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Abstract— Continuous gait phase plays an important role
in wearable robot control. This study focuses on the online
estimation of continuous gait phase based on robotic transtibial
prosthesis signals. First, we adopt the prosthetic foot deforma-
tion information to detect the heel strike as the start timing
(reset 0 rad) of one gait cycle. Then we conduct the gait phase
estimation based on adaptive oscillators using the prosthetic
shank angle signal as input. Three transtibial amputees were
recruited in this study and they walked on the treadmill at
different speeds (slow, normal and fast) and on different ramps
(10°, 5°, 0°, -5° and -10°) in the experiment. The root-mean-
square error between online estimation result and ground truth
gait phase is calculated. The maximum and minimum errors
are 0.147 rad and 0.058 rad, and the corresponding ratios in
one gait cycle are 2.34% and 0.92%. This study achieves good
performance and provides an effective method to estimate the
continuous gait phase, which will instruct robotic transtibial
prosthesis control.

I. INTRODUCTION

Lower-limb robotic prostheses can help to improve the
life quality for amputees by assisting their daily activities.
In robotic prosthesis research, the control of prosthesis is one
critical issue and has attracted a lot of attentions. The widely
used control strategy for robotic prostheses is based on finite
state machine [1]-[3]. This strategy divides each gait cycle
into several discrete states, such as swing phase and stance
phase, and then the output torque is formulated mapping
from joint angle, velocity, efc. [4], [5]. Based on finite state
machine, some studies have achieved a lot of improvements
in walking metabolic economy [6], speed adaptation [7] and
so on. Finite state machine control relies on the detection
of gait events (heel strike, toe off and so on) to trigger
state transitions, which is difficult to synchronize the correct
sequence of discrete gait events over time to accurately
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detect the transition timing between two different gait phases,
especially when the gait is disturbed [8]. Besides, the divided
states may limit the smoothness of assistance control [8],
[9]. All these can cause performance decline in prosthesis
control.

To solve these issues and improve the lower-limb pros-
thesis control, researchers have developed some alternative
methods, for example, neuromuscular controller [10]. The
neuromuscular controller uses models of muscle dynamics
and hypothesized reflexes, but it brings many parameter-
s which are difficult to tune. Another alternative control
method is based on the estimation of continuous gait phase
[11]. Quintero et al. have used an adaptive Kalman filter
based on Newton’s and Euler’s equations of motion to
compute real-time Euler angles to conduct continuous-phase
control of a powered knee-ankle prosthesis and has achieved
some effects [12]. However, the phase estimation results
still need further improvement. Seo et al. have conducted
online continuous gait phase estimation to control ankle ex-
oskeletons, but the estimation performance also need further
improvement [13]. Adaptive oscillators (AOs) have also been
used to continuous gait phase estimation on healthy people
and exoskeleton [14], [15], and AOs have shown better
performance than Kalman filter and RNN methods, since its
inherent synchronization properties provided advantages in
continuous gait phase estimation.

In order to extend the continuous gait phase control in
robotic prosthesis with better performance, we conducted
the study aiming at the online estimation of continuous gait
phase based on adaptive oscillators for robotic prosthesis
users. In this study, we used strain gauge to record the
deformation information of prosthetic carbon-fiber foot to
detect heel strike as the start point (reset O rad) of one gait
cycle at first. Then, prosthetic shank angle signals (measured
by inertial measurement unit (IMU)) were used as the input
of AOs to conduct continuous gait phase estimation based
on the detected gait event.

In this paper, we first introduce the related studies and
research progress in Section I. Then, we introduce the
robotic prosthesis, experimental protocol, signal processing
and evaluation method in Section II. At last, result and
conclusion are presented in Section III and IV, respectively.

II. MATERIALS AND METHODS

A. Robotic Transtibial Prosthesis

1) Prosthesis Prototype: We use one commercialized
robotic transtibial prosthesis (developed by Peking Univer-



sity) for this study. The prosthesis consists of one control
circuit, one strain gauge, one IMU, one angle sensor and
battery. Its weight is about 2 kg. More details can be found
in [2], [5], [16]. The prototype of prosthesis and wearing
diagram can be seen in Fig. 1.
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Fig. 1. The prototype of robotic transtibial prosthesis and wearing diagram.

One full bridge of strain gauge is integrated in prosthetic
carbon-fiber foot to record the deformation of carbon-fiber
foot, as shown in Fig. 1. During stance phase interaction
is between the prosthetic carbon-fiber foot and ground.
During swing phase, no interaction is recorded between the
prosthetic foot and ground. Therefore, strain gauges can be
a viable solution to discriminate between swing and stance
phases [17]. Control strategies of prosthesis are performed
based on different gait phases and phases [2], [17]. Position
control is adopted in swing phase and torque control strategy
is adopted in stance phase. An angle sensor placed at the
rotational joint of prosthesis is used to measure the prosthetic
ankle angle. IMU can provide inclination angle (yaw, pitch
and roll), tri-axis angular velocity and tri-axis acceleration
information . The DC motor is used to drive the prosthesis
with power of 150 W.

