Evaluating the autonomy of children with autism
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Abstract—Monitoring children with Autism Spectrum Dis-
order (ASD) during the execution of the Applied Behaviour
Analysis (ABA) program is crucial to assess the progresses
while performing actions. Despite its importance, this monitoring
procedure still relies on ABA operators’ visual observation and
manual annotation of the significant events. In this work a deep
learning (DL) based approach has been proposed to evaluate
the autonomy of children with ASD while performing the hand-
washing task. The goal of the algorithm is the automatic detection
of RGB frames in which the ASD child washes his/her hands
autonomously (no-aid frames) or is supported by the operator
(aid frames). The proposed approach relies on a pre-trained
VGG16 convolutional network (CNN) modified to fulfill the
binary classification task. The performance of the fine-tuned
VGG16 was compared against that of other CNN architectures.
The fine-tuned VGG16 achieved the best performance with a
recall of 0.92 and 0.89 for the no-aid and aid class, respectively.
These results prompt the possibility of translating the presented
methodology into the actual monitoring practice. The integration
of the presented tool with other computer-aided monitoring
systems into a single framework, will provide fully support to
ABA operators during the therapy session.

Index Terms—Autism Spectrum Disorder, Applied Behaviour
Analysis, Deep Learning, Fine-Tuning

I. INTRODUCTION

Autism Spectrum Disorder (ASD) is a severe permanent
neurodevelopmental disorder with long-term and pervasive
effects that affects 1 in 59 children, worldwide!. Impaired
communication skills, inability to socially interact, absence of
emotional reciprocity, limited interests and repetitive behaviors
are among the major adverse implications of ASD.

The treatment of children suffering from ASD mostly relies
upon the Applied Behavioral Analysis (ABA) technique. The
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Fig. 1. The acquisition set-up (yellow box), placed in the bathroom to record
the sink, consisted of an Astra Mini S-Orbbec® RGB-D camera and a minipc
Intel® NUC core i5. The blue boxes show the camera field of view.

ABA aims at modifying the child behaviour to make it
functional to the tasks of everyday life (e.g., nutrition, personal
hygiene, dressing, ...) and improving child ability to relate with
others. The application of this technique at an early age allows
to act effectively on the child’s behavioral processes, leading
to significant results [1]. The ABA therapy has generally three
main phases: the first one is merely the observation of child
behaviour and reaction to external stimuli. Subsequently, the
ABA therapist analyses the behavioural reactions of the child.



Sec. A
79 videos

37 videos

| 36 videos to train and validate |

Sec. A Sec. lIB Sec. IV
no-aid
Frame Frame Trained Autonomy
extraction selection CNN . index
= aid
Frame Frame
extraction selection

Fig. 2. Workflow of the proposed deep learning (DL)-based application to classify RGB frames in which the child washes his/her hands with the help of
the operator (aid) or autonomously (no-aid). In grey the discarded video sequences (the ones without the subjects of interest), in green the video sequences
with the ABA operators and the child during hand-washing. In the frame extraction step the video sequences have been divided in frames which were then
selected and annotated in no-aid and aid class. The frames in which the child washes his/her hands autonomously (no-aid frames) are depicted in yellow.
The frames in blue box are those in which the operator helps the child in washing his/her hands (aid frames).

Finally, the ABA operator draws up a program of specific and
personalized exercises to modify the dysfunctional behavior
of the child [2].

The child is constantly monitored to check the actual
progress and take note, in the form of qualitative scales, of
any encountered difficulty, which may require a variation in
the ABA program. However, despite its importance, this moni-
toring procedure still heavily relies on either direct observation
or revision of video recordings by the operators, both coupled
with paper-and-pencil-rating scales [3]. This monitoring proce-
dure, which includes both the child observation and behaviour
evaluation, beside being time-consuming, is qualitative and
may be prone to inaccuracies due to operator fatigue.

To attenuate this issue, some promising computer-assisted
approaches have been proposed in literature. The majority of
them is focused on diagnosing ASD. In [4] the authors propose
a deep-learning (DL)-based algorithm that analyses eye move-
ment patterns from video data to discriminate between children
with diagnosed ASD and typically developing children. The
work in [5] implements a DL framework that analyses video
of commonly performed gestures (e.g., grasping a bottle).

