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ABSTRACT. In this paper we construct different families of orbit codes in the
vector spaces of the symmetric bilinear forms, quadratic forms and Hermitian
forms on an n-dimensional vector space over the finite field Fy. All these codes
admit the general linear group GL(n, q) as a transitive automorphism group.

1. INTRODUCTION

In [1] Ahlswede, Cai, Li and Yeung, random linear network coding was introduced
as a powerful tool for data communication in point-to-point networks on which a
number of information sources are multicasted to certain sets of destinations and the
information sources are mutually independent [29, 30]. A mathematical description
of random network coding was given in [35] where codewords are subspaces of some
fixed vector space and a code is a collection of such subspaces.

More formally, let V' = V(n,q) denote the n-dimensional vector space over the
finite field F, with ¢ elements, and PG(V') be the partially ordered set with respect
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to the inclusion relation of all subspaces of V. It is well-known that PG(V) is a
metric space with respect to the subspace distance defined by

d(U, W) = dim(U) + dim(W) — 2dim(U N W).

A subspace code of length n over F, is a nonempty subset X' of PG(V), and the
elements of X are the codewords of X. The minimum distance of X' is given by
d(X) =min{d(U,W): U W e X, U #W}.

In view of their application in random network coding, subspace codes have been
intensely studied in recent years (see for instance [31, 39, 13, 28] and references
therein). One of the main problems of subspace coding asks for the maximum
possible cardinality of a subspace code of length n over F, with minimum distance
at least d and the classification of the corresponding optimal codes.

An important class of subspace codes are those whose codewords have constant
dimension k. If X is such a code then X is called a constant dimension code (or k-
dimensional subspace code) with parameters (n, |X|,d, k), where n is the dimension
of the vector space V, d is the minimum distance of X and k is the dimension of
the codewords. Constant dimension codes are useful for error correction in random
linear network communication. The errors in this scenario can either be dimension
deletions or dimension insertions. The maximum cardinality of an (n, *,d, k), con-
stant dimension code is denoted by A4(n, d; k). The upper bound on A,(n, d; k) are
usually the g—analog of the bounds obtained for the well studied constant weight
codes. In particular the following upper bound has been proved in [19] and [50]:

. qn_l qnfl_l qn7k+d/2_1
(1) Aq(md,k)é{qk_l{qk1_1..[ | |-

Note that for k¥ < n — k, starting from a suitable set of k x (n — k)—matrices with
entries in Iy, known as MRD—codes, by means of the so—called lifting process, one
can construct an (n,q("—F)(k=d+1) oq, k), constant dimension code [42, 21]. Al
though the size of these codes matches the term of highest order of (1), there are
many constructions that give rise to larger codes. With respect to the best known
constructions, or lower bounds for A, (n, d; k), we only mention the Echelon-Ferrers
constructions [20, 41], the linkage constructions [24, 15] and constructions obtained
with geometrical techniques [10, 11, 12, 14]. These approaches give for many pa-
rameters the largest codes known so far. The currently best known lower and upper
bounds for A,(n,d; k) can be found at the online tables http://subspacecodes.
uni-bayreuth.de and the associated survey [25].

Examples of constant dimension codes are the so called orbit codes. A subspace
code is an orbit code if it can be written as UG, where U is a subspace of V' and
G is a subgroup of the general semilinear group I'L(V). The group G is said to
be a generating subgroup of the code. By [45, Proposition 3.11], if a code has G
as a generating subgroup, then G is a subgroup of the automorphism group of the
code. These codes were introduced in [47], and since then they have been further
investigated by many authors [8, 27, 44, 40]. Tt is well known that GL(V) contains
exactly one conjugacy class of cyclic subgroups, acting regularly on V \ {0} and
isomorphic to Fyn \ {0}, i.e., the Singer groups. Constant dimension codes that are
obtained by glueing together distinct orbit codes having as generating subgroup a
Singer group are also called cyclic codes. Stimulated by the fact that, for small
parameters, there are examples of large or optimal subspace codes that are cyclic
codes [34, 19, 5], particular attention has been devoted to the construction of cyclic
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codes [44, 23, 3, 38, 7]. Some of the largest k-dimensional cyclic subspace codes

