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Abstract. In this paper we construct different families of orbit codes in the

vector spaces of the symmetric bilinear forms, quadratic forms and Hermitian
forms on an n-dimensional vector space over the finite field Fq . All these codes

admit the general linear group GL(n, q) as a transitive automorphism group.

1. Introduction

In [1] Ahlswede, Cai, Li and Yeung, random linear network coding was introduced
as a powerful tool for data communication in point-to-point networks on which a
number of information sources are multicasted to certain sets of destinations and the
information sources are mutually independent [29, 30]. A mathematical description
of random network coding was given in [35] where codewords are subspaces of some
fixed vector space and a code is a collection of such subspaces.

More formally, let V = V (n, q) denote the n-dimensional vector space over the
finite field Fq with q elements, and PG(V ) be the partially ordered set with respect
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to the inclusion relation of all subspaces of V . It is well-known that PG(V ) is a
metric space with respect to the subspace distance defined by

d(U,W ) = dim(U) + dim(W )− 2dim(U ∩W ).

A subspace code of length n over Fq is a nonempty subset X of PG(V ), and the
elements of X are the codewords of X . The minimum distance of X is given by
d(X ) = min{d(U,W ) : U,W ∈ X , U 6= W}.

In view of their application in random network coding, subspace codes have been
intensely studied in recent years (see for instance [31, 39, 13, 28] and references
therein). One of the main problems of subspace coding asks for the maximum
possible cardinality of a subspace code of length n over Fq with minimum distance
at least d and the classification of the corresponding optimal codes.

An important class of subspace codes are those whose codewords have constant
dimension k. If X is such a code then X is called a constant dimension code (or k-
dimensional subspace code) with parameters (n, |X |, d, k)q, where n is the dimension
of the vector space V , d is the minimum distance of X and k is the dimension of
the codewords. Constant dimension codes are useful for error correction in random
linear network communication. The errors in this scenario can either be dimension
deletions or dimension insertions. The maximum cardinality of an (n, ∗, d, k)q con-
stant dimension code is denoted by Aq(n, d; k). The upper bound on Aq(n, d; k) are
usually the q–analog of the bounds obtained for the well studied constant weight
codes. In particular the following upper bound has been proved in [19] and [50]:

(1) Aq(n, d; k) ≤
⌊
qn − 1

qk − 1

⌊
qn−1 − 1

qk−1 − 1
. . .

⌊
qn−k+d/2 − 1

qd/2 − 1

⌋
. . .

⌋⌋
.

Note that for k ≤ n − k, starting from a suitable set of k × (n − k)–matrices with
entries in Fq, known as MRD–codes, by means of the so–called lifting process, one

can construct an (n, q(n−k)(k−d+1), 2d, k)q constant dimension code [42, 21]. Al-
though the size of these codes matches the term of highest order of (1), there are
many constructions that give rise to larger codes. With respect to the best known
constructions, or lower bounds for Aq(n, d; k), we only mention the Echelon-Ferrers
constructions [20, 41], the linkage constructions [24, 15] and constructions obtained
with geometrical techniques [10, 11, 12, 14]. These approaches give for many pa-
rameters the largest codes known so far. The currently best known lower and upper
bounds for Aq(n, d; k) can be found at the online tables http://subspacecodes.

uni-bayreuth.de and the associated survey [25].
Examples of constant dimension codes are the so called orbit codes. A subspace

code is an orbit code if it can be written as UG, where U is a subspace of V and
G is a subgroup of the general semilinear group ΓL(V ). The group G is said to
be a generating subgroup of the code. By [45, Proposition 3.11], if a code has G
as a generating subgroup, then G is a subgroup of the automorphism group of the
code. These codes were introduced in [47], and since then they have been further
investigated by many authors [8, 27, 44, 40]. It is well known that GL(V ) contains
exactly one conjugacy class of cyclic subgroups, acting regularly on V \ {0} and
isomorphic to Fqn \ {0}, i.e., the Singer groups. Constant dimension codes that are
obtained by glueing together distinct orbit codes having as generating subgroup a
Singer group are also called cyclic codes. Stimulated by the fact that, for small
parameters, there are examples of large or optimal subspace codes that are cyclic
codes [34, 19, 5], particular attention has been devoted to the construction of cyclic

http://subspacecodes.uni-bayreuth.de
http://subspacecodes.uni-bayreuth.de
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codes [44, 23, 3, 38, 7]. Some of the largest k-dimensional cyclic subspace codes

obtained have parameters (N, (qn−1) q
N−1
q−1 + qN−1

qk−1
, 2k−2, k)q, where N is the degree

of the splitting field of certain q-polynomials over Fqn of degree qk [7]. Typically, the
known cyclic codes admit a group of order at most N(qN−1), that is the normalizer
of a Singer group, but their size is far behind the theoretical upper bound. In [8]
the authors study an abelian non–cyclic group of order q(q− 1)2 in order to obtain
an orbit code with parameters (n, q(q − 1), 2k, k)q.

In this paper we aim at establishing new techniques for the construction of orbit
codes. To this end we consider S(V ), Q(V ) and H(V ), the set of all symmetric,
quadratic and Hermitian forms on V = V (n, q) (in the Hermitian case, q = q2

0).

Then each of these sets is a vector space, say Ṽ , over Fq (in the Hermitian case over

Fq0), and GL(V ) is a subgroup of GL(Ṽ ). In particular, GL(V ) acts on the forms
by preserving the rank. In all cases, we construct orbit codes whose generating sub-
group is GL(V ). In order to do that we use the cyclic model of a finite dimensional
vector space over Fq, see [9, 26]. More precisely we obtain:

- an orbit code in PG(S(V )) with parameters(
n(n+ 1)

2
,
qn(n−1)/2

∏n−1
i=1 (qi − 1)

n
, 2(n− j), n

)
q

,

where j < n is the greatest divisor of n;

- a
(

15,
q10

∏4
i=1(qi−1)

5 , 8, 5
)
q

orbit code in PG(Q(V )), where V = V (5, q);

- an orbit code in PG(H(V )) with parameters(
n2,

qn(n−1)/2
∏n−1
i=1 (qi − 1)

n
, 2(n− j), n

)
q0

,

where j < n is the greatest divisor of n, whenever n is odd and q = q2
0 .

We remark that the generating subgroups of these codes have order qn(n−1)/2 ∏n
i=1(qi−

1). Moreover, if n is a prime, then the leading order term of the size of these orbit
codes is qn(n−1)/n, while the term of highest order in the upper bound (1) equals
qn(n−1). Therefore, as functions of q they have the same order. This implies that,
when n is a prime and q approaches infinity, the size of these orbit codes is not very
far from the theoretical upper bound.

The paper is structured as follows: in Section 2 we collect some preliminary facts
about symmetric, quadratic and Hermitian forms on V , the cyclic representation
of a finite dimensional vector space over Fq and q-circulant matrices. In Section 3,
4 and 5 we describe the orbit codes in the cyclic model of the vector space of the
symmetric, quadratic and Hermitian forms respectively.

2. Preliminaries

Let V = V (n, q) be an n-dimensional vector space over Fq and let (v0, . . . , vn−1)
be an ordered basis of V . If g ∈ GL(V ), let Mg be the matrix of g with respect to
(v0, . . . , vn−1).

