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ABSTRACT

This paper presents RT-Kubernetes, a software architecture with

the ability to deploy real-time software components within con-

tainers in cloud infrastructures. The deployment of containerswith

guaranteed CPU scheduling is obtained by using a hierarchical

real-time scheduler based on the Linux SCHED_DEADLINE pol-

icy. Preliminary experimental results provide evidence that this

new framework succeeds in providing timeliness guarantees in the

target responsiveness range, while achieving strong temporal iso-

lation among containers co-located on the same physical hosts.
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1 INTRODUCTION

In the last years, cloud computing and containerization technolo-

gies have become a standard and effective way to deploy appli-

cations over distributed and abundant hardware resources, that

can easily scale to respect the applications timing requirements

despite continuous fluctuations of the workload over time [9]. The

recent advancements in hardware and software infrastructures are

starting to make these technologies suitable for serving real-time

applications with tight and precise timing constraints, as needed

in novel cloud robotics and cloud-enhanced industrial automation

scenarios.

However, it is not as easy to provide end-to-end responsive-

ness guarantees when enriching real-time applications with com-

ponents deployed in remote cloud infrastructures. This happens

because of many reasons, related to networking latency and re-

mote servers’ processing times.
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The network latency issues can be mitigated by using general-

purpose QoS control techniques over TCP/IP like DiffServ [8, 10],

or can be more effectively addressed by recurring to mostly pri-

vate cloud infrastructures of the industrial/robotic plant, so that the

end-to-end networking path is completely under the control of the

plant owner. As an alternative, fog/edge architectures [6] can be

adopted to have time-sensitive components deployed onto nodes

closer to the clients.

However, remote servers equipped with a standard cloud soft-

ware stack cannot easily cope with the tight timing requirements

and scheduling guarantees, turning out to provide unstable pro-

cessing times that are highly fluctuating depending on what other

workloads are deployed onto the same cloud server. In cloud com-

puting and distributed service-oriented computing, this issue is

generally addressed by employing elastic control loops [13] that

dynamically adapt the number of instances of scalable cloud ser-

vices. However, this approach cannot cope with the variability of

the processing times of individual instances, and their fluctuations,

due to virtualization overheads or interferences from other colo-

cated instances on the same servers or physical CPUs.

This paper presents an orchestration platform for real-timemulti

core containers, based on Kubernetes, that addresses such an issue

by allowing to schedule real-time containers providing them with

guaranteed performance.

2 BACKGROUND

Although different definitions for “container” are possible, all of

them generally present a container as an isolated execution envi-

ronment encapsulating one or more processes or threads (tasks, in

general). In this work, some of the tasks are characterised by real-

time constraints. They can be a set of periodic or sporadic tasks

characterised by deadlines, a set of interacting tasks characterised

by end-to-end constraints [17], can form a Direct Acyclic Graphs

(DAGs) [5], or can be organized in some other way. In any case,

some specific real-time schedulability analysis allows designing ap-

propriate scheduling parameters to respect the application’s tem-

poral constraints. For example, the so-called Compositional Sched-

uling Framework [12, 20] (CSF) or other application-dependent

analysis techniques [1, 5] allow providing real-time guarantees to

applications running inside VMs or containers scheduled through

resource reservations [3, 18]. In this setup, each virtual CPU is

reserved for execution an amount of physical CPU time & every

period % . An example of reservation-based scheduler is the Linux

SCHED_DEADLINE policy [15].

Containers are generally implemented by using specific kernel

functionalities or virtualization mechanisms, controlled by a user-

space containerization software stack, such as Kubernetes. Kuber-

netes manages the execution of containerized applications over a

cluster composed of one or more physical machines that can be
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master nodes (also called control nodes) or worker nodes (some-

times called simply nodes). The master nodes host the Kubernetes

control plane, while the worker nodes host the containers running

the applications.

The basic execution unit of Kubernetes is a “Pod”, composed

of one or more containers, network connections, and storage. The

Kubernetes architecture is composed of multiple microservices dis-

tributed on the different nodes of the cluster. The most important

ones for this work are the Kubernetes Scheduler (running on a mas-

ter node), responsible for selecting theworker node onwhich a Pod

is executed and some Kubelets (one per worker node), responsible

for controlling the execution of Pods on the node.

