
EDF Scheduling of Real-Time Tasks on Multiple Cores:
Adaptive Partitioning vs. Global Scheduling

Luca Abeni
Scuola Superiore Sant’Anna

Pisa, Italy
luca.abeni@santannapisa.it

Tommaso Cucinotta
Scuola Superiore Sant’Anna

Pisa, Italy
tommaso.cucinotta@santannapisa.it

ABSTRACT
This paper presents a novel migration algorithm for real-
time tasks on multicore systems, based on the idea of mi-
grating tasks only when strictly needed to respect their tem-
poral constraints and a combination of this new algorithm
with EDF scheduling. This new “adaptive migration” algo-
rithm is evaluated through an extensive set of simulations
showing good performance when compared with global or
partitioned EDF: our results highlight that it provides a
worst-case utilisation bound similar to partitioned EDF for
hard real-time tasks and an empirical tardiness bound (like
global EDF) for soft real-time tasks. Therefore, the pro-
posed scheduler is effective for dealing with both hard and
soft real-time workloads.

CCS Concepts
•Computer systems organization → Real-time operating sys-
tems; •Software and its engineering → Real-time schedula-
bility;

Keywords
Multi-Core Real-time Scheduling, Real-Time Operating Sys-
tems

1. INTRODUCTION
Computing technologies have always been evolving towards
higher and higher performance platforms and microproces-
sors, to meet an always increasing demand due to evolving
user requirements, as well as the increasing complexity of
the software and the computations to be performed. This
evolution has been flanked by an evolution in chip manu-
facturing technologies so that new generations of processors
could have lower and lower power consumption per tran-
sistor and per clock cycle, which allowed for higher and
higher CPU frequencies as one of the major drivers to scale-
up the performance. However, in 2004 we have witnessed
this CPU frequency “rush” to come to a dead-end, with In-
tel cancelling [18] its announced line of CPUs for desktops
and servers, to start investing on multi-core technologies.
The decision seems to have been facilitated by thermal is-

Copyright is held by the authors. This work is based on an earlier work: SAC’20
Proceedings of the 2020 ACM Symposium on Applied Computing, Copyright

2020 ACM 978-1-4503-6866-7. http://doi.org/10.1145/3341105.3373937

sues for the new lines of processors, targeting 5GHz–10GHz
frequencies, that would have suffered from unprecedented
problems in heat dissipation. On the other hand, multipro-
cessor platforms had been for decades the exclusive domain
of expensive high-performance computing systems, but they
equally allowed software technologies and operating systems
to evolve for supporting parallelism.

As a consequence, the more-than-linear increase in power
consumption of microprocessors with the frequency led to a
new generation of computing platforms where performance
could be scaled-up in an energy-viable way by adding more
and more cores. Fast-forward to today, and we have multi-
core computing platforms in any computing domain, not
only in high-performance and cloud computing but also in
personal and mobile computing, as well as many embedded
and real-time control systems.

However, software has been struggling at coping with this
increase of parallelism in hardware, where technologies like
OpenMP [29] gained in popularity with their capability of
making parallel software development easier for those used
to sequential loops. On the other hand, operating system
mechanisms had to dramatically evolve to support the new
platforms, not only multi-core SMP platforms but DVFS-
capable, non-symmetric and heterogeneous multi-core plat-
forms, recently with GPU and FPGA acceleration [30].

1.1 Problem Presentation
In this context, a particularly nasty problem has become
the one of designing efficient and real-time CPU schedulers
for multi-core and multi-processor platforms, which is well
known to be more cumbersome than for single-CPU sys-
tems [5]. For example, real-time schedulers for multi-core
platforms are known to be subject to the so called schedul-
ing anomalies, where increasing the number of CPUs or the
CPU frequency sometimes turns a system non-schedulable
causing deadline misses.

However, research and industry have been putting a re-
lentless effort towards increasingly better support for multi-
core/processor platforms for real-time tasks, where the cor-
rectness of the system depends not only on its functional
correctness but also on its capability to let real-time tasks
respect their temporal constraints.

We can distinguish two main categories of scheduling algo-
rithms for multi-cores: in global scheduling, tasks can be

migrated among cores/CPUs according to the internals of
the scheduling strategy; in partitioned scheduling, tasks are
statically partitioned among the available processors, where
a single-processor scheduler is used on each CPU. These are
both relevant and viable options available in nowadays op-
erating systems.

For example, the Linux kernel provides multiple real-time
scheduling policies, based on fixed-priority or deadline-based
scheduling [24], which can be configured in a very flexible
way when it comes to multi-processors. We can configure
the system to use global scheduling across all of the sys-
tem CPUs, completely partitioned scheduling so that each
task is locked onto a specific CPU, or we can even partition
the tasks and CPUs so that each task set undergoes global
scheduling restricted to a specific set of CPUs.

Partitioned schedulers are normally simpler to realize, easier
to analyze thanks to the applicability of uni-processor analy-
sis, and exhibit higher efficiency, as they avoid the overheads
caused by migrations across CPUs. However, in presence of
temporary overloads due to, e.g., interrupt storms or tim-
ing misbehaviors of some tasks, partitioned schedulers are
unable to adapt to the situation and deadline misses can oc-
cur, despite other CPUs remaining idle. Furthermore, parti-
tioned schedulers can only serve tasksets that are partition-
able, i.e., where each partition of tasks on each CPU meets
the requirements of uniprocessor scheduling algorithms.

Global schedulers for real-time task sets are more complex
to design and more difficult to analyse. For example, the
schedulability tests for global Earliest Deadline First and
global fixed priorities are quite pessimistic. However, global
schedulers are in a better position to tolerate temporary
overloads as they can migrate tasks among the available
CPUs. Furthermore, global EDF guarantees that if the total
task load is less than 100% then all the tasks will have an
upper bound to their tardiness [16, 34].

In this context, an area of research that undoubtedly de-
serves more attention is the one of on-line and adaptive
approaches that can be efficiently and effectively used to
schedule real-time task sets on multi-processor systems, try-
ing to exploit the advantages of both global and partitioned
scheduling. A first example of this kind of algorithms has
been presented in an earlier version of this paper [1].

1.2 Contributions
This paper describes two scheduling algorithms based on
adaptive partitioning, named apEDF and a2pEDF, and pro-
vides an evaluation of their performance based on simula-
tions. As detailed in Section 4, the adaptively partitioned
EDF scheduling algorithm uses a migration policy based on
well-known heuristics to distribute tasks among cores/CPUs
so that partitioned scheduling (and, in particular, parti-
tioned EDF) can be used. This partitioning heuristic is
invoked only on job arrival or termination, with the aim
of ensuring that the partitioned EDF schedulability condi-
tion is met on each core/CPU, while keeping the number of
migrations to the bare minimum.

The adaptive partition rapidly converges to a static schedu-
lable partitioning when possible, while it provides a bounded
tardiness (like the global strategy) whenever a schedulable

static task partitioning cannot be found. To achieve this
property, when the partitioning heuristic is not able to place
a task on a core/CPU without overloading it, the new migra-
tion algorithm falls back to a global EDF scheduling policy.
However, the migration algorithm tries to restore a parti-
tioned EDF schedulability whenever possible1.

