
Supervised CNN strategies for optical image
segmentation and classification in interventional
medicine

Sara Moccia, Luca Romeo, Lucia Migliorelli, Emanuele Frontoni, Primo Zingaretti

Abstract The analysis of interventional images is a topic of high interest for the
medical-image analysis community. Such an analysis may provide interventional-
medicine professionals with both decision support and context awareness, with the
final goal of improving patient safety. The aim of this chapter is to give an overview
of some of the most recent approaches (up to 2018) in the field, with a focus on Con-
volutional Neural Networks (CNNs) for both segmentation and classification tasks.
For each approach, summary tables are presented reporting the used dataset, in-
volved anatomical region and achieved performance. Benefits and disadvantages of
each approach are highlighted and discussed. Available datasets for algorithm train-
ing and testing and commonly used performance metrics are summarized to offer a
source of information for researchers that are approaching the field of interventional-
image analysis. The advancements in deep learning for medical-image analysis are
involving more and more the interventional-medicine field. However, these advance-
ments are undeniably slower than in other fields (e.g. preoperative-image analysis)
and considerable work still needs to be done in order to provide clinicians with all
possible support during interventional-medicine procedures.
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Fig. 1 Surgical data science integration in the interventional-medicine workflow allows objective
decision-making and quantitative evaluation of the surgical outcomes.

1 Introduction to optical-image analysis in interventional
medicine

Nowadays, the surgeon’s decision process combines (i) pre-operative qualitative
analysis of patient-specific anatomy and physiology, retrieved from imaging sys-
tems and sensors, and (ii) surgeon’s prior knowledge about medical rules and statis-
tics [1]. Such information is used to build an implicit patient’s model and define a
surgical plan. After-surgery, surgical outcomes are qualitatively evaluated and statis-
tically analyzed to improve treatment effectiveness and eventually change treatment
protocol (Fig. 1).

Advancements in intra-operative imaging systems and computer-based analysis
allowed to acquire more and more information on patient’s anatomy and physiol-
ogy to eventually update the surgical plan directly in the operating room (OR). In
fact, surgeons commonly exploit optical imaging when performing interventional-
medicine procedures for obtaining both diagnostic support and context awareness
in a non-invasive way [2]. New imaging devices that combine advanced sensors
and increased computational power are constantly introduced in the OR, e.g., mul-
tispectral [3], narrow-band [4], and spectroscopy imaging [5]. Endoscopic cameras
today allow to perform minimally invasive surgery (MIS) improving post-operative
patient’s prognosis and quality of life [1]. Robotic MIS is gradually emerging as a
powerful solution to further improve treatment quality, and is already the state of
the art in specific fields (e.g., urology) [6].

As a natural result of the massive introduction of imaging devices in the OR, an
almost unlimited amount of electronic patient records are available [1]. These data
can be processed in a quantitative way to further increase safety, effectiveness and
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Fig. 2 Some of the major opportunities that surgical data science offers to interventional medicine.
Blocks highlighted in green identify the main topics of this paper.

efficiency of surgical care [2]. Moreover, as observed in [7], the Internet-Of-Things
revolution has the healthcare domain as one of the most promising field, with infinite
opportunities arising from data sharing among hospitals, care-givers and patients.
Indeed, data sharing can provide the surgeons with statistics from other patients
shared among care centers and this information can integrate the patient-specific
(local) data.

A primary goal of the medical image analysis community is to organize, ana-
lyze and model such huge amount of data to enhance the quality of interventional
healthcare [2]. In this context, surgical data science (SDS) aims at supporting health
specialists through a quantitative processing of intra-operative images to implement
(Fig. 2): tissue tracking [8], 3D reconstruction [9], intra-operative registration [10],
workflow modeling [11], detection and localization of anatomical structures [12] or/
and surgical instrumentation [13].

In addition to challenges related to intra- and inter-patient variability in biologi-
cal tissues (especially in presence of pathologies), the processing of optical images
acquired during interventional medicine presents further challenges, such as high
sensor noise, varying illumination levels, organ movement, different pose of the
acquisition sensor with respect to the tissues and presence of blood, smoke and sur-
gical tools in the field of view.

