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Abstract—This paper proposes a novel framework and pro-
gramming model for real-time applications supporting a declara-
tive access to real-time CPU scheduling features that are available
on an operating system. The core idea is to let applications
declare their temporal characteristics and/or requirements on the
CPU allocation, where, for example, some of them may require
real-time POSIX priorities, whilst others might need resource
reservations through SCHED_DEADLINE. The framework can
properly handle such a set of heterogeneous requirements con-
figuring an underlying multi-core platform so to exploit the
various scheduling disciplines that are available in the kernel,
matching applications requirements. The framework is realized
as a modular architecture in which different plugins handle
independently certain real-time scheduling features within the
underlying kernel, easing the customization of its behavior to
support other schedulers or operating systems by adding further
plugins.

I. INTRODUCTION

In the past decade, we witnessed a raising interest in the
topic of running real-time applications in distributed or embed-
ded systems by deploying them on General Purpose Operating
Systems (GPOSes). Examples of application scenarios that
can leverage real-time features included in modern GPOSes
are multimedia applications like audio/video processing and
streaming, gaming, etc. Typically, these application scenarios
are characterized by the coexistence of both real-time and non-
real-time applications on the same host.

Among the various GPOSes available that provide support
for both real-time and non-real-time applications at the same
time, Linux is a common choice for applications that must
support a rich set of multimedia peripherals, thanks to the
plethora of libraries and tools that have been developed over
the past years. In addition, the use of the Android Operating
System (OS), based on Linux, has become a popular choice
for a number of embedded systems for multimedia services,
from tablets to infotainment systems deployed in modern cars.

Similarly to any other GPOS, the Linux kernel has been
focusing on minimizing average OS overheads and optimizing
in-kernel operations so to lead to the maximum possible per-
formance for applications, while keeping good responsiveness
for interactive workloads, notably user interactions and mul-
timedia applications. However, Linux has been consistently
improving its support for real-time systems through a set of in-
teresting features [1]: the inclusion of POSIX real-time exten-
sions [2] and the support for real-time mutexes; high-resolution
timers with nano-second precision; removal of the Big Ker-

nel Lock (BKL)1; enhancements to the kernel preemptibility
options; the introduction of NO_HZ for reducing overheads
of the periodic bookeeping timer; the PREEMPT_RT [3], [4]
variant that reduces worst-case scheduling latencies by running
device drivers as kernel threads that can be scheduled and
turning most of the spinlocks into mutexes; and the addition of
the SCHED_DEADLINE process scheduler [5], implementing
a global Earliest Deadline First (EDF) algorithm (but it can
also be configured as partitioned or clustered EDF) that uses
the Constant Bandwidth Server (CBS) [6] algorithm to provide
temporal isolation among tasks. In addition, a number of
frameworks and middlewares have been developed to further
enhance the capabilities of Linux as a powerful development
platform for real-time applications. These features increased
the relevance of Linux as a suitable platform to develop soft
real-time applications.

Due to its open nature, Linux may be required to host a
variety of different applications with heterogeneous temporal
characteristics and real-time requirements, ranging from inter-
active applications, to multimedia and virtual-reality tools, to
real-time control applications for factory automation. These
applications may activate periodically or sporadically, they
may require access to the real-time scheduling priorities, or
sometimes these should be someway inferred by their period-
icity as compared to the one of other co-located applications,
or they may require SCHED_DEADLINE reservations. In a
true component-based approach for realizing complex real-
time systems, it is all but trivial to understand how to let all
of these applications coexist on the same system, exploiting
the different schedulers that are available, and how to configure
them for an optimal use of an underlying multi-core platform.

A. Contribution

In this work, we propose a novel framework that can be
used to provide access to real-time CPU scheduling features
that are available on Linux, improving the usability of existing
real-time capabilities by providing a unified API.

The main focus is to enrich the OS with a new middleware
that can be used to declare the temporal characteristics of
real-time applications without enforcing the use of a specific
scheduling technique. Instead, a declarative approach has been
adopted to allow applications characterized by heterogeneous
requirements to coexist on the same host. Leveraging this

1For more info see https://kernelnewbies.org/BigKernelLock



new framework, applications can simply declare a set of
timing characteristics and scheduling requirements that may
span from informing the OS about their minimum periodicity
and/or worst-case execution times, to requesting the use of
specific POSIX real-time priorities or SCHED_DEADLINE
reservations, without worrying about the techniques that will
be used to match the declared attributes by each application.