A symmetric bilinear form on V is a function f : V × V → Fq that satisfies the
identities

f

∑
i

xivi,
∑
j

yjwj

 =
∑
i,j

xif(vi, wj)yj ,
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and f(v, w) = f(w, v), for all scalars xi, yj ∈ Fq and all vectors vi, wj , v, w ∈ V .
The set S(V ) of all symmetric bilinear forms on V is an n(n + 1)/2-dimensional
vector space over Fq. The radical of f ∈ S(V ) is the subspace of V consisting of
all vectors v satisfying f(v, v′) = 0 for every v′ ∈ V , and we denote it by Rad f .
We say that f is non-degenerate if Rad f = {0}. The rank of f , denoted by rkf , is
n − dimFq

Rad f . For any f ∈ S(V ), the n × n symmetric matrix Af = (f(vi, vj))
is called the Gram matrix of f with respect to the basis (v0, . . . , vn−1). We denote
by S(n, q) the set of all n× n symmetric Fq-matrices. The map f ∈ S(V ) 7→ Af ∈
S(n, q) is an isomorphism and rkf = rankAf . Therefore, non-degenerate symmetric
bilinear forms correspond to non-singular symmetric matrices, and conversely. Let
GL(S(V )) denote the general linear group of S(V ), that is the group of all invertible
linear transformations of S(V ). By [48, Theorem 5.4], the subgroup of GL(S(V ))
which acts on S(V ) by preserving the rank is isomorphic to GL(V ). If f ∈ S(V ) and
g ∈ GL(V ) then the element fg of S(V ) is that whose Gram matrix is M t

gAfMg.

Here, and in the sequel, t denotes transposition.
A quadratic form on V is a function Q : V → Fq such that Q(av) = a2Q(v), for

every a ∈ Fq, v ∈ V and β : (u, v) ∈ V × V 7→ Q(u + v) − Q(u) − Q(v) ∈ Fq is a
bilinear form on V ; β is called the polar form of Q. A non-zero vector v is singular
if Q(v) = 0 and a subspace U is totally singular if Q(u) = 0, for all u ∈ U . A
quadratic form is said to be non-singular if each non-zero vector of Radβ is non-
singular. The Witt index of Q is the common dimension of the maximal totally
singular subspaces. The set Q(V ) of all quadratic forms on V is a vector space over
Fq of dimension n(n+ 1)/2. If g ∈ GL(V ) and Q ∈ Q(V ), then Qg is the quadratic
form defined by Qg(v) = Q(gv), for every v ∈ V .

Let q = q2
0 . A Hermitian form on V is a function h : V × V → Fq satisfying

h

∑
i

xivi,
∑
j

yjwj

 =
∑
i,j

xih(vi, wj)y
q0
j ,

and h(v, w) = (h(w, v))q0 , for all xi, yj ∈ Fq and for all vi, wj , v, w ∈ V . The set
H(V ) of all Hermitian forms on V is an n2-dimensional vector space over Fq0 . The
radical Radh of h ∈ H(V ) is the subspace of V consisting of all vectors v such
that h(v, v′) = 0, for every v′ ∈ V . The form h is said to be non-degenerate if
Radh = {0}, and the rank of h, denoted by rkh, is n− dimFqRadh. If h ∈ H(V ),
the n × n Hermitian matrix Ah = (h(vi, vj)) is called the Gram matrix of h with
respect to the basis {v1, . . . , vn}. Let H(n, q) be the set of all n × n Hermitian
matrices over Fq. The map h ∈ H(V ) 7→ Ah ∈ H(n, q) is an isomorphism and
rkh = rankAh. Therefore, non-degenerate Hermitian forms correspond to non-
singular Hermitian matrices, and conversely. Let GL(H(V )) denote the general
linear group of the n2-dimensional Fq0-vector space H(V ). By [48, Theorem 6.4],
the subgroup of GL(H(V )) acting on H(V ) by preserving the rank is GL(V ). If
h ∈ H(V ) and g ∈ GL(V ) then the element hg ∈ H(V ) is that whose Gram matrix
is M t

gAhMg, where Mg is the matrix obtained by raising each entry of Mg to the
q0-th power.

A correlation of PG(V ) is a collineation from PG(V ) to its dual. The corre-
lation φ with underlying matrix A and field automorphism θ acts on PG(V ) by
mapping P = (x0, . . . , xn−1)t to the hyperplane represented by the column vector
(a0, . . . , an−1)t = A(xθ0, . . . , x

θ
n−1)t. For completeness, we recall that the correlation
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φ∗ from the dual of PG(V ) to PG(V ), with underlying matrix A and field auto-
morphism θ, maps the hyperplane Π with projective coordinates (a0, . . . , an−1)t

on the projective point with coordinates A−t(aθ0, . . . , a
θ
n−1)t. Therefore, the prod-

uct of two correlations is a collineation of PG(V ). A correlation of order two is
called polarity. It is well-known that any correlation of PG(V ) arises from a non-
degenerate sesquilinear form on V , and polarities arise from either an alternating
or a symmetric or a Hermitian form.

For further details on symmetric bilinear forms, polarities, correlations, quadratic
forms and Hermitian forms, the interested reader is referred to [17] and [46].

Embed V = V (n, q) in V̂ = V (n, qn) by extending the scalars to Fqn . It is known
[9, 18] that, for any given primitive element ω of Fqn over Fq, there is an Fqn -basis

(s0, . . . , sn−1)w of V̂ such that

(2) V =

{
n−1∑
i=0

xq
i

si : x ∈ Fqn
}
.

The ordered basis (s0, . . . , sn−1)w is called a Singer basis for V in V̂ and the rep-

resentation (2) of V , or equivalently the set {(x, xq, . . . , xqn−1

) : x ∈ Fqn} ⊂ Fnqn , is

the so-called cyclic model of V in V̂ [22].
A q-circulant n× n matrix over Fqn is a matrix of the form

Da = D(a0,a1,...,an−1) =


a0 a1 · · · an−1

aqn−1 aq0 · · · aqn−2
...

...
. . .

...

aq
n−1

1 aq
n−1

2 · · · aq
n−1

0

 ,

with ai ∈ Fqn ; we say that the matrixDa is generated by the array a = (a0, . . . , an−1).
The set of all q-circulant n× n matrices over Fqn forms the Dickson matrix algebra
Dn(Fqn) and the set of all invertible matrices in Dn(Fqn) forms the Betti-Mathieu
group In(Fqn) [4, 6]. It is known that Dn(Fqn) ' End(V ) and In(Fqn) ' GL(V )
[37, 49]. Therefore, for any g ∈ GL(V ) the matrix of g with respect to the Singer
basis (s0, . . . , sn−1)w is a non-singular q-circulant matrix Dg [16, 18]. In addition,
the non-singular Moore matrix

(3) En =


1 w · · · wn−1

1 wq · · · w(n−1)q

...
...

...

1 wq
n−1 · · · w(n−1)qn−1


is the matrix of the change of basis from (v0, . . . , vn−1) to (s0, . . . , sn−1) [16]. Then
Dg = EnMgE

−1
n .

A Singer cycle of GL(V ) is an element of order qn − 1. It is known that any
primitive element of Fqn over Fq defines a Singer cycle of V = V (n, q) [32, 43]. Let
σ be the Singer cycle defined by the primitive element ω associated with the Singer
basis (s0, . . . , sn−1)w. Then, with respect to this basis, σ has q-circulant matrix

diag(ω, ωq, . . . , ωq
n−1

) [9].
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Let τ ∈ GL(V ) whose q-circulant matrix is

(4)


0 0 . . . 0 1
1 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

 .

Observe that τ acts on the Singer cyclic group S = 〈σ〉 by mapping diag(ω, ωq, . . . , ωqn−1

)

to diag(ωq, . . . , ωq
n−1

, ω). Let C be the cyclic group of order n generated by τ . Then
S o C is the normalizer of S in GL(V ) [32].

In Dn(Fqn), let SDn(Fqn) be the set of all symmetric q-circulant matrices. The
isomorphism between the set of all bilinear forms on V and Dn(Fqn) described in
[16, Proposition 2.6], induces the isomorphism S(V ) ' SDn(Fqn). Therefore, we
may identify any f ∈ S(V ) with its symmetric q-circulant Gram matrix Df =
E−1AfE

−1 ∈ SDn(Fqn), with respect to the fixed Singer basis (s0, . . . , sn−1)w.
If g ∈ GL(V ) with q-circulant matrix Dg, then the q-circulant Gram matrix of
fg ∈ S(V ) is Dt

gDfDg ∈ SDn(Fqn).