To tackle the high variability of intra-operative optical images, SDS methods and
principles heavily build on machine learning (ML) [2]. The medical domain-specific
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knowledge can be encoded in a ML-based model through a learning process based
on the description of cases solved in the past. The model can:

• Offer decision support [11], e.g., by assisting the clinician when diagnosing new
patients to improve the diagnostic speed, accuracy and/or reliability;

• Provide context awareness [14], e.g., for autonomous assistance and collabora-
tive robots in MIS to improve safety, quality and efficiency of care.

More recently, deep learning (DL) approaches based on Convolutional Neural
Networks (CNNs) for the analysis of interventional-medicine images drew the at-
tention of the SDS community. Remarkable results were obtained in skin-cancer
classification [15], polyp detection [16], retinal image analysis [17], and vessel seg-
mentation [18], where large and labeled datasets are publicly available for DL model
training. With respect to standard ML approaches to medical optical-image analy-
sis, which require to extract high-level complex features (Sec. 1.2), CNNs tackle
the classification and segmentation problems from a different point of view and rep-
resent the image as a nested hierarchy of simpler features that are automatically
learned from the images during the training phase.

1.1 Aim of the survey

As the use of CNNs in the field of intra-operative optical image analysis is rapidly
growing, the primary goal of this review is to provide an up-to-date source of infor-
mation about its current state in the literature, with a specific focus on tissue clas-
sification and segmentation approaches for decision support and context awareness
during interventional-medicine procedures.

Reviews in the field of DL for medical image analysis have been previously pro-
posed, but mainly for applications related to anatomical images (such as computed-
tomography or magnetic-resonance images) [19], while very few to describe the
specific state of the art related to optical images acquired during interventional-
medicine procedures. These latter ones only focus of specific anatomical regions
without giving an integral vision of the challenges and advancements related to
intra-operative tissue analysis. Examples include [20], that surveys methods for
gastrointestinal-image analysis from a clinical point of view (more than from a
methodological one). In [21] [22], algorithms for polyp and Barrett’s esophagus
detection are discussed, respectively, focusing on model-based and standard ML
algorithms, leaving few space for DL strategies.

This survey may represent a salient resource for researchers in the field of SDS
who wants to face up to the problem of intra-operative tissue analysis with DL. It
analyzes almost fifty articles published from 2015, both from the methodological
and application point of view. After a short introduction (Sec. 1.2) on last-decade
methodologies, which mostly dealt with standard ML approaches, a short overview
on CNNs is given (Sec. 1.3).
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Fig. 3 Image segmentation and classification workflows for standard machine-learning (red ar-
rows) and deep-learning (green arrows) approaches.

Considering the importance of having a proper and large training set to encode
image and tissue variability when performing tissue classification and segmenta-
tion, a section to list and analyze the publicly available and labeled datasets is also
included, along with a list of the most common metrics to evaluate algorithm per-
formance in a fair and consistent way (Sec. 1.4).

CNN-based methodologies to image analysis are grouped in two categories: im-
age segmentation (Sec. 2) and image classification (Sec. 3). As the majority of
datasets built for interventional-medicine segmentation include also surgical-tool
annotation, surgical-tool segmentation strategies are included in Sec. 2, too. In each
category, articles are further split according to their clinical tasks. Finally, Sec. 4
concludes this paper summarizing the main findings and presenting open challenges
and future research direction.

1.2 Previous approaches to tissue segmentation and classification

During the last decades, standard ML models for tissue classification typically ap-
plied (i) automated image analysis to extract a vector of quantitative, hand-designed,
features to characterize the relevant image content and (ii) a pattern classifier to map
the features to the output space to determine the category to which the extracted fea-
ture vector belongs, e.g., malignant/healthy tissue (Fig. 4).

The most exploited features were built from intensity, textural and derivative-
based information [23]. Intensity-based features aimed at encoding information re-
lated to the prevalent intensity components in the image and were mainly based on
intensity histogram, mean, variance and entropy. These features were commonly
combined with textural features, which encoded tissue appearance, structure and
arrangement [24]. Textural features included local binary patterns [25], gray-level
co-occurence matrices [26] and histograms of oriented gradients [27]. Other popu-
lar features were obtained with filtering-based approaches, such as matched filter-
ing and wavelet analysis,which have been widely used for polyp classification [28].
Similarly, derivative-based approaches built derivative-filters to extract image spa-
tial derivatives, such as gradient and Laplacian, e.g., to highlight tissue edges [29].



