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In the causal modeling literature, it is well known that ill-defined variables may give rise
to ambiguous manipulations. Here, we illustrate how ill-defined variables may also in-
duce mistakes in causal inference when standard causal search methods are applied. To
address the problem, we introduce a representation framework, which exploits an inde-
pendent component representation of the data, and demonstrate its potential for detect-
ing ill-defined variables and avoiding mistaken causal inferences.
1. The Problem of Variable Definition. Some choices of variables may
lead to less informative, or even false, causal claims (Spirtes and Scheines
2004; Eberhardt 2016; Woodward 2016). Here is a classic example by Spirtes
and Scheines (2004). Consider the following hypothetical data-generating pro-
cess (fig. 1). Total cholesterol (TC) is a deterministic function (e.g., the sum) of
two variables, that is, low-density lipoproteins (LDL) and high-density lipopro-
teins (HDL), respectively known as “bad” and “good” cholesterol. The two cho-
lesterols, in fact, have different causal roles: LDL causes heart disease (HD),
while HDL prevents it. Moreover, assume that HDL and LDL cause, respec-
tively, a disease called “disease 1” (D1) and a disease called “disease 2”
(D2). Spirtes and Scheines point out that, if only TC but neither HDL nor
LDL is observed, a manipulation of TC with respect to HD is “ambiguous”
because it leaves underdetermined the values of TC’s underlying determi-
nants, such that the effect on HD is unpredictable.

In applied causal inference, often the variables under study are, like TC,
functions of other variables with heterogeneous causal roles. For example,
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macroeconomics deals with aggregate variables such as gross domestic
product, foreign sales, total imports, and so on, that are sums or averages
of other variables, whose individual causal roles may be multifarious and
opaque to the researcher. Often, the researcher cannot observe the underly-
ing microbehaviors simply because statistical agencies provide aggregate
data but do not reveal information on the single units. In other cases, col-
lecting microdata may be too complex or costly. Treating aggregate vari-
ables as if they had a homogeneous causal role, however, may lead to less
informative or false causal claims, as shown by the TC example. We will
refer to an aggregate variable incurring such problems as ill-defined. Notice,
thus, that whether a variable is ill-defined is relative to a variable set. That
is, it may be ill-defined in one set but well-defined in another.

The problem of variable definition is often underestimated by the wider
public. For instance, insufficient attention has been paid to its consequences
for causal inference by constraint-based discovery methods (Spirtes, Gly-
mour, and Scheines 2000; Pearl 2009). We will return to this point in the next
section, by showing how the presence of TC in a variable set may lead to
wrong causal inferences. To address the problem, we introduce a representa-
tion framework—the “independent component” representation—for mod-
eling structures containing two kinds of dependencies, namely, traditional
causal dependencies between well-defined variables and dependencies be-
tween ill-defined variables and their determinants (see fig. 1). Finally, we
demonstrate the potential of this framework for identifying ill-defined vari-
ables and reducing the risk of mistaken causal inferences.
2. Causal Search with Ill-Defined Variables. The last decades have wit-
nessed the development and popularization of constraint-based causal discov-
ery methods (Spirtes et al. 2000; Pearl 2009). In this framework, a causal
structure is represented as a triple hV, E, Pri, where hV, Ei is a directed acyclic
graph (DAG) consisting of a set V of variables and a set E of edges among
them, and Pr is the probability distribution over V associated to the DAG.
The probability distribution Pr is assumed to comply with the Causal Markov
Condition (CMC) and, typically, the Causal Faithfulness Condition (CFC).
CMC says that
Figure 1. Structure where the manipulation on TC with respect to HD is ambiguous.
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(CMC) For any Vi ∈ V 5 fV1, ::: , Vng, Vi ⫫NonijPari.
Here Pari denotes the set of parents (direct causes) of Vi, and Noni denotes
the set of nondescendants (noneffects) of Vi. In other words, each variable is
probabilistically independent of its noneffects, conditional on its direct
causes. CMC presupposes that for every pair of variables in V, every com-
mon direct cause of the pair is in V or has the same value for all units in the
population (causal sufficiency). CFC says:
(CFC) hV, E, Pri is such that every conditional independence relation true
in Pr is entailed by CMC applied to the true DAG hV, Ei.
CFC ensures that there is no causal dependence without probabilistic de-
pendence; that is, all probabilistic independencies in the DAG correspond
to causal independencies.

