
An adaptive, utilization-based approach to schedule real-time
tasks for ARM big.LITTLE architectures

Agostino Mascitti, Tommaso Cucinotta, Mauro Marinoni
Scuola Superiore Sant’Anna

firstname.lastname@santannapisa.it

ABSTRACT

ARM big.LITTLE architectures are spreading more and more in

the mobile world thanks to their power-saving capabilities due to

the use of two ISA-compatible islands, one focusing on energy ef-

ficiency and the other one on computational power. This architec-

ture makes the problem of energy-aware task scheduling particu-

larly challenging, due to the number of variables to take into ac-

count and the need for having lightweight mechanisms that can

be readily computed in an operating system kernel scheduler.

This paper presents a novel task scheduler for big.LITTLE plat-

forms, combining the well-known Constant Bandwidth Server al-

gorithmwith a power-aware per-jobmigration policy. This achieves

real-time adaptation of the CPU islands’ frequencies based on the

individual cores’ overall utilization, as available in the scheduler

thanks to the use of the resource reservation paradigm. Prelimi-

nary results obtained by simulations based on modifications to the

open-source RTSim tool show that the proposed technique is able

to achieve interesting performance/energy trade-offs.

CCS CONCEPTS

•Computer systems organization→Real-time operating sys-

tems; Embedded systems.

KEYWORDS

Real-time systems, DVFS, ARM big.LITTLE, heterogeneous pro-

cessing, multicore platforms, energy-efficiency

ACM Reference Format:

Agostino Mascitti, Tommaso Cucinotta, Mauro Marinoni. 2020. An adap-

tive, utilization-based approach to schedule real-time tasks for ARMbig.LITTLE

architectures. In Proceedings of EmbeddedOperating SystemsWorkshop (EWiLi’19).

ACM,NewYork, NY, USA, 6 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Heterogeneous systems play a fundamental role in mobile com-

puting nowadays, taking the dominating position in the hardware

market previously held by homogeneous computing solutions. In

the relentless effort to produce more and more powerful CPUs,

hardware producers already stopped years ago the rush for higher

CPU frequencies in favor of multicore architectures, in order to

keep under control the heat generated by processors, so to be able

to dissipate it timely. Furthermore, the tremendous increase in mo-

bile computing led processor manufacturers to focus on novel de-

signs, able to deal in an energy-efficient way with quite heteroge-

neous workloads, from personal computing to high-performance

EWiLi ’19, October 17, 2019, New York, USA.
Copyright held by Owner/Author

3D gaming. This led to the rise of heterogeneous platforms, not

only for accelerating graphics, incorporating GPUs on the chip, but

also having different general-purpose processing cores with dif-

ferent profiles of computing capacity vs power consumption. This

is the case of the ARM big.LITTLE [3, 20], which is a very popu-

lar architecture for Android smartphones nowadays. In these pro-

cessors we have the coexistence of high-performance “big” cores

and energy-efficient “small” cores. These share the same Instruc-

tion Set Architecture (ISA) and have a coherent view of the system

RAM, so it is possible to schedule and migrate tasks among them

as is normally done in a symmetric multi-core system. Hence, the

operating system (OS) can make intelligent use of scheduling and

placement algorithms coupled with energy-saving features, to ex-

ecute tasks timely and in an energy-efficient way. For example [6],

with Dynamic Frequency Voltage Scaling (DVFS) it is possible to

scale down the frequency of the CPU(s) whenever possible depend-

ing on the workload requirements, and with Dynamic Power Man-

agement (DPM) techniques an idle core can be put into a number

of possible low-power states corresponding to different trade-offs

between energy saving andwake-up latency. In general, these tech-

niques tend to slow down and/or switch off various parts of a pro-

cessor circuitry, to control heat and energy consumption.

Some efforts have been made to make joint task placement and

energy management decisions, in order to lengthen battery dura-

tion, as witnessed by the Intelligent Power Allocation (IPA) and En-

ergy Aware Scheduling (EAS) frameworks. EAS has been merged

intomainline Linux from version 5.0 onwards, extending the Linux

scheduler to make it aware of the underlying power/performance

capabilities of the available CPUs.

In general, the scheduler needs to have a sufficiently detailed

power consumption model to make proper decisions. The power

consumption estimation must be computed given the core type, its

frequency, and the current taskworkload. However, the problem of

minimizing energy consumption while respecting tasks deadlines

is known to be NP-complete [25].