6 Sara Moccia, Luca Romeo, Lucia Migliorelli, Emanuele Frontoni, Primo Zingaretti

As for pattern classifiers, several solutions were exploited. First attempts were
based on probabilistic approaches (i.e., Naive Bayes) [30]. Similarly, perceptron-
based algorithms have been widely used, e.g. for polyp detection in endoscopic
images [31]. Tree-based algorithms and kernel based methods (i.e., support vec-
tor machine) were probably among the most widely used classifiers. These algo-
rithms showed promising performance for tissue classification in several fields (e.g.,
abdominal-tissue segmentation and classification [24, 32, 26].

1.3 Background on convolutional neural networks (CNNs)

As in traditional neural networks, a CNN is a sequence of layers, where the convo-
lutional one is the most peculiar. As pointed out in [33], convolution leverages three
important ideas that can help improving classification and segmentation tasks with
respect to traditional ML approaches (based on neural networks):

1. Sparse interactions. While for traditional networks every output unit interacts
with every input unit, CNNs typically have sparse connections.

2. Parameter sharing. Rather than learning a separate set of features for every image
location, only one set is learned, reasonably assuming that it is independent from
the image location.

3. Equivariant representations. From the parameter-sharing property, the convo-
lution equivariance to translation arises (i.e., if the input changes, the output
changes in the same way).

Using convolutional layers results in fewer parameters to store and thus in reduced
memory consumption, higher statistical efficiency and fewer operations to accom-
plish for output prediction.

In addition to convolution, CNNs commonly implement pooling between suc-
cessive convolutional layers. With pooling, the output of the net at a certain location
is replaced by a summary statistic of its nearby outputs (e.g., maximum value in
case of max pooling). Implementing pooling is equivalent to perform downscaling,
thus allowing noise smoothing and making the CNN invariant to small translations
of the input.

Regarding image segmentation, today the most successful solutions exploit fully-
convolutional neural networks (FCNNs), which allow a faster and more accurate
segmentation. FCNNs were first presented in [34] and up to now several architec-
tures, such as UNet [35], SegNet [36] and modified version of ResNet [37], showed
remarkable segmentation performance.

For classification tasks, CNNs usually end with one or more fully-connected
(dense) layers, i.e., layers where all the units have connection with the units of
the previous layer (as in standard neural networks). The number of output units
for the last layer coincides with the number of classes (e.g., two units for a binary
classification problem such as healthy vs pathological tissue). From the first CNN
model for image classification (i.e., LeNet5 [38]), today milestone architectures are
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Alexnet [39], GoogleNet [40], VGG16 [41] and, more recently, fractal CNNs [42]
and residual CNNs such as ResNet [43].

CNN based models were proposed for natural-image analysis, probably because
of the availability of huge annotated datasets such as Imagenet (1). To take full
advantage of the trained models (i.e., CNN weights) available online, a common
strategy in interventional medicine imaging analysis is to implement fine tuning.
Fine tuning consists in adapting the CNN weights learned with huge natural-image
datasets by re-training the last CNN layers with the medical image dataset [15].

1.4 Available datasets and performance metrics

Considering the potentiality of learning algorithms to tackle the intra-operative im-
age variability, collecting large quantity of annotated datasets for algorithm train-
ing became crucial. Indeed, several international organizations constantly work
to collect and label, in a consistent manner, high-quality data recorded during
interventional-medicine procedures. However, this positive trend still concerns only
few anatomical regions (Table 1).

In parallel to the manual annotation of medical datasets, the SDS community
is also studying how crowd- powered algorithm collaboration could be used to an-
notate large-scale medical images, as to moderate the surgeon involvement in the
time-consuming annotation process [44].

Segmentation and classification performance is commonly evaluated with respect
to the manual annotation performed by expert clinicians. To attenuate intra-subject
variability when performing the manual annotation, a combination of annotation
by multiple experts is usually employed [45]. When evaluating the algorithm per-
formance with respect to manual annotation, a contingency table with true positive
(T P), true negative (T N), false negative (FN) and false positive (FP) is commonly
used. The positive and negative samples refer, in turn, to pixels within and out-
side the segmented region (segmentation task) or images belonging to diseased and
healthy class (classification task) according to the manual annotation. Commonly
exploited metrics that are computed from the contingency table are accuracy (Acc),
sensitivity (Se), specificity (Sp) and precision (Pr):

Acc =
T P+T N

n
(1)

Se =
T P

T P+FN
(2)

Sp =
T N

T N +FP
(3)

Pr =
T P

T P+FP
(4)

1 www.image-net.org/
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Table 1 List of available datasets.
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Fig. 4 Segmentation samples for skin, polyp and surgical instruments. Images adapted from [47,
57, 55].

being n the total number of pixels (segmentation task) or images (classification task).
The area under (AU) the Receiver Operating Characteristic (ROC) is also used as

a metric (especially with skewed classes), where the ROC describes the performance
of a binary classifier system as its discrimination threshold is varied.