To achieve this goal, the proposed framework adopts a
modular architecture that properly handles a number of het-
erogeneous requirements, in which a set of plugins are used
to translate from the attributes declared by each application to
proper configurations of the real-time features exposed by the
underlying kernel. The framework is capable of partitioning
the tasks requiring real-time scheduling services among the
CPUs available in an underlying multi-core platform, so that
for example rate-monotonic is used on some CPUs, while
SCHED_DEADLINE reservations is used on others. This
modularity can be leveraged not only to support a plethora of
different real-time applications on Linux, but also to provide
a common API that can be exploited in the future to support
portability of real-time applications across other OSes, by
adding platform-specific implementations of certain plugins.

As a proof of concept, in this work we present a first open-
source implementation of this framework for the Linux OS.
The software is freely available on GitHub, under a GPLv3
license, at: https://github.com/gabriserra/declarative-rtd.

II. RELATED WORK

In this section, we briefly summarize available mechanisms
to run real-time applications on GPOSes, with a particular
focus on Linux, along with some of the extensions appeared
in the research literature. The discussion considers the most
relevant works only, while a comprehensive review of existing
state-of-the-art approaches is postponed to future works.

Historically, real-time applications support has been intro-
duced in Linux by using techniques that embed a real-time
micro-kernel layer between the hardware and the kernel, that
in practice acts like a hypervisor. In this scenario, there is
a distinct separation between real-time and “normal” tasks,
in which real-time tasks are handled by the corresponding
micro-kernel while the others are scheduled at a lower priority
by Linux. The two major implementations of this paradigm
have been RT-Linux, proposed by Yodaiken et al. [7], and
RTAI, proposed by Mantegazza et al. [8]; the latter has
also been later forked by Gerum et al. into another project
called Xenomai [9]. These solutions usually require real-
time applications to be written using specific APIs and they
must be distributed as kernel modules instead of user-space
applications. For this reason, these solutions are not suitable
for certain application scenarios, like audio/video processing
applications with soft real-time requirements that should be
executed by unprivileged users and in user-space context. A
similar approach characterizes the implementation of a kernel-
level partitioning mechanism for Linux that abides by the
ARINC-653 specification [10]. This implementation provides
a high level of isolation among applications, as needed for the

avionic field [11], but they are not suitable for other application
scenarios.

Many real-time kernel extensions and middleware solutions
have been proposed to support both hard and soft real-
time applications on Linux or other GPOSes. A representa-
tive example is KURT Linux [12], which proposes a major
modification to the scheduling mechanisms by introducing
3 distinct operational modes: in normal mode the system
behaves like any traditional GPOS; in real-time mode only
real-time processes are executed and normal processes are
blocked; finally, in mixed mode both real-time and non real-
time applications can be executed concurrently. In particular,
the last mode allows for the execution of non real-time
processes during the slack time of real-time applications, hence
real-time applications have a strict precedence over other ones.
In [13] authors present DQM, a quality of service middleware
for mediating access to physical resources by applications
that supports dynamic workloads. In QRAM [14], an off-
line optimization for allocating multiple resources across real-
time applications is proposed to maximize an overall QoS
cost function for the system. The approach has also been
extended [15] with an adaptive on-line optimization policy.

Another real-time extension for the Linux kernel with a
certain relevance within the research community is represented
by LITMUSRT [16] by Calandrino et al., which can be used to
implement different scheduling algorithms and other real-time
policies in the form of plugins. The framework is composed
by a set of patches to be applied to the Linux kernel and
a user-space library that is used by real-time applications to
exploit the added functionality. The main goal of LITMUSRT

is to provide the research community with a test bench for real-
time scheduling algorithms so to ease their implementation on
Linux. However, it is out of the scope of LITMUSRT to provide
the support for multiple scheduling policies at the same time,
as only one plugin at a time can be loaded in the system.

Another very similar approach is represented by the Real-
timeKit Library (RTKit) [17], which is a D-Bus system service
that can be used to request user processes or threads to be
executed with the SCHED_RR scheduling policy. This service
however does not provide any real-time guarantee by itself, it
only allows user applications to be executed with a given set
of real-time scheduling parameters.

Another project that we deem worth mentioning is also the
Flexible Integrate Real-time Scheduling Technologies (FIRST)
Scheduling Framework (FSF) [18], which is an operating
system-independent framework that organizes a number of
scheduling algorithms to work in cooperation (including both
fixed priority (FP) and dynamic priority (DP) scheduling
algorithms) in a hierarchical scheduling architecture. This
framework also relies on a set of reservation techniques to
provide temporal isolation among real-time tasks and appli-
cations can establish with the system a contract so that they
will be provided a set of guarantees. FSF does not have a
Linux implementation, but it has been implemented both for
SHARK [19] and MaRTE [20] operating systems.