Let n be odd and q = q2
0 . A q-circulant matrix generated by the array(

a0, a1, . . . , an−1
2 −1, b, a

qn+2
0
n−1
2 −1

, . . . , a
q2n−3
0

1 , a
q2n−1
0

0

)
,

with ai ∈ Fqn and b ∈ Fqn0 is said to be a q-circulant pseudo-Hermitian matrix. We
denote by HDn(Fqn) the set of these matrices. Analogously to the symmetric case,
it can be seen that H(V ) ' H(n, q) ' HDn(Fqn). Therefore, we may identify any
h ∈ H(V ) with its q-circulant Gram matrix Dh = E−1AhE

−1 ∈ HDn(Fqn), with
respect to the fixed Singer basis. If g ∈ GL(V ), then the q-circulant Gram matrix
of hg ∈ H(V ) is Dt

gDhDg ∈ HDn(Fqn).
Throughout the paper let Trqn/q denote the trace map from Fqn onto Fq,

Trqn/q : x ∈ Fqn 7−→
n−1∑
i=0

xq
i

∈ Fq.

and let Nqn/q denote the norm map from Fqn onto Fq,

Nqn/q : x ∈ Fqn 7−→ xq
n−1+···+q+1 ∈ Fq.

Also, we will denote by x the vector (x, xq, . . . , xq
n−1

) of the cyclic model of V in

V̂ , and by ei the vector (0, . . . , 0, 1, 0, . . . , 0), 0 ≤ i ≤ n − 1, where 1 is in the i-th
position and 0 elsewhere. Finally, we will index rows and columns of any n × n
matrix M by elements in {0, . . . , n − 1} and {0, . . . , n − 1}, and we will denote by
M(i) and M (j) its i-th row and j-th column, respectively.

3. Orbit codes from symmetric bilinear forms

Let fa be the symmetric bilinear form on V whose q-circulant Gram matrix in
the Singer basis (s0, . . . , sn−1)w is

Da =


a 0 · · · 0
0 aq · · · 0
...

...
. . .

...

0 0 · · · aq
n−1

 ,
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for some a ∈ Fqn . Hence, the set

U1 = {fa : a ∈ Fqn}
is an n-dimensional Fq-vector subspace of S(V ).

Theorem 3.1. The stabilizer of U1 in GL(V ) is SoC, where S is the Singer cyclic
group of GL(V ) generated by σ and C is the cyclic group generated by τ .

Proof. Let g ∈ GL(V ) with q-circulant matrix Dg generated by (g0, g1, . . . , gn−1) with

respect to the Singer basis (s0, . . . , sn−1)w. Then Dt
g is generated by (h0, h1, . . . , hn−1) =

(g0, g
q
n−1, . . . , g

qn−1

1 ). Let fa be any element in U1. Then, the q-circulant Gram
matrix of fga is generated by the array (Dt

gDaDg)(0).

The l-th entry of (Dt
gDaDg)(0), for 0 ≤ l ≤ n− 1, is given by the inner product

(Dt
gDa)(0) ·D

(l)
g , with D

(l)
g = (gq

l

n−l, g
ql

n−l+1, . . . , g
ql

n−l−1), where subscripts are taken
modulo n. As

(Dt
gDa)(0) =

(
h0a, h1a

q, . . . , hn−1a
qn−1

)
,

the l-th entry of (Dt
gDaDg)(0) is

n−1∑
i=0

hih
ql

n−l+ia
qi .

Since we are assuming that g fixes U1, we must have

(5)

n−1∑
i=0

hih
ql

i−la
qi = 0

for 1 ≤ l ≤ n− 1. As equation (5) holds for all a ∈ Fqn , we get

0 = hih
ql

i−l = gq
i

n−ig
qi

l−i,

for 0 ≤ i ≤ n− 1 and 1 ≤ l ≤ n− 1. This is equivalent to

(6) gigi−l = 0,

for 0 ≤ i ≤ n− 1 and 1 ≤ l ≤ n− 1.
As Dg ∈ In(Fqn), then (g0, g1, . . . , gn−1) 6= (0, . . . , 0). So, by applying a suitable

element in C, we may assume g0 6= 0. Equation (6) implies g−l = 0, for 1 ≤ l ≤ n−1.
By considering subscripts modulo n, we see that the only possible non-zero entry
in (g0, . . . , gn−1) is g0, that is g ∈ S. Therefore the stabilizer of U1 in GL(V ) has
the prescribed form.

For any g ∈ GL(V ), set Ug1 = {fga : a ∈ Fqn}. Let U1 be the orbit code
U1 = U1GL(V ) = {Ug1 : g ∈ GL(V )}. From Theorem 3.1 and the Orbit-Stabilizer
Theorem [2, p.16] we get the following result.

Corollary 1. The size of U1 is

qn(n−1)/2
∏n−1
i=1 (qi − 1)

n
.

Lemma 3.2. Let fa, fb ∈ U1 with associated polarities δ̂a and δ̂b of PG(V̂ ). Then

the (linear) collineation ψ = δ̂b · δ̂a of PG(V̂ ) is represented by the q-circulant matrix
generated by the array (ab−1, 0, . . . , 0).

Proof. It suffices to consider δ̂a and δ̂b as correlations of PG(V̂ ) acting on it via the
corresponding q-circulant matrices Da and Db with respect to the Singer basis.
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It is immediate to see that ψ fixes each point 〈ei〉, for i = 0, . . . , n− 1.

Theorem 3.3. Let g ∈ GL(V ), with g /∈ S o C, and q−circulant matrix Dg

with respect to the Singer basis (s0, s1, . . . , sn−1)w. Let Dk = D−tg the inverse
transpose of Dg, where k = (k0, . . . , kn−1). Suppose that exactly l + 1 entries of k
are non-zero, say ki0 , ki1 , . . . , kil , with 0 ≤ i0 < i1 < . . . < il ≤ n − 1. Then the
subspaces U1 and Ug1 meet either trivially or in a j-dimensional Fq-subspace, where
j = gcd(n, i1 − i0, . . . , il − i0).

Proof. Assume that U1 and Ug1 do not meet trivially, and let fa ∈ U1 ∩ Ug1 for
some non-zero a ∈ Fqn . Let fb ∈ U1 ∩ Ug1 with b ∈ Fqn \ {0, a}. Note that

eg
−1

i = (kq
i

n−i, . . . , k
qi

n−i−1), which is the i-th column of D−1
g . As fa, fb ∈ U1, by

Lemma 3.2, the linear collineation ψ = δ̂a · δ̂b of PG(V̂ ) fixes 〈ei〉 and 〈eg
−1

i 〉, for
all i = 0, . . . , n− 1.

Assume first that all entries ki are non-zero. Then
{
〈e0〉, . . . , 〈en−1〉, 〈eg

−1

0 〉
}

is

a projective frame in PG(V̂ ). Therefore ψ is the identity on PG(V̂ ). From Lemma
3.2 it follows that ab−1 ∈ Fq \ {0}, that is U1 ∩ Ug1 = 〈fa〉Fq .

Assume now that exactly l + 1 < n entries of (k0, . . . , kn−1) are non-zero, say
ki0 , ki1 , . . . , kil , with 0 ≤ i0 < i1 < . . . < il ≤ n−1. As the cyclic subgroup C = 〈τ〉
fixes U1 we may assume k0 6= 0, i.e. i0 = 0. Then

{
〈e0〉, 〈ei1〉, . . . , 〈eil〉, 〈e

g−1

0 〉
}

is a

projective frame in the subspace Γ spanned by 〈e0〉, 〈ei1〉, . . . , 〈eil〉. From the above

argument we see that ψ induces the identity on Γ. Therefore ab−1 = (ab−1)q
im

, for
m = 1, . . . , l, that is ab−1 ∈ Fqj , with j = gcd(n, i1, . . . , il). This implies that U1

and Ug1 intersect in a j-dimensional Fq-subspace.

Corollary 2. For each g ∈ GL(V ), g /∈ S o C, the subspaces U1 and Ug1 have at
most qj elements in common, where j < n is the greatest divisor of n.