obtained have parameters (N, (¢"—1) q;":11 + (f;:__ll ,2k—2,k)q, where N is the degree
of the splitting field of certain g-polynomials over F,» of degree ¢* [7]. Typically, the
known cyclic codes admit a group of order at most N (¢ —1), that is the normalizer
of a Singer group, but their size is far behind the theoretical upper bound. In [8]
the authors study an abelian non—cyclic group of order ¢(q — 1)? in order to obtain
an orbit code with parameters (n, ¢(q — 1), 2k, k).

In this paper we aim at establishing new techniques for the construction of orbit
codes. To this end we consider S(V'), Q(V) and H(V), the set of all symmetric,
quadratic and Hermitian forms on V = V(n,q) (in the Hermitian case, ¢ = ¢3).

Then each of these sets is a vector space, say V, over F, (in the Hermitian case over
Fq ), and GL(V) is a subgroup of GL(V). In particular, GL(V) acts on the forms
by preserving the rank. In all cases, we construct orbit codes whose generating sub-
group is GL(V'). In order to do that we use the cyclic model of a finite dimensional
vector space over Fy, see [9, 26]. More precisely we obtain:

- an orbit code in PG(S(V)) with parameters

1) g=D/277" (gt — 1
(”(”; O S gy

q

where j < n is the greatest divisor of n;
10 4 (2
- a (15, %,8,5) orbit code in PG(Q(V)), where V = V (5, ¢);
q
- an orbit code in PG(H(V)) with parameters

n(n=1)/2 17" (gt _ 1
<n27q HZ:l (q ),2(n]),n> )
n
q0

where j < n is the greatest divisor of n, whenever n is odd and ¢ = ¢3.

We remark that the generating subgroups of these codes have order ¢"(*~1/2 | (" —
1). Moreover, if n is a prime, then the leading order term of the size of these orbit
codes is ¢~ /n, while the term of highest order in the upper bound (1) equals
g™ Therefore, as functions of ¢ they have the same order. This implies that,
when n is a prime and ¢ approaches infinity, the size of these orbit codes is not very
far from the theoretical upper bound.

The paper is structured as follows: in Section 2 we collect some preliminary facts
about symmetric, quadratic and Hermitian forms on V', the cyclic representation
of a finite dimensional vector space over F, and g-circulant matrices. In Section 3,
4 and 5 we describe the orbit codes in the cyclic model of the vector space of the
symmetric, quadratic and Hermitian forms respectively.

2. PRELIMINARIES

Let V = V(n, q) be an n-dimensional vector space over F, and let (vo,...,vnp—1)
be an ordered basis of V. If g € GL(V), let M, be the matrix of g with respect to
(U(), . ,Unfl).

A symmetric bilinear form on V is a function f : V x V — F, that satisfies the
identities

f wamzijj :inf(vi»wj)ij
i j i
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and f(v,w) = f(w,v), for all scalars z;,y; € F, and all vectors v;, w;,v,w € V.
The set S(V) of all symmetric bilinear forms on V' is an n(n + 1)/2-dimensional
vector space over F,. The radical of f € S(V) is the subspace of V consisting of
all vectors v satistying f(v,v’) = 0 for every v' € V, and we denote it by Rad f.
We say that f is non-degenerate if Rad f = {0}. The rank of f, denoted by rkf, is
n — dimp, Rad f. For any f € S(V), the n x n symmetric matrix Ay = (f(v;,v;))
is called the Gram matriz of f with respect to the basis (vg,...,vn—1). We denote
by S(n, q) the set of all n x n symmetric Fg-matrices. The map f € S(V) — Ay €
S(n, q) is an isomorphism and rk f = rank A;. Therefore, non-degenerate symmetric
bilinear forms correspond to non-singular symmetric matrices, and conversely. Let
GL(S(V)) denote the general linear group of S(V'), that is the group of all invertible
linear transformations of S(V'). By [48, Theorem 5.4], the subgroup of GL(S(V))
which acts on S(V') by preserving the rank is isomorphic to GL(V). If f € S(V') and
g € GL(V) then the element f9 of S(V) is that whose Gram matrix is M{A;M,.
Here, and in the sequel, ! denotes transposition.