FRSH/FORB [21] is a middleware based on CORBA that



lets real-time applications avail of reservation scheduling
across different physical resources, such as CPUs, disks and
network interfaces, made available through proper kernel-level
extensions to the Linux OS, such as the AQuoSA architec-
ture [22] supporting adaptive CPU reservations and real-time
extensions [23] for wireless communications compatible with
the IEEE 802.11 standard series. FRSH/FORB has also been
extended [24] with a transactional API for handling multi-
resource reservations in a distributed system.

Finally, the ExSched project [25] is an extensible frame-
work that aims to support real-time applications over multiple
operating systems. This framework is composed of a kernel
module and a set of plugins that can be chosen by the system
administrator. The goal of ExSched is to provide a unified
scheduler interface that can be used to implement different
schedulers (each with its own plugin implementation) without
patching and recompiling the underlying operating system.
However, this functionality is achieved with a great cost
in terms of performance: for example, their implementation
of an EDF scheduler plugin introduces an overhead on the
system that is about 180% in the worst case with respect
to SCHED_DEADLINE implementation on Linux [25]. Fur-
thermore, applications must be aware of their exact timing
parameters (task period, worst case execution time, etc.) to be
effectively used with ExSched.

Most of the solutions illustrated above rely on either fixed-
priority or EDF/CBS scheduling, with applications requiring
from the OS some specific policy and its parameters. This
work aims to support heterogeneous sets of applications with
different real-time characteristics and requirements, letting
applications declare to the OS just what they know about their
timing characteristics, leaving the OS free to use and configure
the available OS/kernel schedulers so to make an optimal use
of an underlying multi-core platform. The framework that is
presented in this work is inspired to the concept architecture
appeared in [26], which to the best of our knowledge has never
been actually implemented.

III. PROPOSED FRAMEWORK

In this section we present the declarative framework that
we realized to ease access to real-time scheduling policies
on Linux. The main focus of this framework is to provide
real-time applications with an abstraction level that can be
used to declare a set of scheduling parameters that shall be
associated with each real-time task. From these parameters, the
framework takes care of selecting the most proper scheduling
technique and configuring actual scheduling parameters of the
Linux thread associated to each task specification.

The design of this framework takes into account the pos-
sibility to port its implementation onto different POSIX-
compliant operating systems other than Linux, while at the
same time exposing at user-level an interface that can be used
to develop complex real-time and multimedia applications. As
it will be shown later, this framework can be installed over
an unmodified kernel to provide unprivileged users with the

capability to run applications that rely on the framework’s
functionality to meet their real-time requirements.

To accomplish these goals, this framework is not designed
to be part of the Linux kernel, but it is composed of a shared
library that applications can use to declare their requirements
to a centralized authority. This is a daemon running with
superuser privileges, which is in charge of managing all real-
time applications in the system. With this solution, applications
running without any particular privilege can simply request the
daemon to set their own scheduling parameters.

The framework has been purposely developed to provide
an API which is completely independent from the scheduling
algorithm and policies that are actually used to meet the
demands of each application. As it will be shown later in
more details, the framework specifies an API that can be
used to provide actual scheduling services in the form of
plugins, which can be chosen at deployment time via a
simple configuration file by the system administrator. This
approach has been taken to provide a mean for researchers and
other developers to extend the functionality of the framework,
developing scheduling algorithms and policies to be used
via the generic user-level API provided by the framework
itself. This approach can be used to play with various real-
time scheduling policies on the Linux operating system. The
framework can also be ported to other POSIX-compliant OSes.

Independently of the plugins loaded with the daemon at any
time, the API provided by the shared library can be used inside
applications to declare a set of real-time parameters to be used
by real-time tasks. For each request, the framework responds
indicating whether it can be accepted by one of the plugins
or not. On acceptance, a single execution flow—i.e. a POSIX
thread—can be dynamically attached to the set of accepted
scheduling parameters. After this operation, the framework
sets the actual scheduling parameters of the attached thread
accordingly, depending on which plugin accepted it; for ex-
ample, a task that has been accepted by a plugin that relies on
SCHED_DEADLINE sets up a CPU reservation for the thread.
In case a request is rejected instead, it can be re-submitted after
relaxing some of the real-time parameters.

Any thread managed by the framework can be dynamically
detached from the accepted scheduling parameters; after this
operation another thread can be attached to them or they can
be released.

The real-time parameters that can be declared by each
task are the following ones: 1) a period T , expressed in
microseconds, which usually corresponds to the minimum
inter-arrival period between consecutive task instances; 2) a
runtime Q, in microseconds, which usually is equal to the
worst-case execution time of each task instance; 3) a relative
deadline D, that defaults to the same value as the period T ,
if specified; 4) a static priority P , in the range of standard
real-time POSIX priorities.