Theorem 3.4. Let j < n be the greatest divisor of n. Then the set U1 is an orbit
code with parameters(

n(n+ 1)

2
,
qn(n−1)/2

∏n−1
i=1 (qi − 1)

n
, 2(n− j), n

)
q

.

Moreover, GL(V ) acts transitively on it.

Proof. The result follows from Corollaries 1 and 2.

Example 1. Let n = 4. For any given a ∈ Fq4 the matrix of the symmetric bilinear
form fa in the Singer basis (s0, . . . , sn−1)w is

Da =


a 0 0 0
0 aq 0 0

0 0 aq
2

0

0 0 0 aq
3

 .

Hence the Fq-subspace U1 of V can be identified with the Fq-subspace {Da : a ∈ Fq4}
in the Dickson matrix algebra D4(Fq4), and the codewords of U1 are the subspaces
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{Dt
gDaDg : a ∈ Fqn} for any non-singular q-circulant matrix

Dg = D(g0,g1,g2,g3) =


g0 g1 g2 g3

gq3 gq0 gq1 gq2
gq

2

2 gq
2

3 gq
2

0 gq
2

1

gq
3

1 gq
3

2 gq
3

2 gq
3

0

 .

Note that Dt
gDaDg = Dh, with h = (h0, . . . , hn−1) where hl =

∑3
i=0 g

qi

3−ig
qi

l−ia
qi ;

here subscripts are taken modulo n.

Remark 1. The representation of U1 and of the orbit code U1 over Fq is ob-
tained by considering the matrix En of the change of basis from (v0, . . . , vn−1)
to (s0, . . . , sr−1)w. The q-ary representation of U1 is the subspace {EtnDaEn :
a ∈ Fqn} of S(n, q), and the codewords of U1 = U1GL(V ) are the subspaces
{(DgEn)tDa(DgEn) : a ∈ Fqn}, for all Dg ∈ In(Fqn). By using the isomorphism

(7)
ν : S(n, q) → V (n(n+ 1)/2, q)

(ai j) 7→ (ai,j)0≤i≤j≤n−1

one can easily obtain the representation of the codewords of U1 as vectors of length
n(n+ 1)/2 over Fq.

4. Orbit codes from quadratic forms

In this section we assume n = 2k + 1 to be an odd integer. For any a ∈ Fqn and

x = (x, xq, . . . , xq
n−1

), the map

Qa(x) = Trqn/q

(
axq

k+1
)

is a quadratic form on V whose associated polar form is

(8) βa(x,y) = Trqn/q

(
axyq

k

+ axq
k

y
)
.

It is easy to see that each quadratic form Qa of V is the restriction on V of the

quadratic form Q̂a(X) =
∑n−1
i=0 a

qiXiXi+k on V̂ , where X = (X0, . . . , Xn−1). Also

we denote by β̂a the extension of βa on V̂ .

Lemma 4.1. For any non-zero a ∈ Fqn , Qa is a non-degenerate quadratic form on
V .

Proof. Let x = (x, xq, . . . , xq
n−1

) ∈ Radβa. Then

Trqn/q

(
y
(
axq

k

+ aq
k+1

xq
k+1
))

= 0,

for all y ∈ Fqn . As the left hand side is a polynomial in the unknown y of degree at
most qn−1 with qn roots, we get

(9) axq
k

+ aq
k+1

xq
k+1

= 0.

If q is odd then βa is symmetric and we have Qa(x) = βa(x,x)/2. Therefore Qa
is non-degenerate if and only if Radβa = {0}. The above equation implies

Nqn/q(a
qk+1−1) = (−1)nNqn/q

(
1

xqk(q−1)

)
= −1,

as n is odd and Nqn/q(x
qk(q−1)) = 1. On the other hand, since qk+1 − 1 = (q −

1)(qk + qk−1 + . . .+ 1) we get Nqn/q(a
qk+1−1) = 1; a contradiction.
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If q is even then βa is alternating with Radβa nontrivially as n is odd. Therefore
Qa is non-degenerate if and only if Ker(Qa|Rad βa) = {0}. Let x ∈ Fqn \ {0} such
that x ∈ Radβa. By raising (9) to the qk+1-th power, we get

aq
k+1

x+ aqxq = 0.

Hence (
x

aq
qk−1
q−1

)q−1

= 1,

i.e., x = caq
qk−1
q−1 , for some non-zero c ∈ Fq. Therefore, x is singular if and only if

Qa(x) = Trqn/q(ax
qk+1) = c2Trqn/q

(
aq

q2k−1
q−1 +1

)
= c2nNqn/q(a) = 0

if and only if a = 0.

From the previous lemma, the Witt index of Qa is k and 〈ei : i = 0, . . . , k − 1〉
is a totally singular subspace of Q̂a, for all a ∈ Fqn \ {0}.

Let U2 be the following set

(10) U2 = {Qa : a ∈ Fqn}.
Then U2 is an n-dimensional Fq-subspace of Q(V ). Straightforward computations
show that Qσa = Q

aωqk+1 and Qτa = Qaq , for all a ∈ Fqn \ {0}. Therefore the group
S o C fixes U2.

Theorem 4.2. The stabilizer of U2 in GL(V ) is SoC, where S is the Singer cyclic
group of GL(V ) generated by σ and C is the cyclic group generated by τ .

Proof. The result was proved in [11] for n = 3. Therefore, we assume n ≥ 5,
that is k > 1. For any Qa ∈ U2, a 6= 0, the associated polar form is βa defined
by (8). Let Ba be the q-circulant Gram matrix of βa with respect to the Singer

basis (s0, . . . , sn−1)w. Then Ba is generated by the array (0, . . . , 0, a, aq
k+1

, 0, . . . , 0),
where a is in the k-th position. If g ∈ GL(V ) fixes U2, then it fixes also the set
{βa : a ∈ Fqn}. We use the same notation and arguments as in the proof of Theorem
3.1. Assume that Dt

g is generated by the array (g0, g1, . . . , gn−1).

Since the q-circulant Gram matrix of βga is generated by the array (Dt
gBaDg)(0),

the l-th entry, with 0 ≤ l ≤ n − 1, in (Dt
gBaDg)(0) is given by the inner product

(Dt
gBa)(0) ·D

(l)
g , with D

(l)
g = (gq

l

n−l, g
ql

n−l+1, . . . , g
ql

n−l−1)t, where subscripts are taken
modulo n. As

(Dt
gBa)(0) = (gka+ gk+1a

qk+1

, gk+1a
q + gk+2a

qk+2

, . . . , gk−1a
qn−1

+ gka
qk),

the l-th entry of (Dt
gBaDg)(0) is

(11)

n−1∑
i=0

(gk+ia
qi + gk+1+ia

qk+1+i

)gq
l

n−l+i =

n−1∑
i=0

(gig
ql

n−l+k+i + gk+ig
ql

n−l+i)a
qi .

Since Ba is symmetric and g fixes U2, we have

n−1∑
i=0

(gk+ig
ql

n−l+i + gig
ql

n−l+k+i)a
qi = 0

for 0 ≤ l ≤ k − 1 and all a ∈ Fqn . This implies

(12) gig
ql

k−l+i + gk+ig
ql

n−l+i = 0,
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for 0 ≤ i ≤ n−1 and 0 ≤ l ≤ k−1. As Dt
g is non-singular, we may apply a suitable

element in C, and hence assume g0 6= 0. Note that if the element g0 appears in the
equation (12), then either i ∈ {0, k+ 1} or i− l ∈ {0, k+ 1}. In the former case, we
have {

g0g
ql

k−l + gkg
ql

n−l = 0

gk+1g
ql

n−l + g0g
ql

k+1−l = 0
, for l = 0, . . . , k − 1,

i.e.

(13)

{
g0g

ql

1+l + gkg
ql

k+2+l = 0

g0g
ql

2+l + gk+1g
ql

k+2+l = 0
, for l = 0, . . . , k − 1.