A quadratic form on V is a function @ : V — F, such that Q(av) = a?Q(v), for
every a € Fg,ve Vand 8: (u,v) e VXV = Qu+v)—Qu) — Q) e Fyis a
bilinear form on V'; 3 is called the polar form of Q. A non-zero vector v is singular
if Q(v) = 0 and a subspace U is totally singular if Q(u) = 0, for all u € U. A
quadratic form is said to be non-singular if each non-zero vector of Rad g is non-
singular. The Witt index of @) is the common dimension of the maximal totally
singular subspaces. The set Q(V) of all quadratic forms on V' is a vector space over
F, of dimension n(n+1)/2. If g € GL(V) and Q € Q(V), then Q9 is the quadratic
form defined by Q?(v) = Q(gv), for every v € V.

Let ¢ = ¢g3. A Hermitian form on V is a function h: V x V — F, satisfying

h vaivi,zijj Zzﬂ?ih(%wj)y?o,
i J 4,7

and h(v,w) = (h(w,v))?®, for all z;,y; € F, and for all v;, w;,v,w € V. The set
H (V) of all Hermitian forms on V' is an n?-dimensional vector space over F,,. The
radical Rad h of h € H(V) is the subspace of V' consisting of all vectors v such
that h(v,v') = 0, for every v' € V. The form h is said to be non-degenerate if
Rad h = {0}, and the rank of h, denoted by rk h, is n — dimp Rad h. If h € H(V),
the n x n Hermitian matrix A, = (h(v;,v;)) is called the Gram matriz of h with
respect to the basis {v1,...,v,}. Let H(n,q) be the set of all n x n Hermitian
matrices over F,. The map h € H(V) — A, € H(n,q) is an isomorphism and
rkh = rank A,. Therefore, non-degenerate Hermitian forms correspond to non-
singular Hermitian matrices, and conversely. Let GL(#(V)) denote the general
linear group of the n?-dimensional F, -vector space H(V). By [48, Theorem 6.4],
the subgroup of GL(H(V)) acting on H(V') by preserving the rank is GL(V). If
h e H(V) and g € GL(V) then the element h? € H(V) is that whose Gram matrix
is M)A, M,, where M, is the matrix obtained by raising each entry of M, to the
qo-th power.

A correlation of PG(V) is a collineation from PG(V) to its dual. The corre-
lation ¢ with underlying matrix A and field automorphism 6 acts on PG(V) by
mapping P = (zg,...,7,_1)" to the hyperplane represented by the column vector
(ag, .- an_1)t = A(xf,...,2%_,)*. For completeness, we recall that the correlation
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¢* from the dual of PG(V) to PG(V'), with underlying matrix A and field auto-

morphism 6, maps the hyperplane II with projective coordinates (ag,...,an_1)¢
on the projective point with coordinates A~*(af,...,a? ,)*. Therefore, the prod-

uct of two correlations is a collineation of PG(V). A correlation of order two is
called polarity. It is well-known that any correlation of PG(V') arises from a non-
degenerate sesquilinear form on V', and polarities arise from either an alternating
or a symmetric or a Hermitian form.

For further details on symmetric bilinear forms, polarities, correlations, quadratic
forms and Hermitian forms, the interested reader is referred to [17] and [46].

Embed V = V(n,q) in V = V(n, ¢") by extending the scalars to Fyn. It is known
[9, 18] that, for any given primitive element w of Fyn over F,, there is an Fyn-basis
(80, -y Sn—1)w Of V such that

n—1
(2) V{qulsi:xeﬂ?qn}.
i=0

The ordered basis (So,...,Sn—1)w is called a Singer basis for V in V and the rep-
resentation (2) of V, or equivalentlAy the set {(z,29,...,29" ):z € Fgn} CFqn, is
the so-called cyclic model of V in V' [22].