Adaptive partitioning can be used in both hard real-time
and soft real-time systems, by simply changing the admis-
sion control: if the total utilisation is smaller than (M+1)/2
(where M is the number of cores/CPUs), then all the dead-
lines are respected, while if the total utilisation is between
(M + 1)/2 and M then the algorithm provides a bounded
tardiness (this is an important difference respect to most
of the previously designed schedulers for either hard or soft
real-time tasks). Finally, the hard schedulability bound for
the new algorithm introduced in this paper ((M + 1)/2) is
known to be optimal for fixed-job-priority algorithms [3].

Respect to the previous version of this paper [1], implemen-
tation issues are described in more detail, the hard and soft
real-time performance are better defined and evaluated, and
some considerations (and experiments) about dynamic task
creations and destructions are presented.

1.3 Paper Organization
This paper is organized as follows. After a review of the
most relevant research literature in Section 2, we provide
additional background in Section 3 about some fundamen-
tal notation and concepts that are used throughout the rest
of the paper. In Section 4, we describe our proposed ap-
proach to adaptive partitioned scheduling, which is validated
through the experimental results presented in Section 5. Fi-
nally, conclusions are drawn in Section 6, along with a sketch
of possible lines of future research on the topic.

2. RELATED WORK
Previous research on multi-processor real-time scheduling fo-
cused on supporting either hard real-time systems (where all
the deadlines of all the tasks have to be respected) [7, 4, 14,
31, 25] or soft real-time systems (where a controlled amount
of missed deadlines can be tolerated) [16, 34].

Regarding hard real-time systems, it is known from litera-
ture [3] that global EDF can be modified to have an util-
isation bound which is optimal for fixed-job-priority algo-
rithms [7] and that optimal multiprocessor scheduling algo-
rithms (based on global scheduling) exist [8, 4, 14, 31, 25].
However, all these algorithms are not very used in practice,
and commonly used Operating Systems focus on partitioned
or global fixed-priority or EDF scheduling.

As a result, partitioned scheduling is generally preferred in
hard real-time systems (where execution times are more sta-
ble and transient overloads are less likely to happen, but re-

1Although the proposed technique is a form of dynamic par-
titioning, the name “adaptive partitioning” is used to avoid
confusion with a previous work [32] that used the term “dy-
namic partitioning” to indicate a completely different al-
gorithm (based on making a distinction between real-time
cores and non-real-time cores, and using a dedicated schedul-
ing core to perform on-line admission control on the arriving
jobs).

specting all the deadlines is important) while global schedul-
ing (especially global EDF) is more used in soft real-time
systems (where the tardiness guarantees provided by global
EDF are generally enough, but execution times are less pre-
dictable and transient overloads are more likely to happen).
Some previous works [23, 9] performed empirical studies
comparing the advantages and disadvantages of global vs
partitioned scheduling in various contexts.

The previous works considering hard real-time systems gen-
erally focused on optimal off-line partitioning, such as achiev-
able via integer linear programming techniques [28, 35].

Other works, instead, considered more dynamic real-time
systems where on-line partitioning approaches are required.
In this context, various authors investigated on the effec-
tiveness of bin-packing heuristics such as first-fit, worst-fit
and next-fit, which have been studied at large also in other
contexts, such as memory management (see for example the
seminal works by Graham [20] and Johnson [22, 21], or more
recent works and comprehensive surveys on the topic [33,
12]). Many of these works focus on the absolute approxima-
tion ratio, the minimum number of bins that are needed to
pack a number of items with different weights, when using
the above mentioned simple bin-packing heuristics, in com-
parison to the optimum number that would have sufficed
using an optimal approach. Some authors focused on the
asymptotic value of such an approximation ratio, achieved
as the size of the problem grows to ∞. For example, one
interesting result in the area is the 12/7 ≅ 1.7143 bound for
the first-fit heuristic [12]. However, many of these works are
not concerned with scheduling of real-time tasks, so they
do not study the effectiveness of the mentioned heuristics
on the performance, in terms of slack and/or tardiness, ob-
tained when scheduling various real-time task sets.

3. DEFINITIONS AND BACKGROUND
The system under study consists of a set Γ = {τi} of real-
time tasks τi, to be scheduled onto a platform composed of
one or more CPUs, with a total of M identical cores. Each
real-time task τi can be modelled as a stream of jobs {Ji,k},
where each job Ji,k arrives (becomes ready for execution)
at time ri,k and finishes at time fi,k after executing for an
amount of time ci,k (fi,k clearly depends on the scheduler).
Moreover, each task is associated with a relative deadline Di

and each job Ji,k is required to complete within its absolute
deadline of di,k = ri,k +Di.

If fi,k is smaller than or equal to the job’s absolute dead-
line di,k, then the job respected its deadline, otherwise the
deadline is missed. Task τi respects all of its deadlines if
∀k, fi,k ≤ di,k. Since di,k = ri,k +Di, this condition is often
expressed as ∀k, fi,k − ri,k ≤ Di. The tardiness of job Ji,k

is defined as max{0, fi,k − di,k}.

Real-time tasks are often periodic (∀k, ri,k+1 − ri,k = Pi)
or sporadic (∀k, ri,k+1 − ri,k ≥ Pi) with period or minimum
inter-arrival time Pi and in this work we assume Di = Pi.
The exact job execution times ci,k are not known before-
hand, however we assume to know a reasonable Worst-Case
Execution Time (WCET) Ci ≥ ci,k ∀k.

The goal of a real-time scheduler is to provide predictabil-

ity, so that, given a taskset Γ = {τi} (with each task τi
characterised by its parameters (Ci, Pi, Di)) it is possible to
check in advance if any deadline will be missed (or, it is pos-
sible to provide guarantees about the worst-case tardiness
experienced by each task τi).

In case of a single core (M = 1), fixed-priority (with the
Rate Monotonic assignment [26]) or EDF [15] schedulers can
provide the guarantee that every task will respect all its
deadlines if some schedulability condition is respected: if
Pi = Di, then the schedulability condition is

∑
i
Ci/Pi ≤

U lub, with U lub depending on the scheduling algorithm —
for EDF, U lub = 1.

If tasks are scheduled on multiple CPU cores, then different
approaches can be used, and are generally grouped in two
classes of algorithms known as partitioned scheduling and
global scheduling.

Algorithms based on partitioned scheduling partition the
tasks Γ = {τi} across the cores so that each partition Γj ⊂ Γ
is statically associated to a single core j, and EDF (or fixed-
priority scheduling) can be used on each core (in this case,
the schedulability analysis can be performed independently
on the various cores). Of course, this approach requires that
it is possible to partition the tasks among cores so that ev-
ery partition respects

∑
τi∈Γj

Ci/Pi ≤ 1 (if EDF is used).

However, this may not be always possible. For example, the
taskset Γ = {(6, 10, 10), (6, 10, 10), (6, 10, 10)} is not schedu-
lable on 2 cores using a partitioned approach

Algorithms based on global scheduling, instead, dynamically
migrate tasks among cores so that the m highest priority
ready tasks (or the m earliest deadline ready tasks) are
scheduled (where m is the minimum between the number
of cores and the number of ready tasks). In this case, the
uniprocessor schedulability analysis cannot be re-used, and
new schedulability tests (which turn out to be much more
pessimistic) are needed [11, 10, 19]. Looking again at the
taskset Γ = {(6, 10, 10), (6, 10, 10), (6, 10, 10)}, it is possible
to notice that some deadlines will be missed also when using
global EDF (gEDF) scheduling, but in this case the finishing
times of all jobs will never be much larger than the absolute
deadlines (in practice, ∀i, k, fi,k −ri,k ≤ 12). This is a prop-
erty of the gEDF algorithm which holds when

∑
Ci/Pi ≤ M

(with M being the number of cores) which obviously cannot
be respected by partitioned EDF (pEDF).