Based on these assumptions, constraint-based discovery methods are de-
signed to recover the causal structure from data, by identifying conditional inde-
pendencies among variables and then causally connecting variables not found to
be independent.We now consider examples of simple data-generating processes
including one ill-defined variable, TC, and show how using constraint-based
methods based on conditional independencies—while ignoring that TC is ill-
defined—may lead to mistakes. To anticipate, such mistakes involve apparent
violations of CMC or CFC, which the search methods presuppose. Notice,
however, that our interest here is not in providing novel counterexamples to
CMCandCFC.These violations, in fact, could be avoided by choosing a “more
suitable” variable set for causal inference—in this case, one featuring HDL and
LDL instead of TC. And indeed, a formulation of CMC requiring that variables
be independent of their noneffects conditional on their well-defined direct
causes would not incur any violation. Here, however, we do not want to pre-
suppose what counts as an ill-defined variable or a suitable variable set. Our
goal is to avoid mistaken causal inferences in virtue of detecting ill-defined
variables.

Suppose that, in V 5 fX , Y , Zg, Y is the nondeterministic cause of both
X and Z; that is, the true structure is X←Y→Z. If all variables are well-
defined, one can infer some properties of the causal structure by testing con-
ditional independencies and applying a constraint-based discovery method.
In particular, the independence X ⫫ ZjY and CFC allow one to exclude
X → Y ← Z from the set of possible structures. Now, let the set of observed
variables be V0 5 fTC, D1, D2g. That is, suppose again that one does not
observe LDL and HDL but only TC. In this case, too, the true structure is
not a collider. Assuming that the dependencies over V0 are causally inter-
pretable, the most plausible structure—the one we wish to rationalize in this
article—would be a common cause (i.e., D1← TC→D2). However, since
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HDL and LDL are independent, LDL ⫫HDL, it follows that D1 and D2 are
independent, too (i.e., D1 ⫫D2). If the true structure is a common cause,
this contradicts CFC, which would entail a dependence between the effects
of the common cause. Moreover, because D1 and D2 are dependent on (re-
spectively) LDL and HDL, D1 and D2 become dependent upon condition-
ing on TC (i.e., D1 /⫫D2jTC). For example, suppose one knows that one
patient’s total cholesterol has increased. Then, knowing that disease 1 is
absent gives one relevant information to predict that disease 2 is present.
If the true structure is a common cause, this conditional dependence would
violate CMC, which would entail the independence of D1 and D2 given
their common cause. Based on D1 ⫫D2 and D1 /⫫D2jTC, as well as
TC /⫫D1 and TC /⫫D2, a constraint-based algorithm (e.g., the algorithms pro-
posed by Spirtes et al. 2000, 84–85, 144–45) will infer an unshielded collider
on TC (i.e., D1→ TC←D2). A researcher applying the algorithm without
knowing that TC is the sum of HDL and LDL (which are causes of, respec-
tively, D1 and D2) will thus infer the wrong structure. The reason, ultimately,
is that TC is ill-defined in V 0.

Similarly, assume that all variables inV are well-defined, but now X causes
Y, and Y causes Z; that is, the true structure is X → Y → Z. Under CMC, it
holds that Z ⫫ X jY , and under CFC, it holds that X /⫫Z. Now, consider the
set of observed variables V00 5 fDa, TC, D1g, where Da (not represented
in fig. 1), denoting dairies, is a cause of LDL but not of HDL. Again, suppose
that one observes TC but neither HDL nor LDL.Here, too, the true structure is
not a collider. The most plausible causal interpretation of the dependencies
over V0 0 is a directed path (i.e., Da→ TC→D1). However, since Da is a
cause of LDL, which is independent of the cause HDL of D1, it holds that
Da ⫫D1, which violates CFC. Moreover, it holds that Da /⫫D1jTC, which
violates CMC. From this, one may again wrongly infer a collider on TC
(i.e., Da→ TC←D1). Ultimately, the reason is that TC is ill-defined in V0 0.

