with support vector machines. Stat1:
Intensity mean, variance, entropy; FGLCM : Gray-level co-occurrence matrix-based descriptors; HLBP riu2 :
Normalized histogram of rotation-invariant uniform local binary patterns.

Stat1 FGLCM FGLCM + Stat1 HLBPriu2
HLBPriu2

+ Stat1
Recclass 72 (54-82) 75 (72-81) 78 (71-86) 90 (87-92) 93 (90-96)
Precclass 67 (57-80) 75 (71-80) 78 (72- 84) 90 (88-92) 94 (91-95)
F1class 70 (56-81) 74 (71-80) 79 (72-85) 90 (89-91) 92 (91-95)
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(a) Boxplots of Recclass for the tested features
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Fig 4: Comparison of different features without including the classification confidence estimation. Classi-
fication is obtained with support vector machines. (a) Boxplots of class-specific recall (Recclass) for dif-
ferent features. Stat1: Intensity mean, variance, entropy; FGLCM : Gray-level co-occurrence matrix-based
descriptors; HLBP riu2 : Histogram of rotation-invariant uniform local binary patterns. The stars indicate
significant differences (Wilcoxon test, α = 0.05). (b) Normalized confusion matrix for HLBPriu2 + Stat1.
The colorbar indicates the number of patches. The total number of patches (n. of patches) is reported.

with those of the most recent - and so far the only one - method (Ref. 6) published on the topic of

laryngeal tissue classification in NBI endoscopy, applying the latter to our dataset. As introduced

in Sec. 1, the method requires to set the vessel segmentation parameters, which were here set as in

Ref. 6. The feature classification was performed with SVM, instead of LDA, for fair comparison.

The comparison was repeated excluding the leukoplakia class, to avoid privileging the proposed

method. Indeed, the method in Ref. 6 focuses on the analysis of vessels, which however are not

visible in case of leukoplakia due to the thickening of the epithelial layer.
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Stat1: 0.91 (±0.02)
FGLCM: 0.93 (±0.01)
FGLCM + Stat1: 0.96 (±0.01)

HLBPriu2
: 0.98 (±0.01)

HLBPriu2
 + Stat1: 0.99 (±0.01)
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(b) ROC curves for the the tested classifiers.
Fig 5: Macro-average receiver operating characteristic (ROC) curves. The mean (± standard deviation)
curves obtained from the 3 cross-validation folds are reported in bold (transparent area). The mean (±
standard deviation) area under the ROC curve is reported in the legend. (a) ROC curves for the tested
features. Classification is obtained using support vector machines. Stat1: Intensity mean, variance, entropy;
FGLCM : Gray-level co-occurrence matrix-based descriptors; HLBP riu2 : Histogram of rotation-invariant
uniform local binary patterns. (b) ROC curves for the tested classifiers. Classification is obtained using the
histogram of local binary pattern and first order statistics. kNN: k-nearest neighbors, NB: naive Bayes, RF:
random forest, SVM: support vector machines.

Table 4: Comparison of different classifiers. Median (first quartile - third quartile) class-specific recall
(Recclass), precision (Precclass), and F1 score (F1class) are reported for the four different tissue classes.
Classification is obtained using the histogram of local binary patterns and first order statistics. kNN: k-
nearest neighbors, NB: naive Bayes, RF: random forest, SVM: support vector machines.

kNN NB RF SVM
Recclass 90 (84-93) 78 (74-82) 89 (84-91) 93 (90-96)
Precclass 89 (86-91) 81 (73-84) 87 (86-89) 94 (91-95)
F1class 89 (86-91) 79 (74-83) 89 (86-90) 92 (91-95)

Investigation of H2 To investigate the hypothesis that, by estimating the level of classification

confidence and discarding low-confidence samples, the number of incorrectly classified cases can

be lowered, we evaluated how Recclass, Precclass, F1class obtained with our best performing

feature vector change considering different thresholds (τ ∈ [0.6 : 0.1 : 1)) on the GC value.

Since, once the low-confidence patches are excluded, the balance between classed did not hold, we

computed the ROC curves for each of the four laryngeal classes (and not the macro-average ones

as for H1).
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(a) Vessel segmentation
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Fig 6: Performance of the state of art. (a) Visual samples of the vessel segmentation obtained applying
Barbalata et al.6 algorithm to patches with hypertrophic vessels (first row), healthy tissue (second row) and
intraepithelial papillary capillary loop-like vessels (third row). From left to right, original patch, vessel mask
and vessel mask superimposed on the original patch. (b) Normalized confusion matrix obtained applying
Barbalata et al.6 algorithm to our dataset. Colorbar indicates the number of patches. The total number of
patches (n. of patches) is reported.

