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Abstract Purpose Glioblastoma-multiforme (GBM) treatment is a challenging
task in clinical oncology. Convection Enhanced Delivery (CED) is showing en-
couraging but still suboptimal results due to drug leakages. Numerical models can
predict drug distribution within the brain, but require retrieving brain physical
properties, such as the axon diameter distribution (ADD), through axon architec-
ture analysis. The goal of this work was to provide an automatic, accurate and
fast method for axon segmentation in electronic-microscopy images based on fully
convolutional neural network (FCNN) as to allow automatic ADD computation.
Methods The segmentation was performed using a residual FCNN inspired by U-
Net and Resnet. The FCNN training was performed exploiting mini-batch gradient
descent and the Adam optimizer. The Dice coefficient was chosen as loss function.
Results The proposed segmentation method achieved results comparable with
already existing methods for axon segmentation in terms of Information Theoretic
Scoring (0.98%) with a faster training (5 hours on the deployed GPU) and without
requiring heavy post-processing (testing time was 0.2 s with a non-optimized code).
The ADDs computed from the segmented and ground-truth images were statis-
tically equivalent. Conclusions The algorithm proposed in this work allowed
fast and accurate axon segmentation and ADD computation, showing promising
performance for brain micro-structure analysis for CED delivery optimization.
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1 Introduction

Gliomas are the most common brain tumors (40% of brain tumors [7]) and glioblas-
toma multiforme (GBM) is the most common and malignant one, accounting for
51% of gliomas [21].

Nowadays, GBM treatment is one of the most challenging tasks in clinical
oncology. Despite the variety of modern therapies, GBM is still a deadly disease
with extremely poor prognosis and median survival of 15 months from diagno-
sis [38]. The three main therapeutic approaches are surgical resection, radiation
therapy and chemotherapy [I5]. A high grade of GBM infiltration does not al-
low complete surgical resection and thus relapses occur [I7]. Several risk factors
and restrictions are associated with radiation therapy, including radiation necro-
sis, permanent radiation-induced neuronal damage and radio-resistance [15]. The
biggest limitation in chemotherapeutic treatment is related to the blood-brain-
barrier (BBB), which limits the spreading of the most common chemotherapeutic
agents [19].

An alternative treatment procedure, called convection enhanced delivery (CED),
has shown encouraging results in the last years [35]. In CED, a pharmacological
agent is injected directly into the brain tissue by means of a catheter positioned in
the target cancerous region, through a hole in the scalp. Drug spreading is driven
by both a positive pressure and a diffusion gradient, allowing CED to overcome
the main problems related to BBB [6), [10] [18].

Despite the encouraging results, it is widely accepted in the clinical literature
that CED outcome is still suboptimal due to two main problems. The first is related
to the choice of the optimal catheter design and the infusate backflow [45] [4]. The
second deals with leakages within the substrate at the point of delivery and limited
drug distribution [3} [36]. This paper specifically focuses on the second problem.

Drug distribution is controlled by drug infusion parameters, such as flow rate
and infusion duration [42] 35]. A way to optimize the infusion parameters for
CED planning is to implement, in the pre-operative phase, numerical models able
to predict the drug distribution within the brain [34] [12]. However, despite the fact
that several studies have been conducted in the field, a satisfying level of planning
has not been achieved yet. Ehlers and Wagner [12] suggested that this could be
due to a lack of consensus on model-parameter values (in particular for hydraulic
permeability and effective diffusivity).

Since the drug flows through interstitial pathways between neurons, taking
into account the brain micro-structure is essential to infer the physical properties
that drive both the convective and diffusive flux [14]. Brain micro-structure can be
retrieved exploiting electron microscopy (EM), which guarantees high resolution
at neuron scale [24], [39]. For example, in [44] and [43], two different methodologies,
inspired by consolidated work in the literature [32, [IT], are proposed to compute
the brain hydraulic permeability and the effective diffusivity starting from the
axon diameter distribution (ADD) [26] computed from axon manual segmentation
in EM images.
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In this scenario, the goal of this work was to develop an automatic and accu-
rate method for axon segmentation in EM images with the goal to automatically
retrieving reliable ADDs. Following recent advancements in the literature, the pro-
posed segmentation algorithm was based on deep fully-convolutional neural net-
works (FCNNs) and, in particular, on deep-residual learning networks (Resnets) [16].
The evaluation was performed in terms of:

— Axon-segmentation performance on the ISBI2012 challenge dataset [2]
— Comparison of the ADD obtained from the FCNN-based and the ground-truth
axon segmentation.