These simple examples showhow conditional independencies are sensitive
to the presence of ill-defined variables in fork and chain structures, but ill-
defined variables are undetectable from conditional independencies only.1 This
may lead to mistaken inferences (i.e., the inference of colliders) if one unre-
flectively applies constraint-based algorithms.

3. A Novel Representation Framework. We now introduce a series of
definitions, which will allow us to precisely define the notion of an ill-defined
variable. First, we introduce a class of data-generating mechanisms inducing
the problem of ill-defined variables. We call them “augmented” structural
1. By contrast, no mistake occurs if TC is truly a collider. For instance, the inferred
structure over V000 5 fDa, TC, Olg, where Ol (olive oil) causes HDL but not LDL, is
Da→ TC←Ol, as it should be.
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causal models, by which we extend the traditional notion of structural causal
models (Pearl 2009; Peters, Janzing, and Schölkopf 2017) to structures in-
cluding deterministic assignments.
Augmented structural causal model An augmented structural causal
model, C ≔ (AW ,AI , Pr) consists of a collection AW of m assignments, a
collection AI of k assignments, and a probability distribution Pr such that:
i) the collection of AW consists of assignments

Wi ≔ fi (Pari, Si), for i 5 1, ::: ,m,

where Pari ⊆WnfWig are called the parents of Wi, and Si are
called noises, or shocks;

ii) Pr over S 5 fS1, ::: , Smg is such that the shocks are mutually inde-
pendent; that is, Pr(S) 5 Pr(S1) � ::: � Pr(Sm). Hence, the Si are also
called independent components;

iii) the collection of AI consists of assignments

Ii ≔ fi (Deti), for i 5 1, ::: , k,

where Deti ⊂ V are called determinants of Ii.
Model C is defined over a set of variables V 5 W [ I with cardinality
n 5 m 1 k. We associate to C a graph GV (see, e.g., fig. 1, where TC is
the only variable with a deterministic assignment). The graph GV is obtained
by creating a node for each element of V and by drawing a directed edge →
from each parent in Pari (if not empty) to Wi and a modified directed edge ⇒
from each determinant in Deti to Ii. Henceforth, we restrict our attention to
acyclic structures such that GV is a modified DAG, to cases where Deti has
at least two elements, and to assignmentsAW in which the shocks are additive.
For simplicity, we also assume that no pair of variables Ii, Ij in I, Ii ≠ Ij, are
linked in GV by a bidirected modified “active” (i.e., without colliders) path
Ii ⇐⋯ ⇒ Ij.

By replacing all modified directed edges ⇒ with standard edges→, GV be-
comes a standard DAG, labeled ~GV . By removing from GV the nodes in I and
the edges connecting I toW, we obtain a subgraph ofGV, whichwe denoteGW.

Let us now introduce a particular graph associated with C, which we call
independent component (IC) representation, or GIC. The graph GIC contains
edges between shocks and endogenous variables but not among endogenous
variables themselves. Despite this apparent limitation, the information in GIC

will be key to the purpose of our article. Although herewe are not concernedwith
howGIC is recovered,we shouldmention that there exist powerful statistical learn-
ing techniques, such as Independent ComponentAnalysis (ICA;Hyvärinen,Kar-
hunen, andOja 2001), that under certain assumptions (i.e., non-Gaussianity) infer
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the dependence coefficients, and thus identify the absence of dependencies, be-
tween shocks and endogenous variables in C, and thereby recover the edges in
GIC.
IC representation ConsiderC ≔ (AW ,AI , Pr), withV 5 W [ I, card(V) 5
n 5 m 1 k. An IC representation of C is a DAG GIC

V 5 hV [ S, EICi such
that EIC consists of the following edges:
i) Si →Wi, for any i 5 1, ... , m;
ii) Si →Wj, for any i ≠ j such that there is a directed standard path