In the case i− l ∈ {0, k + 1}, we have

(14)

{
gq

i

0 gk+i + gq
i

k gi = 0 for i = 0, . . . , k − 1,

gq
i+k

0 gi + gq
i+k

k+1 gk+i = 0 for i = k + 1, . . . , 2k.

Let q be odd. By putting i = 0 and i = k + 1 in the first and in the second
equation of (14), respectively, we get gk = gk+1 = 0. Hence, from (13) and (14), we
have gm = 0 for m = 1, . . . , k − 1, k + 2, . . . , n− 1, that is g ∈ S.

Let q be even. By applying a suitable element of S we may assume g0 = 1. As
k > 1, Equations (13) and (14) give

(15)

{
gq

l

1+l = gkg
ql

k+2+l

gq
l

2+l = gk+1g
ql

k+2+l

, for l = 0, . . . , k − 1,

and

(16)

{
gk+i = gq

i

k gi for i = 0, . . . , k − 1,

gi = gq
i+k

k+1 gk+i for i = k + 1, . . . , 2k.

Assume gk = 0. Then gi = 0 for i = 1, . . . , 2k − 1, and g2k = 0 from the second
equation of (16), as gk−1 = 0. Therefore, g ∈ S.
Assume gk+1 = 0. Then gi = 0 for i = 2, . . . , 2k, and g1 = 0 from the first of (15),
as gk = 0. Therefore, g ∈ S.
Assume by contradiction that gk 6= 0 6= gk+1. From (15) with l = k − 1 we get{

gq
k−1

k = gk

gq
k−1

k+1 = gk+1

.

From the first of (13) with l = 0 we get g1 = gkgk+2, which plugged in (16) with
i = k + 2 gives gk+2 = gqk+1gkgk+2. From (16) with i = 1 follows g1 6= 0, whence

gk+2 6= 0. Therefore, gqk+1gk = 1, i.e. gk = (g−1
k+1)q. From the first equation of (15)

we get

gq
l

1+lg
q
k+1 = gq

l

k+2+l, for l = 0, . . . , k − 1,

which for l = 1 gives gq2g
q
k+1 = gqk+3, that is g2gk+1 = gk+3, where g2 6= 0 from

(16) with i = 2. By comparing this equation with (16) with i = k + 3 we see that
gk+1 ∈ Fq, as n is odd. Thus, gk = g−1

k+1 ∈ Fq, and substituting this in (16) we have

(17) gi = gk+1gk+i,

for i = 0, . . . , k − 1, k + 1, . . . , 2k. Finally, induction on i in Eq. (17) provides{
gi = g2i

k+1

gk+i+1 = g2i+1
k+1

, for i = 0, . . . , k − 1,
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that is, {
gi = α2i

gk+i+1 = α2i+1
, for i = 0, . . . , k − 1,

for some non-zero α ∈ Fq, and gk = α−1. Substituting once again these equalities
in the second of (15) with l = k − 2, we get αn = 1. Since g fixes U2 setwise, also
αg does. Therefore, we may assume that Dt

g is the q-circulant matrix generated by
the array (g0, . . . , g2k), where{

gi = α2i+1

gk+i+1 = α2i+2
, for i = 0, . . . , k − 1, and gk = 1.

By taking into account that gi ∈ Fq, for i ∈ {0, . . . , n− 1} and using (11), the k-th
entry of (Dt

gBaDg)(0) is∑n−1
i=0 (g2i + gk+igk+i+1)aq

i
=

∑k−1
i=0 (g2i + gk+igk+i+1)aq

i
+ (g2k + g2kg0)aq

k
+∑n−1

i=k+1 (g2i + gk+igk+i+1)aq
i

= (α2 + α2)a+
∑k−1

i=1 (α4i+2 + α2(i−1)+2α2i+2)aq
i
+

(1 + α2(k−1)+2α)aq
k

+
∑k−2

i=0 (α4i+4 + α2i+1α2(i+1)+1)aq
k+i+1

+(α4k + α2k−1)aq
2k
.

As q is even and αn = 1, we see that the k-th entry of (Dt
gBaDg)(0) is zero. On

the other hand, since g fixes U2, the q-circulant Gram matrix Dt
gBaDg is associated

with the polar form βb, for some b ∈ Fqn \ {0}. This gives a contradiction. Hence,
gk = gk+1 = 0, and g ∈ S. This completes the proof.

Remark 2. In the particular case when n is a prime, Theorem 4.2 follows from a
result of Kantor [33].

Let us consider the orbit code U2 = U2GL(V ) = {Ug2 : g ∈ GL(V )}. From
Theorem 4.2 and the Orbit-Stabilizer Theorem [2, p.16], we obtain the following
result.

Corollary 3. The size of U2 is

qn(n−1)/2
∏n−1
i=1 (qi − 1)

n
.

Remark 3. In the case n = 3, the orbit code U2 has minimum distance 4 and the
group GL(3, q) acts transitively on it [11].

At this point the main goal is the determination of the minimum distance of
U2. We will do this in the case n = 5 by using geometric arguments, while this
computation remains an open problem for n > 5 odd. However, before to do that
we consider it appropriate to give here the representation over Fq of the subspace
U2 and of the set U2. If (u0, . . . , un−1) is an ordered basis for V = V (n, q), and
v ∈ V , write v = x0u0 + . . .+ xn−1un−1 ∈ V . Then, for any Q ∈ Q(V ) we have

Q(v) =
∑
i≤j

aijxixj ,

for some aij ∈ Fq, so Q can be identified with the homogeneous polynomial
∑

i≤j aijXiXj

of degree two in the n coordinates Xi of V relative to the given basis; by abuse of
notation we will denote this polynomial by Q(X). Let Q(n, q) be the set of all the
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homogeneous polynomials of degree two over Fq in the variables Xi, i = 0, . . . , n−1.
It is evident that {Qij(X) = XiXj : 0 ≤ i ≤ j ≤ n − 1}, is a basis for Q(n, q).
Let Cij be the n × n matrix over Fq whose all entries are all 0 but the (i, j)-entry
which is 1. Then we may write XiXj = XtCijX. If Q ∈ Q(V ) corresponds to the
polynomial Q(X) =

∑
i≤j aijXiXj in the given basis, then Q(X) can be written

as XtCX =
∑
i≤j aijX

tCijX. Conversely, given any upper-triangular matrix C,

then XtCX ∈ Q(n, q), i.e. Q(X) = XtCX is a quadratic form of Fnq . We denote
by T (n, q) the set of all the upper triangular matrices over Fq. It is evident that
{Cij : 0 ≤ i ≤ j ≤ n− 1} is a basis for T (n, q) and the map

(18)
ν{u0,...,un−1} : Q(V ) → T (n, q)

Q 7→ (aij)i≤j

is an isomorphism. To get the action of A ∈ GL(n, q) on Q(n, q) it suffices to
know the action of A on Qij(X) and then to extend it by linearity. To do this we
need to write QAij(X) in a matrix form. As Qij(X) = XtCijX, we first compute

CAij = AtCijA and then define the upper-triangular matrix T (CAij) as follows:

[T (CAij)](k, l) =


CAij(k, k) if k = l;

CAij(k, l) + CAij(l, k) if k < l;

0 if k > l.

It turns out that the coefficient of XkXl in the polynomial QAij(X) is precisely the

(k, l)-entry of the matrix T (CAij).
We are now in position to give the q-ary representation of the subspace U2

and the set U2. For n = 2k + 1 and any a ∈ Fqn , the quadratic form Qa(x) =

Trqn/q

(
axq

k+1
)

can be written as xtCax where x = (x, xq, . . . , xq
n−1

), x ∈ Fqn ,

and

Ca =



0 · · · 0 a aq
k+1

0 · · · 0

0 · · · 0 0 aq aq
k+2 · · · 0

...
. . .

. . .
. . .

. . .
. . .