3 Results

For the Base case, the best performance (median Recclass = 93%, inter-quartile range (IQR) =

6%) was obtained with HLBPriu2
+ Stat1 and SVM classification, as shown in Table 3. The same

was observed also when considering Precclass (median = 94%, IQR = 4%) and F1class (median

= 92%, IQR = 4%). The classification statistics relative to all the analyzed features are reported in

Fig. 4a. Significant differences (p-value < 0.05) were found when comparing HLBPriu2
+ Stat1

with Stat1, FGLCM , and FGLCM + Stat1. The normalized confusion matrix for HLBPriu2
+ Stat1

is shown in Fig. 4b. In Fig. 5a, the macro-average ROC curves are reported for all tested features

and SVM classification. The mean AUC across the three folds was 0.99 for HLBPriu2
+ Stat1.

As shown in Table 4, SVM has shown comparable performance with respect to kNN and RF in

terms of Recclass, Precclass, F1class, while SVM outperformed (p-value < 0.05) NB. The same

can be noticed from the ROC curve analysis in Fig. 5b.

When applying the algorithm proposed by Barbalata et al.6 to our dataset, a median Recclass

value of 42% was obtained, with IQR of 48%. Significant differences (p-value� 0.05) were found
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Table 5: Median (first quartile - third quartile) class-specific recall (Recclass), precision (Precclass), and
F1 score (F1class) are reported at different level of confidence (τ ) on support vector machines classification.

τ = 0 τ = 0.60 τ = 0.70 τ = 0.80 τ = 0.90
Recclass 93 (90-96) 95 (91-97) 96 (92-99) 98 (93-99) 98 (95-100)
Precclass 94 (91-95) 95 (92-96) 97 (93-98) 97 (95-98) 99 (96-100)
F1class 92 (91-95) 94 (93-96) 95 (94-97) 96 (95-97) 98 (97-99)
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Fig 7: Effect of varying the threshold (τ ) on the classification confidence level. Classification is obtained
using local binary pattern and first order statistics with support vector machines. (a) Boxplot of the class-
specific accuracy-rate (Recclass) for different τ . The percentage of confident patches for each τ is reported
above each boxplot. τ = 0 refers to classification without confidence estimation. (b) Normalized confusion
matrix for τ = 0.9. The number of patches for each class is reported in parenthesis.

when comparing the algorithm results with those obtained exploiting HLBP riu2
+ Stat1. Visual

examples of the vessel segmentation obtained with the method proposed in Ref. 6 are reported in

Fig. 6a for patches with hypertrophic vessels, healthy tissue and IPCL-like vessels. The confusion

matrix for the classification obtained with the method in Ref. 6 is reported in Fig. 6b. Barbalata

et al. algorithm correctly labeled leukoplakias and abnormal IPCL only in the 7% and 26% of all

cases, respectively. Almost half of leukoplakias and abnormal IPCL were misclassified as healthy

tissues. When excluding the leukoplakia class, the Recclass was: 62% (healthy tissue), 70% (tissue

with hypertrophic vessels), 28% (tissue with ICPL-like vessels).

As shown in Table 5, when varying τ in [0.6 : 0.1 : 1), the median Recclass forHLBPriu2
+Stat1

monotonically increased from 93% (Base case) to 98% (τ = 0.9). The corresponding statistics are
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(b) ROC curves for τ = 0.9.
Fig 8: Receiver operating characteristic (ROC) curves at different level τ of confidence on classification.
Each curve refers to one of the laryngeal tissue classes. He: healthy tissue; Hbv: tissue with hypertrophic
vessels; Le: leukoplakia; IPCL: tissue with intraepithelial papillary capillary loop-like vessels. The area
under the ROC curve, for each curve, is reported in the legend. Classification is obtained using local binary
pattern and first order statistics with support vector machines. (a) ROC curves for τ = 0.6. (b) ROC curves
for for τ = 0.9.

shown in Fig. 7a. The same trend was observed for Precclass and F1class. The ROC curves

for τ = 0.6 and τ = 0.9 are shown in Fig. 8. The AUC is reported for each of the analyzed

classes (AUC = 0.99 ± 0.01 (τ = 0.9)). The Recclass increment came at the cost of a reduction

of the percentage of confident patches to 80% (τ = 0.9) of all the patches in the testing set,

which corresponds to ∼ 1056 patches. However, as shown in Fig. 6b, with the exclusion of low-

confidence patches, even in the worst case (classification of tissue with IPCL-like vessels), the

accuracy still reached 93%.

Fig. 9 shows visual samples of patches in our dataset (Fig. 9a), as well as samples of patch

classification results at the Base case (Fig. 9b) and after the introduction of the confidence measure

(τ = 0.9) (Fig. 9c).