B. Experimental Protocol

Three people with transtibial amputations were recruited
in the experiments as subjects, and their detailed information
are listed in Table I. In this study, the subjects wear their
customized prosthetic sockets which would be mounted on
the designed robotic prosthesis by adapters. Each subject will
do some exercises before the formal experiments to adapt
to the robotic prosthesis. All subjects have signed written
informed consents and this study has been approved by the
Local Ethics Committee of Peking University.

The designed experiment was comprised of two sessions
in the study. The first experiment aimed at assessing con-
tinuous gait phase estimation at different walking speeds
(speed experiment). The subjects were asked to walk on the
treadmill at their self-selected three speeds (slow, normal
and fast), as shown in Table II, and online estimation of
continuous gait phase was conducted at the same time. The
second experiment was to conduct continuous gait phase

estimation on different ramps (ramp experiment),as shown
in Table II. All subjects walked on the treadmill with the
ramps of different inclination angles (10°, 5°, 0°, -5° and
-10°) at their normal walking speeds, as listed in Table
II. Inclination angles (10° and 5°) were corresponding to
ramp ascending, inclination angles (0°) were corresponding
to level-ground walking and inclination angles (-5° and -
10°) were corresponding to ramp descending. The online
estimation of continuous gait phase was conducted while
subjects were walking on ramps. In this study, each subject
walked for about 3 minutes under each walking conditions
and the estimation of continuous gait phase was conducted
meanwhile.

TABLE II
THE DESIGNED EXPERIMENTAL TASKS.

Speed/Inclination
Speed Experiment S2/0°  NP/0°  Fe/0°
Ramp Experiment N/10°  N/5°  N/0°  N/-5°  N/-10°

“'S denotes slow speed.

b

. N denotes normal speed.
F denotes fast speed.

C. Gait Phase Estimation Algorithm

We used Matlab platform to acquire real-time signals data
from robotic prosthesis in wireless way and conduct online
estimation of continuous gait phase at the same time. The
sample frequency was 100 Hz. The framework of gait phase
estimation was shown in Fig. 2, and it was comprised of (1)
adaptive oscillators and (2) gait event detector. IMU could
provide the prosthetic shank angle relative to the ground,
and the angle signal was the input of AOs. The deformation
information of prosthetic foot recorded by strain gauge was
used to detect gait event (i.e. heel strike), which was used to
reset the gait phase to O rad (i.e. the start of one gait cycle).
First we would introduce the adaptive oscillators.
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Fig. 2. The framework of continuous gait phase estimation based on
adaptive oscillators and gait event detector. The IMU (prosthetic shank
angle) and strain gauge signals are input to adaptive oscillators and gait
event detector, and the final outputs are the estimated gait phases. Adapted
from [9], [18].

Adaptive oscillators have been widely used in cyclical
movements [19], for example gait phase estimation in some
studies [9], [14]. In Fig. 2, the input signal (I(t)) of AOs
were prosthetic shank angle measured by IMU and the output

(I(t)) was the estimated prosthetic shank angle. The error



TABLE I
INFORMATION OF THREE TRANSTIBIAL AMPUTEES AS SUBJECTS

Years post-amputation

The amputation side  Residual limb length ratio

Gender Age Weight (kg) Height (cm)
Subject 1 Male 30 72 171
Subject 2 Male 53 70 170
Subject 3 Male 56 81 170

9 Right 33%
17 Left 40%
10 Left 32%

F(t) (F(t) = I(t) — I(t)) between the output and input
drives the evolution of the oscillator [9]. The I(¢) could be
calculated as follow:

N
I(t) = ap(t) + Z o (t)sin(ps(t)) (1)

where ¢ denoted the ¢;;, harmonic (+ = 1,2,...,N and
N = 25 in the study). The other variables in Fig. 2 were
as follows:

Pi(t) = w(t) i+ AF(t)cos(pi(t)) (2)
w(t) = yE(t)cos(pr(t)) 3)
ai(t) = nF(t)sin(pi(t)) @)

do(t) = nF(t) (5)

where the A, v and 1 were the learning rates corresponding
to phase (;(t)), frequency (w(t)) and amplitude (cv;(¢)).