Paper contributions. This paper tackles the problem of energy-

aware scheduling mechanisms for soft real-time applications suit-

able for big.LITTLE multicore architectures. We introduce BL-CBS,

a novel adaptive utilization-based scheduler that is designed to

work at runtime, within the OS kernel scheduler, with the knowl-

edge normally possessed by this component. Our solution couples

a well-known reservation-based paradigm [18] in the form of a

hard constant bandwidth server (CBS) scheduler, with on-line task

placement and migration decisions that are taken whenever tasks

activate or suspend within the scheduler queue, considering the

energy consumption peculiarities of big.LITTLE architectures. An

implementation of the proposed mechanism has been realized by

modifying the open-source RTSim real-time simulator [21]. This

https://doi.org/10.1145/nnnnnnn.nnnnnnn


EWiLi’19, Oct. 17th, 2019, New York, NY,
Agostino Masci�i, Tommaso Cucino�a, Mauro Marinoni

has been used to gather preliminary results demonstrating the ad-

vantages of the proposed technique in terms of energy saving with

respect to the common baseline approach for multicore platforms,

typical for example of the current implementation of the CBS in

Linux. The obtained results seem promising, demonstrating that

the proposed approach may constitute a sound base to build practi-

cal and viable newmechanisms for real-time andmultimedia work-

loads in the Linux kernel on mobile platforms, such as adopted on

common Android devices.

2 BACKGROUND

ARM big.LITTLE is a heterogeneous computing architecture com-

posed by two groups, called islands or clusters, of homogeneous

cores: the big one is performance-oriented, while the LITTLE one

focuses on energy efficiency. Both islands cores share the same

ISA, while the differences in the micro-architecture results in dif-

ferent energy profiles. For example, a Cortex-A15 has higher per-

formance than a Cortex-A7 since it runs more instructions in par-

allel and with a bigger and more complex pipeline. Moreover, the

islands are connected by the Cache Coherent Interconnect, that is

another crucial feature for migration of tasks across islands, since

it allows avoiding to go through the main memory, saving time.

A commonly used technique to reduce power consumption is

Dynamic Voltage Frequency Scaling (DVFS), where the island fre-

quency can be dynamically changed. Also, Dynamic Power Man-

agement (DPM) is an available feature, but its usefulness is limited

in this kind of platform since the whole island must be idle (i.e.,

all cores without jobs), which is quite a rare situation, as reasoned

in [12]. Cores in the same big.LITTLE island are constrained to

the same frequency, limiting the hardware complexity but also the

power saving capabilities. However, the use of smart scheduling al-

gorithms aware of the islands’ power profiles may achieve energy-

efficiency effectively [13]. On a related note, the recent DynamIQ

architecture1 no longer has this constraint.

The CBS is a well-known technique [1] to provide temporal iso-

lation among soft real-time tasks. It grants each reservation s an

execution budget Qs to access the CPU over each time period of

duration Ts , with Qs and Ts being per-server parameters that can

be assigned according to the requirements of the workload to be

served, under the constraint that
∑
s Qs/Ts ≤ 1. A hard reserva-

tion, multi-processor variant of the CBS, is for example available

in the SCHED_DEADLINE scheduler within the Linux kernel since

version 3.14 [15]. It relies on global EDF (G-EDF), but it can be con-

figured in partitioned EDF mode via cpusets. One known limita-

tion of the mainline kernel is that, whenever the POSIX real-time

or SCHED_DEADLINE policies are used, the maximum CPU fre-

quency is forced in the system [3]. The baseline Android kernel

includes a variant in which the minimum frequency satisfying the

real-time utilization requirements of SCHED_DEADLINE tasks on

each CPU is forced. However, tasks are migrated strictly following

the global EDF rules, differing from what is proposed in this paper.

1More information at: https://www.arm.com/why-arm/technologies/dynamiq.

3 RELATED WORK

Energy-efficient scheduling for real-time systems has receivedmuch

attention in the last two decades, albeit the majority of works fo-

cused on homogenousmulti-core platforms [5]. In what follows, we

briefly recall related research on energy-aware schedulers for het-

erogeneous multi-core platforms only, most of which are based on

task-splitting, optimization methods, and task speed profiles.