The paper is organized as follows: Sec. [2| surveys axon segmentation strategies,
with a focus on deep learning. Sec. [3| explains the proposed approach to axon
segmentation in EM images and ADD computation from the segmented images.
Sec. [d deals with the experimental protocol used to test the proposed methodology.
Results are presented in Sec. [5] and discussed in Sec. [6] Finally, strength and
limitations of this work are reported in Sec. [7}

2 State of the art

In the last decades, axon segmentation in EM images was mainly based on image
filtering and thresholding [29], and mathematical morphology [31].

More recently, with the spreading of high-computational-power computers and
publicly-available large and labeled datasetﬂ machine learning methods became
the most common approach to axon segmentation. One of the first attempts at
using machine learning for axon segmentation was proposed in [I]. A hierarchical
segmentation procedure based on random forest (RF) and watershed segmentation
was proposed for 3D segmentation of neural tissues in scanning EM volume data
from rat retina. Similarly, RF was exploited in [22] and its probabilistic output
was used in combination with axon geometrical properties to define a regular
cost function that enforced gap completion via perceptual grouping constraints.
A similar approach was used in [25], where dense correspondence across sections
was exploited to resolve ambiguities in neuronal segmentation.

During the last years, deep learning, a subfield of machine learning based on
deep neural networks (DNN), drew the attention of researchers in the field [27].
First examples include [20] and [28], where deep artificial neural networks were
used. For example, in [41] graph-theory was adopted and a convolutional neural
network (CNN) was used to infer graph weights. In [9] a CNN was used to directly
obtain axon segmentation. The network had four convolutional layers, each one
followed by a max pooling layer. A similar approach was exploited also in [I3] and
in [40]. All the three approaches performed segmentation via pixel classification,
using two fully connected layers at the end of the convolutional path.

A further innovation was introduced with the use of FCNNs. In a FCNN, the
fully connected layers are replaced by up-convolutional layers, allowing a faster
and more precise axon localization with respect to approaches based on fully-
connected-layer classification [30, 27]. In [37] a FCNN, which is known as U-Net
due to its u-shaped architecture, was proposed outperforming all the previous
approaches.

1 (http://brainiac2.mit.edu/isbi_challenge/home)
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Fig. 1 Top: Scheme of the fully-convolutional neural network exploited in this work. There
are four stages forming the descending path and four stages forming the ascending path.
Each stage of the descending path is made of a convolutional block (full blue boxes) and two
identity blocks (full green boxes), whereas in the ascending path the convolutional block is
substituted by an upconvolutional block (full red boxes). We used the annotation introduced
in [46], the empty blue boxes indicate convolutional layers (C_N_S) with channels C, kernel
size N x N and stride S; the empty yellow box (N_S) indicates a maxpooling over N x N
patches with stride S; the empty red boxes denote upsampling operation (K_K) with size
K. Each convolutional operation is followed by batch normalization and a ReLU activation
function. The dotted arrows refer to the concatenation of the feature map from the descending
to the ascending path. Bottom: The convolutional and identity blocks of Stage 1, and the
upconvolutional block of Stage 5 are shown. On the top of arrows, the number of feature maps
is reported.

Starting from the U-Net implementation, architectural improvements mostly
dealt with multilevel analysis (to encode image information at multiple scale) and
introduction of residual blocks (to tackle the vanishing gradient problem) [33] [46].
In most of these approaches, remarkable performances were achieved at the cost
of heavy time-consuming post-processing (e.g. based on superpixel and watershed
segmentation for global refinement).

For our task, while post-processing may heavily prolong the overall computa-
tional time (i.e. the time for axon segmentation, ADD computation, and compu-
tation of the optimal CED infusion parameters with numerical models), method-
ologies based on residual blocks may be suitable for achieving a reasonable seg-
mentation performance for computing ADDs from EM images.
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3 Methods
3.1 Architecture description

As introduced in Sec. the proposed FCNN architecture was inspired by U-
Net [37] and Resnet [16]. As [37], the proposed FCNN consisted of a convolutional
and an up-convolutional path. A schematic figure of the exploited FCNN archi-
tecture is shown in Fig.

The proposed FCNN started with convolutions performed with 16 (7x7) filters
followed by batch normalization, activation with the rectified linear unit and 2x2
pooling.