The Kubelet starts the containers composing the Pods by invok-

ing a container runtime; various container runtimes are supported,

including the well-known Docker. The container runtime can im-

plement containers by using hypervisor-based VMs (as in kata con-

tainers1), or by using OS-level virtualization based on Linux con-

trol groups and namespaces.

If a hypervisor is used, then real-time guarantees can be pro-

vided by scheduling its virtual CPUs with resource reservations.

For bare-metal hypervisors such as Xen, thismeans that a reservation-

based scheduler must be implemented in the hypervisor (as an ex-

ample, Xen implements the Real-Time Deferrable Server — RTDS

— algorithm [14]); for hosted hypervisors such as KVM, instead,

the SCHED_DEADLINE scheduling policy can be used to serve their

virtual CPU threads [2].

If Linux control groups and namespaces are used to implement

the containers, then the mainline Linux scheduler has to be mod-

ified to provide real-time guarantees. For example, the Hierarchi-

cal CBS (HCBS) scheduler [1] uses the SCHED_DEADLINE policy to

schedule groups of tasks (cgroups, in Linux jargon) and can hence

be applied to containers (guaranteeing that each CPU of the con-

tainer can execute for an amount of time& every period % ). In this

work, Kubernetes has been extended to support the HCBS sched-

uler enabling it to provide real-time guarantees to the container-

ized applications.

Finally, using an appropriate scheduling algorithm is not enough

to properly containerize real-time applications, because the sched-

uling algorithm must also be properly implemented, reducing the

kernel latencies [4] to acceptable values. Hence, the Linux Preempt-

RT patchset [19] is neeeded on the host.

3 DESIGN AND IMPLEMENTATION

According to what has been described in Section 2, our real-time

containerization platform is based on an appropriate CPU sched-

uling algorithm, a low-latency host kernel (or bare-metal hypervi-

sor), and a container management software that allows to correctly

use the mentioned CPU scheduling algorithm.

For what concerns the CPU scheduling algorithm, it is possible

to use existing schedulers such as the Xen RTDS, the Linux kernel’s

SCHED_DEADLINE policy, or the HCBS scheduling patch (allowing

to use SCHED_DEADLINE for groups of tasks instead of single pro-

cesses or threads). The container management software, instead,

requires some modifications to existing open-source projects. In

this paper, this feature has been implemented in RT-Kubernetes,

1https://katacontainers.io

Figure 1: Real-Time Containers scheduling architecture.

our modification to the Kubernetes software constituting the main

contribution of this work.

Figure 1 displays the scheduling architecture: everyworker node

(having " CPU cores) can host multiple containers, and the 8Cℎ

container can run real-time applications on <8 CPU cores. Each

one of such cores is scheduled through a CPU reservation, reserv-

ing &8 time units every period %8 to the real-time processes or

threads of the container. The container management software (RT-

Kubernetes, in this case) is responsible for selecting the worker

node on which each container is started, and for assigning the cor-

rect <8 , &8 and %8 scheduling parameters to the container, based

on information about the timing requirements of the hosted ap-

plications, provided by the user at container instantiation time.

For example, this can be done exploiting the multi-processor re-

source model (MPR) in [12]. Based on the previous discussion, RT-

Kubernetes must allow describing the temporal requirements (or

the real-time constraints) of the application to be containerized and

use this description to compute the container’s scheduling parame-

ters (real-time control group’s runtime and period, or runtimes and

periods of the virtual CPU threads if a hypervisor is used). Then, it

must select the node where the needed containers or VMs must be

started, create the needed containers or VMs and properly config-

ure them (this includes configuring the host and guest schedulers).

Using Kubernetes, the application will run in a Pod, as described

by a “manifest” file, written in YAML format. This manifest file is

passed to the Kubernetes API server through a command line tool

(kubectl); then, theAPI server communicateswith the Kubernetes

Scheduler to select a worker node for the Pod and the YAML de-

scription is communicated to the node’s Kubelet. The Kubelet is

then in charge of parsing it and creating the container.

Hence, supporting real-time applications in Kubernetes requires

to implement some important features. First of all, the format of

the manifest files needs to be extended so that they can provide

the needed information about the application’s real-time require-

ments. Then, the Kubernetes Scheduler has to be modified so that

it selects a worker node for running a Pod only if such a node

can host the containerized application without missing deadlines.

Finally, Kubelet has to be modified to properly interact with the

deadline scheduler (scheduling the Pod’s containers with the ap-

propriate algorithm and parameters).