While conceptually global scheduling requires that all the
ready tasks are inserted in a single global queue (ordered
by priority or deadline, so that the first M tasks of the
queue are scheduled), some OS kernels (such as Linux) im-
plement it by using per-core ready task queues (“runqueues”
in Linux) and migrating tasks among them so that the M
highest-priority/earliest-deadline tasks are on M different
queues. For example, the Linux SCHED_DEADLINE scheduling
policy [24] implements gEDF through multiple runqueues,
using three operations to enforce the gEDF invariant: “select
task runqueue”, “pull” and “push”. This is done by invoking
one of the three operations every time the earliest-deadlines
tasks change2:

2A similar mechanism is used for the fixed-priority sched-
uler, invoking “select task runqueue”, “push” or “pull” every

• When a task wakes up (becomes ready for execution) a
“select task runqueue”(the“select_task_rq()”kernel
function) is invoked to decide in which runqueue j the
task has to be inserted (this choice should be made so
that the gEDF invariant is respected, but also takes
into account task affinities and migration overheads)

• When (after invoking “select_task_rq()”) the task is
inserted in the jth runqueue, a “push”operation is per-
formed to check if a task should be moved from the jth

to some other runqueue to respect the global invariant
(the M highest-priority/earliest-deadline tasks are on
M different runqueues). Notice that thanks to the “se-
lect task runqueue” optimization the “push” operation
is needed only if the task that wakes up preempts an-
other deadline task that was already running on the
selected core.

• When the task executing on the jth core blocks (is
not ready for execution anymore), a “pull” operation
is performed to check if a task queued in some other
runqueue should be pulled onto the jth runqueue to
respect the global invariant.

Although this mechanism has been originally designed to
implement global scheduling using per-core runqueues, it
can also be used to implement some kind of trade-off be-
tween global and partitioned scheduling. For example, the
select_task_rq() function can be modified to control the
utilisation Uj of each runqueue (so that it is smaller than
U lub), completely removing the “push”and “pull” operations
(so that tasks are migrated only when they wake up). This is
the basic idea of the adaptively partitioned scheduling that
will be introduced in the next section.

4. ADAPTIVE PARTITIONING
The adaptive partitioning migration strategy, originally pro-
posed in a previous version of this paper [1], implements a re-
stricted migration scheduling algorithm based on r-EDF [6].
Since all the runqueues are ordered by absolute deadlines
(implementing the EDF algorithm, so that U lub = 1), the
algorithm is named adaptively partitioned EDF (apEDF).

In more detail, in a scheduling algorithm based on restricted
migrations a task τi that starts to execute on core j cannot
migrate until its current job is finished: each job Ji,k exe-
cutes on a single core, and cannot migrate. Hence, using the
Linux terminology, the scheduler is based on a “select task
runqueue” operation (invoked when a new job arrives), but
does not use any “push” nor “pull” operation.

4.1 The Basic Algorithm
To simplify the description of the apEDF algorithm, let
rq(τi) indicate the runqueue in which τi has been inserted
(that is, the core on which τi executes or has executed) and
let Uj =

∑
{i:rq(τi)=j} Ci/Pi indicate the utilisation of the

jobs executing on core j. Moreover, let dj represent the ab-
solute deadline dh,l of the job currently executing on core j,
or ∞ if core j is idle.

time the highest-priority tasks change

Data: Task τi to be placed with its current
absolute deadline being di,k; state of all the
runqueues (overall utilisation Uj and
deadline of the currently scheduled task dj

for each core j)
Result: rq(τi)

1 if Urq(τi) ≤ 1 then
/* Stay on current core if schedulable */

2 return rq(τi)

3 else
/* Search a core where the task fits */

4 for j = 0 to M − 1 do /* Iterate over all

the runqueues */

5 if Uj +Ci/Pi ≤ 1 then
6 return j /* First-fit heuristic */

7 end

8 end
/* Find the runqueue executing the task

with the farthest away deadline */

9 h = 0
10 for j = 1 to M − 1 do /* Iterate over all

the runqueueus */

11 if dj > dh then
12 h = j
13 end

14 end

15 if dh > di,k then
/* τi is migrated to runqueue h, where

it will be the earliest deadline

one */

16 return h

17 end
/* Stay on current runqueue otherwise */

18 return rq(τi)

19 end
Algorithm 1: Algorithm to select a runqueue for a task
τi on each job arrival.

By default, when a task τi is created its runqueue is set to
0 (rq(τi) = 0) and will be eventually set to an appropriate
runqueue when the first job arrives (the task wakes up for
the first time).

When job Ji,k of task τi arrives at time ri,k, the migration
strategy selects a runqueue rq(τi) for τi (that is, a core on
which τi will be scheduled), by using Algorithm 1.

The algorithm uses information about τi and the state of
the various runqueues. Based on this information, it tries to
schedule tasks so that runqueues are not overloaded (∀j, Uj ≤
1) while reducing the number of migrations. If Urq(τi) ≤ 1
(Line 1), then rq(τi) is left unchanged and the task is not
migrated (Line 2). Otherwise (lines 4 — 18), an appropriate
runqueue rq(τi) is selected as follows:

• If ∃j : Uj + Ci/Pi ≤ 1, then select the first runqueue
j having this property: j = min{h : Uh + Ci/Pi ≤ 1}
(Lines 4 — 8). In other words, Lines 4 — 8 im-
plement the well-known First-Fit (FF) heuristic, but
other heuristics such as Best-Fit (BF) or Worst-Fit
(WF) can be used as well

• If the execution arrives to Line 9, this means that
∀j, Uj + Ci/Pi > 1 (task τi does not fit on any run-
queue). Then, select a runqueue j based on comparing
the absolute deadlines di,k and {dj}, as done by the
gEDF strategy (Lines 9 — 17):

– If dh ≡ maxj{d
j} > di,k (Line 15), select the

runqueue h currently running the task with the
farthest away deadline into the future (Line 16)

– Otherwise, do not migrate the task (line 18).

Notice that for the sake of clarity Lines 9 — 14 show how to
compute maxj{d

j} by iterating on all the runqueues, but the
Linux kernel stores all the dj in a heap, so the maximum can
be obtained with a logarithmic complexity in the number of
cores.

Theorem 1. The apEDF algorithm is able to schedule
every taskset with U =

∑
i
Ci/Pi ≤ (M+1)/2 without miss-

ing any deadline.

Proof. Since rq(τi) is set to 0 when τi is created and is
updated only when U0 > 1 (the check at Line 1 fails) us-
ing the FF heuristic (Lines 4 — 8), it can be seen that if
FF can generate a schedulable task partitioning then Algo-
rithm 1 behaves as FF and has the FF properties. Previous
work [27] proved that if U ≤ (M + 1)/2 then FF generates
a schedulable partitioning, hence apEDF is able to correctly
schedule tasksets with U ≤ (M + 1)/2 without missing any
deadline3.

Theorem 2. If adEDF is able to find a scheduling parti-
tioning, after it is reached the migrations stop.