4 Discussion

In this paper, we presented and fully evaluated an innovative approach to the computer-aided clas-

sification of laryngeal tissues in NBI laryngoscopy. Different textural features were tested to in-
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Fig 9: Visual samples of classification results. Classification is obtained using local binary pattern and first
order statistics with support vector machines. (a) Examples of patches for the four tissue classes in our
dataset. Visual confusion matrices for the Base case (b), i.e., without the inclusion of confidence estimation,
and after including the confidence estimation with τ = 0.9 (c). Black squares indicate the absence of
misclassification between the true and predicted label.

vestigate the best feature set to characterize malignant and healthy laryngeal tissues: texture-based

global descriptors (FGLCM and HLBP riu2
) and first order statistics (Stat1). A confidence measure

on the SVM-based classification was used to estimate the reliability of the classification results.

When comparing non-combined features (FGLCM , Stat1, HLBP riu2
), the highest classification

performance was obtained with HLBP riu2
. In general, FGLCM performed worse with respect to

HLBP riu2
. This is probably due to the GLCM lack of robustness to illumination condition changes,

which are typically encountered during endoscopic examination.

SVM has shown comparable performance with respect to RF and NB, while significant differ-

ences (p-value < 0.05) where found with respect to NB. This is probably due to NB not being able

to handle high-dimensional feature spaces such as ours. This is in accord with previous findings in

the literature, e.g., Refs. 25, 35, 36.

When comparing the proposed method with the state of the art, the classification based on

HLBP riu2
significantly outperformed (p-value� 0.05) the one proposed by Barbalata et al.,6 also

when excluding the leukoplakia class. Since the method in Ref. 6 relies on accurate vessel segmen-

tation (to extract vascular shape-based features), a possible reason of such result could be related

to the challenging nature of our validation dataset, which however well summarizes the diagnostic
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scenario. Indeed, vessel segmentation was not trivial (Fig. 6a) due to (i) the noisy nature of NBI

data, (ii) the low contrast of vessels in patches with healthy tissue and leukoplakia and (iii) the ir-

regular shape of IPCL-like vessels. With texture-based features, higher classification performance

was achieved with respect to shape-based features since texture-based feature computation does

not require vessel segmentation. Moreover, the texture-based features here used are invariant to

illumination changes and endoscope pose, which makes them suitable for the analyzed scenario.

The classification performance obtained with HLBP riu2
was further increased by estimating the

confidence of the SVM classification, with few misclassification of confident patches that mainly

occurred with high-challenging vascular patterns, whose classification is not trivial also for the

human eye (Fig. 9c). Such results support our hypothesis that the proposed approach is suit-

able for classifying laryngeal tissues with high reliability, since it automatically estimates its own

confidence level and provides high classification accuracy for confident patches.

A limitation of the proposed study could be seen in its patch-based nature. Note, however,

that the choice of focusing on patches manually extracted under the supervision of an expert clini-

cian was driven by the necessity of having a controlled and representative dataset to fairly evaluate

different features. As future work, instead of manually selecting squared patches, we plan to imple-

ment more automatic strategies, such as superpixel segmentation.37 The features cold be directly

extracted from superpixels, as to classify each superpixel as belonging to one of the analyzed laryn-

geal classes. Moreover, considering that recent researches on gastrointestinal image classification

(e.g., Refs. 38,39) are focusing more and more on convolutional neural networks (CNN), it would

be interesting to exploit also CNN as feature extractor for comparison.

Our expectation is that research on the classification of laryngeal tissues will be empowered by

the proposed work, becoming a topic of interest for the scientific community, which until now has
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mainly focused on other anatomical sites, such as the gastro-intestinal tract. Moreover, we hope

this study will motivate a more structured and widespread data collection in clinics and the sharing

of such data through public databases. Despite the dimension of the analyzed dataset (330 images)

is comparable with that of similar researches (e.g., Barbalata et al.6 with 120 images, Turkmen

et al.7 with 70 images), larger amounts of data would bring the possibility of further exploring

machine-learning classification algorithms, e.g., to classify a larger number of laryngeal malignant

tissues.

In conclusion, the most significant contribution of this work is showing that LBP-based features

and SVM can differentiate laryngeal tissues accurately. This is highly beneficial for practical uses.

Comparing with other state-of-the-art method in the area, the proposed method is simpler and the

result is more accurate. It is acknowledged that further research is required to further ameliorate the

algorithm as to offer all possible support for diagnosis, but the results presented here are surely a

promising step towards a helpful endoscope-integrated processing system to support the diagnosis

of early-stage SCC.
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List of Figures

1 Visual samples of narrow-band imaging laryngeal endoscopic frames of patients

affected by squamous cell carcinoma.