The declarative approach that characterizes this framework
allows applications to specify from none to all of these
parameters for each task; each plugin documentation specifies
which parameters are mandatory, which are desired, but not
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Figure 1. Architectural overview of the framework.

mandatory, and which parameters are not used. Hence, the
set of real-time parameters specified for each task are used to
automatically determine which plugin is used to schedule each
task. If at least one plugin accepts a task, the task is considered
as part of the scheduling task set and its parameters are used
by the selected plugin to generate the actual parameters that
are used to schedule the associated POSIX thread.

In addition, plugins can decide whether accept or reject
tasks depending on the result of some admission control
policy. This feature is optional and checks performed by each
plugin shall test only for necessary conditions—i.e. failure,
acceptance of the new task will inevitably lead to system
unschedulability. Tasks can specify whether they want to
bypass this admission control test upon task declaration.

An accepted task can later change its parameters without
disrupting any of the other accepted tasks. This operation is
atomic—i.e. multiple parameters can be changed atomically—
and the plugin that is selected to schedule a task may change
following this operation, if successful. If this change is not
accepted, the task will maintain the scheduling parameters
that were accepted last by the framework. This can be used
to dynamically request more computational resources to the
system or to release them when not needed anymore.

Finally, tasks may also declare optionally two different
values for their worst case execution time: in this case, Q
is interpreted as the minimum runtime requested by the task,
while the second value is a desired runtime Qd (higher than
Q), which may be accepted by the system if enough resources
are available. However, the system may be free to assign any
accepted runtime Qa ∈ [Q,Qd]. If this functionality is used,
each task can query at any time the accepted runtime by the
system and plan its own execution accordingly, enabling or
disabling optional paths in the execution flow if possible. Once
a value for the accepted runtime is selected by the framework,
it cannot change in the future without another explicit request
by the task itself.

A. Architecture Overview

The architecture of the framework is depicted in Figure 1,
where the relationships among the main framework com-

ponents are illustrated. The most important component of
the whole architecture is the central decision authority, the
RTS Daemon: this component is in charge of connecting and
coordinating all interactions among individual applications and
the scheduling algorithms that are loaded by the framework as
separated plugins. This is accomplished by providing each ap-
plication with a shared library that can be used to communicate
with the RTS Daemon. This library is called RTS Library and
it provides the set of APIs described in section III-B used to
declare the scheduling parameters associated to each real-time
task. The parameters are then forwarded to the RTS Daemon
via an Inter Process Communication (IPC) mechanism, namely
a UNIX socket connection.

The received information will then be delegated to the
plugins that are currently loaded along with the RTS Dae-
mon in execution. This kind of architecture was designed to
support various scheduling algorithms, each implemented by a
corresponding plugin. In particular, each plugin associated to
a specific scheduling algorithm will analyze the current task
set and the requested parameters for the new task and will
decide whether to accept it or not into the task set scheduled
with that algorithm. In case the plugin embeds an admission
criterion, acceptance can depend also on how many CPUs are
currently managed by each plugin, which can be customized
through the framework configuration file (see later). If at least
one algorithm will accept the task, it is accepted and assigned
to the highest-priority algorithm among the ones that can
schedule that particular task set in the current conditions. The
following sections provide further details for each component.

B. RTS Library API

Applications that want to leverage the real-time capabilities
of a Linux system using the provided framework will commu-
nicate with the RTS Daemon through a well defined interface,
which is implemented as a shared library and linked with the
application binary. The main functions exposed by the RTS
Library are illustrated in Table I. In addition, the provided
API contains some utility functions to implement periodic task
execution and to query the accepted parameters for each task.

Applications can declare the scheduling parameters of each
real-time task by filling an instance of the opaque type
rts_params, using the functions described in Table II. Once
the rts_params object has been filled with the declared
parameters, a new task admission request can be submitted
to the RTS Daemon by executing
rts_result_t result = rts_task_create(
struct rts_task* t, struct rts_params* p);

where rts_task is an opaque type that represents a task in
the system. A connection between each application using the
RTS Library and the RTS Daemon is performed automatically
on submission of the first request and kept for further requests.

This function returns RTS_OK on success and RTS_FAIL

on failure. If a desired runtime Qd is supplied among
the task parameters then the application can check the
accepted runtime assigned to the task by calling the
rts_task_get_accepted_runtime function with the same



Table I
MAIN FUNCTIONS EXPOSED BY THE RTS LIBRARY API.