When extending the application’s description in the manifest

file, it would be interesting to add information describing all the

real-time tasks that compose the application, with their temporal

parameters, constraints, and dependencies Based on this informa-

tion, Kubernetes could compute an appropriate number of CPU

cores for the container, and design their scheduling parameters

https://katacontainers.io
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(the runtimes & and periods % of the CPU reservations used to

schedule the container’s cores). However, this analysis and design

is often application-specific [1], hence it is not possible to imple-

ment it in a generic container management software. As a result,

the current version of the RT-Kubernetes manifest files directly

contains the runtime and period for the container’s reservations, as

well as the the number of CPU cores used by the container (a sim-

ilar solution is used by RT-OpenStack [21] too). Summing up, the

format has been modified to allow specifying an “rt_runtime”, an

“rt_period”, and an “rt_cpu” field (number of container’s cores

that can run real-time processes or threads). Notice that support

for “rt-runtime” and “rt-period” is already provided by some

container runtimes (since this interface is part of the standard RT

control group) but not, for example, by Docker. Hence, in this work

the Kubelet has been modified to use these parameters indepen-

dently from the container runtime.

Another interesting thing to be noticed is the difference between

the new “rt_cpu” attribute and the “cpu” attribute already sup-

ported by Kubernetes: the new attribute only affects the schedul-

ing of real-time (SCHED_FIFO or SCHED_RR) processes or threads,

when the HCBS scheduler is used. Hence, using the HCBS sched-

uler it is possible to define a container with a large number of CPU

cores, allowing real-time tasks to run only on a small subset of such

cores (this is not possible when a hypervisor is used).

The extended syntax allows specifying that a container is re-

served an amount of time “rt_runtime” every “rt_period” on

“rt_cpu” cores. This is implemented by instantiating on the physi-

cal host a multi-core CPU reservation spanning across< = rt_cpu

cores with runtime & = rt_runtime and period % = rt_period

(notice that the kernel’s HCBS scheduler will not schedule real-

time tasks on CPU cores with 0 runtime). Since the host CPU sched-

uler can properly serve a (&, %) reservation (guaranteeing& every

% execution time units on AC_2?D CPUs) only if an admission test

is passed, RT-Kubernetes must make sure that a Pod is started on a

worker node only if the Pod’s reservations pass the admission test

on such a node. As previously mentioned, the Kubernetes Sched-

uler is responsible for selecting the worker node on which a Pod

is started and is the component that needs to be modified to imple-

ment this feature.

When implementing an admission test in the Kubernetes Sched-

uler, different options are possible, depending on which kind of

real-time guarantees should be provided (hard [7, 16] or soft [11]).

The simplest possible admission tests compute the total utilization

* as the sum of the utilizations*8 = &8/%8 for all the reservations

(&8 , %8 ) running on a node and compare it with a given thresh-

old. These utilization-based admission tests are not the most ef-

ficient ones, but can be used to provide both hard and soft real-

time guarantees; hence, the Kubernetes Scheduler has been mod-

ified to implement a utilization-based admission test. In particu-

lar, the RT-Kubernetes Scheduler makes sure that the total real-

time utilization
∑
8 *8 of all the containers running in a worker

node is not larger than a specified limit. Notice that this is similar

to what the standard Kubernetes Scheduler does for the “Guaran-

teed” QoS class, with the difference that the RT-Kubernetes Sched-

uler can handle the requests of real-time tasks and is compatible

with schedulability guarantees from real-time theory. In particu-

lar, according to previous works from real-time literature [16], if

this limit is set to (" + 1)/2 (where " is the number of physical

cores present on the node), then the reservations are guaranteed

to be schedulable (assuming that RT-Kubelet uses appropriate al-

gorithms to associate CPU reservations to physical CPU cores —

see the next subsection).

After the Kubernetes Scheduler selects a worker node, Kubelet

is responsible for starting the Pod’s containers on such a node.

Hence, Kubelet has been modified to support the real-time sched-

uling of the containers, obtaining what we call RT-Kubelet. While

the standard Kubelet schedules the containers using the Linux CFS

scheduler (corresponding to the POSIX SCHED_OTHER policy) and

uses CFS quotas to enforce the resource usage limits, RT-Kubelet

can set the real-time runtime and period of the container’s control

group according to the values specified in the manifest file, so that

the HCBS scheduler can be used.