Wi →⋯→Wj in GV;
iii) Si → Ih, for any Si ∈ S and any Ih ∈ I such that there is a directed

modified path Wi ⇒ ⋯ ⇒ Ih in GV;
iv) Si → Ih, for any Si ∈ S and any Ih ∈ I such that from Wi to Ih in GV

there is a directed standard path followed by a directed modified
path with the same orientation, Wi →⋯ ⇒ Ih.
Let us illustrate this definition relative to figure 2, whereW 5 fHDL, LDL,
D1, D2, HDg and I 5 fTCg. (i) There is a shock for each variable in W.
Some shocks (e.g., SD1) only hit one variable (D1). Others are common tomul-
tiple variables. (ii) For any variable (e.g., HDL), its shock (SHDL) also hits all of
its descendants, if any (D1, HD). (iii) Any shock to a determinant of a variable
Ii in I (e.g., SHDL) also hits Ii (TC). (iv) IfV contained a cause of a determinant
of Ii (e.g., dairies, Da, which causes LDL), its shock (SDa) would also hit Ii
(TC).

One may also define GIC relative to any subsetO of variables inV, namely,
GIC

O 5 hO [ SO, EIC
O i. The set SO is obtained by removing from S those

shocks, which C assigns to variables in W that are not in O, and by adding
those shocks, which C assigns to variables inW that are determinants of var-
iables in I \ O. The set EIC

O is obtained by removing fromEIC all of those edges
whose tails are not in SO. For any variable set O, we call “idiosyncratic” a
shock to a variable X in GIC

O that is a parent of X and of no other variable.
We may now define ill- and well-defined variables:
Figure 2. GIC
V corresponding to the DAG GV in figure 1.
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Ill- and well-defined variables Let C over V 5 W [ I contain the as-
signment I ≔ f (DetI ), card(DetI ) ≥ 2. Let DesI denote the set of all de-
scendants of determinants of I in GV.2 Assume I ∈ O ⊆V. Then, I is ill-
defined in O if and only if, for some Desj ∈ DesI , there exists a variable
Y such that (i) Y ∈ O, (ii) Y ≠ I , (iii) Y belongs to a (possibly empty) active
path from Deti to Desj in GV (i.e., Deti →⋯→Desj or Deti →⋯ ⇒ Desj),
and (iv) GIC

fI ,Yg contains no shock SY common to I, Y, for which SY ⫫ Y jI in
C. Any variable in O that is not ill-defined in O is well-defined in O.
For instance, TC is well-defined in {Da, TC} because Da is neither a determi-
nant of TC nor a descendant of a determinant of TC and vice versa. By con-
trast, TC is ill-defined in {HDL, TC} because HDL is a determinant of TC,
and SHDL /⫫HDLjTC. Also, TC is ill-defined in {TC, D1} and {TC, HD} because
D1 and HD are effects of determinants of TC, and (respectively) SD1 /⫫D1jTC
and SHD /⫫HDjTC.More generally, a variable I is ill-defined inO if and only if
O also contains a variable Y among I’s determinants or their descendants, and
GIC

fI ,Yg contains no shock SY on I, Y, such that I screens off SY from Y in C. This
lack of screening off intuitively captures the idea that a manipulation of I
with respect to Y is ambiguous. In turn, to explain the lack of screening off,
we need the following proposition (proof in appendix):
Proposition 1 Let C overV 5 W [ I contain the assignment I ≔ f (DetI ),
card(DetI) ≥ 2. Assume CMC and CFC in GW. Then, for any Deti, Desi,
Anci, where Desi is a descendant of Deti, and Anci is an ancestor of Deti,
it holds that Anci /⫫DesijI , except for a parameter set V (characterizing
the assignments in C) that violates CFC in ~GV .3
We can also define a graph GO 5 hO, EO i representing the structure over
O, where EO consists of the following edges. First, GO has a modified edge
X ⇒ Y if and only if there is a directed path X ⇒ ⋯ ⇒ Y in GV, and no var-
iable betweenX and Y is inO. Next, let the tail ♢ of the arrowX ♢→ Y indicate
that X is ill-defined in {X, Y}. Then, GO has an edge X ♢→Y for any hX, Y, Zi
for which X, Y ∈ O, Z ∈ V, Z ∉ O, and GV features a path X ⇐ Z → Y , un-
less GIC