Function Description

rts_task_create Performs task admission test and applies the
specified rts_params to the new task.

rts_task_change Performs a new task admission test with the
specified rts_params; in case of failure the
task maintains its old parameters.

rts_task_release Releases a task, freeing its resources and de-
taching the attached POSIX thread, if any.

rts_task_attach Attaches a POSIX thread id to the given task.
rts_task_detach Detaches the POSIX thread assigned to a task;

after this call, the thread runs with a non real-
time priority and the task reference can then
be attached to another POSIX thread.

Table II
LIST OF PARAMETERS THAT CAN BE DECLARED FOR EACH TASK.

Parameter Unit Getter / Setter

Runtime µs rts_params_get_runtime
rts_params_set_runtime

Desired Runtime µs rts_params_get_des_runtime
rts_params_set_des_runtime

Period µs rts_params_get_period
rts_params_set_period

Relative Deadline µs rts_params_get_deadline
rts_params_set_deadline

Priority – rts_params_get_priority
rts_params_set_priority

Scheduling Plugin – rts_params_set_scheduler
rts_params_get_scheduler

Ignore Admission Test – rts_params_ignore_admission

rts_task object as argument. In case of failure, the request
can be repeated after changing some of the parameters.

Which parameter is mandatory and which is not is entirely
dependent on the plugins loaded with the daemon at runtime.
As it will be better shown later, the RTS Daemon will
interrogate each plugin to ask them whether the requested
parameters are suitable to execute a task with current system
configuration and each algorithm can either accept or refuse
a task depending on the supplied parameters. It is however
possible to specify for a certain task the plugin that shall be
used to schedule it. In that case, only the requested plugin will
be interrogated for admission.

Once a task is accepted, an execution flow (a thread) can
be associated with it using the rts_task_attach call, which
instructs the RTS Daemon to apply the actual scheduling
parameters to the given thread (identified via its Linux thread
ID) to match the results of the admission test. After that point,
the selected thread will run as a real-time task and will be
scheduled according to the rules implemented in the plugin
automatically selected for it.

For periodic tasks, the library provides some additional
functions to mark the beginning of the first period of execution
of the real-time task (rts_task_start), as well as a call that
can be used to suspend task execution waiting for the next
activation point (rts_task_wait_period).

The body of a sample thread that uses the API described in

/* Task representation */
struct rts_task t = RTS_TASK_INIT;

/* Task parameters */
struct rts_params p = RTS_PARAM_INIT;

/* Set task parameters */
rts_param_set_period(&p, T_PERIOD);
rts_param_set_runtime(&p, T_RUNTIME);
rts_param_set_des_runtime(&p, T_DES_RUNTIME);
rts_param_set_deadline(&p, T_DEADLINE);

/* Test for admission */
if (rts_task_create(&t, &p) != RTS_OK)
/* We can abort, or retry with different parameters */
return;

/* On success we attach an execution flow to the

* task specification */
rts_task_attach(&t, gettid());

/* Signals that a task begins its execution */
rts_task_start(&t);

while(!computation_ended()) {
/* Task runs the desired actions*/
mandatory_computation();

/* Enabling optional computation depending

* on the accepted runtime */
if (rts_task_get_accepted_runtime(&t) > T_RUNTIME)
optional_computation();

/* Suspend execution waiting for the next period */
rts_task_wait_period(&t);

}

/* Cleanup */
rts_task_release(&t);

Listing 1: Body of a real-time thread that uses the framework.

this section is shown in listing 1.

C. RTS Daemon

The RTS Daemon is in charge of forwarding each request
received by the various applications to the right plugin,
each implementing a different scheduling strategy. The RTS
Daemon does not interact directly with the Linux kernel to
satisfy the requests received by each application. Instead each
plugin shall implement its own scheduling policy on top of
the capability of the Linux kernel.

The list of plugins that are loaded at daemon initialization
time is provided by the system administrator via a simple
configuration file: this file is also used to assign each plugin
a different priority and a range of POSIX priorities that could
be used by the plugin itself when configuring the parameters
of Linux threads assigned to it (see section III-D).

Once a task request is received, the daemon will proceed
to interrogate each plugin, following the priorities provided in
the configuration file, to check whether it is possible to satisfy
that request by using the selected algorithm. The API that each
plugin should implement is illustrated in section III-D.

Each plugin can reply that it is perfectly capable to satisfy
the request as it is (RTS_OK), that the request satisfies its
mandatory requirements even if some recommended param-
eters are missing (RTS_PARTIAL), or that it is not suitable to
satisfy the request, either because some mandatory parameters



are missing or because some necessary admission test resulted
in a failure (RTS_NO). Among all the responses, the daemon
will select the plugin with the highest priority (specified by the
user by means of a configuration file, see section III-D) that
replied with a RTS_OK value; if no plugin is found with this
criterion, the task is delivered to the plugin with the highest
priority that replied RTS_PARTIAL and if none can be found
then the request is denied. Finally, a response is sent back to
the requesting application.