Since the original HCBS scheduler reserved the specified run-

time on all the CPU cores of the physical system, it did not support

the rt_cpu parameter (which allows reserving the runtime only on

a subset of the CPU cores). To address this issue, the scheduler’s

interface has been changed to allow reserving different runtimes

on different cores, so that RT-Kubelet can specify 0 runtime for

the cores where the container’s real-time tasks are not allowed to

run. With this scheduler modification, when RT-Kubelet starts a

container with rt_cpu < " (where " is the number of physical

cores) it is responsible for selecting the physical cores onwhich the

container’s real-time tasks will run. TheWorst-Fit (WF) of First-Fit

(FF) heuristics have been implemented and can be used to perform

this selection. Worst-Fit has the advantage of spreading the real-

timeworkloadmore uniformly over the available CPU cores, while

First-Fit is compatible with the admission control mechanism used

by the RT-Kubernetes Scheduler.

The “traditional way” to serve real-time containers is based on

statically assigning full CPU cores to the container (using, for ex-

ample, the Kubernetes “fixed” CPU management policy for the

GuaranteedQoS policy). This solution allows providing predictable

real-time performance to containerized applications, but forces to

over-provision resources to the container. Moreover, all the CPU

cores used by the container cannot be sharedwith other containers,

even if only a fraction of the cores is needed by the application’s

real-time tasks. RT-Kubelet, instead, can use the HCBS scheduler

to reserve only a fraction of the CPU cores to real-time tasks and

to share CPU cores among containers.

4 EXPERIMENTAL VALIDATION

The proposed modifications have been implemented in the Kuber-

netes Scheduler and Kubelet and are available as open-source2. RT-

Kubernetes has been tested on various machines, ranging from a

4-cores Intel NUC to a 40-cores Xeon-based server.

In the first set of tests, the ability of RT-Kubelet to correctly

drive the HCBS scheduler has been verified, by running a CPU-

hungry application inside containers with various scheduling pa-

rameters and verifying that the application receives the reserved

amount of time. In a second set of experiments, multiple real-time

2https://github.com/stiflerGit/kubernetes

https://github.com/stiflerGit/kubernetes
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Figure 2: Experimental CDFs for the normalized response

times in a real-time and in a standard container.

containers have been started in parallel, verifying that they are cor-

rectly scheduled on the available CPU cores (no core is overloaded

and all the containers are able to execute for the reserved time).

Finally, the RT-Kubernetes ability to respect the applications’

temporal constraints has been verified. This has been done by run-

ning a real-time application composed of multiple periodic real-

time tasks inside a container and measuring the response time

of each task. The container’s scheduling parameters have been

computed according to MPR [12] so that each task is guaranteed

to have a response time shorter than its period. Different num-

bers of real-time tasks (ranging from 4 to 10), with different (ran-

domly generated) execution times and periods (and a total utiliza-

tion ranging from * = 0.5 to * = 1.8), have been tested, verifying

that, when the container’s scheduling parameters are assigned ac-

cording to the MPR analysis, all the deadlines are respected.

As an example, Figure 2 reports the experimental Cumulative

Distribution Function (CDF) of the normalized response times (re-

sponse times divided by the task period) for a real-time application

running in a container. This CDF indicates the fraction of tasks’

activations (on the Y axis) that experienced a normalized response

time smaller than A (on the X axis): if the plot arrives at 1 for a

value of normalized response time smaller than 1, it means that

all the real-time constraints have been respected. The figure con-

tains 2 plots: “Real-Time Container” displays the results obtained

using a container scheduled with parameters designed according

to MPR analysis, while “Standard Container” displays the results

obtained with a non-patched Kubernetes. As expected, the “Real-

Time Container” plot shows that all temporal constraints are re-

spected, while the other plot shows that about 10% of the tasks’

activations finish after the end of the task period.

5 CONCLUSIONS

This paper presented RT-Kubernetes, supporting the deployment

of multi-core real-time containers in a theoretically sound fash-

ion. The proposed architecture is capable of efficiently hosting real-

time software components with tight timing constraints in a con-

tainer infrastructure. A set of experiments showed that the new

RT-Kubernetes Scheduler is able to assign real-time containers to

nodes that can properly serve them (respecting all the temporal

constraints) and the new RT-Kubelet is able to configure the con-

tainers’ scheduling parameters so that it is possible to guarantee

that the temporal constraints of the containerized applications are

respected.
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