When dealing with segmentation, further measures based on spatial overlapping
can be used, too. The most used ones are the Dice Similarity Coefficient (DSC), also
known as F1 score, and the Jaccard coefficient (JC):

DSC =
2T P

FP+FN +2T P
(5)

JC =
DSC

2−DSC
(6)

2 Optical-image segmentation

This section will survey approaches for the segmentation of images acquired during
interventional-medicine procedures. For each segmentation approach, Table 2 lists
the relative anatomical region, image dataset, segmentation task and performance
metrics. Figure 4 shows visual samples for skin, polyp and surgical-tool analysis.

Skin lesions

Following the first CNN-based approach to pathological skin-image analysis, mainly
dealing with classification tasks [15], several methods for lesion segmentation have
been proposed. In [47], an encoder-decoder network is proposed to melanoma seg-
mentation. The network is based on U-Net and includes skip connections, as in
ResNets, and dilated convolution [58]. ResNet is also used in [46]. A similar ap-
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Table 2 Summary table for image-segmentation approaches. Acc: accuracy, Se: sensitivity, Sp:
specificity, Pr: precision, DSC: Dice similarity coefficient, JC: Jaccard coefficient.
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proach is proposed in [48], with the main innovation of including shape priors in the
loss function used to train the FCNN. This yields to faster convergence and more
accurate segmentation results. U-Net is also exploited in [59], where a nested archi-
tecture is proposed by optimizing a loss function that allows handling partial image
labeling in confocal microscopy skin images.

Gastrointestinal lesions al polyps

A benchmark analysis for FCNN-based polyp segmentation is proposed in [51],
using one of the first FCNN model in the literature [34]. In [50, 49], a modified
version of SegNet is proposed for pixel-wise polyp and bleeding segmentation in
wireless-endoscopy images, respectively. Polyp detection is achieved with SegNet
in [49], too. In [50] a similar approach is investigated for polyp detection, with
further segmentation-uncertainty estimation via Monte Carlo dropout and model
interpretability analysis by highlighting descriptive regions in the input images with
guided backpropagation [60].

Two parallel custom-built CNNs (for edge detection and lesion classification)
are described in [61] to allow Hookworm disease detection in wireless endoscopic
images. In [57], temporal information is included in the polyp detection process by
building a 3D CNN. Experimental results show an improvement in the detection
performance with respect to approaches based on single-frame processing.

Depth information is exploited in [52] as an additional input channel to FCNN
architectures based on VGG16 and Resnet to the RGB information, experimentally
demonstrating improved performance. Growing interest in the field is also reserved
to automatic depth prediction with CNNs for 3D colon-shape reconstruction [62,
63, 64].

Surgical tools for gastrointestinal surgery

One of the first real-time FCNN-based approaches to the segmentation of non-rigid
surgical tools was proposed in [55], where SegNet was adapted and fine-tuned to
segment surgical tool in endoscopic images. A similar approach is proposed in [53],
where the FCNN encoder is inspired by ResNet, and the decoder one has two
branches for generating both the instrument segmentation mask and its articulated
2D pose.

In [86], a U-Net based architecture to surgical tool segmentation is proposed.
The FCNN is modified to allow multiple instrument segmentation. The FCNN is in
series with a second regressor network to regress the instrument pose.

Recurrent networks are used in [54, 56], where an encoder-decoder FCNN in-
spired to U-Net is combined with Long Short Term Memory (LSTM) to provide
instrument segmentation in endoscopic images while encoding temporal dependen-
cies. This methodology results in higher accuracy than approaches based on non-
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Table 3 Summary table for image-classification approaches. WCE: wireless capsule endoscopy,
Acc: accuracy, Se: sensitivity, Sp: specificity, Pr: precision, AUC: area under the receiver operating
characteristic, DSC: Dice similarity coefficient.
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Fig. 5 Classification samples for skin lesions, polyp and oral-cavity cancer. Images adapted
from [15, 77, 88].

recurrent networks. With the same aim, CNNs with 3D kernels have been proposed
in [87] for instrument pose estimation.s

3 Optical-image classification

This section will survey approaches for the classification of images acquired during
interventional-medicine procedures. For each segmentation approach, Table 3 lists
the relative anatomical region, image dataset, classification task and performance
metrics. Figure 5 shows visual samples for skin, gastrointestinal and oral-cavity
lesion classification.