D. RTS Plugins API

The structure of the RTS Daemon takes advantage of a
plugin-based and modular architecture. Each plugin must
implement a set of functions that are used by the RTS
Daemon to dispatch client requests. Each plugin will represent
a single real-time scheduling policy (which may correspond
to a specific real-time scheduling algorithm or multiple ones,
depending on the plugin implementation), which will leverage
the real-time functionality exposed by the underlying kernel
to schedule the provided real-time tasks.

Each plugin may implement an admission control mech-
anism that will be used to check whether a new task can
be admitted to the current task set or not. This test, if
implemented, shall be performed again each time a real-time
task will request a change to its current set of parameters.
In addition, a plugin can signal that the set of parameters
provided by the client cannot be used by that particular plugin
to schedule a task.

Table III shows the main functions exposed by each
plugin to exchange data with the RTS Daemon. Among
the plugins that responded at least RTS_PARTIAL to
rts_plg_task_accept or rts_plg_task_change, the
daemon selects one plugin to assign the given real-
time task and it signals the selected plugin via the
rts_plg_task_schedule function. The plugin then assigns
the real-time scheduling parameters to the POSIX thread
associated with that real-time task specification, if any, until
either the task is assigned to another plugin after a change in
its parameters or it is removed from the task set by the client.

Each plugin is implemented as a dynamic-link library that
implements at least the set of functions shown in Table III
and is distributed as a .so file that will be loaded by the RTS
Daemon on start up. These plugins operate at user-space level
and typically they can be executed on top of an unmodified
Linux kernel. In case a plugin relies on the features introduced
by a specific kernel module, the plugin can load it during the
initialization phase of the RTS Daemon. The set of plugins
that shall be loaded, as well as the pool of POSIX real-
time priorities that shall be used by each plugin to schedule
assigned tasks, is specified by the system administrator via
a configuration file. The format of the file is similar to the
example shown in listing 2: each line specifies the name of
a plugin to be loaded and a few parameters for each plugin.
These parameters are, in order, the range of POSIX real-time
priorities and the list of CPUs that the plugin can use to

Table III
MAIN FUNCTIONS EXPOSED BY EACH PLUGIN TO THE RTS DAEMON.

Function Description

rts_plg_task_accept Performs a new task admission test
with the specified rts_params. The
plugin may refuse to schedule a task
if the (optional) admission test fails or
the supplied parameters are not suit-
able to generate a schedule.

rts_plg_task_change Performs a new task admission test
with the specified rts_params.

rts_plg_task_release Notifies the plugin that a task left the
task set. Plugins shall perform here
cleanup operations.

rts_plg_task_schedule The RTS Daemon indicates to the plu-
gin that the given task has been as-
signed to it and that it should manage
its scheduling parameters accordingly.

rts_plg_task_attach The RTS Daemon instructs the plugin
to set the scheduling parameters of the
given POSIX thread to match the cor-
responding real-time task parameters.

rts_plg_task_detach The RTS Daemon instructs the plugin
to change the POSIX thread priority to
a normal one and that it is no longer
associated with the given task.

EDF 100-100 0
RM 50-99 1,2
RR 1-49 1,2
FP 1-99 3-7

Listing 2: Example of an RTS Daemon configuration file.

schedule tasks assigned to it, although task allocation to CPUs
depends on the implementation of each plugin.

When dispatching client requests to the plugins, the RTS
Daemon will assign each plugin a priority based on the order
in which they are specified in the configuration file.

IV. IMPLEMENTATION

The framework’s implementation reflects the architecture
illustrated in section III-A. In this section we summarize
the main characteristics of each plugin that we developed to
test the functionality of our implementation when multiple
scheduling algorithms are loaded at the same time.

A. EDF Plugin

This plugin implements the EDF scheduling algorithm,
which is well known to be optimum for single processor
systems [27]. In particular, we implemented a fully-partitioned
version of EDF applying a worst-fit task allocation strategy
among the CPU cores specified via the RTS Daemon con-
figuration file. Its implementation leverages the EDF imple-
mentation offered by Linux mainline kernel since version
3.14 [28] via the SCHED_DEADLINE scheduling class; this
class assigns each task its own reservation to be run into, based
on its runtime Q and period T . For this reason, an application
that would like to schedule a real-time task through this plugin
shall declare at least the period and the runtime of the task,
otherwise the task cannot be assigned to the EDF plugin. The



optional deadline parameter D can also be specified, otherwise
it defaults to the same value as the period T . The plugin
calculates the utilization of each task τi in the system that
declared both its runtime and period, which is defined as the
ratio between Ui = Qi/min{Ti, Di}.