Proof. The check at Line 1 of the algorithm ensures that
if task τi has been previously inserted in a runqueue with
Ui ≤ 1, then it is not migrated; hence, only tasks that have
been assigned to overloaded cores (potentially suffering be-
cause of missed deadlines) are migrated. As a result, tasks
can initially migrate, but if Algorithm 1 is able to find a
schedulable partitioning then the tasks do not migrate any-
more.

Theorem 2 shows an important difference between apEDF
and r-EDF. The latter “forgets” the core on which a task
has been run at each task deadline di,k, decreasing Uj by
Ci/Pi at that time, potentially migrating tasks at each job
arrival/activation, even if they are correctly partitioned. Al-
gorithm 1, instead, avoids unneeded migrations by letting
tasks stay on the same core as long as there are no over-
loads, updating the runqueues’ utilisations only when tasks
migrate (and not when they de-activate).

Notice that Theorem 1 states that if U < (M + 1)/2 then
apEDF is immediately able to find a schedulable partition-
ing, without overloading and without migrations (only one
initial migration from core 0 is needed). If the taskset’s
utilization is larger than (M + 1)/2, then some additional
migrations might be needed. Theorem 2 then shows that if

3The same work [27] also proves that, if Ci/Pi ≤ β ∀i, then
the FF utilisation bound is higher: U ≤ (Mβ + 1)(β + 1).

a schedulable partitioning is reached after these initial mi-
grations, then no further migrations will happen: if the FF
heuristic used by apEDF is not able to immediately find a
schedulable partitioning, then apEDF migrates a task at ev-
ery job arrival, until the schedulable partitioning is reached.

It has been conjectured that if a schedulable task partition-
ing exists then Algorithm 1 is able to converge to it in a finite
number of steps, by only migrating tasks that have been
placed on overloaded runqueues (that is, runqueues with
Uj > 1). In this case, only few deadlines will be missed at
the beginning of the schedule (and after a sufficient amount
of time no deadlines will be missed anymore). A formal
proof of this property is still under development, but sim-
ulations seem to confirm it: in all the simulated tasksets,
if a schedulable partitioning of the tasks exists (that is, if
tasks τi ∈ Γ can be assigned to runqueues 0...M − 1 so that
∀0 ≤ j < M,Uj ≤ 1), then after a finite number of mi-
grations the tasks’ assignments {rq(τi)} converge to such a
partitioning.

If, instead, a schedulable tasks partitioning does not ex-
ist, then Lines 9 — 17 of Algorithm 1 ensure that the M
earliest-deadline tasks are either scheduled or placed on non-
overloaded cores. Intuitively, this mechanism tries to make
sure that tasks with small absolute deadlines cannot be
starved and the difference between the current time and
the absolute deadline is bounded. Hence, it has been con-
jectured that if U ≤ M then each task still experiences a
bounded tardiness (∃L : ∀τi ∈ Γ,maxk{fi,k − di,k} ≤ L)
even if such a schedulable partitioning does not exist.

In other words, the apEDF is designed to provide the good
properties of both pEDF and gEDF.

4.2 Reducing the Tardiness

Data: Runqueue rq where to pull; state of all the
runqueues

Result: Task τi to be pulled

1 if rq is not empty then
2 return none
3 else
4 τ = none; min = ∞;

/* Search for a task τ to pull */

5 for j = 0 to M − 1 do /* Iterate over all

the runqueues */

6 if Uj > 1 then
7 if d′j < min then
8 min = d′j

9 τ = second(j)

10 end

11 end

12 end
13 return τ

14 end

Algorithm 2: Algorithm to pull a task in a2pEDF.

Although apEDF can provide a bounded tardiness if U ≤ M ,
the tardiness bound L can be quite large (much larger than
the one provided by gEDF), as it will be shown in Section 5.
This is due to the fact that the runqueue on which a job Ji,k

is enqueued is selected at time ri,k when the job arrives; if
task τi does not fit on any runqueue, the target runqueue
is selected based on the absolute deadlines {dj} of the jobs
that are executing on all cores at time ri,k, so the selection
can be sub-optimal after some of these jobs have finished.
For example, if at time ri,k job Ji,k is inserted in the jth

runqueue, then it will be scheduled on the jth core even if
some other core in the meanwhile becomes idle: in other
words, apEDF is not work-conserving.

This issue is addressed by the improved“a2pEDF”algorithm
that runs a “pull” operation each time a job finishes. This
operation (described by Algorithm 2) is similar to the “pull”
operation currently used by the Linux scheduler, but only
pulls tasks on idle cores (see the check on Line 1) and only
pulls from overloaded runqueues (see the check on Line 6).
In the description of the algorithm, “second(j)” indicates
the first non-executing task in runqueue j and d′j indicates
the absolute deadline of such a task (or ∞ if the runqueue
does not contain any task that is not executing). Notice
that, in contrast with apEDF, a2pEDF does not follow a
restricted migrations approach, because a “pull” operation
can migrate a job after it started to execute on a core (and
has been preempted by an earlier-deadline task).

At first glance, Line 1 of the algorithm (pull tasks only to
idle cores) might look strange. It is actually motivated by
the fact that when a task terminates, its utilization can be
reused only after the task’s deadline (or, more accurately,
after the so called “0-lag time” [2]). Hence, immediately
pulling a task from a different core might cause a tran-
sient overload, with additional missed deadlines. In theory,
a2pEDF could avoid this issue by waiting for the 0-lag time
(or the end of the task period) before performing a “pull”
operation, but performing a “pull” immediately only when
the core becomes idle allows to address the issue in a simpler
way (without having to set up timers for pulling).

4.3 Implementing Adaptive Migrations
Although apEDF and a2pEDF might look more complex
than the “original” pEDF and gEDF algorithms, they can
easily be implemented in the Linux kernel.

As previously mentioned, Linux currently implements the
gEDF policy for SCHED_DEADLINE by storing per-core run-
queues and using “select task runqueue”, “push” and “pull”
operations to make sure that the global deadline ordering is
respected (the“select task runqueue”operation is used when
a task wakes up, to reduce the number of “push”operations).
The current “select task runqueue” and “push” are based on
a “find_later_rq()” function that implements Lines 9 —
17 of Algorithm 1, and the current “pull” operation imple-
ments Lines 4 — 13 of Algorithm 2. Hence, apEDF can be
implemented by modifying the “find_later_rq()” function
(adding Lines 1 — 8) and disabling the “push” and “pull”
operations. Push operations are not needed because apEDF
migrates tasks only on wake-up, hence select_task_rq() is
enough. Pull operations are obviously not needed because
apEDF does not have a “pull” phase.

The Linux kernel already tracks the runqueue utilisation Uj

(named “runqueue bandwidth” and stored in the “rq_bw”
field of the runqueue structure), hence implementing Lines

1 — 8 of Algorithm 1 is not difficult.

The a2pEDF algorithm can then be implemented by re-
introducing the “pull” operation with small modifications
respect to the current code (the only difference is that the
a2pEDF “pull” only pulls tasks if the current core is idle).

4.4 Dynamic Task Arrivals and Terminations
Although most of the discussion up to this point focused
on static tasksets (all tasks starts at time 0 and never ter-
minates, there is no dynamic admission control) adaptively
partitioned scheduling can support dynamic tasksets (with
tasks created and terminated at arbitrary time instants).