For the lower-limb locomotion, we defined the continuous
gait phase corresponding to the interval [0, 27) rad linearly.
The acquired phase 1 (t) (in Fig. 2) based on AOs were
normalized into the interval [0, 27), and the normalized
phase was denoted as @, (t) (in Fig. 2):

Pnor(t) = mod(p1(t),2m) (6)

For the continuous gait phase estimation, we use the gait
event (heel strike) as the start point, namely the 0 rad timing
point, and the heel strike could be detected according to the
deformation information of prosthetic foot.

The O-rad phase should be matched with each heel strike
at timing ¢; in gait cycles, so there might exist phase error
€(tx) between the estimated phase ¢y, (t) at tx and 0. The
final estimated gait phase ®(¢) could be denoted as follow:

é(ty) >0
é(tk) <0
(7
Gait phase increases forward within one gait cycle, so we
can revise the current estimated gait phase by comparing with
the last estimated gait phase(s) to make sure the monotonic
increasing feature of gait phase forward in each gait cycle.

Pnor (t) -
Pnor (t) -

& nOT(t) - é(t )7
®(t) = { onont) — E(1) + 27,

D. Evaluation Method

The root-mean-square error (6,.,5) between the estimated
phase and the actual phase is used to evaluate the continuous

gait phase estimation performance, which can be formulated
as follows:

®)

=1

where m denotes the sample number in one gait cycle, &)(z)
denotes the estimated 4;;, gait phase and ®(4) is the actual
iy, gait phase (ground truth value) in one gait cycle. A
small 6,.,,s can reflect good online estimation performance
for continuous gait phase. Besides, we also introduce the
ratios (R) of the root-mean-square error (6,.,,,5) in one gait
cycle. The R can be calculated as follows:

Orrms
R= """ x100% ©)
21
where 27 is the gait phase length of one gait cycle.

III. RESULTS
A. Gait Event Detection

The deformation of prosthetic foot during gait cycle had
some features. During stance phase, there existed interaction
between the prosthetic foot and ground, and the strain gauge
signal varied, as shown in Fig. 4. When the prosthesis was in
swing phase, the strain gauge signal varied little as shown in
Fig. 4. The heel strike of prosthesis was corresponding the
transition timing point from swing phase to stance phase. By
analyzing the stain gauge signals, we could detect the gait
event (heel strike).

‘ ‘ ‘
[~ - - - Heel Strike

Toe Off Strain Gauge Signals
1000 F : , .
1 1
> I I
E i i
E‘] 500 | 1
7 i i
e i i
El 0 | !
= L 1
]
£
=
Z -s00t 1
a2 -
1]
1
I
-1000 ¢ AN
8 9 10
Time (s)
Fig. 4. The strain gauge signals (deformation of robotic transtibial

prosthetic carbon-fiber foot) during level-ground walking. The black dashed
and solid lines denote the gait events: heel strike and toe off, respectively.
Data come from subject 2 who walks on the level ground (treadmill) at his
normal walking speed.
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The normalized angle signals of prosthetic shank relative to the ground for subjects walking at different speeds and on different ramps. (a) ~

(c): Normalized angle signals at slow, normal and fast speeds for level-ground walking corresponding to subject 1, 2 and 3. (d) ~ (f): Normalized angle
signals on different ramps (inclination angle: 10°, 5°, 0°, -5° and -10°) at normal walking speeds corresponding to subject 1, 2 and 3. The colorful solid
lines denote the mean values across 50 gait cycles, and the corresponding shade areas denote the standard deviations across 50 gait cycles.

B. Normalized Prosthetic Shank Signals

The locomotion of lower-limb is periodical and quasi-
periodical, which provides possibility to estimate the contin-
uous gait phase estimation. In this study, one IMU was inte-
grated in the prosthesis to record the locomotion information
of prosthesis. The prosthetic shank angle (measured by IMU)
relative to the ground was input to AOs to conduct online
continuous gait phase estimation. In our study, three subjects
were asked to walk at different speeds and on the ramps
of different inclination angles. During the experiments, the
prosthetic shank angle were recorded, and the normalized
prosthetic shank angle could be seen in Fig. 3. Angle signals
of prosthetic shank in gait cycle for the three participants
were different from each other, as shown in Fig. 3(a) ~
(c) and (d) ~ (f). Angle signals of prosthetic shank were
periodical and had small standard deviations which were
shown as the shade areas in Fig. 3.

C. Continuous Gait Phase Estimation

Adaptive oscillators were used to estimate the gait phase.
Three main parameters of adaptive oscillators: A, v and
7 corresponding to phase (p;(t)), frequency (w(¢)) and
amplitude (a;(t)), were set 0.05, 0.04 and 2.5 for all the
subjects initially during their walking at different speeds and
on different ramps. The diagram of estimated gait phase and
ground truth gait phase could be seen in Fig. 5.