This plugin implements also a simple utilization-based task
admission test. Since each task can only be assigned to one
core, the least loaded core is selected and then an admission
test is performed to check whether the admission of the
new task into the current task set leads the system to an
overloaded condition. The load of each core k, given the
set of tasks assigned to that core Γk, is defined as the sum
of the utilizations of all the tasks belonging to Γk, that is
Uk =

∑
τi∈Γk

Ui =
∑
τi∈Γk

Qi/min{Ti, Di}.
The plugin currently disables the in-kernel necessary G-

EDF test performed by SCHED_DEADLINE, but it sets task
affinities and it implements a sufficient schedulability test for
each core k ensuring Uk is less than or equal to 1 [27] (the
value is customizable). Hence, given the least loaded core
k̄, this plugin accepts a new task τj to be scheduled if the
following condition holds true:

Uk̄ +
Qj

min{Tj , Dj}
≤ 1 (1)

If this condition is satisfied, the task is accepted and
assigned to the least loaded core k̄, otherwise it is rejected.

If a desired runtime Qdj has been specified for the task, then
the task is assigned an accepted runtime Qaj ∈ [Qj , Q

d
j ] that is

the highest value possible given the current load of the system
that does not break the acceptance condition:

Qaj = max(Qj ,min(Qdj , (1− Uk̄) ·min{Tj , Dj})) (2)

In case the acceptance condition is not satisfied, but the task
has been accepted by this plugin anyway, then its accepted
runtime is equal to its minimum runtime Qj .

B. RM Plugin

This plugin implements the Rate Monotonic (RM) schedul-
ing algorithm, which is well known to be optimum for single
processor systems among FP scheduling algorithms [27]. In
particular, it implements a fully-partitioned version of RM
applying a worst-fit task allocation strategy on top of the
POSIX SCHED_FIFO scheduling policy among the CPU
cores specified via the RTS Daemon configuration file.

The only required parameter that a real-time task shall
declare to be eligible to be scheduled with this plugin is its
period T . For this reason, it is possible that for some tasks
this plugin might not be aware of their runtime Q, hence it is
not possible to perform a proper admission test for some tasks
that could be assigned to this plugin. The adopted strategy is
to apply the well-known single-CPU FP utilization test at least
for all tasks that specify both runtime and period parameters,
unless otherwise specified by the requesting client.

Once a task is assigned to this plugin by the RTS Daemon,
a core k is selected to schedule that task using a worst-fit
allocation strategy. Given the set of tasks assigned to that core

Γk, this plugin assigns each task a priority that is inversely
proportional to the their period:

Pi ∝ 1/Ti ∀ i ∈ Γk (3)

The calculated priority for each task Pi, which is within
the range of POSIX priorities assigned to this plugin via the
RTS Daemon configuration file, is then used to schedule tasks
using SCHED_FIFO. Future versions of this plugin will let
applications choose between FIFO and RR scheduling policies.

C. FP and RR Plugins

The FP and Round Robin (RR) plugins serve as wrappers
to expose underlying POSIX functionality to applications
that use this framework. They respectively provide access to
SCHED_FIFO and SCHED_RR scheduling policies and as
such the only required parameter that shall be specified to
be accepted by either of these plugins is the desired POSIX
priority of the task P . For this reason, no admission test is
performed when submitting a task to these plugins, although a
task may still specify other parameters that may be considered
by other plugins’ admission tests. Both plugins apply a worst-
fit task allocation strategy, in this case resulting in each new
task to be assigned to the CPU core with the least number of
assigned tasks.

Notice that the priority requested via the RTS Library API
may differ from the one actually used by either of these plugins
to schedule the task, since the range of priorities that each
plugin might select may be smaller than the normal range of
POSIX priorities. In this situation, the ordering of the distinct
priorities that have been requested for each real-time task is
maintained when assigning actual POSIX priorities. However,
if the destination range of priorities is smaller than the number
of distinct priorities that have been requested some tasks
may receive the same POSIX priority even if they originally
requested two distinct ones.

V. PERFORMANCE EVALUATION

In this section we report experimental results showing the
overhead introduced by the framework when declaring a new
real-time task or modifying the parameters of an existing one.
In particular, we will show that the framework introduces
only two types of overhead when used: the first depends on
the IPC mechanism that is used to exchange data between
the clients and the RTS Daemon component and the second
depends on the type of operations performed by each plugin
on task acceptance.

Experiments were performed on a desktop platform
equipped with a multi-core Intel Core i5-2300. The machine
is configured with an Ubuntu 18.04.1 LTS distribution, Linux
kernel version 4.15.0. To maximize the reproducibility of re-
sults, our tests have been run disabling hyperthreads, disabling
CPU frequency scaling (governor set to performance and
frequency set to 1.6 GHz) and Turbo Boost disabled.