Few literature exists on computer-aided systems to support
ABA operators in monitoring children with ASD during the
therapy session. This may be attributed to the lack of publicly
available observational databases. In [6] and [7], stereotypical
motor movements of children with ASD, are detected by
analysing data from wearable sensors (e.g., accelerometers
data) via standard machine learning (ML) and DL meth-

ods, respectively. Unlike DL, ML-based approaches, require
a handcrafted-feature extraction step. This procedure, which
could be performed either manually or via specific feature ex-
traction algorithms, may be computational expensive, limiting
the translation of such application in the actual monitoring
practice. More in general, the use of wearable sensors may
alter the behavior of the monitored child, especially for the
youngest ones.

To offer all the possible support to the operators in mon-
itoring children with autism during the ABA therapy, in this
work we propose a DL-based application to analyze images
collected from an RGB-D camera. In accordance with our
clinical partners, we decided to analyse, among the basic
autonomies, that of hand-washing, so we placed the camera
over the bathroom sink as showed in Fig 1 and deepened is
Sec. II-A. The camera records the ABA operator intent on
teaching the child what to do to wash the hands, autonomously.
The proposed DL algorithm aims to detect, from an RGB
frame, whether the child is washing hands autonomously or
with the support from the ABA operator. Then, based on
the prediction of the algorithm, an intuitive washing-hand
autonomy index is calculated.

This paper is organized as follows: Sec. II describes the
DL-approach to classify if the child washes his/her hands with
(aid) or without (no-aid) the support of the operator, Sec. III
presents the experimental protocol to validate the presented
approach. The experimental results are reported in Sec. IV
and discussed in Sec. V, Sec. VI concludes the paper.



TABLE I
DATASET DESCRIPTION: WE USED THE ANNOTATED FRAMES FROM 36
VIDEOS TO TRAIN AND VALIDATE THE ARCHITECTURE (70% OF FRAMES
TO TRAIN AND 30% OF FRAMES TO VALIDATE), WHILE THE ANNOTATED
FRAMES OF 1 VIDEO WERE USED TO TEST THE ARCHITECTURE.

Training set Validation set Test set
no-aid aid no-aid aid no-aid | aid
3124 3470 1339 1488 201 118

36 videos 1 video

9 children 1 child

II. METHODS

In this section, we first explain the rationale of the case
study we examined (Sec. II-A). We describe the network
architecture in Sec. II-B and the training strategy implemented
to accomplish our classification task in Sec. II-C. Finally
we introduce the Hand-Washing autonomy index (II-D). The
workflow of the proposed DL approach is showed in Fig. 2

A. Data acquisition protocol: the hand-washing case of study

Personal autonomy skills are certainly one of the elements
that mostly affect the quality of life of the child with ASD:
being independent from assistance for personal needs might
change the future of these children and the way they relate
to the environment [8]. In accordance with our clinical part-
ners, we decided to monitor the autonomy of hand-washing
which, among the basic autonomies, is fundamental for the
safety of the person, for ameliorating social integration and to
strengthen the child’s self-esteem.

As showed in Fig. 1, to accomplish our goal, we placed an
RGB camera on the corner of the bathroom of the ABA centre?
to film over the sink. The acquisition set-up, which consisted
of an RGB-D camera (Astra Mini S-Orbbec®) and a minipc
Intel® NUC core i5, was installed to be imperceptible and to
not distract the child during the therapy.

A custom-built python script was implemented to auto-
matically acquire concatenated video sequences of 5 minutes
each®. After gaining the authorization by the children legal
guardians, the acquisition sessions were carried out using a
digital programmable timer, for one month, six hours per 5
days (from Monday to Friday).

B. Network architecture

To classify the selected frames in aid and no-aid we decided
to implement VGG16 network as a trade-off between low
model complexity and good predictive power.

In the original VGG16 implementation [9], the input
224x224 RGB image is processed through 13 convolutional
(conv) layers which act as features extractors. Each conv block
has filters with a quite small receptive field (33 pixels) and is
activated by a rectified linear unit (ReLU) activation function.
Every two or three convolutional blocks (depending on the
network depth), max pooling layers are used to progressively
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Fig. 3. VGGI16 neural network to classify aid and no-aid frames. In black
convolutional (conv) layers, in grey max pooling layers, in light-blue fully
connected layers and in green softmax layer.

ho

reduce the spatial size of the feature map. Max pooling
aims to lower the amount of training parameters, to reduce
the computational complexity and consequently the risk of
overfitting.