Semi-partitioned scheduling [2] deals with the fragmentation

problem faced when trying to partition a real-time task set over

multi-processor platforms. It relies on splitting a real-time task into

two parts with reduced demand that fit into two processors and ex-

ecute one after the other, requiring a migration, keeping schedula-

bility. These techniques have been studied for homogeneous multi-

cores [2, 7, 8] as well as for heterogenous architectures [17], but

they require complex partitioning and schedulability analysis tech-

niques. Some authors [8] investigated the use of linear-time ap-

proximation methods to perform the splittings, to make the algo-

rithm more useful in real-world settings. The present work advo-

cates a simpler utilization-based method where task splitting is not

used: a task resides mostly on one core for each job, and it is mi-

grated normally only across subsequent activations. This is easier

to compute in an OS kernel (see Section 5.2 for details).

Some authors [14] studied whether it is better to execute at the

highest possible frequency and then set cores to an idle state as

long as possible or to find the lowest frequency needed to make

tasks respect their deadlines and never go idle. Interestingly, they

find out that no strategy is the best one for all platforms and all ap-

plications. In fact, one application executed on an embedded device

can have lower energy consumption when using the lowest fre-

quency, while on another platform it would be more convenient to

make it run at the highest frequency and maximize the slack time,

where the platform can go into an idle state.

Several authors formulated the problem of energy-efficient real-

time scheduling for multi-cores as an optimization problem [9, 22–

24]. Polynomial-time algorithms have been proposed [16] to di-

vide real-time streaming applications across DVFS capable islands,

where tasks are assigned statically to an island and then globally

scheduled inside it via an optimal scheduler. In [10], it is found that

themost efficient way to allocate real-time tasks and save energy is

neither balancing the load nor choosing the most power-efficient

core. They find the optimal load distribution via integer linear pro-

gramming (ILP) and try to approximate that result via heuristics.

Other authors [24] divide the scheduling problem into workload

partitioning and next task ordering. The first step determines what

parts of tasks should be executed at what frequency within a time

interval such that feasibility constraints are satisfied, while the sec-

ond part establishes how to order the pieces of tasks for each core.

Also, an analysis of the task code structure has been proposed [22]

coupled with an ILP returning the minimum frequency and loca-

tion to be used for each code segment. In [22], the authors tried to

moderate the use of the LITTLE-Core-First principle, according to

which one should always fill LITTLE cores while possible before

selecting a big one. Using the task execution variance (i.e., the ra-

tio between the WCET on LITTLE and on big for a given task) an

ILP formulation is used to compute the optimal distribution of the

https://www.arm.com/why-arm/technologies/dynamiq


An adaptive, utilization-based approach...
EWiLi’19, Oct. 17th, 2019, New York, NY,

utilization of the tasks between the islands and their minimum fre-

quencies to respect the deadline. A heuristic is then used to assign

tasks and set the frequencies. This approach, however, is related to

ARM DynamIQ and it makes use of per-core-DVFS, which is not

feasible in big.LITTLE. Optimization methods have been used [19]

for choosing the best frequency for each node of stream processing

applications represented as Synchronous Data Flows with end-to-

end deadlines, making their parallelism explicit in the model.

However, most of the above works focus on optimizing the con-

figuration of a whole partitioned system, whilst in this paper we

deal with designing a strategy that can be applied on-line within

an OS kernel scheduler considering both task migrations and pos-

sible task overruns, which we handle by using CBS servers.

Finally, an interesting approach is the one in [4], where authors

highlight that power consumption may significantly vary depend-

ing also on the workload type being computed, supporting the ar-

gument with real data measured on a ODROID XU3 platform, and

making the resulting energy model available via modifications to

RTSim. This is the work we actually start from, in this paper, albeit

we do not deal with heterogeneous workloads.

4 SYSTEM MODEL

This section describes the task and CPU models used in the paper.

4.1 CPU model

The system under consideration is an ARM big.LITTLE consist-

ing of two homogeneous islands with DVFS capabilities, where all

cores in the same island share the same frequency. At a higher

level of abstraction, a core is characterized by a power model and

a speed. The CPU power model is given by [4] and it tries to be a

good compromise between representativeness and complexity:

PCPU = Psw + Plk = δ + (1 + η)(1 + γ )K f V 2
, (1)

where Psw is the power required to charge the transistors and Plk
is the power due to leakage effects. Also, K envelopes the capaci-

tance of the transistor gates and the number of transistors involved

in the frequency switching,γ is a temperature-related parameter, η

is the proportionality factor between the power consumption due

to charging the gates and the power loss due to brief short-circuit

conditions while toggling logic states, and δ is used to introduce

some degree of freedom. The formula states that the power con-

sumption depends on voltage and frequency and is in quadratic

proportion to the voltage. These parameters have been tuned via

genetic optimization on real data gathered from aODROIDXU3, as

detailed in [4]. Equation (1) does not consider interferences due to

other tasks in the system nor the implied cache and bus contention.