. . . 0

0 · · · 0 0 0 · · · 0 aq
k

0 · · · 0 0 0 · · · 0 0
...

...
...

...
... · · ·

...
...

0 · · · 0 0 0 · · · 0 0


;

Therefore the Fq-subspace U2 can be identified with the Fq-subspace {Ca : a ∈ Fqn}
of T (n, qn), and the elements of U2 with the subspaces {T (C

Dg
a ) : a ∈ Fqn}, for all

Dg ∈ In(qn). As we did for U1 and U1, the representation of U2 and U2 over Fq is
obtained by considering the matrix En of the change of basis from (v0, . . . , vn−1) to
the Singer basis (s0, . . . , sr−1)w. Therefore, the subspace U2 can be identified with
the Fq-subspace {T (CEn

a ) : a ∈ Fqn} of T (n, q), and the elements of U2 = U2GL(V )

can be identified with the subspaces {T (D
DgEn
a ) : a ∈ Fqn}, for all Dg ∈ In(Fqn).

At this point one can easily obtain the representation of the elements of U2 as

subspaces of Fn(n+1)/2
q .

Now set V = V (5, q). In what follows we show that the orbit code U2 of Q(V )
has minimum distance 8.

Lemma 4.3. Let a ∈ Fqc \ Fq and let `a be the line of PG(V̂ ) spanned by 〈(a −
aq, aq

3−a, 0, 0, 0)〉 and 〈(0, 0, aq3−aq, aq−a, 0)〉. For any x ∈ Fqc \Fq, let δx denote
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the polarity of PG(V̂ ) defined by the extension β̂x on V̂ of the polar form βx of Qx.
Then, for each point P = 〈v〉 ∈ `a, the hyperplanes P δx and P δy coincide if and
only if y = cx, for some c ∈ Fq \ {0}.

Proof. Let v = (a0, a1, a2, a3, 0) = (λ(a− aq), λ(aq
3 − a), µ(aq

3 − aq), µ(aq − a), 0),
where λ, µ ∈ Fqc are not both zero. For any x ∈ Fqc \ Fq, the hyperplane P δx has
equation

(xa2 + xq
3

a3)X0 + xqa3X1 + xa0X2 + (xq
3

a0 + xqa1)X3 + (xq
4

a1 + xq
2

a2)X4 = 0.

The two hyperplanes P δx and P δy coincide if and only if the matrix(
xa2 + xq

3

a3 xqa3 xa0 xq
3

a0 + xqa1 xq
4

a1 + xq
2

a2

ya2 + yq
3

a3 yqa3 ya0 yq
3

a0 + yqa1 yq
4

a1 + yq
2

a2

)
has rank 1. This happens if and only if y = cx for some c ∈ Fq \ {0}.

Theorem 4.4. For any g ∈ GL(V ), g 6∈ S o C, the subspaces U2 and Ug2 meet
either trivially or in a 1-dimensional Fq-subspace.

Proof. Throughout the proof, we will use the fact that every plane of PG(V̂ ) con-
taining two lines which are totally singular for a non-degenerate quadratic form
contains no further singular point.

Let g ∈ GL(V ), g 6∈ S o C and assume that (D−1
g )t is generated by the array

(k0, . . . , k4). Then

eg
−1

i = (kq
i

5−i, k
qi

5−i+1, . . . , k
qi

5−i−1)

for i = 0, . . . , 4, where indices are taken modulo 5.

For any i = 0, . . . , 4, the line ri = 〈ei, ei+1〉 of PG(V̂ ) is totally singular for each

Q̂a ∈ U2, i.e. Q̂a|ri = 0 and the lines rg
−1

i = 〈eg
−1

i , eg
−1

i+1〉 are totally singular for

the non-degenerate quadratic form Q̂ga. Note that the semilinear transformation τ̄

of V̂ with matrix (4) and associated automorphism α ∈ Fqn 7→ αq ∈ Fqn fixes the

cyclic model of V pointwise, maps ri and rg
−1

i into ri+1 and rg
−1

i+1 , respectively.
Let Q ∈ U2 ∩ Ug2 . Suppose there is Q′ ∈ U2 ∩ Ug2 , Q′ 6∈ 〈Q〉Fq . By applying a

suitable element in the Singer group S, we may assume Q = Q1. Then Q′ = Qa,

for some a ∈ Fqc \ Fq. Thus the lines ri and rg
−1

i are totally singular for both Q̂1

and Q̂a, for i = 0, . . . , 4. If rg
−1

i = rj , for some j ∈ {0, 1, 2, 3, 4}, then

rg
−1

i+1 = (rτ̄i )g
−1

= (rg
−1

i )τ̄ = rτ̄j = rj+1

and hence
⋃4
i=0 ri =

⋃4
i=0 r

g−1

i . Therefore g−1 ∈ GL(V ) fixes {〈ei〉 : 0 ≤ i ≤ 4}
setwise, contradicting g 6∈ S o C. In particular observe that

〈eg
−1

i 〉 /∈ {〈ej〉 : 1 ≤ j ≤ 4} .

Let Π4 be the hyperplane of PG(V̂ ) with equation X4 = 0. Assume that rg
−1

i =

〈eg
−1

i , eg
−1

i+1〉 ⊂ Π4, for some i = 0, . . . , 4. Then eg
−1

i = (w0, w1, w2, 0, 0) and eg
−1

i+1 =
(0, wq0, w

q
1, w

q
2, 0), for some w0, w1, w2 ∈ Fqc not all zero. Some computations show

that Q̂1 ∩ Q̂a ∩Π4 = r0 ∪ r1 ∪ r2 ∪ `a and hence rg
−1

i should coincide with `a. This

implies that w2 = w0 = 0, i.e., rg
−1

i = r1, a contradiction. Therefore, rg
−1

i is not

contained in Π4, for all i = 0, . . . , 4 and similarly the lines rg
−1

i , i = 0, . . . , 4 are not
contained in the hyperplanes Πj : Xj = 0, for all j = 0, . . . , 4, since Πτ̄

j = Πj+1.
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Let P be the point rg
−1

i ∩ Π4. Note that P is a singular point for both Q̂1 and

Q̂a, whence P ∈ r0 ∪ r1 ∪ r2 ∪ `a.

Assume first P = 〈eg
−1

i 〉, for some i = 0, . . . , 4. If eg
−1

i ∈ rj \ {〈ej〉, 〈ej+1〉}, for

some j = 0, 1, 2, then eg
−1

i+1 ∈ rj+1. This implies that rg
−1

i is contained in the plane

〈rj , rj+1〉 with rj 6= rg
−1

i 6= rj+1, a contradiction. On the other hand, if eg
−1

i ∈ `a,

since 〈eg
−1

i 〉 = rg
−1

i ∩ rg
−1

i−1 , the hyperplane spanned by rg
−1

i , rg
−1

i−1 and `a should

coincide with both P δ1 and P δa , contradicting Lemma 4.3. Then P 6= 〈eg
−1

i 〉,
0 ≤ i ≤ 4.

Note that at least one among rg
−1

i and rg
−1

i+1 must intersect r0∪r1∪r2. Therefore,

up to the action of 〈τ̄〉, we may assume that P = rg
−1

i ∩Π4 ∈ r0. Then P τ̄
j ∈ rj , for

j = 0, . . . , 4. We now show that both
(
rg

−1

i

)τ̄3

and
(
rg

−1

i

)τ̄4

meet `a. If
(
rg

−1

i

)τ̄3

meets r0, then
(
rg−1
i

)τ̄3

should be contained in the hyperplane Π2 spanned by

r0, r3, r4. Similarly, if
(
rg

−1

i

)τ̄3

meets r1, then
(
rg−1
i

)τ̄3

should be contained in

the hyperplane Π0 spanned by r1, r2, r3. If
(
rg

−1

i

)τ̄3

meets r2, then the plane

spanned by
(
rg

−1

i

)τ̄3

and
(
rg

−1

i

)τ̄2

should contain the further totally singular line

r2. In all these cases we get a contradiction. It follows that
(
rg

−1

i

)τ̄3

meets `a.