The dynamic admission control mechanism can still be based
on the taskset’s utilization U (that can be time-dependent,
increasing when new tasks are created and accepted in the
system, and decreasing when an existing task terminates).
However, Theorem 1 is only valid for static tasksets, hence
even using U < (M + 1)/2 as an admission test a dynamic
taskset can experience some transient deadline miss. This
can happen because Theorem 1 is based on the FF property
that if a task is assigned to core j then it cannot fit in any
core h < j. When a task terminates on core h, this property
might be broken (some of the tasks assigned to core j > h
that previously did not fit on core h can fit in it after the
task terminates and the core’s utilization decreases). Hence,
one of the assumptions of the theorem is not respected, and
the theorem does not hold.

As an example, consider a 2-cores system, with 3 tasks τ0,
τ1 and τ2 having utilizations 0.4 each. The total utilization
is U = 0.4 + 0.4 + 0.4 ≤ (2 + 1)/2, and Algorithm 1 is able
to schedule the three tasks placing τ0 and τ1 on core 0 (with
U0 = 0.8), and τ2 on core 1 (with U1 = 0.4). At time t′,
τ0 terminates, leaving the system; now, U0 = 0.4, U1 = 0.4
and the FF property mentioned above is not respected: τ2
is scheduled on core 1 while it could fit on core 0. If at time
t′′ > t′ a new task τ3 with utilization 0.65 arrives, it cannot
fit on any core even if U = 0.4+0.4+0.65 = 1.45 < (2+1)/2!
Of course, since one of the two cores becomes overloaded
apEDF will soon migrate a task so that τ1 and τ2 will be on
the same core, and τ3 will be on the other one. Hence, some
deadlines can be missed, but only during a short transient
when a new task is created and passes the admission test.

5. EXPERIMENTAL EVALUATION
The apEDF and a2pEDF algorithms have been implemented
in a scheduling simulator, to extensively check their proper-
ties and compare their performance with gEDF (as currently
implemented by SCHED_DEADLINE). First, the properties and
performance of adaptive partitioning algorithms have been
tested using static tasksets, that do not change over time
(no dynamic task creation or termination: all the tasks are
created at time 0 and run until the end of the simulation).
Then, some experiments have been performed to evaluate
the behaviour of adaptive partitioning algorithms in pres-
ence of dynamic task arrivals and terminations.

5.1 Adaptive Partitioning and Schedulability
Before comparing adaptive partitioning with global schedul-

ing, the hard schedulability property of apEDF (as stated
by Theorem 1: if U ≤ (M + 1)/2, then no deadline is
missed) has been verified through extensive simulations, us-
ing static tasksets. These tasksets have been generated by
using the Randfixedsum algorithm [17], using different num-
bers of tasks and utilisations (for each configuration of the
taskset’s parameters, 10 different tasksets have been simu-
lated). Each taskset has been simulated from time 0 to 2∗H ,
where H = lcmi{Pi} is the taskset’s hyperperiod.

A large number of tasksets has been generated and simulated
on 2, 4, 8 and 16 CPUs, setting U = (M +1)/2 and using a
number of tasks ranging from 2M to 3M . In all simulations,
no deadlines were missed, confirming the property.

5.2 Soft Real-Time Performance
Then, the performance of apEDF (and a2pEDF) have been
compared with the performance of gEDF, starting from the
observation that gEDF missed deadlines on many of the pre-
viously generated tasksets. To perform a more systematic
comparison, it is important to define some meaningful met-
rics. For example, in soft real-time systems deadlines can be
missed and the percentage of jobs missing their deadline can
be a significant performance metric. On the other hand, in
hard real-time systems a single job missing a deadline can
compromise the correctness of the whole application (mod-
elled as a taskset); hence, the percentage of the tasksets
missing at least one deadline is a more meaningful perfor-
mance metric.

In the following experiments, more tasksets have been gen-
erated, varying their utilisation U from slightly less than
(M + 1)/2 to almost M . The tasksets have been simulated
using both global scheduling and adaptive partitioning, mea-
suring both soft real-time metrics (percentage of jobs miss-
ing their deadline) and hard real-time metrics (percentage
of tasksets containing at least a task missing a deadline).

First, the soft real-time performance is reported and dis-
cussed. For example, Figures 1, 2 and 3 compare the soft
real-time performance by showing the percentage of missed
deadlines and the average number of migrations per job
when M = 2, 4, 8 (the figures show the results for tasksets
composed by N = 16 tasks, but similar results have been
obtained with different values of N). Notice that the plots
about missed deadlines use a logarithmic scale on the Y axis
to make the figure more readable. The results presented in
the figures indicate that apEDF performs better than gEDF
in most of the cases, but has some issues (resulting in a very
large percentage of missed deadlines — for example, more
than 30% for M = 4 and U = 3.9, or more than 20% for
M = 8 and U > 7.1) for “extreme” values of U .

Looking at the average migrations per job, it is interesting to
see how for gEDF this number increases with the utilisation,
while it stays to almost 0 for apEDF and low utilisations4.
When the utilisation increases, and some of the generated
tasksets are not partitionable (it is not possible to find a
schedulable partitioning for them), the average number of
migrations per job in apEDF increases (because Lines 9 —
17 of Algorithm 1 are used), but it is always very small

4The only measured migrations are the ones on the first job,
from runqueue 0 to an appropriate runqueue.

Table 1: Percentage of missed deadlines with 2, 4 and 8 CPUs,
U = 0.8M and scheduling 16 tasks.

CPUs
gEDF apEDF

part global part global
2 8e−9 6.7e−5 0 0
4 8.264e−6 0.8936 0 4e−9
8 2.2046e−5 1.5759 4e−9 2.09e−7

compared to gEDF.

An analysis of the problematic tasksets for which apEDF re-
sults in a high percentage of missed deadlines revealed that
the issue is caused by the small number of migrations used
by apEDF. For these tasksets it is not possible to find a
schedulable partitioning, hence apEDF tries to respect the
gEDF invariant when selecting a runqueue, but does not
perform any “pull” operation (notice, again, that the num-
ber of migrations per job is small even if the tasksets are not
partitionable). In contrast, gEDF uses a “pull” operation
when jobs terminate (increasing the number of migrations
per job), exploiting cores that would become idle. This sug-
gests that introducing a “pull” phase in apEDF can fix the
issue. As expected, in these situations a2pEDF performs
much better and can again outperform gEDF, as shown in
the figures: for example, the percentage of deadlines missed
by a2pEDF for M = 4 and U = 3.9 is 7% — notice that it is
9% for gEDF (this result is confirmed by other experiments
presented later). On the other hand, the figures plotting the
average number of migrations per job show that a2pEDF
causes fewer migrations than gEDF. Figure 3 is even more
interesting, showing that for very high values of the utili-
sation a2pEDF misses a percentage of deadlines similar to
gEDF (so, for non partitionable tasksets the a2pEDF per-
formance and the gEDF performance are similar).

Finally, notice that for apEDF the percentage of missed
deadlines is 0 up to U = 1.8 for M = 2, U = 3.3 for M = 4
and U = 6.2 for M = 8.

Then, some experiments have been performed to better in-
vestigate the situations in which the apEDF algorithm does
not perform well (because of non-partitionable tasksets). As
seen, this happens when the utilisation is close to the num-
ber of CPUs and the number of tasks is small compared to
the number of CPUs. Figure 4, plotting the percentage of
missed deadlines for M = 8, U = 7.6 and N ranging from 15
to 25, shows that for N < 19 apEDF misses more deadlines
than gEDF. However, looking at the response times it was
possible to see that the tardiness is always limited and does
not increase with simulations of longer durations.