Including other details would make the CPU model more accurate,

but it would also increase the complexity. In line with observations

in [4], this approach results in a sufficient approximation for our

simulations. We define the speed of a core as a number between

0 and 1 representing its computational capacity, relative to a big

core at maximum frequency.

4.2 Task model

Aperiodic task τ is characterized by an absoluteWorst-Case Execu-

tion TimeWCET and a period P equal to its deadline (i.e., implicit

deadline). Without loss of generality, we assume that its absolute

WCET is determined under the hypothesis of one workload type

only (e.g., bzip2 among the ones in [4]), to simplify the presenta-

tion. It would be possible to use many instructions with different

workload types since the used model is already fitted for that. The

WCET associated to each task is assumed to correspond to when

the task is running on a big core at maximum frequency. The actual

WCET when executing on a big or little core at a given frequency

is WCETscaled and it is a function of the core speed, computed

according to the execution time model in [4].

Each periodic task is then enveloped in its own CBS server. This

allows for throttling the task if it exceeds its WCET, and it allows

the use of the virtual time and the active utilization during the

acceptance test. The corresponding active utilization, stored on the

core where the ending task is located, is equal to the task scaled

utilization until the virtual time expires or the core goes idle. A

similar idea is in [26], where tasks are statically assigned to CPUs,

enveloped in servers and they globally reclaim unused bandwidth.

5 PROPOSED APPROACH

In this section, we start providing an easy-to-follow example to ex-

plain the main idea behind BL-CBS. Then, we detail our proposed

task placement strategy.

5.1 Main idea

The main idea behind BL-CBS is the one to realize an adaptive

partitioned scheduling of real-time EDF/CBS-based reservations:

consider the two main instants in which the scheduler is invoked

by the OS, i.e., when a task wakes up (or is created) and when

it goes to sleep (or is terminated), and, among the available place-

ment options that respect schedulability, pick the one that brings the

minimum foreseen energy consumption for the whole system. For a

task arrival, the placement options concern preempting one of the

currently running tasks on any of the CPU(s), or placing the task

on an idle CPU. For a task departure, we restrict in this paper to

the option of possibly moving one of the tasks ready to run from

other CPUs, to the one that just got additional spare capacity. How-

ever, note that, in presence of CBS servers, in order to guarantee

schedulability of real-time tasks, the latter decision can be taken

immediately only when the CPU goes idle, otherwise we have to

post-pone said decision to the virtual time of the departing task.

Figure 1: Placement decision on task wake-up or task cre-

ation. Percentages represent cores utilizations.

Consider for example the scenario depicted in Figure 1: a heavy

task that cannot fit on a little core is running on one of the big

cores, with the rest of the system idle. When another lighter task

that can fit on both cores wakes up or just arrives in the system,



EWiLi’19, Oct. 17th, 2019, New York, NY,
Agostino Masci�i, Tommaso Cucino�a, Mauro Marinoni

the most direct decision seems to be the one to place it on a little

core, setting the lowest possible frequency on the island so as to

make it fit. However, the little island is completely idle at this time,

whilst the big island cannot be shut down because of the heavy task

presence. Moreover, placing the new task on another big core re-

sults in it executing much faster. The overall energy consumption

comparison between the two decisions needs to consider both the

difference in power consumption and the difference in processing

time, plus the fact that when an island is completely idle it might

bring additional savings. As highlighted in [4], the execution-time

and power consumption profiles of tasks when deployed on dif-

ferent islands might be workload dependent, so a comprehensive

approach would imply the use of a monitoring strategy that adap-

tively catches this level of details. However, this paper focuses on a

single workload type for the sake of simplicity, deferring the more

complex approach to future work.