A g-circulant n x n matriz over Fy» is a matrix of the form

ao a1 o OGp—1
q q q
Gp—1 aq Gp—2
Da = D(aoﬂll,m,anfﬂ = N . : ’
q7171 qn71 qnfl
aq a3 Qg
with a; € Fgn; we say that the matrix D, is generated by the arraya = (ao, .. ., an-1).

The set of all g-circulant 7 X n matrices over Fy» forms the Dickson matriz algebra
D, (F,~) and the set of all invertible matrices in D,,(Fyn) forms the Betti-Mathieu
group L, (Fyn) [4, 6]. It is known that D, (Fgn) ~ End(V) and Z,,(Fgn) ~ GL(V)
[37, 49]. Therefore, for any g € GL(V') the matrix of g with respect to the Singer
basis (sg, ..., Sn—1)w is & non-singular g-circulant matrix Dg [16, 18]. In addition,
the non-singular Moore matrix

1 w e wn71
1w e wr—1a
(3) E, =
1 w? ™' .. p=Da
is the matrix of the change of basis from (vg, ..., v,—1) to (Sg,...,8p—1) [16]. Then

Dg = E,M,E;".

A Singer cycle of GL(V) is an element of order ¢" — 1. It is known that any
primitive element of Fyn over F, defines a Singer cycle of V =V (n, q) [32, 43]. Let
o be the Singer cycle defined by the primitive element w associated with the Singer
basis (Sg,...,8n—1)w- Then, with respect to this basis, o has g-circulant matrix
diag(w,w?,...,w?" ") [9).
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Let 7 € GL(V') whose g-circulant matrix is

00 ... 01
10 ... 00
)
00 ... 10

n—1

Observe that 7 acts on the Singer cyclic group S = (o) by mapping diag(w,w?,...,w? )
to diag(w?, ... ,qu_l ,w). Let C be the cyclic group of order n generated by 7. Then
S x C is the normalizer of S in GL(V) [32].

In D, (Fgn), let SD,,(Fgn) be the set of all symmetric g-circulant matrices. The
isomorphism between the set of all bilinear forms on V' and D,,(F,») described in
[16, Proposition 2.6], induces the isomorphism S(V) ~ 8D,,(Fyn). Therefore, we
may identify any f € S(V) with its symmetric g-circulant Gram matrix De =
E7'A;E7' € 8D, (Fn), with respect to the fixed Singer basis (o, ..., Sn—1)uw-
If g € GL(V) with g-circulant matrix Dg, then the g-circulant Gram matrix of
f9e€8(V)is DyDsDg € 8Dy, (Fyn).

Let n be odd and ¢ = ¢3. A g-circulant matrix generated by the array

(ao,al, csanzi gD, agz_l, . 7@(11371 3,(133" 1) ’
with a; € Fgn and b € Fyn is said to be a g-circulant pseudo-Hermitian matriz. We
denote by HD,,(F,») the set of these matrices. Analogously to the symmetric case,
it can be seen that H(V) ~ H(n,q) ~ HD, (Fe). Therefore, we may identify any
h € H(V) with its g-circulant Gram matrix Dy, = E~'A,E~ € HD,,(Fyn), with
respect to the fixed Singer basis. If g € GL(V), then the g-circulant Gram matrix
of h9 € H(V) is DyDuDg € HD,, (Fyn).

Throughout the paper let Try.,, denote the trace map from Fyn onto I,

n—1 )
Tegn/q: @ € Fgn — > a? € F,.
i=0

and let Ny»/, denote the norm map from Fg» onto I,
Nynjg:w € Fgn — 20" et ¢ F,.

Also, we will denote by x the vector (z,z9,..., an_l) of the cyclic model of V' in
17, and by e; the vector (0,...,0,1,0,...,0), 0 <i <n—1, where 1 is in the i-th
position and 0 elsewhere. Finally, we will index rows and columns of any n x n
matrix M by elements in {0,...,n — 1} and {0,...,n — 1}, and we will denote by
My and M () its i-th row and j-th column, respectively.