The network ends with 3 fully-connected layers with 4096,
4096, and 1000 neurons, respectively, separated by dropouts
to reduce the effects of overtraining of the neural network.
The last fully connected layer is followed by a softmax layer,
used to predict the probability of the image to belong to each
class of the Imagenet dataset*, the natural-image dataset used
to train originally VGGI16.

To accomplish our binary classification task, we replaced the
last fully connected layer with a fully connected layer with 2
neurons (Fig. 3).

C. Training strategy

To train our model we adopted fine-tuning methodology.
This procedure allows to migrate the knowledge learned
by VGGI16 during the training on Imagenet to our binary
classification, reducing the risk of overfitting as the features
extracted from ImageNet database are very generic [10].

“http://www.image-net.org/



In our model, we initialized the weights of the conv blocks
and the connections between neurons in the first two fully-
connected layers, with the weights of Imagenet, while the last
fully-connected layer was initialized with the standard Glorot
initialization.

D. Hand-Washing autonomy index

The Hand-Washing autonomy index (HWI) (Eq.1) is com-
puted from network predictions as:

[NV

HWI = ———
Al + [N

(D
where A := {a | child is aided in frame a} is the set of aid
frames and N := {n | child is not aided in frame n} is the
set of no-aid frames.

This index is provided to ABA operators to quantify the
child’s level of autonomy during the hand-washing task.
Evaluating the trend of this index over time would allow the
operators to evaluate the progress of the child in performing
the task.

III. EXPERIMENTAL ANALYSIS

This section details: the dataset subdivision in training,
validation and testing set (Sec. III-A) and the algorithm-
related technical specifications (Sec. III-B). In Sec. III-C we
present the ablation study and the comparison against other
DL architectures. The metrics used to evaluate our model are
summarized in Sec. III-D. Finally, in Sec. III-E, we deal with
the predictions of “challenging frames”.

A. Dataset specification

The dataset used in this work consisted of 115 RGB video
sequences of 5 minutes each. The camera frame rate was 30
frames per second with image size of 640x480 pixels.

Among the 115 video sequences, we first manually selected
those where the child and the ABA operator were in the
camera field of view at least in one video frame, resulting in
a collection of 37 videos. Considering that the hand-washing
action is characterized by low dynamics [11], we decided to
extract, for each of the 37 videos, 1 frame every 6, obtaining
1080 frames per video.

Table I summarizes the division of the dataset into training,
validation and testing sets. Among the frames extracted from
36 videos, 70% were used to train the network and 30% to
validate it. The annotated frames of the remaining video were
used to test the network.

Starting from the 1080 frames in each video, we manually
discarded frames with no one in the camera field of view, and
with subjects performing actions different than hand-washing
(e.g., dish-washing). Supported by the ABA operators, we
assigned each of the remaining frames to the aid and no-aid
class using a custom-built annotator”.

10 children and 6 ABA operators took part in the study.

Shttps://github.com/roccopietrini/pyMultipleImgAnnot

B. Parameter settings

Prior feeding the network, the frames were resized to 224 x
224 pixels, for size compatibility with the pretrained network.
To train fine-tuned VGG16 we used the binary cross-entropy
loss minimized in 50 epochs with stochastic gradient descent
(SGD) as optimizer and a learning rate equal to 0.0005
decayed by a factor of 2 every 10 epochs.

The batch size was set to 64 as a trade-off between memory
requirement and training convergence. The best weight config-
uration among epochs for each model was retrieved according
to the highest Accuracy (Acc) on the validation set:

TP
Ace = Z:kik,i € C : [aid, no-aid)| 2)
n

Where: C' represents the classes set, 1'Pj represents the
correctly classified sample and n is the total number of
samples.

All our analyses were performed using the PyTorch®, a
Python library, on a 12 GB Nvidia Tesla K80.