Consider now the scenario in Figure 2, where both little and big

cores are quite heavily occupied, when the only task keeping the

first little core busy goes away. As the core would remain idle, it

can pull immediately another task. G-EDF, as e.g., implemented in

SCHED_DEADLINE, would simply pull the ready-to-run task with

the earliest deadline from other cores that fits, and assume this is

the task waiting for execution on the 3rd big core. However, as ev-

ident from the picture, pulling the task waiting for execution on

the 4th big core (that fits as well on little core 0) is more advanta-

geous, because it reduces the maximum utilization among cores of

the big island, allowing for scaling down its frequency to a lower

value. This is exactly what our algorithm does in such a case. The

full algorithm is detailed in the next section.

Figure 2: Placement decision on task departure.

5.2 Task placement and DVFS

Our proposed Placement Algorithm is sketched out in Algorithm 1.

It works with any taskset and it does not need previous informa-

tion about tasks but their WCET and period. Specifically, when a

job arrives the Algorithm 1 is called to decide a core and its fre-

quency. It loops over all cores and their frequencies, starting with

the island frequency. The first check is that jobs do not miss their

deadlines and that they are schedulable with EDF. Then, it com-

putes the difference between current power consumption and the

one if the job is dispatched to that core, considering the frequency

scaling. Power consumption is calculated based on the island and

utilization of the new task. When the loop is over, the core with

minimum additional power consumption is chosen. Note that the

power consumption of a core for a given frequency is actually the

difference with respect to its consumption on idle. Our modified

Algorithm 1 Conceptual placement algorithm.

1: procedure Placement algorithm(job, cores ρ )
2: ∆ = ∅ // set of triplets (core , f r eq, power )
3: for each core i ∈ ρ do
4: for each f ′i ≥ current one fi do

5: if isAdmissibleEDF(job,f′i ) then

6: Let Utot ,f ′
i
be the util. on core i at freq. f ′i

7: Let Ujob ,f ′
i
be the job util. on core i at freq. f ′i

8: Let λ be the island of core i
9: if Utot ,f ′

i
+ Ujob ,f ′

i
> 1 then continue

10: end if
11: oldI slandU til =

∑
c∈λ (Uc ,fi +Uactive ,c )

12: newIslandU til =
∑
c∈λ (Uc ,f ′

i
+Uactive ,c )

13: oldPoweri = oldI slandU til × powerConsfi
14: newPoweri = (newIslandU til +Ujob ,f ′

i
)×powerConsf ′

i
15: Add (i , f ′i , newPoweri − oldPoweri ) to ∆
16: else
17: Job not admissible
18: end if
19: end for
20: Return (core, frequency) with min power from ∆.
21: end for
22: end procedure

RTSim is actually able to exploit the full optimized CPU power

model as available from [4].

One more check and policy is applied to refine the choice: if the

core that would give minimum additional consumption is already

busy, the algorithm tries to balance the cores load by opting for the

next free one with the same extra consumption, if it exists. This

way, we avoid unneeded migrations.

When a job in a core ends its WCETscaled , that core can get

either idle or there might be some ready tasks, which would be

scheduled. If there is no ready task, then the core would go idle. In

this case, to maximize its utilization and because it may be impossi-

ble to scale down its frequency to the minimum for saving energy

(cores in an island share the same frequency in ARM big.LITTLE),

migrations are performed. A ready task from the big island is picked

and migrated. However, it may not be schedulable in the LITTLE

island with EDF. Therefore, migration is confirmed if:

WCETf ′′ ≤ (1 −Uρf inal ,f ′′)(Dabs − t), (2)

where we want to move a task from its core with frequency f ′ to

core ρf inal with frequency f ′′ at time t . If no task can be moved

and all queues in the core island are empty, its frequency is set

to the minimum. The CBS server active utilization is stored on its

ending CPU when it finishes and it is kept while in releasing state.

It is considered when computing the core total utilization and it is

removed when the virtual time expires or the core goes idle.

Note that the Placement Algorithm depends on the instanta-

neous state of the system and that the scheduling decisions are

dynamic. It works with any taskset and, for each task, it only needs

its WCET and period. Moreover, it makes decisions based on 3 fac-

tors: (i) task deadlines are respected; (ii) reduce power consump-

tion when possible; (iii) accept as many periodic tasks as possible.

However, the focus in this paper has been on the functionality of

BL-CBS, but we have not optimized Algorithm 1 for efficient exe-

cution. This is left as future work, necessary for a viable solution

to be embedded in a real OS kernel scheduler.