After this initial processing, in the convolutional path a first convolutional
block was present with three convolutional kernels in cascade and a shortcut con-
nection with 1 x 1 convolution for dimensional matching. The convolutional block
was followed by two identity blocks made of three convolutional kernels and an
identity skip connection. This structure (one convolutional block and two identity
blocks) was repeated four times, doubling the number of convolutional kernels per
layer. The up-convolutional path was symmetric to the convolutional one, but with
up-convolutional blocks instead (thus halving the number of kernels per layer). All
convolutions and up-convolutions were performed with 3 x 3 kernels. Batch nor-
malization and activation with the rectified linear unit were applied after each
convolution.

The proposed FCNN ended with a bare full convolution with two 3x3 kernels
activated with a sigmoid function.

3.2 Training

Adam optimizer [23] was used to train the proposed FCNN. Adam exploited the
first moment estimate () and the second moment estimate (¢;) of the loss-
function gradient to update the network parameters:

n ~
0 i =0 aly————— N 11 i 1
i1, = O, o) e t(9t.4) (1)

where ;11 ,; denotes the i-th parameter after ¢+ 1 mini-batches, g¢ ; is the gradient
with respect to the parameter 0; after ¢ mini-batches and € is a small number. The
cost function we adopted was the Dice similarity coefficient.

4 Experimental protocol

The dataset used to test the segmentation performance was released for the ISB12012
challengelﬂ The training dataset is composed by 30 sections from the ventral nerve
cord of a first-instar Drosophila larva acquired using serial section transmission
EM. The 30 sections are 512 x 512 grayscale images. The ground-truth segmen-
tation is composed by 512 x 512 binary images, where the axons membranes are
labeled in black and the background is labeled in white. The ISBI2012 challenge

2 (nttp://brainiac2.mit.edu/isbi_challenge/home)


http://brainiac2.mit.edu/isbi_challenge/home

6 Marco Vidotto et al.

organizers provided also another set of 30 (512 x 512) grayscale images (for which
the ground truth was not publicly available) for testing purposes.

As suggested in [37] and in [13], data augmentation was performed. Seven
linear transformations (rotations of 0°, 30°, 45°, 60° and 90°, vertical and hor-
izontal mirroring) and eleven non-linear transformations (barrel transform, sinu-
soidal transform and shearing) were applied. The augmented dataset consisted of
8 x 11 x 30 = 2310 training images.

The training and testing images were padded (symmetric padding) to compen-
sate the pixel loss due to the convolution operations. This was the only manipu-
lation we performed on the images during segmentation.

Adam optimizer parameters were set as suggested in [23]. We train the pro-
posed FCNN with a batch size of 16 on 100 training epochs and initial learning
rate of 1072, The 40% of the training images was used as validation set.

We performed all our experiments on Google Colaboratoryﬂ

To evaluate the segmentation performance of the proposed FCNN, we used the
metrics suggested by the challenge organize

— Foreground-restricted Rand Scoring (V7%"%):

yRand _ Zij p?j 2)
adpsit+(l—a)Y,t2

where p;; is the probability that a randomly chosen pixel belongs to a segment
i (defined as a set of connected pixels) in the predicted segmentation S and
segment j in the ground-truth segmentation T, s; = Zj pij and t; = >, pij
are the probability that a randomly chosen pixel belongs to segment 4 in S and
J in T respectively and a = 0.5 is the Rand F-score which weights split and
merge errors equally.

— Information Theoretic Scoring (V/"/°):

nfo _ 1(8;T)
VI = T E )+ el T 3)

where I(S;T) = 32, pijlog(pij) — 22, silog(si) — 32, tjlog(t;) is a measure of
the similarity between S and T and H(S) = — Y, s;log(s;) is the entropy.

The segmentation evaluation was performed through an automated online sys-
tem where the segmented images were compared with the relative (hidden) ground-
truth [I3].

We compared the FCNN performances with those achieved by the best com-
petitors in the literature among those that used the ISBI dataset for testing pur-
poses, as to perform a fair comparison. In particular, we considered the FCNNs
implemented in [46], [33, [5].

As introduced in Sec. [} we compared the ADDs computed from the images
segmented with the FCNN with those computed from the ground-truth images
(ADD was computed as in [26]). As the ground-truth for the testing images of
the ISBI dataset was not available, we divided the original training dataset in a

3 https://colab.research.google.com/
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Fig. 2 Comparison between the axon diameter distributions extracted from the segmented
and the ground-truth images.