The root-mean-square error 6,.,,s between the online esti-
mation result and the ground truth gait phase was shown in
Fig. 6. For subject 1, the errors for each subjects walking at

online Estimation Ground Truth
27 b
=)
£ 15wt 1
2
<
=
=9 T b
=
=
&}
0.5m [ b
0 L L L L L L L L L L L L L L L
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Time (s)
Fig. 5. The diagram of online estimation of continuous gait phase and

the ground truth gait phase. One gait cycle is corresponding to the range
of gait phase [0, 27), which is also the ground truth gait phase. The red
and blue solid lines denote the online estimation and the ground truth gait
phases, respectively. The gait cycle starts at heel strike corresponding to 0
rad of gait phase. Data come from subject 2 who walks on the level ground
(treadmill) at his normal walking speed.

different speeds and on different ramps ranged from 0.079
~ 0.125 rad, as shown in Fig. 6(a). For subject 2, the errors
ranged from 0.042 ~ 0.215 rad, as shown in Fig. 6(b), and
for subject 3, they ranged from 0.061 ~ 0.11 rad, as shown in
Fig. 6(c). For the three subjects, the maximum and minimum
errors were 0.215 rad and 0.042 rad corresponding to the
subjects 2’s slow speed and ramp (10°), respectively. The
ratios were 3.42% and 0.67% of one gait cycle (27).

The average and standard deviation (SD) of root-mean-
square errors and ratios between the online estimation results
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The root-mean-square error between the online estimation result and the ground truth gait phase. (a) ~

(b) (c)

(c) denote root-mean-square errors for

subject 1 ~ 3. The text on the bar (and the bar’s height) denotes the root-mean-square error value. The horizontal axis denotes the different walking speeds
(S denotes slow speed, N denotes normal speed and F denotes fast speed) and ramps (inclination angle: 10°, 5°, 0°, -5° and -10°) .

and the ground truth gait phases were listed in Table. III. The
errors were 0.147 £ 0.059 rad, 0.066 + 0.012 rad, 0.058 =+
0.031 rad, 0.087 £ 0.040 rad, 0.073 £ 0.016 rad, 0.066
+ 0.012 rad, 0.072 £+ 0.007 rad and 0.086 £ 0.035 rad
corresponding to walking at different speeds and on different
ramps, as shown in Table. III. The ratios were also listed in
the right column of Table. III.

TABLE III
THE ROOT-MEAN-SQUARE ERROR (0;1,s) (MEAN £ SD)
AND RATIO (R) (MEAN £ SD) BETWEEN THE ONLINE
ESTIMATION AND THE GROUND TRUTH GAIT PHASE.

Orms (rad) R (%)
Slow 0.147 + 0.059 2.34 + 0.94
Speed Normal 0.066 £ 0.012 1.05 £ 0.19
Fast 0.058 + 0.031 0.92 + 0.05
10° 0.087 + 0.040 1.39 + 0.64
5° 0.073 + 0.016 1.17 + 0.26
Ramp 0° 0.066 + 0.012 1.05 + 0.19
-5¢ 0.072 £+ 0.007 1.14 + 0.12
-10° 0.086 + 0.035 1.37 + 0.56

The maximum and minimum errors (and ratios) were
0.147 rad (2.34%) and 0.058 rad (0.92%) corresponding to
slow and fast speeds, respectively. Except the slow speed
condition, we could achieve errors no more than 1.40% .
The results of the study are comparable with the study [14],
who have conducted the gait phase estimation based on AOs
on healthy people. Compared with the study [11] which
adopted the extended Kalman filter to estimate gait phase and
study [13] which adopted RNN-Based method to estimate
gait phase, our results show better performance. In addition,
AOs have little parameters to tune, and the parameters was
adaptive for different subjects.

Though the study has got some preliminary results and
obtained good performances, we still need to deepen and
extend the study. As we can see this study focuses more on
online estimation of continuous gait phase, next we need to
combine continuous gait phase estimation with the prosthesis

control to provide improvements for the amputee wearers
next, and more transtibial amputees need to be recruited in
the future study to analyze the effect and robustness.

IV. CONCLUSION

The study focuses on the online estimation of continuous
gait phase for robotic transtibial prosthesis. First, we adopted
the prosthetic foot deformation information to detect the heel
strike as the start points (reset O rad) of one gait cycle. Then
we conducted the gait phase estimation based on adaptive
oscillators. The study were conducted on three transtibial
amputees walking at different speeds (slow, normal and
fast) and on different ramps (10°, 5°, 0°, -5° and -10°) to
validate the study’s feasibility. The maximum and minimum
root-mean-square errors were 0.147 rad and 0.058 rad, and
the corresponding ratios in one gait cycle were 2.34% and
0.92%. This study provide an effective method to estimate
the continuous gait phase for robotic transtibial prosthesis
users.
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