First approaches to CNN-based tissue classification exploited CNN simply to
extract learned features, which then will be used for tissue classification with stan-
dard ML-approaches introduced in Sec. 1.2 [19]. This was mainly related to the
small numerosity of image datasets. When larger datasets started to become pub-
licly available, more advanced approaches were investigated, which we will survey
hereafter. Accordingly, CNN-based approaches started to be exploited in order to (i)
learn discriminative nonlinear features and (ii) classify the optical-images according
to such features.

Skin lesions

The work presented in [15] is one of the first approaches to skin-lesion segmentation
with CNN, where Google Inception v3 is fine-tuned to detect tumoral skin lesions. A
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similar approach, which uses VGG16 as classification network, is presented in [66],
while ResNet is fine-tuned to classify skin lesions in [46]. A three-branch CNN is
proposed in [68] for coarse classification of psoriatic-plaque macro classes. After
a common VGG16-like architecture, each branch is deputy to a finer classification
of plaque grade. Webly supervised learning is investigated in [67] to deal with data
imbalance. An innovative approach to synergic DL has been recently proposed in
[65], overcoming state of the art approaches.

Gastrointestinal lesions and polyps

Ulcer and bleeding in wireless endoscopic images are classified in [74, 76] using a
sixteen- and ten-layer CNN, respectively. A similar approach is exploited in [77],
where the CNN is fed with both endoscopic frames and image priors (Hessian and
Laplacian) to improve the classification performance. For the same task, AlexNet
is used in [75]. Interesting approaches to weakly-supervised CNN for detection of
inflammatory gastrointestinal lesions are proposed in [70, 78], to overcome the prob-
lem of limited number of annotated images.

A simple CNN with six stages is used in [71] to classify Barrett’s esophagus and
neoplasia in endomicroscopy images. In [69] a further advancement is done and
Barretts esophagus frames are classified by fine-tuning ResNet.

One of the first approaches to polyp classification using an end-to-end trained
CNN is proposed in [72], where transfer learning is applied to several CNN models,
such as VGG16 and Alexnet, outperforming conventional ML methods. An inno-
vative approach to polyp classification is proposed in [73] where a 10-stages CNN
architecture that consists of alternated convolutional and dense layers is built and
regularized to be rotation-invariant.

Other applications

CNNs inspired by AlexNet are used in [81, 84] to identify digestive organs. A seven-
stage CNN is used in [80] to automatically extract image features that are then clas-
sified with extreme ML. Such approach experimentally shows better performance
than using a fully-connecting layers, probably due to the small depth of the CNN.

GoogleNet is used in [79], to classify Helicobacter pylori infection in upper gas-
trointestinal endoscopy images. Fine-tuning is implemented to transfer the recogni-
tion capabilities of the GoogleNet to the endoscopic images. A similar approach is
used in [85] for celiac disease classification by video endoscopy.

A seven-stages CNN is tested in [82] to classify cancerous tissue in laserendomi-
croscopy images of the oral cavity, showing improved performance with respect to
standard ML-based approaches in the field.

A multimodal CNN-based approach to cervical dysplasia classification is pro-
posed in [83]: this combines both automatic feature extraction with CNNs and data
from clinical records.
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4 Discussion

The efforts in the field of DL applied to optical-image analysis are promising and en-
couraging, however, several methodological and technical challenges are still open,
hampering the translation of these developed methodologies into the actual clinical
practice.

From the methodological point of view, it emerged that a comparison of the pro-
posed methodologies is not trivial. There is not a consensus yet on the exploited
datasets and the reported performance metrics, which are not consistent among dif-
ferent research articles (see Table 2 and Table 3). Moreover, despite the efforts in-
vested in the analysis of interventional-medicine images, the number of research
articles in this field is still lower than that relate to anatomical-image analysis [19].

Regarding the technical challenges, there are several aspects that can be tackled
to potentially achieve the goal of robust and reliable tissue classification.