The benchmarking application is a single-threaded process
that performs multiple requests to the RTS Daemon, each time
declaring an additional real-time task to be added to the current
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Figure 2. Average response time of a new real-time task allocation request
depending on the number of tasks in the current task set. Error bars represent
standard deviation over 500 experiments.

task set. Both the benchmarking application and the RTS Dae-
mon were set to run with the highest POSIX real-time priority
(99) and each was pinned on a separate core. Throttling of
real-time applications by the kernel was disabled by setting
/proc/sys/kernel/sched_rt_runtime_us to -1. Finally
to maximize the precision of our time measurements we used
the Time Stamp Counter (TSC) register to track elapsed time
within the benchmarking application.

The application performs several real-time task declarations
(without attaching any actual thread to accepted tasks) over
and over, varying the number of tasks in the task set from
1 to 1024, to evaluate whether the cost of the task admission
tests performed by each plugin depends on the number of tasks
present in the current task set at any time. Experiments were
repeated 500 times each, using a different set of 1024 random
real-time task parameters for each run.

A. Results

Figure 2 shows experimental results. The figure compares
the cost in terms of average response time of a new task
allocation request for each plugin, depending on the number
of tasks currently present in the accepted task set. From the
plot it is clear that while the response time of the EDF plugin
does not depend on the number of tasks, the RM plugin has
an increasing cost with respect to the task set size. This can
be attributed to the operations performed by the RM plugin to
update the POSIX priorities assigned to real-time tasks each
time a new task is introduced. For both solutions, the minimum
average round-trip time measured is about 16 µs, which is
clearly the cost of the UNIX socket used to exchange data
between the benchmarking application and the RTS Daemon.

Notice that this cost must be paid only when declaring a new
task or when changing the real-time parameters of an already
declared task, while during normal task scheduling operations
the overhead introduced is zero with respect to using directly
the scheduling policies exposed by the Linux kernel, since they
are the same as used by the framework to schedule each thread.
This is an advantage with respect to other similar frameworks
reviewed in section II, such as ExSched, which increases the
overhead introduced by the scheduler when used. However
developers may want to avoid sending too many parameters

change requests to the framework on the critical path of a real-
time thread, since the cost of each request is non-negligible.

VI. CONCLUSIONS

This work describes the architecture and implementation of
a novel framework that aims at simplifying access to real-time
capabilities of the Linux kernel, adopting a component-based
system design, using a declarative API model. The realization
of this framework is motivated by the recent advances in
the kernel features for real-time tasks in Linux, that need
to be followed by corresponding advancements in associated
middleware and user API services.

A. Future work

We plan to continue the development of the framework to
improve it and extend it to support more features. Energy
efficiency is one of the directions in which we intend to
improve the framework’s implementation. On architectures
that support power management techniques like Dynamic
Voltage and Frequency Scaling (DVFS), computation times
may vary depending on the frequency of the CPUs or (for
architectures like ARM big.LITTLE) by the type of the
CPU core selected to run each task. To improve the energy
awareness of the framework, a possible extension of this work
could use architecture and frequency-independent computation
time specifications that enable more energy-efficient policies
for task allocation. Also, a monitoring system might easily
add to the RTS Daemon adaptive capabilities to self-detect
or correct some of the managed task parameters and realize
adaptive strategies that can make better use of the physical
resources.

The current implementation neglects possible transients due
to new tasks entering or existing tasks leaving the system. In
these cases, mode-change protocols should be added within
the framework or plugins, using techniques such as [29].

The use of thread ids by the RTS Daemon could lead plugins
to mistakenly change the parameters of unrelated threads if the
system reuses the TIDs of terminated real-time threads over
time. In future extensions, we will consider the possibility to
use pidfds [30], that have been added recently in the Linux
kernel for cases like this. Also, the API can be extended to
accept additional parameters, like preferred or mandatory CPU
affinity constraints, or blocking times to be considered by some
more advanced admission test in the plugins.

Finally, we plan to enrich the RTS Daemon configuration to
include an access control model for the features provided by
the framework. The current implementation relies on a UNIX
socket for IPC communication (see section III-A), so permis-
sion bits and ACLs can be leveraged to limit access to the
communication channel only to specific users/groups. Direct
access to real-time features of the system by unprivileged users
(thus enforcing the use of the framework) can be inhibited via
existing features of Linux like limits.conf, while access
from root processes remains unrestricted. In the future, the
framework will allow system administrators to configure per-
user or per-application security policies.
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