Similarly
(
rg

−1

i

)τ̄4

intersects `a. This implies that the plane spanned by
(
rg

−1

i

)τ̄3

and
(
rg

−1

i

)τ̄4

would contain the further totally singular line `a, a contradiction.

Theorem 4.5. The set U2 = U2GL(V ) is an orbit code with parameters(
15,

q10
∏4
i=1(qi − 1)

5
, 8, 5

)
q

.

Moreover, GL(V ) acts transitively on it.

Proof. The result follows from Corollary 3 and Theorem 4.4.

4.1. A geometric interpretation. In this section we set θm = (qm−1)/(q−1).
For any quadratic form Q on V = V (n, q), n = 2k + 1, the quadric defined by Q

is the set Q of points of PG(V ) arising from the singular vectors of Q. We refer to
the quadric defined by a non-singular quadratic form of V as a parabolic quadric of
PG(V ). For any set of k linearly independent quadratic forms Q1, . . . , Qr on V , let
L be the subspace of Q(V ) spanned by Q1, . . . , Qr. The set of points ZL = ∩ri=1Qi

is contained in any quadric defined by an element of L, and it is called the base
locus of L.

In [36], Kestenband proved that in Q(V ), with V = V (n, q) and both n and q
odd, there exists an n-dimensional subspace B such that all its elements are non-
degenerate and with the property that the parabolic quadrics defined by any r
linearly independent elements of B, 0 ≤ r ≤ n, share θn−r singular points. In
particular, the quadrics defined by any n−2 independent elements in B intersect in
a (q+1)-cap of PG(V ) [36, Theorem 1], where a (q+1)-cap of PG(V ) is a set of q+1
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points no three of which are collinear. Consider the following incidence structure:
the points are the points of PG(V ), the lines are the (q + 1)-caps whose points are
the common singular points of any n−2 independent elements in B, and incidence is
defined by inclusion. This incidence structure is a projective geometry Π isomorphic
to PG(V ) [36, Theorem 2]. In particular, the quadrics defined by the forms in B
play the role of hyperplanes in Π, and the r-dimensional subspaces, 0 ≤ r ≤ n, are
the intersections of the quadrics defined by n− 1− r linearly independent elements
from B. However, no construction for the projective geometry Π was ruled out
in [36] for n odd and q even. In this section, we fill this gap by showing that the
incidence geometry Π can be constructed for any q by using the subspace U2 defined
by (10).

Lemma 4.6. Let L be a r-dimensional subspace in Q(V ) and let ZL be the base
locus of L. Then, every point P of PG(V ) not in ZL lies in exactly θr−1 quadrics
defined by the quadratic forms of a (r − 1)-dimensional subspace contained in L.

Proof. Let L be generated by the quadratic forms Q1, . . . , Qr on V , and let P =
〈X〉 6∈ ZL, with X = (X0, . . . , Xn−1). As (Q1(X), . . . , Qr(X)) 6= (0, . . . , 0), the
equation

(19) λ1Q1(X) + · · ·+ λkQr(X) = 0

is not trivial. It is then clear that the solutions (λ̄1, . . . , λ̄k) of (19) form a (r − 1)-
dimensional Fq-vector space.

Lemma 4.7. Let B be an n-dimensional subspace of Q(V ) such that each non-zero
element is non-singular. Then the base locus of any r-dimensional subspace of B
consists of θn−r points.

Proof. Let L be a r-dimensional subspace of B and let ZL be its base locus. We
count in two different ways the pairs (P,Q), where P is a point of PG(n−1, q)\ZL,
Q is a quadric defined by a non-zero element of L and P is on Q. By using Lemma
4.6, we get

(θn − |ZL|) θr−1 = θr (θn−1 − |ZL|) .
This yields |ZL| = θn−r.

Theorem 4.8. Let B be an n-dimensional subspace of Q(V ), such that each non-
zero element is non-singular. Then the base locus of any (n − 2)-dimensional sub-
space of B is a (q + 1)-cap in PG(V ).

Proof. If n = 3, the quadric defined by a non-singular quadratic form consists of
q + 1 points of PG(2, q) no three of which are collinear [26]. Hence the theorem
holds true in this case.

Assume n > 3. From Lemma 4.7 the base locus of B is empty, and, by Lemma
4.6, every point of PG(V ) is contained in precisely the θn−1 quadrics defined by the
forms of an (n− 1)-dimensional subspace contained in B.

Let R and T be two distinct points of PG(V ) and LR,T be the (n−2)-dimensional
subspace of B consisting of elements having both R and T as singular points. Note
that the base locus of LR,T consists of q + 1 points by Lemma 4.7. Hence, two
possibilities arise: either the line ` = 〈R, T 〉 is contained in the base locus of LR,T
or it does not. In the former case there are θn−2 quadrics defined by members
of B containing `, whereas in the latter case there are θn−3 quadrics defined by
members of B containing `. We denote by n1 and n2 the number of lines which are
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contained in θn−2 and θn−3 quadrics defined by members of B, respectively. Clearly
n1 + n2 = θnθn−1/(q+ 1), which is the number of lines of PG(V ). We recall that a
parabolic quadric contains θn−1θn−3/(q + 1) lines [46, p.174].

We count in two different ways the pairs (`,Q), where ` is a line of PG(V ) and
Q is a quadric defined by an element of B containing `:

θn
θn−1θn−3

q+1 = n1θn−2 + n2θn−3

= n1(qn−3 + θn−3) + n2θn−3

= n1q
n−3 + (n1 + n2)θn−3

= n1q
n−3 + θnθn−1

q+1 θn−3,

which yields n1 = 0. The result then follows.

The subspace U2 ofQ(V ) defined in Section 3, satisfies the hypothesis of Theorem
4.8 for any q and hence has the property that the base locus of any of its (n − 2)-
dimensional subspaces is a (q + 1)-cap of the ambient projective space. Therefore
we have the following result.

Theorem 4.9. Let P denote the set of points of PG(V ), V = V (n, q), n odd. Then,
in PG(V ) there exists a family K of (q + 1)-caps and an incidence relation I such
that the incidence geometry Π = (P,K, I) is isomorphic to PG(V ).

5. Orbit codes from Hermitian forms

For the whole section n is odd, q = q2
0 and x = (x, xq, . . . , xq

n−1

), x ∈ Fqn .

Proposition 1. The map

ha(x,y) = Trqn/q(axy
qn0 )

is a Hermitian form on V , for all a ∈ Fqn0 . Moreover, if a 6= 0, then ha is non–
degenerate.

Proof. We have

ha(y,x) = ayxq
n
0 + aqyqxq

n
0 q + · · ·+ aq

n−1
2 yq

n−1
2 xq

n
0 q

n−1
2 + · · ·

= ayxq
n
0 + aqyqxq

n
0 q + · · ·+ aq

n−1
0 yq

n−1
0 xq

2n−1
0 + . . .

Therefore, (ha(y,x))q0 = Trqn/q(axy
qn0 ) = ha(x,y). The q-circulant Gram matrix

of ha, say Ha, is generated by the array (0, . . . , 0, a, 0, . . . , 0), with a in the (n−1)/2-
th position. It is then clear that ha is non–degenerate for a 6= 0.

We set

U3 = {ha : a ∈ Fqn0 }.
It easily seen that U3 is an n-dimensional Fq0 -vector subspace of H(V ). Some
computations show that the group S o C fixes U3. By arguing as in the proof of
Theorem 3.1 the following result is obtained.

Theorem 5.1. The stabilizer of U3 in GL(V ) is SoC, where S is the Singer cyclic
group of GL(V ) generated by σ and C is the cyclic group generated by τ .