C. Ablation study and comparison with other architectures

As an ablation study the performance of the fine-tuned
VGG16 was compared against the VGG16 trained from
scratch. In the VGG16 trained from scratch we initialized the
weights of the conv blocks with He initialization while the
fully-connected layers were initialized with the standard Glo-
rot initialization. We also tested the performance of ResNet50,
both fine-tuned with Imagenet pretrained weights and trained
from scratch. Considering the structure and the depth of
ResNet50 we chose to minimize the binary cross-entropy loss
with Adam optimizer setting the learning rate to 0.0001.

For all the architectures, the batch size and the number of
epochs, were set to 64 and 50, respectively.

The final model was chosen, among the 4 architectures, as
the one with the highest Acc in the test set.

D. Performance assessment

To assess the performance of the networks, we computed
the classification Acc (Eq.2), Precision (Prec;) (Eq. 3), Recall
(Rec;) (Eq. 4), and fl-score (f1;) (Eq. 5) for the i-th class,
with ¢ € C : [aid, no-aid)].

TP,

P'I"@Ci = m (3)
TP,
He6 = Tp 1+ PN, @
2 x Prec; X Rec;
fli= (5

Prec; + Rec;

where T'P;, F'P;, F'N; are the correctly classified samples,
the false positives and the false negatives for the i-th class,
respectively.

Shttps://pytorch.org/



TABLE II
RESULTS OF THE VGG 16 AND THE RESNET50, BOTH WITH FINE-TUNING TECHNIQUE AND FROM SCRATCH. RESULTS WERE EVALUATED IN TERMS OF:
CLASS-SPECIFIC CLASSIFICATION PRECISION (Prec;), RECALL (Rec;), F1-SCORE (f1;), FOR 4 € [aid,no-aid] AND CLASSIFICATION ACCURACY (Acc).

Fig. 4. Example of challenging frames: on the left side the child is aided
by the operator (blue box), on the right side the child washes his hands
autonomously (yellow box).

E. Performance assessment on challenging frames

To further validate the final classification model, we decided
to test its performance on challenging frames selected from
the original test set. We refer to challenging frames as those
in which the child and the operator were close to each other.
Samples of challenging frames are shown in Fig. 4.

To quantitatively evaluate the proximity of the operator and
child, we first detected them in each frame. For detection, we
used the well-known FASTER-RCNN, which was pre-trained
on the large-scale COCO 7 dataset for natural-image detection
tasks. At prediction time, in this work, only the bounding
boxes associated with the person class were retrieved.

We then computed, as quantitative index of proximity, the
Overlap Ratio (OR) among the two bounding boxes (i.e., the
child and operator one). The OR was defined as:

area(PNK)

O = min(area(P), (area(K)) ©
where P and K identified the bounding box of the ABA
operator and the child, respectively.

Due to the positioning of our acquisition set-up (next to a
mirror), before computing the OR index, the FASTER-RCNN
predictions were post-processed to delete the boxes corre-
sponding to the person detected in the mirror. We computed
the Euclidean distance of each up-left corner of the predicted
bounding box from the origin of the image reference frame.
This allowed to select the rightmost bounding boxes excluding
those of the mirror.

Then to identify challenging frames we computed the box-
plot of the OR for the aid and no-aid class and we excluded all
the frames with OR lower that the minimum of the boxplot

7http://cocodataset.org/#home

Prec Rec f1 Acc
no-aid aid no-aid aid no-aid aid
ResNet50 trained from scratch 0.64 0.63 0.99 0.04 0.77 0.08 | 0.64
VGG16 trained from scratch 0.76 0.80 0.93 0.50 0.83 0.62 | 0.77
fine-tuned ResNet50 0.91 0.76 0.84 0.86 0.87 0.81 | 0.85
fine-tuned VGG16 0.93 0.86 0.92 0.89 0.92 0.88 | 0.91
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Fig. 5. Confusion matrix for fine-tuned VGG16 (on the left side) and fine-
tuned ResNet50 (on the right side): the two best performing models.
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Fig. 6. Boxplot of the Overlap Ratio (OR) for the no-aid class in yellow
and the aid class in blue. Median values of the two distributions are shown
in red.

(i.e.,the lowest data point excluding any outliers) of the aid
class.