An adaptive, utilization-based approach...
EWiLi’19, Oct. 17th, 2019, New York, NY,

6 IMPLEMENTATION DETAILS

The mechanism just described has been implemented within RT-

Sim [21], a portable, open-source event-based simulator written in

C++ that allows to simulate the execution timing of real-time tasks

running on multi-processor platforms using various schedulers.

We started from the variant of RTSim used in [4], containing a

first attempt at modeling the power consumption of big.LITTLE ar-

chitectures.We extended RTSimmodifying the classes CPU, CBServer,

EnergyMRTKernel and MultiCoreScheds. In particular:

(1) CPU now supports the concept of island so that all CPUs in

the same island are constrained to use the same frequency;

(2) MultiCoreSched implements local, per-core scheduling queues,

as in the Linux kernel scheduler design;

(3) EnergyMRTKernel implements the Algorithm 1 and various

utility methods to compute and store active utilization, task

utilization scaled with the core speed and the island utiliza-

tion. Moreover, it makes use of MultiCoreSched, through

which all CPUs have their own queue of running and ready

jobs. Jobs can be added and removed from a queue and mi-

grations can be traced as well.

(4) CBServer has been improved to compute correctly the re-

maining capacity (since it must be scaled with the current

core speed) andwith some necessary callbacks to EnergyMRTKernel.

For example, when the CBS server goes from releasing to

idle, the kernel must be informed so to remove the active

utilization of that server.

7 RESULTS

Table 1: Comparison of BL-CBS vs G-EDF

BL-CBS G-EDF

Avg fbiд (MHz) 1228 2000

Avg fLITT LE (MHz) 1238 1400

Energy big (mJ) 3385 4842

Energy LITTLE (mJ) 788 571

Energy tot. (mJ) 4173 5413

Avg rel. resp. time 0.37 0.14

In this section we present simulation results comparing the ef-

fectiveness of the novel algorithm in terms of energy consump-

tion with respect to the basic G-EDF algorithm as available in RT-

Sim through the original MRTKernel class, simulating the mainline

Linux behavior running SCHED_DEADLINE CBS reservations.

As said before, the hardware energy consumption model is the

one of ODROID XU3, which uses a Samsung Exynos 5422 SoC.

This is an ARM big.LITTLE architecture with four Cortex-A7 and

four Cortex-A15 cores. The model has been taken from Balsini et

al. [4], where it has been embedded in RTSim. Experiments are

performed with 3 tasks per core with total utilization of 50%. Their

periods are in range 1000-5000 ms. Task sets have been randomly

generated using the open-source taskgen.py2 by Emberson [11].

Experiments are repeated 10 times with different tasksets, each be-

ing scheduled by either BL-CBS or G-EDF.

2The tool is available at: http://retis.sssup.it/waters2010/tools.php.

(a) Consumption for the LITTLE island

(b) Consumption for the big island

Figure 3: Comparison of BL-CBS with G-EDF for each island

Figure 4: Response-time CDF for the first generated taskset,

when scheduled by G-EDF vs our new algorithm.

Figure 3a shows a comparison of power consumption between

the two algorithms in the LITTLE island and 3b shows the same

for the big one. For each time and island, the average consumption

of all experiments is considered. The results show how the sum of

energy consumption of both islands in average for 10 experiments

http://retis.sssup.it/waters2010/tools.php


EWiLi’19, Oct. 17th, 2019, New York, NY,
Agostino Masci�i, Tommaso Cucino�a, Mauro Marinoni

is 5519 mJ with the G-EDF and 4291 mJ with BL-CBS with a simu-

lation time of 15000 steps, resulting in 22% of energy saving.

It is possible to further reduce the energy consumption by lower-

ing frequencies even more often, for example after a migration. In

fact, for these experiments they are reduced only if an island gets

idle and when virtual time expires and then increased when jobs

arrive. Alternatively, increasing the number of migrations might

allow to save energy. However, this is left as future work.

The graphs in Figure 3 show that themost remarkable difference

with this approach is in the big island, where more energy is saved.

This is due to the fact that we choose the lowest frequency needed

to avoid deadline misses and that we try to use as much as possible

the LITTLE island, since it is generally power-oriented, and thus

the frequency of the big cluster can be reduced more often. More-

over, the energy consumption in the LITTLE island is less uniform

over time, whereas the one in the big island is more stable.