O has a shock S common to X, Y for which S ⫫ Y jX in C, in which case
X → Y is in GO. Furthermore, GO has a standard edge X → Y if GV has a di-
rected path from X to Y featuring standard edges→ or modified edges ⇒, and
no variable between X and Y is inO. Finally, GO has a bidirected edge X ⟷ Y
if and only if GV has an active path X ←⋯← Z →⋯→ Y featuring standard
tice that DetI ⊆DesI by definition of “descendant.”

e do not assume CFC in ~GV . For such a V, I counts as well-defined in our frame-
, as the manipulation of I with respect to Desi is not ambiguous.
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ormodified edges, and onlyX, Y on that path are inO. No further edges are in
GO.

Illustrated in relation to figure 1, G{HDL,TC,LDL} is HDL ⇒ TC⇐ LDL, and
G{HDL,LDL,HD} is HDL→HD← LDL. The two problematic structures with
ill-defined variables from section 2, namely, G{TC,D1,D2} and G{Da,TC,D1}, are
represented as, respectively, D1←♢ TC ♢→D2 andDa→ TC ♢→D1. Finally,
let us define the notions of ill- and well-defined causes:
4. At
TC is
Ill- and well-defined causes For any X, Y ∈ O, X is an ill-defined cause
of Y inO if and only if G{X,Y} contains the edge X ♢→Y . For any X, Y ∈ O,
X is a well-defined cause of Y inO if and only if Y is well-defined in {X, Y},
and G{X,Y} contains the edge X → Y .
For instance, HDL is a well-defined cause of HD in {HDL, HD}.4 By con-
trast, TC is an ill-defined cause of HD in {TC, HD}.

4. Identification. We now illustrate the applicability of our framework to
detecting ill-defined variables and improving causal inference. We begin
with a condition under which one may unambiguously identify ill-defined
variables.
Proposition 2: Sufficient condition for ill-definedness Consider C over
V, and O 5 fX , Y , Zg ⊆V. Assume CMC and CFC in GW. Also assume
(i) X ⫫ Z, (ii) X /⫫Y , Y /⫫Z, X /⫫ZjY , and (iii) GIC

O has no idiosyncratic shock
on Y. Then, Y is ill-defined in O with two determinants in V, and GO is
X ←♢ Y ♢→ Z.
For instance, applied to V0 5 fTC, D1, D2g, this condition establishes that
TC is an ill-defined common cause of D1 and D2 (i.e., D1←♢TC♢→D2),
sinceD1 ⫫D2,D1 /⫫TC, TC /⫫D2,D1 /⫫D2jTC, andGV 0 IC has no idiosyncratic
shock to TC. Proposition 2 is easily generalizable to cases with more than two
determinants.

If one observes no effects of independent determinants of the ill-defined
variable; for instance, in V00 5 fDa, TC, D1g, the above condition is not
applicable. Nonetheless, one may still reduce the ambiguity concerning ill-
defined variables and partially recover the causal structure. To this end,
let us assume that determinism induces dependencies (DD):
(DD) For any I and any Deti ∈ DetI in C, it holds that I /⫫Deti.
the same time, HDL is not a (well-defined) cause of TC in {HDL, TC}, because
not well-defined in that set.
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In other words, there are probabilistic dependencies between variables with
deterministic assignments and their determinants. This assumption is only
violated by canceling paths from determinants to determined variables. Its
satisfaction requires (similarly to CFC) the absence of special parameteriza-
tions. For simplicity, we also assume thatO contains no determinants of var-
iables inO, such that EO contains no modified edges⇒.5 Then, one may iden-
tify well-defined variables:
5. Of
one c
woul
gener
Proposition 3: Sufficient condition for well-definedness Consider C
over V, and O ⊆V. Assume DD. Assume CMC and CFC in GW. Assume
that no determinant of ill-defined variables inO is inO. Then, a variable X
is well-defined in O if for any Y in O, X ≠ Y , and one of i–iv holds:
(i) X ⫫ Y ; (ii) in GIC