Again, introducing a “pull” phase similar to the gEDF one,
as done in the a2pEDF algorithm, solves the issue: as shown
in the figure, a2pEDF always misses fewer deadlines than
gEDF, even for small values of N . As previously mentioned,
the a2pEDF algorithm is not based on restricted migrations,
and the average number of migrations per job is higher than
the one for apEDF; however, as shown in Figure 5, the num-
ber of migrations is still small respect to gEDF. Also notice
that when the number of tasks increases the average num-
bers of migrations for apEDF and a2pEDF are almost equal.

0.00000001

0.00000010

0.00000100

0.00001000

0.00010000

0.00100000

0.01000000

0.10000000

1.00000000

10.00000000

 1.3 1.4 1.5 1.6 1.7 1.8 1.9

P
e
rc

e
n
ta

g
e
 o

f
m

is
s
e
d
 d

e
a
d
lin

e
s

Utilisation

2 CPUs

gEDF
apEDF

 0

 0.5

 1

 1.5

 2

 2.5

 1.3 1.4 1.5 1.6 1.7 1.8 1.9

A
v
e
ra

g
e
 m

ig
ra

ti
o
n
s
 p

e
r

jo
b

Utilisation

2 CPUs

gEDF
apEDF

Figure 1: Percentages of missed deadlines and average migrations per job (as a function of U) with 2 CPUs and 16 tasks.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

P
e
rc

e
n
ta

g
e
 o

f
m

is
s
e
d
 d

e
a
d
lin

e
s

Utilisation

4 CPUs

gEDF
apEDF

a2pEDF

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

A
v
e
ra

g
e
 m

ig
ra

ti
o
n
s
 p

e
r

jo
b

Utilisation

4 CPUs

gEDF
apEDF

a2pEDF

Figure 2: Percentages of missed deadlines and average migrations per job (as a function of U) with 4 CPUs and 16 tasks.

 1x10
-8

 1x10
-6

 0.0001

 0.01

 1

 100

 4 4.5 5 5.5 6 6.5 7 7.5 8

P
e
rc

e
n
ta

g
e
 o

f
m

is
s
e
d
 d

e
a
d
lin

e
s

Utilisation

8 CPUs

gEDF
apEDF

a2pEDF

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4 4.5 5 5.5 6 6.5 7 7.5 8

A
v
e
ra

g
e
 m

ig
ra

ti
o
n
s
 p

e
r

jo
b

Utilisation

8 CPUs

gEDF
apEDF

a2pEDF

Figure 3: Percentages of missed deadlines and average migrations per job (as a function of U) with 8 CPUs and 16 tasks.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 14 16 18 20 22 24 26

P
e
rc

e
n
ta

g
e
 o

f
m

is
s
e
d
 d

e
a
d
lin

e
s

Number of Tasks

gEDF
apEDF

a2pEDF

Figure 4: Percentage of missed deadlines withM = 8 U = 7.6
and N ranging from 15 to 25.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 14 16 18 20 22 24 26

A
v
e
ra

g
e
 m

ig
ra

ti
o
n
s
 p

e
r

jo
b

Number of Tasks

gEDF
apEDF

a2pEDF

Figure 5: Average migrations per job with M = 8 U = 7.6
and N ranging from 15 to 25.

Another set of experiments has been performed to check how
the taskset generation algorithm can impact on the mea-
sured performance. Multiple tasksets with a fixed utilisa-
tion and number of tasks have been generated and simu-
lated on 2, 4 and 8 CPUs. The generation has been per-
formed in two different ways: in the first case (referred to
as “global” tasksets) the tasksets with utilisation U = 0.8M
and N = 16 tasks were directly generated using the Rand-
fixedsum algorithm, while in the second case (referred to
as “part” tasksets) M tasksets with utilisation U and N/M
tasks were generated and merged to create a single larger
taskset. The second kind of tasksets is partitionable by con-
struction and it is interesting to see that apEDF converges
to a schedulable task partitioning whenever possible).

Since the most interesting results were obtained with high
utilisations, here the results for U = 0.8M (and a number of
tasks fixed to N = 16) are reported. Table 1 compares the
soft real-time performance of apEDF and gEDF, by showing
the percentage of missed deadlines. The table confirms that
gEDF can provide good soft real-time performance (even

Table 2: Average number of migrations per job with 2, 4 and
8 CPUs, U = 0.8M and scheduling 16 tasks.

CPUs
gEDF apEDF

part global part global
2 1.887913 1.965759 5.6e−9 4.8e−9
4 3.157379 3.188243 4.1e−9 4.8e−9
8 3.655992 2.795994 6.0e−9 4.8e−9

 0

 20

 40

 60

 80

 100

 1.3 1.4 1.5 1.6 1.7 1.8 1.9

P
e
rc

e
n
ta

g
e
 o

f
ta

s
k
s
e
ts

 m
is

s
in

g
 d

e
a
d
lin

e
s

Utilisation

gEDF
apEDF

a2pEDF

Figure 6: Percentages tasksets missing a deadline (as a func-
tion of U) with 2 CPUs and 16 tasks.

if deadlines are missed in many tasksets, the percentage of
missed deadlines is small). However, apEDF still performs
better than gEDF even for this metric.

Table 2, instead, compares the average number of migrations
per job measured in the previous simulations. Again, apEDF
results in a very small number of migrations compared to
gEDF (notice that the number of migrations for apEDF is
not affected much by variations in the number of CPUs as,
for most of the generated tasksets, apEDF is able to find a
schedulable partitioning after a few migrations).

5.3 Hard Real-Time Performance
After comparing the soft real-time performance of the al-
gorithms, their hard real-time performance has been com-
pared, by considering the percentage of tasksets containing
at least one missed deadline (remember that for each con-
figuration 30 different tasksets have been generated).

Figures 6, 7 and 8 compare the hard real-time performance
of the tasksets already reported in Figures 1, 2 and 3 (show-
ing the percentage of tasksets missing at least a deadline
instead of the percentage of missed deadlines). The results
presented in the figures indicate that when we consider hard
real-time performance apEDF always performs better than
gEDF. Moreover, for this metric, differences between apEDF
and a2pEDF are not very large. From Figure 6 it can be
seen that on 2 cores adaptive partitioning can provide good
hard real-time performance also with very high utilizations
(up to 1.9), while from Figures 7 and 8 it can be seen that
adaptive partitioning can provide good hard real-time per-

 0

 20

 40

 60

 80

 100

 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

P
e
rc

e
n
ta

g
e
 o

f
ta

s
k
s
e
ts

 m
is

s
in

g
 d

e
a
d
lin

e
s

Utilisation

gEDF
apEDF

a2pEDF

Figure 7: Percentages tasksets missing a deadline (as a func-
tion of U) with 4 CPUs and 16 tasks.

 0

 20

 40

 60

 80

 100

 4 4.5 5 5.5 6 6.5 7 7.5 8

P
e
rc

e
n
ta

g
e
 o

f
ta

s
k
s
e
ts

 m
is

s
in

g
 d

e
a
d
lin

e
s

Utilisation

gEDF
apEDF

a2pEDF

Figure 8: Percentages tasksets missing a deadline (as a func-
tion of U) with 8 CPUs and 16 tasks.

formance for U ≤ 3.5 on 4 cores, and for U ≤ 6.5 on 8
cores. In general, both apEDF and a2pEDF perform well
for utilzations up to about 0.8M .