Table 1 shows the overall energy consumption for one experi-

ment only, representing the integrals of the curves in Figure 3. Our

algorithm has 22.9% energy saving wrt G-EDF. G-EDF is set to use

the maximum frequency on each core; instead, BL-CBS can change

it via DVFS and the average frequencies are very similar on both

islands. Also, the average relative response time (relative to the

task period) increases in BL-CBS because frequencies are not the

maximum possible and therefore jobs experience longer execution

times. Therefore their execution time (i.e.WCETscaled ) tends to

the period, as confirmed by the cumulative distribution function

(CDF) of their relative response times (response-time / period) vis-

ible in Figure 4, generated for all instances of all tasks.

8 CONCLUSIONS

We proposed BL-CBS, a novel approach to migrate CBS-reserved

tasks in an energy-awareway on big.LITTLE platforms. Themethod

is based on simple utilization calculations, that are rescaled accord-

ing to the computational capacity of cores as due to their island

type and current frequency. The algorithm has been implemented

in the open-source real-time tasks simulator RTSim and prelimi-

nary experimental results showed a 22% energy consumption re-

duction for randomly generated task sets, compared to G-EDF.

As for future works, we plan to study under what theoretical

conditions task sets can be guaranteed to be scheduled with our

new strategy. Then, we plan to implement the proposed placement

strategy in Linux, modifying SCHED_DEADLINE. The technique

might need adaptation to deal with non-negligible frequency tran-

sition times, as assumed in the current simulations. It can also be

interesting to investigate what changes are needed to deal with

the recent ARM DynamIQ architecture. Finally, this work can be

extended considering more complex task models, like tasks with

constrained deadlines, tasks sharing mutexes, or under precedence

constraints (DAG) (e.g., following up on [12], one of the few works

in that direction on ARM big.LITTLE).

REFERENCES
[1] Abeni, L., and Buttazzo, G. Integrating multimedia applications in hard real-

time systems. In Proc. 19th IEEE Real-Time Systems Symposium (1998), IEEE.
[2] Andersson, B., and Tovar, E.Multiprocessor schedulingwith few preemptions.

In 12th IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA’06) (Aug 2006), pp. 322–334.

[3] Balsini, A., Cucinotta, T., Abeni, L., Fernandes, J., Burk, P., Bellasi, P., and

Rasmussen, M. Energy-efficient low-latency audio on android. Journal of Sys-
tems and Software 152 (2019), 182 – 195.

[4] Balsini, A., Pannocchi, L., and Cucinotta, T. Modeling and simulation of
power consumption and execution times for real-time tasks on embedded het-
erogeneous architectures. In Proc. International Workshop on Embedded Operat-
ing Systems (EWILI 2018) (Torino, Italy, 2016).

[5] Bambagini, M., Marinoni, M., Aydin, H., and Buttazzo, G. Energy-aware
scheduling for real-time systems: A survey. ACM Transactions on Embedded
Computing Systems (TECS) 15, 1 (2016), 7.

[6] Bhatti, K., Belleudy, C., and Auguin, M. Power management in real time em-
bedded systems through online and adaptive interplay of dpm and dvfs policies.
In 2010 IEEE/IFIP International Conference on Embedded and Ubiquitous Comput-
ing (Dec 2010), pp. 184–191.

[7] Burns, A., Davis, R. I., Wang, P., and Zhang, F. Partitioned EDF scheduling
for multiprocessors using a C= D task splitting scheme. Real-Time Systems 48, 1
(2012), 3–33.

[8] Casini, D., Biondi, A., and Buttazzo, G. Semi-partitioned scheduling of dy-
namic real-time workload: A practical approach based on analysis-driven load
balancing. In 29th Euromicro Conference on Real-Time Systems (ECRTS 2017)
(2017), Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[9] Chwa, H. S., Seo, J., Yoo, H., Lee, J., and Shin, I. Energy and feasibility optimal
global scheduling framework on big. LITTLE platforms. In Proc. IEEE RTSOPS
(2015), pp. 1–11.

[10] Colin, A., Kandhalu, A., and Rajkumar, R. Energy-efficient allocation of real-
time applications onto heterogeneous processors. In Proc. IEEE 20th International
Conf. on Embedded and Real-Time Computing Systems and Applications (2014).

[11] Emberson, P., Stafford, R., and Davis, R. I. Techniques For The Synthesis Of
Multiprocessor Tasksets. In Proc. 1st International Workshop on Analysis Tools
and Methodologies for Embedded and Real-time Systems (WATERS 2010) (Brussels,
Belgium, 2010).