fX ,Yg, X is not a child of an idiosyncratic shock, and X,
Y are children of a common shock S, such that S ⫫ Y jX ; (iii) in GIC

fX ,Yg, X
is the only child of an idiosyncratic shock; (iv) in GIC

fX ,Yg, X, Y are children
of idiosyncratic shocks, and there is Z ⊂ O such that X ⫫ Y jZ and no
Zi ∈ Z is the child of an idiosyncratic shock in GIC

fX ,Zig.
For instance, Da (which, to recall, causes LDL but not HDL) is well-defined
in V0 0, since (i) Da ⫫D1, and (ii) GIC

fDa,TCg contains a shock S common to Da,
TC, such that S ⫫ TCjDa, and no idiosyncratic shock to Da, from which one
may infer Da→ TC. Next, one can identify putative ill-defined variables:
Proposition 4: Necessary condition for ill-definedness Consider C over
V and its associated graph GV. Assume DD. Assume CMC and CFC in GW.
Let X be ill-defined in O 5 fX , Yg with DetX \ O 5 ∅, O ⊆V. Then
(i) X /⫫Y ; (ii) in GIC

O , X, Y are children of a common shock; (iii.a) in GIC
O ,

X is child of an idiosyncratic shock, or (iii.b) in GIC
O , X is not a child of an

idiosyncratic shock and there is a set of shocks S on X such that X ⫫ Y jS.
For instance, TC and D1 are such that (i) TC /⫫D1. Moreover, in GIC
fTC,D1g they

are (ii) children of a common shock and (iii.a) children of idiosyncratic
shocks. Therefore, TC and D1 qualify as putatively ill-defined. Assuming
the absence of bidirected modified paths, G{TC,D1} cannot be TC⇐⋯ ⇒ D1.
Therefore, only three structures are possible, namely, TC♢→D1, TC←♢D1,
and TC⟷D1. The ambiguity may be resolved by enlargingV0 0 until a suf-
ficient set Z of common causes of TC, D1 is found that screens them off, or
(given Z) the dependence between TC and D1 is oriented such that one is a
course, there is no a priori guarantee that O contains no determinants. Although
ould easily relax this assumption, and thereby obtain a more general result, this
d require a lengthier proof. For reasons of space, here we prioritize simplicity over
ality.
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well-defined cause of the other (i.e., TC→D1 or TC←D1), or enough effects
of determinants of TC or D1 are observed as to remove the idiosyncratic shock
on TC or D1, such that either TC♢→D1 or TC←♢D1 holds.

5. Conclusion. The problem of variable definition is known to be respon-
sible for ambiguous manipulations. Furthermore, we showed that it can lead
to mistaken causal inferences by standard constraint-based causal discovery
methods. To address the problem, we introduced a novel representation
framework suitable for structures including ill-defined variables, that is, the
IC representation.We argued that recovering the IC representation can unam-
biguously identify ill-defined variables, under certain assumptions, or at least
exclude that certain variables are ill-defined and consequently reduce the risk
of mistakes. Given recent advances in statistical techniques (e.g., ICA) by
which onemay recover the IC representation, our proposal holds great prom-
ise. Therefore, we strongly invite further research on the subject.
Appendix

Proof of Proposition 1. Assume per absurdum that there exist Anci, Desi
of Deti, such that Anci ⫫DesijI for any set of parametersV in C. This is pos-
sible only if one of A–C holds: (A) Deti suffices to determine I, such that I
renders Deti irrelevant to Anci, Desi. This requires card(DetI ) 5 1, contra-
dicting card(DetI ) ≥ 2. (B) card(DetI ) ≥ 2 and for some Detj ∈ DetI , there
is no directed path Detj →⋯→Desi. Then, Detj would act as an exogenous
noise on I, such that the edge Deti ⇒ I would be observationally indistin-
guishable from a standard edge Deti → I . Holding CFC inW, and since I be-
haves like a child of Deti, we would have Anci /⫫DesijI , contradicting our
starting hypothesis. (C) card(DetI ) ≥ 2 and for any Detj ∈ DetI , there is a di-
rected path Detj →⋯→Desi. Then, there exists a parameter set V such
that Anci ⫫DesijI . For instance, assume card(DetI ) 5 2 and a generalized
additive model where I 5 f (Det1)1g(Det2), Det1 5 f 0(Anc) 1 SDet1, Det2 5
g0(Anc) 1 SDet2, Des 5 f 00(Det1)1g00(Det2) 1 SDes. Then, Anc ⫫DesjI holds
if and only if (i) f (Det1) 5 g(Det2) and f 0(Anc) 5 g0(Anc) or (ii) f (Det1) 5
g(Det2) and f 00(Det1) 5 g00(Det2). This point generalizes to larger cardinali-
ties. Finally, since I is a parent of neither Anci nor Desi in ~GV , any such param-
eter set V realizing Anci ⫫DesijI necessarily violates CFC in ~GV . QED