The first aspect deals with hardware design. Indeed, the imaging field is con-
stantly evolving thanks to new optical imaging technologies, such as narrow-band
imaging [89] and multispectral imaging [90]. These technologies potentially allow
high-quality optical imaging (e.g., in terms of image noise and tissue-background
contrast) and have already found interesting applications in the remote-sensing
field [91]. However, the use of these technologies is still underrepresented in the
medical field with few examples (e.g. [32, 92]).

A second aspect is related to the identification of images to be processed. High
noise level in the image, camera movements, tissue deformation and illumination
drop lower image quality and make the classification challenging also for the hu-
man eye. Similarly, classification algorithms are prone to error when processing
uninformative and noisy frames. Solutions have been proposed in the literature,
nonetheless they are still limited to few anatomical regions and have to be further
investigated [93, 88].

A third point concerns the estimation of the level of classification confidence
while increasing the model interpretability, with a view to improve generaliza-
tion performance. In particular, it has been reported that allowing a system to pro-
duce “unknown” results can potentially reduce the number of incorrectly classified
cases [94]. In this context, advancements in DL aim to discover patterns sometimes
unsighted by physicians [95] while estimating the posterior probability of the pre-
diction. Interestingly, understanding why and how the outcome prediction is made
may also help the physician to discover salient predictors involved in the diagnostic
process (pattern localization) [96]. However, the introduction of confidence estima-
tion in the medical imaging field has been only marginally explored [32]. DL-model
interpretability is still an open research topic and recent approaches aim to increase
it by (i) employing sparse CNN models with different loss or penalty functions [97]
and (ii) exploiting visual-attention models to predict human eye fixations on im-
ages [98].

More generally, as SDS/DL strongly rely upon labeled data, the last aspect is
related to the availability of labeled datasets. Indeed, the larger the training dataset,
the bigger the chances the classification algorithm will be accurate in classifying
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unseen data. While the development of tissue-classification algorithms is strongly
advancing in some specific fields (e.g., vascular district [18], and gastrointestinal
tract [22]), there are other fields that are incredibly underrepresented in the literature.
The most probable reason for this is indeed the lack of large and available labeled
databases for algorithm training.

Despite international organizations are active in collecting high-quality anno-
tated datasets, several anatomical districts are still underrepresented, thus limiting
the applicability of supervised CNN-based approaches. However, only a fraction
of patient-related data is digitized and stored in a structured and standardized way,
and data quality assessment is rarely performed [2]. This is probably the main rea-
son why SDS only recently emerged as an active field of research. While shared
databases are available for other research fields for advancing research (e.g., the Im-
ageNet dataset, www.image-net.org/), annotated datasets for the SDS community
are still limited in number. This can be attributed to regulatory and sociological fac-
tors (e.g. data protection and privacy issues) [99]. A second factor deals with med-
ical data annotation, which is typically an expensive process in terms of resources
and time [100]. In the last years, several efforts have been made by the SDS com-
munity to support research-data sharing and develop crowd- powered algorithms
for large-medical-dataset tagging [101, 102]. With a focus on imaging data, data
sharing is especially supported by international organizations, such as the MICCAI
society, the IEEE Signal Processing Society and the IEEE Engineering in Medicine
and Biology Society, which yearly organize Grand Challenges2 and release anno-
tated dataset for algorithm testing (despite focusing mostly on anatomical imaging).
However, when analyzing the description of datasets in Table 1, it emerged that in-
formation related to the number of patients / surgeries / healthcare centers involved
in the dataset creation may be missing. This information could provide useful hints
to be exploited by researcher when developing and testing DL algorithms (e.g. in
terms of robustness to intra- and inter-patient variability) [103]. It is also worth
noticing that the dataset numerosity (both in terms of images and patients) heavily
varies from dataset to dataset (for each different clinical task). For example, in the
MICCAI EndoVis dataset for small-bowel lesion localization, approximately 3600
images are given, while for early Barrett’s cancer detection only 100 images are
available.

Researchers are currently trying to overcome the DL shortcoming of requiring
huge annotation datasets with unsupervised approaches where the problem of high
dimensionality of the random variables to be modeled arise [33].

Even in presence of a sufficiently large labeled dataset, CNN training may not
be trivial if the training labels are sparse, unbalanced or if there is not a consensus
among health-operator annotations (e.g., in the definition of tumor margins). Spe-
cific weakly-supervised learning techniques, as multiple instance learning [104],
may be used to address the problem of both temporal and spatial sparse label-
ing [105]. Solutions to face data unbalanced should be applied both at data and
algorithm level [106], especially when training data are strongly unbalanced (i.e.,

2 https://grand-challenge.org/all challenges/
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number of positive cases � number of negative cases). In order to improve the an-
notation procedure, ranking algorithms [107, 108] can be used to sort the different
responses of health-operator annotators, while evaluating the confidence level of the
reported label.