The results obtained when simulating the same tasksets used
for Figure 4 are reported in Figure 9. It is possible to see
that both apEDF and a2pEDF provide better hard real-
time performance than gEDF (even if they miss deadlines
in a consistent fraction of tasksets). Finally, for this kind of
tasksets the difference between apEDF and a2pEDF is rel-
evant: “pull” migrations are needed to respect all the dead-
lines in at least 50% of the tasksets.

Finally, Figure 10 shows the percentage of tasks missing at
least one deadline for gEDF and apEDF with the tasksets
used for Table 1. As it can be noticed from the figure,
the percentage of tasksets missing at least a deadline with
apEDF is always smaller than the one with gEDF, show-
ing that apEDF has better hard real-time performance than
gEDF. The only case in which deadlines are missed in a rele-
vant percentage of tasksets is the one with “global” tasksets,

 20

 30

 40

 50

 60

 70

 80

 90

 100

 14 16 18 20 22 24 26

P
e
rc

e
n
ta

g
e
 o

f
m

is
s
e
d
 d

e
a
d
lin

e
s

Number of Tasks

gEDF
apEDF

a2pEDF

Figure 9: Percentage of tasksets missing a deadline withM =
8 U = 7.6 and N ranging from 15 to 25.

M = 8, N = 16 and U = 6.4. This happens because the
number of tasks is relatively small respect to the number
of CPUs (N = 2M) while the utilisation is quite high; in
this situation, the taskset is likely not partitionable (hence,
apEDF falls back to something similar to gEDF). The small
percentage of tasksets missing at least a deadline with the
same configuration (M = 8, U = 6.4) and “part” tasksets
have been investigated and it turned out that it is due to the
initial deadline misses of some tasksets, happening before
the (stable) schedulable task partitioning has been reached
(this has been verified by checking that increasing the simu-
lation length the total number of deadlines missed by apEDF
did not increase — of course, it increased using gEDF).

5.4 Experiments with Dynamic Tasksets
After verifying how the algorithms work when tasks are not
dynamically created or terminated, some additional exper-
iments with more dynamic tasksets have been performed.
The dynamic tasksets have been generated as sequences of
“arrival” (creation of a new real-time task, with a utilization
following the β distribution) and “exit” (termination of one
of the existing tasks) events [13] (the same algorithm used
in [13] has been used).

A total of 100 arrival/exit traces have been generated in this
way, simulating the scheduling of these dynamic tasksets
with gEDF, apEDF and a2pEDF with an admission con-
trol U ≤ (M + 1)/2. In all these experiments, apEDF did
not miss deadlines, showing that in this situation the issue
highlighted in Section 4.4 does not happen very likely.

Hence, the experiment has been repeated changing the ad-
mission control; for example, using U ≤ 3 as an admission
control when the tasksets are scheduled on 4 cores, gEDF
misses deadlines on 75% of the dynamic tasksets, apEDF
misses deadlines on 33% of them and a2pEDF misses dead-
lines on 13% of them. Looking at the soft real-time per-
formance, all the three algorithms perform quite well: the
percentage of jobs missing their deadline is 9.84389e−7% for
gEDF, 0.04203% for apEDF and 6.515e−11% for a2pEDF.
In this case, gEDF performs better (for soft real-time perfor-

 0

 0.2

 0.4

 0.6

 0.8

 1

2 4 8

F
ra

c
ti
o
n
 o

f
n
o
n
 s

c
h
e
d
u
la

b
le

 t
a
s
k
s
e
ts

Number of CPUs

global

gEDF
apEDF

 0

 0.2

 0.4

 0.6

 0.8

 1

2 4 8

F
ra

c
ti
o
n
 o

f
n
o
n
 s

c
h
e
d
u
la

b
le

 t
a
s
k
s
e
ts

Number of CPUs

part

gEDF
apEDF

Figure 10: Percentages of tasksets missing at least a deadline with 2, 4 and 8 CPUs, U = 0.8M and scheduling 16 tasks.

mance) than apEDF, while a2pEDF performs again better
than all the other algorithms.

6. CONCLUSIONS AND FUTURE WORK
This paper presented a study on the properties and per-
formance of adaptive partitioning strategies [1]. In par-
ticular, it focused on the apEDF and a2pEDF scheduling
algorithms, that allow for a schedulability analysis less pes-
simistic than the one known in the literature for gEDF while
allowing to handle non-partitionable tasksets that pEDF
could not schedule. This results in better hard real-time
performance than gEDF and better soft real-time perfor-
mance than pEDF.

The hard and soft real-time performance of the two algo-
rithms have been evaluated through an extensive set of sim-
ulations, reaching the conclusion that the a2pEDF algorithm
provides smaller tardiness than apEDF when the utilisation
is high (and the number of tasks is small). In this situation,
apEDF performs slightly worse than gEDF while a2pEDF
provides better performance than gEDF.

An implementation of the new migration policy in the Linux
kernel (replacing the global EDF algorithm used for the
SCHED_DEADLINE policy) is being developed and will be used
as a future work to verify the advantages of adaptive parti-
tioning through a real implementation.

Finally, the theoretical properties of apEDF and a2pEDF
that have been previously conjectured will be formally proved
and the algorithms will be extended to support arbitrary
affinities. The possibility to use the proposed technique to
support the coexistence of soft and hard real-time tasks will
also be investigated as a future work.

7. ACKNOWLEDGMENTS
This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant
agreement No. 871669 AMPERE – “A Model-driven devel-
opment framework for highly Parallel and EneRgy-Efficient
computation supporting multi-criteria optimisation”.

8. REFERENCES
[1] L. Abeni and T. Cucinotta. Adaptive partitioning of

real-time tasks on multiple processors. In Proceedings
of the 35th Annual ACM Symposium on Applied
Computing, SAC ’20, page 572–579, New York, NY,
USA, 2020. Association for Computing Machinery.

[2] L. Abeni, G. Lipari, A. Parri, and Y. Sun. Multicore
cpu reclaiming: parallel or sequential? In Proceedings
of the 31st Annual ACM Symposium on Applied
Computing, pages 1877–1884, 2016.

[3] J. H. Anderson, V. Bud, and U. C. Devi. An edf-based
restricted-migration scheduling algorithm for
multiprocessor soft real-time systems. Real-Time
Systems, 38(2):85–131, Feb 2008.

[4] B. Andersson and E. Tovar. Multiprocessor scheduling
with few preemptions. In Proceedings onf the 12th
IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications
(RTCSA 2006), pages 322–334, Sydney, Qld.,
Australia, Aug 2006.

[5] S. Baruah, M. Bertogna, and G. Buttazzo.
Multiprocessor Scheduling for Real-Time Systems.
Springer Publishing Company, Incorporated, 2015.

[6] S. Baruah and J. Carpenter. Multiprocessor
fixed-priority scheduling with restricted interprocessor
migrations. In Proceedings of the 15th Euromicro
Conference on Real-Time Systems (ECRTS 2003),
pages 195–202, Porto, Portugal, July 2003. IEEE.

[7] S. K. Baruah. Optimal utilization bounds for the
fixed-priority scheduling of periodic task systems on
identical multiprocessors. IEEE Transactions on
Computers, 53(6):781–784, June 2004.