Proof of Proposition 2. Let *→ denote one among →, ⟷, and ♢→. As-
sume per absurdum that i–iii are true, but Y is well-defined. CMC and ii en-
tail that GV contains paths linking X, Y and Y, Z. CFC and i entail that GV

contains no path linking X, Z. Then, GO contains only two edges, one con-
necting X, Y, and one connecting Y, Z. Among the possible structures in



794 LORENZO CASINI ET AL.
GO, X *→ Y → Z, X ← Y ←* Z, X ←* Y → Z, and X ← Y *→ Z contra-
dict i, and X *→ Y ←* Z contradicts iii. In all other structures, that is,
X←♢Y ♢→Z, X *→ Y ♢→Z, and X←♢Y ←* Z, Y is ill-defined. The latter
two contradict iii. Thus, GO is X←♢Y ♢→Z, and DetY has precisely two el-
ements in V (one causing X and one causing Z); otherwise, GIC

O would con-
tain an idiosyncratic shock on Y associated to its extra determinant(s), vio-
lating iii. As a corollary, GIC

O contains idiosyncratic shocks on X and Z. QED

Proof of Proposition 3. (i) From the definition of ill-defined variable, for
any I ∈ V, GV contains a directed path from some Deti ∈ DetI to some de-
scendant Desj of Deti. Under CFC and DD, I is ill-defined only ifO contains
some Y on that path, such that I /⫫Y . Hence, ifO 5 fX , Yg and X ⫫ Y , then
X is well-defined. (ii) In GIC

fX ,Yg, X is ill-defined and not a child of an idiosyn-
cratic shock only if GV contains directed paths from each Deti ∈ DetX to Y.
Then, GIC

fX ,Yg contains no shock S common to X, Y, such that S ⫫ Y jX . Since
this contradicts ii, X cannot be ill-defined. (iii) If X is the only child of an
idiosyncratic shock in GIC

fX ,Yg, then GIC
fX ,Yg contains a shock common to X, Y.

Then, X is ill-defined in GIC
fX ,Yg only ifO contains a node Deti ∈ DetX , which

is not a child of an idiosyncratic shock, contradicting the assumption that
DetX \ O 5 ∅. Hence, X is well-defined. (iv) Suppose per absurdum that
X is ill-defined, entailing a directed path Deti →⋯→ Y in GV. Since
X ⫫ Y jZ, some Zi ∈ Z ⊂ O is on that path. Then, Zi is a child of an idiosyn-
cratic shock in GIC

fX ,Zig, contradicting iv. Hence, X is well-defined. QED

Proof of Proposition 4. Preamble: From the definition of ill-defined var-
iable, and from DetX \ O 5 ∅, it follows that G{X, Y} is X ♢→Y . (i) Under
CFC and DD, the preamble implies X /⫫Y . (ii) By definition of IC represen-
tation, GIC

fX ,Yg contains at least one common shock to X, Y due to a latent de-
terminant of X. (iii) If GV contains a determinant of X not linked to Y by a
directed path, then X is a child of an idiosyncratic shock (iii.a). If, on the
contrary, all determinants of X are linked to Y by directed paths in GV, then
X is not a child of an idiosyncratic shock. Additionally, given X ⫫ Y jDetX ,
it follows that there is a set S of shocks on X’s determinants, such that
X ⫫ Y jS (iii.b). QED
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