2 Workflow of the proposed approach to laryngeal tissue classification in narrow-

band imaging endoscopic video frames.

3 Four patches, relative to the four analyzed laryngeal tissue classes, are manually

cropped from the image. Blue: tissue with intraepithelial papillary capillary loop-

like vessels; Yellow: tissue with Leukoplakia; Green: healthy tissue; Red: tissue

with hypertrophic vessels.
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4 Comparison of different features without including the classification confidence

estimation. Classification is obtained with support vector machines. (a) Boxplots

of class-specific recall (Recclass) for different features. Stat1: Intensity mean,

variance, entropy; FGLCM : Gray-level co-occurrence matrix-based descriptors;

HLBP riu2
: Histogram of rotation-invariant uniform local binary patterns. The stars

indicate significant differences (Wilcoxon test, α = 0.05). (b) Normalized confu-

sion matrix for HLBPriu2
+ Stat1. The colorbar indicates the number of patches.

The total number of patches (n. of patches) is reported.

5 Macro-average receiver operating characteristic (ROC) curves. The mean (± stan-

dard deviation) curves obtained from the 3 cross-validation folds are reported in

bold (transparent area). The mean (± standard deviation) area under the ROC

curve is reported in the legend. (a) ROC curves for the tested features. Classifica-

tion is obtained using support vector machines. Stat1: Intensity mean, variance,

entropy; FGLCM : Gray-level co-occurrence matrix-based descriptors; HLBP riu2
:

Histogram of rotation-invariant uniform local binary patterns. (b) ROC curves for

the tested classifiers. Classification is obtained using the histogram of local binary

pattern and first order statistics. kNN: k-nearest neighbors, NB: naive Bayes, RF:

random forest, SVM: support vector machines.
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6 Performance of the state of art. (a) Visual samples of the vessel segmentation ob-

tained applying Barbalata et al.6 algorithm to patches with hypertrophic vessels

(first row), healthy tissue (second row) and intraepithelial papillary capillary loop-

like vessels (third row). From left to right, original patch, vessel mask and vessel

mask superimposed on the original patch. (b) Normalized confusion matrix ob-

tained applying Barbalata et al.6 algorithm to our dataset. Colorbar indicates the

number of patches. The total number of patches (n. of patches) is reported.

7 Short caption

8 Receiver operating characteristic (ROC) curves at different level τ of confidence on

classification. Each curve refers to one of the laryngeal tissue classes. He: healthy

tissue; Hbv: tissue with hypertrophic vessels; Le: leukoplakia; IPCL: tissue with

intraepithelial papillary capillary loop-like vessels. The area under the ROC curve,

for each curve, is reported in the legend. Classification is obtained using local

binary pattern and first order statistics with support vector machines. (a) ROC

curves for τ = 0.6. (b) ROC curves for for τ = 0.9.

9 Short caption

List of Tables

1 Tested feature vectors and corresponding number of features. Stat1: Intensity

mean, variance, entropy; FGLCM : Gray-level co-occurrence matrix-based descrip-

tors; HLBP riu2
: Normalized histogram of rotation-invariant uniform local binary

patterns.
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2 Evaluation dataset. For each of the 33 patients’ video, 10 images are used for a

total of 330 images. From each image, 4 tissue patches are extracted for a total

of 1320 patches relative to the 4 considered tissue classes: healthy tissue, tissue

with hypertrophic vessels, leukoplakia, tissue with intraepithelial papillary capil-

lary loop-like vessels. For a robust evaluation, the dataset is split at patient level to

perform 3-fold cross-validation. In each fold, 11 patients are included, for a total

of 110 images per fold. Each fold contains 440 patches equally distributed among

the laryngeal tissue classes.

3 Median (first quartile - third quartile) class-specific recall (Recclass), precision

(Precclass), and F1-score (F1class) obtained testing different feature vectors for

the Base case (i.e., without the inclusion of confidence on classification estima-

tion). Classification is obtained with support vector machines. Stat1: Intensity

mean, variance, entropy; FGLCM : Gray-level co-occurrence matrix-based descrip-

tors; HLBP riu2
: Normalized histogram of rotation-invariant uniform local binary

patterns.

4 Comparison of different classifiers. Median (first quartile - third quartile) class-

specific recall (Recclass), precision (Precclass), and F1 score (F1class) are re-

ported for the four different tissue classes. Classification is obtained using the

histogram of local binary patterns and first order statistics. kNN: k-nearest neigh-

bors, NB: naive Bayes, RF: random forest, SVM: support vector machines.

5 Median (first quartile - third quartile) class-specific recall (Recclass), precision

(Precclass), and F1 score (F1class) are reported at different level of confidence (τ )

on support vector machines classification.
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