[12] Guo, Z., Bhuiyan, A., Liu, D., Khan, A., Saifullah, A., and Guan, N. Energy-
Efficient Real-Time Scheduling of DAGs on Clustered Multi-Core Platforms.
In 2019 IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS) (2019), IEEE, pp. 156–168.

[13] Herbert, S., and Marculescu, D. Analysis of dynamic voltage/frequency scal-
ing in chip-multiprocessors. In Proc. 2007 international symposium on Low power
electronics and design (ISLPED’07) (2007), IEEE, pp. 38–43.

[14] Imes, C., and Hoffmann, H. Minimizing energy under performance constraints
on embedded platforms: resource allocation heuristics for homogeneous and
single-ISA heterogeneous multi-cores. ACM SIGBED Review 11, 4 (2015), 49–54.

[15] Lelli, J., Faggioli, D., Cucinotta, T., and Lipari, G. An experimental compar-
ison of different real-time schedulers on multicore systems. Journal of Systems
and Software 85, 10 (2012), 2405 – 2416. Automated Software Evolution.

[16] Liu, D., Spasic, J., Chen, G., and Stefanov, T. Energy-efficient mapping of real-
time streaming applications on cluster heterogeneous MPSoCs. In 13th IEEE
Symposium on Embedded Systems For Real-time Multimedia (ESTIMedia) (2015).

[17] Liu, D., Spasic, J., Wang, P., and Stefanov, T. Energy-efficient scheduling of
real-time tasks on heterogeneous multicores using task splitting. In 2016 IEEE
22nd International Conference on Embedded and Real-Time Computing Systems
and Applications (RTCSA) (2016), IEEE, pp. 149–158.

[18] Mercer, Savage, and Tokuda. Processor capacity reserves: operating system
support for multimedia applications. In 1994 Proceedings of IEEE International
Conference on Multimedia Computing and Systems (May 1994), pp. 90–99.

[19] Nogues, E., Pelcat, M., Menard, D., and Mercat, A. Energy efficient sched-
uling of real time signal processing applications through combined DVFS and
DPM. In 2016 24th Euromicro International Conference on Parallel, Distributed,
and Network-Based Processing (PDP) (2016), IEEE, pp. 622–626.

[20] Padoin, E. L., Pilla, L. L., Castro, M., Boito, F. Z., Alexandre Navaux, P. O.,

and Méhaut, J. Performance/energy trade-off in scientific computing: the case
of arm big.little and intel sandy bridge. IET Comp. Digital Techniques 9, 1 (2015).

[21] Palopoli, L., Lipari, G., Lamastra, G., Abeni, L., Bolognini, G., and An-

cilotti, P. An object-oriented tool for simulating distributed real-time control
systems. Software: Practice and Experience 32, 9 (2002), 907–932.

[22] Qin, Y., Zeng, G., Kurachi, R., Li, Y., Matsubara, Y., and Takada, H. Energy-
Efficient Intra-Task DVFS Scheduling Using Linear Programming Formulation.
IEEE Access 7 (2019), 30536–30547.

[23] Qin, Y., Zeng, G., Kurachi, R., Matsubara, Y., and Takada, H. Execution-
variance-aware task allocation for energy minimization on the big. LITTLE ar-
chitecture. Sustainable Computing: Informatics and Systems 22 (2019), 155–166.

[24] Thammawichai, M., and Kerrigan, E. C. Energy-efficient real-time scheduling
for two-type heterogeneous multiprocessors. Real-Time Systems 54, 1 (2018).

[25] Ullman, J. D. NP-complete scheduling problems. Journal of Computer and Sys-
tem sciences 10, 3 (1975), 384–393.

[26] Zahaf, H.-E., Lipari, G., and Abeni, L. Migrate when necessary: toward parti-
tioned reclaiming for soft real-time tasks. In Proceedings of the 25th International
Conference on Real-Time Networks and Systems (2017), ACM, pp. 138–147.


	Abstract
	1 Introduction
	2 Background
	3 Related Work
	4 System Model
	4.1 CPU model
	4.2 Task model

	5 Proposed Approach
	5.1 Main idea
	5.2 Task placement and DVFS

	6 Implementation Details
	7 Results
	8 Conclusions
	References