Fig. 3 Sample segmentation results obtained with the proposed FCNN. Raw testing images
and output probability maps are compared. Red arrows on input images and output segmen-
tation maps indicate structures that were incorrectly segmented.

subset for re-training from scratch the FCNN (20 images) and a set for computing
the ADD (10 images). Both subsets underwent data augmentation (seven linear
transformations and eleven non-linear transformations). The Wilcoxon rank-signed
test (significance level = 0.05) was used to assess whether statistical differences
existed between the ADDs computed from the FCNN-based segmentation and
from the ground-truth.
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Table 1 Vgand, Vinfo and training time for the proposed and the competitor approaches.
The VRand, Vinfo are computed on the testing set using the best FCNN model over the 100
training epochs.

Model VRand Vinto Training time
Ref. [46] 0.983563573  0.990630782 36 hours
Ref. [5] 0.982616131  0.989461939 20 hours
Ref. [33] 0.980582825  0.988163049 -
Proposed  0.941987271  0.976824393 5 hours

5 Results

No significant differences were found when comparing the ADDs computed from
the images segmented with the FCNN and the relevant ground truth (these results
were obtained with a Vi, ro = 0.96). The ADDs are shown in the boxplots in Fig.

In Table (1} the Vranq and Vi, ¢, obtained for the proposed FCNN and for the
competing approaches are reported. Training time is reported, too.

The proposed FCNN architecture had a lower training time (5 hours) with
respect to the competitors at the cost of a slightly lower performance (Vrand
= 0.941987271 and Vi, f, = 0.976824393). The computational time required to
segment one image was 0.2 s with a non-optimized code. A direct comparison with
the competitors was not possible though, as the relevant testing time was not
reported.

Sample testing EM images and segmentation results after Otsu’s thresholding,
that we performed for visualization purpose only, are shown in Fig. [3]

6 Discussion

From Fig. |2| the achieved ADD was comparable (no statically significant differ-
ence were found) with that obtained with time-expensive manual tracing, thus
indicating that the achieved segmentation performance was appropriate for our
purposes. This was possible even if some errors were present in the segmenta-
tion, mainly due to thick axon borders and to small-organelle profiles within big
axons (Fig. [3). False positive in correspondence of mitochondrial structures were
detected, too. Errors were mainly related to intensity drops, noise in the images
and limited number of samples against the high data variability.

In Table [1] it is possible to notice that the proposed FCNN achieved perfor-
mances comparable with the competing approaches in terms of Vrona and Vi, o
(the values were 4.1-1072 and 1.3 - 102 lower, respectively, than those for [46],
which achieved the best performances).

The time required for training our FCNN was significantly lower with respect
to all the other competitor methods (about four times lower with respect to [5]
and seven times lower with respect to [46]). Furthermore, even if the testing times
are not reported by the competitors, they performed heavy post-processing that
sharply increases the segmentation computational cost. On the contrary, our ap-
proach, without any post-processing, obtained good results as supported by the
absence of significant difference between the ADDs extracted from the ground-
truth and the proposed FCNN (Fig. .
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A limitation of this work can be seen in the fact that our experimental protocol
dealt with axons of Drosophila larva, instead of human ones. Nonetheless, while
neuronal global architecture and axons diameter vary across different species, the
axon microstructure (i.e., the round-shaped cross-section) is very similar [47].

With the goal of integrating this work into a full framework for reliable and
robust fluid-dynamics brain-model implementation for CED, the FCNN perfor-
mance should be tested on datasets of human-brain images. In fact, this work is
part of the European project EDEN2020 (www.eden2020.eu), which supports the
collections of such datasets, that, to the best of authors’ knowledge, are currently
not available. This could be attributed to the fact that high-resolution EM is a
time consuming procedure. Images with lower resolution could be collected in a
faster way (thus achieving a larger datasets and granting higher variability) but
these images would probably be more challenging to segment. However, despite
this still having to be experimentally tested, we expect that, with a proper train-
ing dataset, performance suitable for geometrical-parameter estimation can be still
achieved. In fact, there is already evidence in other fields that proper segmentation
performance may be achieved also when processing low-resolution images (e.g. []]).

7 Conclusions

In this work, a method for accurate FCNN-based axon segmentation and ADD
computation was proposed. The method was inspired by recent advancements in
deep learning and integrated FCNNs and residual nets allowing good results in
terms of axon geometrical-parameter extraction without the need of heavy post-
processing (no statistically significant difference was found between the ADDs
computed from the ground truth and proposed FCNN).

It is acknowledged that further research is required to ameliorate the proposed
algorithm but the results presented in this work are surely a promising step toward
CED optimization by means of brain micro-structure analysis.
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