In conclusion, to allow the actual integration of quantitative intra-operative im-
age analysis into the actual clinical practice [109], the goal is developing adequate
data-analysis technology to provide surgeons with quantitative support and effec-
tively translate the technology into patient care workflow. SDS plays an important
role in moving from (surgeon-specific) subjective to (computer-assisted) objective
decision-making and from qualitative to quantitative assessment of surgical out-
comes [2]. The integration of computer-aids will facilitate the surgeon’s decision
process and risk assessment, offering situation awareness, improved ergonomics and
reduced cognitive workload.
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14. Katić, D., Schuck, J., Wekerle, A.L., Kenngott, H., Müller-Stich, B.P., Dillmann, R., Speidel,
S.: Bridging the gap between formal and experience-based knowledge for context-aware
laparoscopy. International Journal of Computer Assisted Radiology and Surgery 11(6), 881–
888 (2016)

15. Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, S.M., Blau, H.M., Thrun, S.:
Dermatologist-level classification of skin cancer with deep neural networks. Nature
542(7639), 115 (2017)

16. Bernal, J., Tajkbaksh, N., Sánchez, F.J., Matuszewski, B.J., Chen, H., Yu, L., Angermann, Q.,
Romain, O., Rustad, B., Balasingham, I., et al.: Comparative validation of polyp detection
methods in video colonoscopy: Results from the MICCAI 2015 endoscopic vision challenge.
IEEE Transactions on Medical Imaging 36(6), 1231–1249 (2017)

17. Poplin, R., Varadarajan, A.V., Blumer, K., Liu, Y., McConnell, M.V., Corrado, G.S., Peng,
L., Webster, D.R.: Prediction of cardiovascular risk factors from retinal fundus photographs
via deep learning. Nature Biomedical Engineering p. 1 (2018)

18. Moccia, S., De Momi, E., El Hadji, S., Mattos, L.S.: Blood vessel segmentation algorithm-
sreview of methods, datasets and evaluation metrics. Computer Methods and Programs in
Biomedicine 158, 71–91 (2018)

19. Litjens, G., Kooi, T., Bejnordi, B.E., Setio, A.A.A., Ciompi, F., Ghafoorian, M., Van
Der Laak, J.A., Van Ginneken, B., Sánchez, C.I.: A survey on deep learning in medical
image analysis. Medical Image Analysis 42, 60–88 (2017)

20. Patel, V., Armstrong, D., Ganguli, M., Roopra, S., Kantipudi, N., Albashir, S., Kamath, M.V.:
Deep learning in gastrointestinal endoscopy. Critical Reviews in Biomedical Engineering
44(6) (2016)

21. Prasath, V.B.S.: Polyp detection and segmentation from video capsule endoscopy: A review.
Journal of Imaging 3(1) (2017)

22. de Souza, L.A., Palm, C., Mendel, R., Hook, C., Ebigbo, A., Probst, A., Messmann, H., We-
ber, S., Papa, J.P.: A survey on Barrett’s esophagus analysis using machine learning. Com-
puters in Biology and Medicine (In press)

23. Zhang, J., Xia, Y., Xie, Y., Fulham, M., Feng, D.D.: Classification of medical images in the
biomedical literature by jointly using deep and handcrafted visual features. IEEE Journal of
Biomedical and Health Informatics 22(5), 1521–1530 (2018)

24. Zhang, Y., Wirkert, S.J., Iszatt, J., Kenngott, H., Wagner, M., Mayer, B., Stock, C., Clancy,
N.T., Elson, D.S., Maier-Hein, L.: Tissue classification for laparoscopic image understanding
based on multispectral texture analysis. Journal of Medical Imaging 4(1), 015,001–015,001
(2017)

25. Misawa, M., Kudo, S.e., Mori, Y., Takeda, K., Maeda, Y., Kataoka, S., Nakamura, H.,
Kudo, T., Wakamura, K., Hayashi, T., et al.: Accuracy of computer-aided diagnosis based
on narrow-band imaging endocytoscopy for diagnosing colorectal lesions: comparison with
experts. International Journal of Computer Assisted Radiology and Surgery pp. 1–10 (2017)