[8] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A.
Varvel. Proportionate progress: A notion of fairness in
fesource allocation. Algorithmica, 15(6):600–625, 1996.

[9] A. Bastoni, B. B. Brandenburg, and J. H. Anderson.
An empirical comparison of global, partitioned, and
clustered multiprocessor edf schedulers. In 2010 31st
IEEE Real-Time Systems Symposium, pages 14–24,
San Diego, CA, USA, Nov 2010. IEEE.

[10] M. Bertogna and M. Cirinei. Response-time analysis
for globally scheduled symmetric multiprocessor
platforms. In Proceedings of the 28th IEEE
International Real-Time Systems Symposium (RTSS
2007), pages 149–160, Tucson, AZ, USA, December
2007. IEEE.

[11] M. Bertogna, M. Cirinei, and G. Lipari. Improved
schedulability analysis of edf on multiprocessor
platforms. In Proceedings of the 17th Euromicro
Conference on Real-Time Systems (ECRTS 2005),
pages 209–218, Balearic Islands, Spain, July 2005.
IEEE.

[12] J. Boyar, G. Dósa, and L. Epstein. On the absolute
approximation ratio for first fit and related results.
Discrete Applied Mathematics, 160(13):1914 – 1923,
2012.

[13] D. Casini, A. Biondi, and G. Buttazzo.
Semi-Partitioned Scheduling of Dynamic Real-Time
Workload: A Practical Approach Based on
Analysis-Driven Load Balancing. In M. Bertogna,
editor, 29th Euromicro Conference on Real-Time
Systems (ECRTS 2017), volume 76 of Leibniz
International Proceedings in Informatics (LIPIcs),
pages 13:1–13:23, Dagstuhl, Germany, 2017. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

[14] H. Cho, B. Ravindran, and E. D. Jensen. An optimal
real-time scheduling algorithm for multiprocessors. In
Proceedings of the 27th IEEE International Real-Time
Systems Symposium (RTSS 2006), pages 101–110, Rio
de Janeiro, Brazil, Dec 2006. IEEE.

[15] M. L. Dertouzos. Control robotics: The procedural
control of physical processes. Information Processing,
74:807–813, 1974.

[16] U. C. Devi and J. H. Anderson. Tardiness bounds
under global edf scheduling on a multiprocessor.
Real-Time Systems, 38(2):133–189, February 2008.

[17] P. Emberson, R. Stafford, and R. I. Davis. Techniques
for the synthesis of multiprocessor tasksets. In
Proceedings 1st International Workshop on Analysis
Tools and Methodologies for Embedded and Real-time
Systems (WATERS 2010), pages 6–11, Brussels,
Belgium, 2010.

[18] L. J. Flynn. Intel Halts Development Of 2 New
Microprocessors.
https://www.nytimes.com/2004/05/08/business/intel-
halts-development-of-2-new-microprocessors.html,
May 2004.

[19] J. Goossens, S. Funk, and S. Baruah. Priority-driven
scheduling of periodic task systems on multiprocessors.
Real-Time Systems, 25(2):187–205, September 2003.

[20] R. L. Graham. Bounds on multiprocessing anomalies
and related packing algorithms. In Proceedings of the
May 16-18, 1972, Spring Joint Computer Conference,
AFIPS ’72 (Spring), pages 205–217, New York, NY,
USA, 1972. ACM.

[21] D. Johnson, A. Demers, J. Ullman, M. Garey, and
R. Graham. Worst-case performance bounds for
simple one-dimensional packing algorithms. SIAM
Journal on Computing, 3(4):299–325, 1974.

[22] D. S. Johnson. Approximation algorithms for
combinatorial problems. Journal of Computer and

System Sciences, 9(3):256 – 278, 1974.

[23] J. Lelli, D. Faggioli, T. Cucinotta, and G. Lipari. An
experimental comparison of different real-time
schedulers on multicore systems. Journal of Systems
and Software, 85(10):2405 – 2416, 2012. Automated
Software Evolution.

[24] J. Lelli, C. Scordino, L. Abeni, and D. Faggioli.
Deadline scheduling in the linux kernel. Software:
Practice and Experience, 46(6):821–839, June 2016.

[25] G. Levin, S. Funk, C. Sadowski, I. Pye, and S. Brandt.
Dp-fair: A simple model for understanding optimal
multiprocessor scheduling. In Proceesings of the 22nd
Euromicro Conference on Real-Time Systems (ECRTS
2010), pages 3–13, Brussels, Belgium, July 2010.
IEEE.

[26] C. L. Liu and J. W. Layland. Scheduling algorithms
for multiprogramming in a hard real-time
environment. Journal of the Association for
Computing Machinery, 20(1):46–61, Jan. 1973.

[27] J. M. López, M. Garćıa, J. L. Diaz, and D. F. Garcia.
Worst-case utilization bound for EDF scheduling on
real-time multiprocessor systems. In Proceedings of the
12th Euromicro Conference on Real-Time Systems
(ECRTS 2000), pages 25–33, Stockholm, Sweden,
June 2000. IEEE.

[28] T. Megel, R. Sirdey, and V. David. Minimizing task
preemptions and migrations in multiprocessor optimal
real-time schedules. In 2010 31st IEEE Real-Time
Systems Symposium, pages 37–46, San Diego, CA,
USA, Nov 2010. IEEE.

[29] OpenMP ARB. OpenMP Application Program
Interface, version 5.0, 2018.

[30] E. Quiñones, S. Royuela, C. Scordino, L. M. Pinho,
T. Cucinotta, B. Forsberg, A. Hamann, D. Ziegenbein,
P. Gai, A. Biondi, L. Benini, J. Rollo, H. Saoud,
R. Soulat, G. Mando, L. Rucher, and L. Nogueira.
The AMPERE Project: A Model-driven development
framework for highly Parallel and EneRgy-Efficient
computation supporting multi-criteria optimization. In
Proceedings of the 23rd IEEE International
Symposium on Real-Time Distributed Computing
(IEEE ISORC 2020), Nashville, Tennessee (turned to
a virtual event), 2020. IEEE.

[31] P. Regnier, G. Lima, E. Massa, G. Levin, and
S. Brandt. Run: Optimal multiprocessor real-time
scheduling via reduction to uniprocessor. In
Proceesings of the 32nd IEEE Real-Time Systems
Symposium (RTSS 2011), pages 104–115, Vienna,
Austria, Nov 2011. IEEE.

[32] N. Saranya and R. C. Hansdah. Dynamic partitioning
based scheduling of real-time tasks in multicore
processors. In 2015 IEEE 18th International
Symposium on Real-Time Distributed Computing,
pages 190—197, Auckland, New Zealand, April 2015.

[33] D. Simchi-Levi. New worst-case results for the
bin-packing problem. Naval Research Logistics (NRL),
41(4):579–585, 1994.

[34] P. Valente and G. Lipari. An upper bound to the
lateness of soft real-time tasks scheduled by edf on
multiprocessors. In Proceedings of the 26th IEEE

International Real-Time Systems Symposium
(RTSS’05), pages 10 pp.–320, Miami, FL, USA,
December 2005. IEEE.

[35] A. Wieder and B. B. Brandenburg. Efficient

partitioning of sporadic real-time tasks with shared
resources and spin locks. In 2013 8th IEEE
International Symposium on Industrial Embedded
Systems (SIES), pages 49–58, Porto, Portugal, June
2013. IEEE.