3. ORBIT CODES FROM SYMMETRIC BILINEAR FORMS

Let f, be the symmetric bilinear form on V whose ¢-circulant Gram matrix in
the Singer basis (sg, ..., Sp—1)w 18
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for some a € [Fy». Hence, the set
U1 = {fa a E]Fqn}
is an n-dimensional F -vector subspace of S(V).

Theorem 3.1. The stabilizer of Uy in GL(V) is S x C, where S is the Singer cyclic
group of GL(V) generated by o and C' is the cyclic group generated by 7.

Proof. Let g € GL(V') with g-circulant matrix Dg generated by (go, g1, - ., gn—1) With
respect to the Singer basis (so,. .., Sn—1)w. Then Dé is generated by (ho, hi,...,An—1) =

n—1

(90,98 _1,...,97 ). Let f, be any element in U;. Then, the g-circulant Gram
matrix of f¢ is generated by the array (D% D,Dg) (o).
The I-th entry of (DéDaDg)(o)7 for 0 <! <mn—1,is given by the inner product

(DgDa)(o) ~Dg), with Dg) = (Qzl_lv grqll_lH, e ,gzl_l_l), where subscripts are taken
modulo n. As
(D;Da)(O) = (hoa» hiat,. .., hn71aqn71> )

the I-th entry of (D} D,Dg) o) is

n—1 . )
> bl et
i=0
Since we are assuming that g fixes Uy, we must have
n—1 . )
(5) > hihd_ja” =0
i=0
for 1 <1 <n—1. As equation (5) holds for all a € Fyn, we get
0= hihgl_l = gf_igfii,
for0<i<m—1land1<[<n—1. Thisis equivalent to
(6) gigi—1 =0,
for0<i<n—-landl1<Ii<n-1.
As Dg € Z,,(Fgn), then (go,91,--.,9n-1) # (0,...,0). So, by applying a suitable
element in C, we may assume go # 0. Equation (6) implies g_; =0, for 1 <1 < n—1.
By considering subscripts modulo n, we see that the only possible non-zero entry

in (go,-.-,9n—1) 18 go, that is g € S. Therefore the stabilizer of U; in GL(V') has
the prescribed form. O

For any g € GL(V), set Uy = {f? : a € Fyn}. Let Uy be the orbit code
Uy = U1GL(V) = {U{ : g € GL(V)}. From Theorem 3.1 and the Orbit-Stabilizer
Theorem [2, p.16] we get the following result.

Corollary 1. The size of Uy is
"R (¢ - 1)
o .
Lemma 3.2. Let f,, fi € Uy with associated polarities 3\,1 and gb of PG(‘A/). Then

the (linear) collineation v = & 3y of PG(?) is represented by the q-circulant matrix
generated by the array (ab=t,0,...,0).

Proof. Tt suffices to consider 8, and &, as correlations of PG(‘/}) acting on it via the
corresponding g-circulant matrices D, and D;, with respect to the Singer basis. [
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It is immediate to see that v fixes each point (e;), for i =0,...,n — 1.

Theorem 3.3. Let g € GL(V), with g ¢ S x C, and q—circulant matriz Dg

with respect to the Singer basis (Sg,81,---,8n—1)w- Let Dy = Dg_t the inverse
transpose of Dg, where k = (ko, ..., kn_1). Suppose that exactly | + 1 entries of k
are non-zero, say kiy, ki, ..., ki, with 0 < iy < i3 < ... < i <n—1. Then the

subspaces Uy and U{ meet either trivially or in a j-dimensional F,-subspace, where
j = ng(nail - iO; s ail - ZO)

Proof. Assume that U; and Uj do not meet trivially, and let f, € U; N U for
some non-zero a € Fygn. Let f, € Uy NUY with b € Fyn \ {0,a}. Note that

S K7_,_,), which is the i-th column of Dg'. As fu, fy € U, by

A n—i) ) Yn—i—1
Lemma 3.2, the linear collineation 1 = d, - &, of PG(‘//\') fixes (e;) and (ef_1>7 for
alli=0,...,n—1.
-1
Assume first that all entries k; are non-zero. Then {<e0>, ooy (en—1), (€ )} is

a projective frame in PG(V). Therefore 1 is the identity on PG(V). From Lemma
3.2 it follows that ab~! € F, \ {0}, that is Uy NU{ = (fa)r, .