Corollary 4. The set U3 = U3GL(V ) has size

qn(n−1)/2
∏n−1
i=1 (qi − 1)

n
.
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The set U3 is an orbit code in H(V ). In what follows we determine its minimum
distance. Any Hermitian form ha ∈ U3 can be naturally extended to a semilinear

map ĥa on V̂ . Since the associated automorphism of ĥa is θ : x ∈ Fqn 7→ xq0 ∈ Fqn ,

ĥa is not a Hermitian form. Note that ĥa is non-degenerate and hence it defines a

correlation of PG(V̂ ), with matrix Ha and companion automorphism θ. Therefore,

ĥa maps the point 〈(x0, . . . , xn−1)〉 into the hyperplane of equation

axq0(n−1)/2X0 + aq0
2

xq0(n+1)/2X1 + · · ·+ aq0
n−2

xq0(n−3)/2Xn−1 = 0,

where exponents and indices are taken modulo n.

Lemma 5.2. Let ha, hb ∈ U3 and ĥa, ĥb be the corresponding correlations of PG(V̂ ),

respectively. Then the collineation ψ = ĥb · ĥa of PG(V̂ ) is given by

ψ : PG(V̂ ) → PG(V̂ )

〈(x0, . . . , xn−1)〉 7→ 〈(ab−1xq0
2

n−1, (ab
−1)q0

2

xq0
2

0 , . . . , (ab−1)q0
2n−2

xq0
2

n−2)〉,
where exponents are taken modulo n.

Proof. Straightforward calculations show that the collineation ψ is represented by the q-

circulant matrixH−t
b Ha = Hb−1a (which is generated by the array (0, . . . , 0, b−1a, 0, . . . , 0))

and has θ2 as a companion automorphism.

Consider the following n-dimensional Fq0-vector space

V0 = {(x, xq0
2

, . . . , xq0
2n−2

) : x ∈ Fqn0 } ⊂ V.
The restriction ψ0 of the collineation ψ to PG(V0) is the projectivity given by

PG(V0) → PG(V0)

〈(x, xq02

, . . . , xq0
2n−2

)〉 7→ 〈(ab−1x, (ab−1)q0
2

xq0
2

, . . . , (ab−1)q0
2n−2

xq0
2n−2

)〉.

The projectivity ψ0 naturally extends to the projectivity ψ̂0 of PG(V̂ ), whose q-

circulant matrix is generated by the array (ab−1, 0, . . . , 0). In addition, ψ̂0 fixes
each 〈ei〉, for i = 0, . . . , n− 1.

Theorem 5.3. Let g ∈ GL(V ), with g /∈ S o C. Suppose that D−tg is generated by
the array (k0, . . . , kn−1) and that exactly l+1 > 0 entries of (k0, . . . , kn−1) are non-
zero, say ki0 , ki1 , . . . , kil , with 0 ≤ i0 < i1 < . . . < il ≤ n − 1. Then the Fq0-vector
subspaces U3 and Ug3 meet either trivially or in a j-dimensional Fq0-subspace, where
j = gcd(n, i1 − i0, . . . , il − i0).

Proof. Assume that U3 and Ug3 do not meet trivially, and let ha ∈ U3 ∩ Ug3 , for
some non-zero a ∈ Fqn0 . Let hb ∈ U3 ∩ Ug3 , with b ∈ Fqn0 \ {0, a}. Note that

(D−1
g )(i) = eg

−1

i = (kq
i

n−i, . . . , k
qi

n−i−1). As ha, hb ∈ U3, by Lemma 5.2, the linear

collineation ψ̂0 of PG(V̂ ) fixes 〈ei〉 and 〈eg
−1

i 〉, 0 ≤ i ≤ n− 1.

Assume first that ki 6= 0 for all i = 0, . . . , n− 1. Then
{
〈e0〉, . . . , 〈en−1〉, 〈eg

−1

0 〉
}

is a projective frame in PG(V̂ ). Therefore ψ̂0 is the identity. A similar argument

as in Lemma 3.2 implies that ab−1 = (ab−1)q
2
0 . Since ab−1 ∈ Fqn0 , with n odd, then

ab−1 ∈ Fq0 \ {0}. Hence U3 ∩ Ug3 = 〈ha〉Fq0
.

Assume now that l+ 1 < n entries of (k0, . . . , kn−1) are non-zero, say ki0 , ki1 , . . . , kil ,

with 0 ≤ i0 < i1 < . . . < il ≤ n − 1. As the cyclic subgroup 〈τ〉 fixes U3, we

may assume k0 6= 0, i.e., i0 = 0. Then
{
〈e0〉, 〈ei1〉, . . . , 〈eil〉, 〈e

g−1

0 〉
}

is a projective
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frame of the subspace Γ of PG(V̂ ) spanned by 〈e0〉, 〈ei1〉, . . . , 〈eil〉, 〈e
g−1

0 〉 and ψ̂0

induces the identity on Γ. Therefore ab−1 = (ab−1)q
2im
0 , 1 ≤ m ≤ l. It follows that

ab−1 ∈ Fq0j \ {0}, with j = gcd(n, 2i1, . . . , 2il) = gcd(n, i1, . . . , il). This implies
that U3 and Ug3 intersect in a j-dimensional Fq0 -subspace.

Corollary 5. For each g ∈ GL(V ), g /∈ S o C, the Fq0-subspaces U3 and Ug3 have

at most qj0 elements in common, where j < n is the greatest divisor of n.

Theorem 5.4. Let j < n be the greatest divisor of n. Then U3 is an orbit code
with parameters (

n2,
qn(n−1)/2

∏n−1
i=1 (qi − 1)

n
, 2(n− j), n

)
q0

.

Moreover, GL(V ) acts transitively on it.

Proof. From Corollary 5, any two distinct elements of U3 meet either trivially or in
a j-dimensional Fq0 -subspace.

Example 2. Let n = 5 and q = q2
0 . For any given a ∈ Fq50 the matrix of the

Hermitian form ha in the Singer basis (s0, . . . , sn−1)w is

Da =


0 0 a 0 0

0 0 0 aq
2
0 0

0 0 0 0 aq
4
0

aq0 0 0 0 0

0 aq
3
0 0 0 0

 .

Hence the Fq-subspace U3 of V can be identified with the Fq0-subspace {Da :
a ∈ Fq50} in the Dickson matrix algebra D5(Fq5), and the codewords of U3 are

the subspaces {Dt
gDaDg : a ∈ Fq50} for any non-singular q-circulant matrix

Dg = D(g0,g1,g2,g3,g4) =


g0 g1 g2 g3 g4

gq4 gq0 gq1 gq2 gq3
gq

2

3 gq
2

4 gq
2

0 gq
2

1 gq
2

2

gq
3

2 gq
3

3 gq
3

4 gq
3

0 gq
3

1

gq
4

1 gq
4

2 gq
4

3 gq
4

4 gq
4

0

 ,

with gi ∈ Fq5 . Note that Dt
gDaDg = Dh, with h = (h0, . . . , hn−1) where hl =∑5

i=0 g6−ig
qi

3+l−ia
qi .

Remark 4. The representation of U3 and of the orbit code U3 as vectors of length
n2 over Fq0 are obtained by considering the matrix En of the change of basis from
(v0, . . . , vn−1) to the Singer basis (s0, . . . , sr−1)w. The representation of U3 into the
q0-vector space H(n, q) is the subspace {EtnDaEn : a ∈ Fq0}, and the codewords
of U3 = U3GL(V ) are the subspaces {(DgEn)tDa(DgEn) : a ∈ Fq0}, for all Dg ∈
In(Fqn). Let {1, ζ} be a basis of Fq over Fq0 . We write x = x(1) + x(2)ζ, for
any x ∈ Fq20 . Then it is easy to see there exists a bijection from the H(n, q) and

V (n2, q0).

Remark 5. In the case n = 5, the orbit code U2 can be extended in such a way
that the subspace distance is preserved by adding (q2 + 1)(q2 + q + 1) codewords
that are orbits of a suitable subgroup of GL(3, q), see [11]. So, it seems plausible
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that each of the orbit codes constructed in this paper could be enlarged by adding
orbits of subspaces under the action of a suitable subgroup of GL(V ).
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