IV. RESULTS

Table II summarizes the results achieved by VGG16 and
ResNet50, both fine-tuned and trained from scratch. The two
networks trained from scratch achieved the lowest performance
when compared with their counterparts trained with fine-
tuning technique, with extremely unbalanced values of per-
class metrics. ResNet50 trained from scratch achieved the
worst results with imabalanced values of Rec for the no-aid
and aid of 0.99 and 0.04, respectively. VGG16 trained from
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Fig. 7. Confusion matrix of the fine-VGG16 tested on challenging frames

scratch achieved slightly better results with Rec of 0.93 and
0.50 for the no-aid and aid class, respectively. The results
highlighted that both the architectures trained from-scratch are
more confident in predicting the no-aid class with respect to
the aid one.

The confusion matrices of the two best performing models
(i.e., fine-tuned VGG16 and ResNet50) are shown in Fig. 5.
Both the models did not outperform in predicting one class
with respect to the other. The fine-tuned VGG16 achieved
slightly better performance when compared to fine-tuned
ResNet50, with higher values of Prec, Rec and f1 for both
the no-aid class (0.93, 0.92 and 0.92, respectively) and the aid
class (0.86, 0.89 and 0.88, respectively), with an overall Acc
equal to 0.91. For the VGG16 the predicted HW I was equal
to 0.62 (actual HW 1=0.63).

Boxplots of the OR for the aid and no-aid class are depicted
in Fig. 6. The minimum of the boxplot for the aid class (0.82)
was used as threshold to select challenging frames. These
192 frames, resulting from the thresholding, were the ones
with OR greater than the threshold and have been used to
further validate the performance of the fine-tuned VGG16.
The confusion matrix of the fine-tuned VGG16 tested on
challenging frames is shown in Fig. 7.

V. DISCUSSION

The ABA therapy is an applied science based on exper-
imental behavior analysis with the aim of improving the
dysfunctional behaviours of the child with ASD to make
them functional to the everyday life tasks. During the therapy
session the operators need to constantly observe the child and
take paper-and-pencil-rating-scales to evaluate his/her progress
and eventual difficulty. To support the ABA therapists during
their actual practice, in this work we developed a DL-based
application to monitor children with ASD while performing
the hand-washing task. By analysing RGB frames, the pre-
sented DL model detected whether the child washed hands
autonomously (no-aid class) or supported by the ABA operator
(aid class).

We decided to implement VGG16 using fine-tuning tech-
nique as trade-off between model complexity and accuracy in

predictions. This model was compared against VGG16 and
ResNet50 trained from scratch and fine-tuned ResNet50. Both
the performance of the architectures trained from scratch were
unsatisfactory as the network poorly predicted the aid class.
Fine-tuning technique has improved the performance of both
the ResNet50 and VGG16 with respect to their corresponding
trained from scratch. Hence, fine-tuning allowed to migrate
the knowledge of the training on the large-scale ImageNet
dataset to our classification task improving the networks
generalization ability. However, fine-tuned VGG16 showed
better performance in terms of classification Acc and per-
class metrics. This may be due to the relatively simple and
shallow structure (16 layers) of VGG16 coupled with a small-
size dataset.

To further validate fine-tuned VGG16, we decided to test
its performance on the most challenging frames among the
testing set. These frames were quantitatively identified as the
ones in which the ABA operator and the child were close to
each other, even if the child performed the hand-washing task
autonomously. When tested on challenging frames, fine-tuned
VGG16 achieved encouraging results in predicting both the
aid and no-aid class (with only 6 out of 76, and 10 out of 100
misclassified frames for the no-aid and aid class, respectively).
This suggested that the network was able to extract information
from the frame of interest which did not solely rely on the
spatial distance between operator and child, proving to be
suitable for the task.

VI. CONCLUSIONS

In this paper, we presented a DL-based application aimed
at classifying if the child with ASD washes his/her hands au-
tonomously or is supported by the ABA operator. The achieved
results suggested that DL can be successfully exploited in the
field of ASD children monitoring and evaluation. However,
to fully support the operators in quantifying the progress
achieved by the children who underwent ABA therapy, it
is acknowledged that further research is required. The pro-
posed methodology can be coupled with a pose-estimation
framework [12], and other base autonomies (i.e., the tooth
brushing) could be investigated. In addition to the gestural
functions, the pitch of the voice could also be analyzed to
assess communication skills [13]. Moreover, all the computer-
aided solutions, relevant to the monitoring of the child with
autism, could be included in a single framework, to fully
support the operators during their actual practice [14].
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