Assume now that exactly [ + 1 < n entries of (ko,...,k,—1) are non-zero, say
kigs Kiyy ooy ki, with 0 <4 <y <...<14 <n—1. As the cyclic subgroup C = (1)
fixes Uy we may assume ko # 0, i.e. i9 = 0. Then {(e()), (€iy)y .- {eq), (egﬂ)} isa
projective frame in the subspace I' spanned by (eg), (e;,), - - -, (€;,). From the above

argument we see that ¢ induces the identity on I'. Therefore ab™! = (ab_l)qlm, for
m =1,...,1, that is ab™' € F;, with j = ged(n,41,...,4). This implies that Uy
and Uy intersect in a j-dimensional F,-subspace. O

Corollary 2. For each g € GL(V), g ¢ S x C, the subspaces Uy and U{ have at
most ¢ elements in common, where j < n is the greatest divisor of n.

Theorem 3.4. Let j < n be the greatest divisor of n. Then the set Uy is an orbit
code with parameters

n(n=1)/2 77" (gt _ 1
(n(n; bl ),2(nj>,n>
n

Moreover, GL(V) acts transitively on it.

q

Proof. The result follows from Corollaries 1 and 2. O

Example 1. Let n = 4. For any given a € Fg+ the matrix of the symmetric bilinear

form f, in the Singer basis (sq, ..., Sn—1)w IS
a 0 0 0
D - 0 a? O 0
c= 0o 0 a o0
0 0 0 af

Hence the F-subspace U; of V' can be identified with the F -subspace {D, : a € Fy}
in the Dickson matrix algebra D4(F,4), and the codewords of U; are the subspaces
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{DgDuDg : a € Fyn} for any non-singular g-circulant matrix

g0 91 92 g3
95 95 91 95
g = D(go.g1,92,95) = ¢ ¢ @ q
90,91,92, 9 95 9 91
gi 95 95 96
Note that DLD,Dg = Dy, with h = (ho, ..., hy_1) where hy = S20_ g3~ g% a®';
here subscripts are taken modulo n.

D

Remark 1. The representation of U; and of the orbit code U over I, is ob-
tained by considering the matrix E, of the change of basis from (vp,...,vn—1)
to (80,...,8-—1)w- The g-ary representation of U is the subspace {E!D,E, :
a € Fgn} of S(n,q), and the codewords of Uy = U;GL(V) are the subspaces
{(DgE,)'Dy(DgE,) : a € Fyn}, for all Dg € Z,,(Fyn). By using the isomorphism

v: S(n,g) — V(n(n+1)/2,q)
(7) - N
(alj) — (al,j)szﬁjgn—l
one can easily obtain the representation of the codewords of U; as vectors of length
n(n+1)/2 over F,,.
4. ORBIT CODES FROM QUADRATIC FORMS
In this section we assume n = 2k + 1 to be an odd integer. For any a € Fy» and
x = (z,2%,...,27" "), the map
Qa(x) = Trgn /g (aquH)
is a quadratic form on V' whose associated polar form is
k k
(8) Ba(x,y) = Trgn/q (a:qu + ax? y) :

It is easy to see that each quadratic form @, of V' is the restriction on V' of the
quadratic form @, (X) = Z?;OI a? X; X, on V, where X = (Xo,...,Xn—1). Also
we denote by (3, the extension of 8, on V.

Lemma 4.1. For any non-zero a € Fyn, Q, is a non-degenerate quadratic form on
V.

Proof. Let x = (z,29,...,29" ) € Rad 8,. Then
Tryn/q (y (aqu + aqk+1qu+l)) =0,

for all y € Fgn. As the left hand side is a polynomial in the unknown y of degree at
most ¢"~! with ¢" roots, we get

(9) az?" +a? 2" = 0.