26. Moccia, S., De Momi, E., Guarnaschelli, M., Savazzi, M., Laborai, A., Guastini, L., Peretti,
G., Mattos, L.S.: Confident texture-based laryngeal tissue classification for early stage diag-
nosis support. Journal of Medical Imaging 4(3), 034,502 (2017)

27. Freeman, W.T., Roth, M.: Orientation histograms for hand gesture recognition. In: Interna-
tional Workshop on Automatic Face and Gesture Recognition, vol. 12, pp. 296–301 (1995)

28. Magoulas, G.D.: Neuronal networks and textural descriptors for automated tissue classifica-
tion in endoscopy. Oncology Reports 15(4), 997–1000 (2006)

29. Kumar, S., Saxena, R., Singh, K.: Fractional fourier transform and fractional-order calculus-
based image edge detection. Circuits, Systems, and Signal Processing 36(4), 1493–1513
(2017)

30. Mukherjee, R., Manohar, D.D., Das, D.K., Achar, A., Mitra, A., Chakraborty, C.: Automated
tissue classification framework for reproducible chronic wound assessment. BioMed Re-
search International 2014 (2014)



19

31. Karargyris, A., Bourbakis, N.: Wireless capsule endoscopy and endoscopic imaging: A sur-
vey on various methodologies presented. IEEE Engineering in Medicine and Biology Mag-
azine 29(1), 72–83 (2010)

32. Moccia, S., Wirkert, S.J., Kenngott, H., Vemuri, A.S., Apitz, M., Mayer, B., De Momi, E.,
Mattos, L.S., Maier-Hein, L.: Uncertainty-aware organ classification for surgical data science
applications in laparoscopy. IEEE Transactions on Biomedical Engineering 158(65), 2649 –
2659 (2018)

33. Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep learning, vol. 1. MIT Press
Cambridge (2016)

34. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation.
In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

35. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image
segmentation. In: International Conference on Medical Image Computing and Computer-
Assisted Intervention, pp. 234–241. Springer (2015)

36. Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: A deep convolutional encoder-decoder
architecture for image segmentation. arXiv preprint arXiv:1511.00561 (2015)

37. Drozdzal, M., Vorontsov, E., Chartrand, G., Kadoury, S., Pal, C.: The importance of skip
connections in biomedical image segmentation. In: Deep Learning and Data Labeling for
Medical Applications, pp. 179–187. Springer (2016)

38. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document
recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

39. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional
neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105
(2012)

40. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V.,
Rabinovich, A.: Going deeper with convolutions. In: IEEE Conference on Computer Vision
and Pattern Recognition, pp. 1–9 (2015)

41. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recog-
nition. arXiv preprint arXiv:1409.1556 (2014)

42. Larsson, G., Maire, M., Shakhnarovich, G.: Fractalnet: Ultra-deep neural networks without
residuals. arXiv preprint arXiv:1605.07648 (2016)

43. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE
Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

44. Heim, E., Roß, T., Seitel, A., März, K., Stieltjes, B., Eisenmann, M., Lebert, J., Metzger, J.,
Sommer, G., Sauter, A.W., et al.: Large-scale medical image annotation with crowd-powered
algorithms. Journal of Medical Imaging 5(3), 034,002 (2018)

45. Warfield, S.K., Zou, K.H., Wells, W.M.: Simultaneous truth and performance level estimation
(STAPLE): an algorithm for the validation of image segmentation. Transactions on Medical
Imaging 23(7), 903–921 (2004)

46. Bi, L., Kim, J., Ahn, E., Feng, D.: Automatic skin lesion analysis using large-scale der-
moscopy images and deep residual networks. arXiv preprint arXiv:1703.04197 (2017)

47. Sarker, M., Kamal, M., Rashwan, H.A., Banu, S.F., Saleh, A., Singh, V.K., Chowdhury, F.U.,
Abdulwahab, S., Romani, S., Radeva, P., et al.: SLSDeep: Skin lesion segmentation based
on dilated residual and pyramid pooling networks. In: International Conference on Medical
Image Computing and Computer-Assisted Intervention, pp. 21–29. Springer (2018)

48. Mirikharaji, Z., Hamarneh, G.: Star shape prior in fully convolutional networks for skin
lesion segmentation. In: A.F. Frangi, J.A. Schnabel, C. Davatzikos, C. Alberola-López,
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