If g is odd then 8, is symmetric and we have Q,(x) = 54(x,%)/2. Therefore @,
is non-degenerate if and only if Rad 5, = {0}. The above equation implies

k+1_ 1
Nq"/q(aq 1) = (_1)an"/q (gqu(q—1)> =

as n is odd and Nqn/q(qu(q_l)) = 1. On the other hand, since ¢"*! — 1 = (¢ —
D(g®+ ¢t + ...+ 1) we get Nqn/q(aqu_l)

k+

= 1; a contradiction.
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If ¢ is even then f, is alternating with Rad 3, nontrivially as n is odd. Therefore
Q. is non-degenerate if and only if Ker(Qq|radap,) = {0}. Let € Fgn \ {0} such
that x € Rad 3,. By raising (9) to the ¢"**!-th power, we get

k+1
a?  z+alz? =0.

g—1
X
k1 =1,
a¥ a1

k
. g =1 . . . .
i.e., x = ca® =1, for some non-zero ¢ € F,. Therefore, x is singular if and only if

Hence

g2k _1

Qu(x) = Trgn gz 1) = Trgeq (“q v H) = ¢*nNgn jq(a) = 0
if and only if a = 0. O

From the previous lemma, the Witt index of @, is k and (e; : i = 0,...,k — 1)
is a totally singular subspace of Q,, for all a € Fy» \ {0}.
Let Uy be the following set

(].0) U2 = {Qa ac ]Fqn}.
Then Us is an n-dimensional F,-subspace of Q(V'). Straightforward computations

show that Q7 = Q.+ and Q = Qqa, for all a € Fyn \ {0}. Therefore the group
S % C fixes Us.

Theorem 4.2. The stabilizer of Uy in GL(V') is S x C, where S is the Singer cyclic
group of GL(V') generated by o and C is the cyclic group generated by .

Proof. The result was proved in [11] for n = 3. Therefore, we assume n > 5,
that is £ > 1. For any Q, € Us, a # 0, the associated polar form is g, defined
by (8). Let B, be the g-circulant Gram matrix of §, with respect to the Singer
basis (Sg, . .., Sn—1)w. Then B, is generated by the array (0, ..., 0, a, aqu,O, .., 0),
where a is in the k-th position. If g € GL(V) fixes Us, then it fixes also the set
{Ba : @ € Fgn}. We use the same notation and arguments as in the proof of Theorem
3.1. Assume that Dé is generated by the array (go, g1, .-, 9n—1)-

Since the g-circulant Gram matrix of 59 is generated by the array (DéBaDg)(O),

the I-th entry, with 0 < <n —1, in (DéBaDg)(o) is given by the inner product

(DgBa) o) -Dg), with Dg) = (ggl_l, gfLL_H_l, . ,gfll_l_l)t, where subscripts are taken
modulo n. As

+2

k+1 k n—1 k
(DgBa) o) = (gra+ grr10?  grp1a® + gey2a® . gr1a®  + grat ),

the I-th entry of (D} BaDg) (o) is

n—1 n—1

i k14 !
(1) Y (gria® + gryrial :

l l i
)gn—l-i-i = Z (giquz—l-&-k-&-i + gk-&-iggb—l-i—i)aq
i=0 i=0

Since B, is symmetric and g fixes Uy, we have

n—1

q q q
> (Grigd s T 9i90 e )at =0
i=0

for 0 <1<k —1andall a € Fgn. This implies

1 l
(12) 9i%—1i T Gh+iTp_14; =0,
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for0<i<n—land0<I<k-—1. As Dé is non-singular, we may apply a suitable
element in C, and hence assume gy # 0. Note that if the element gy appears in the
equation (12), then either ¢ € {0,k+1} or i —1 € {0,k + 1}. In the former case, we
have

{ mol bl = 0ok

gk-i-lgn T+ 909k+1 ; = 0

ie.

(13) { gong + gkgk““ - O, forl=0,...,k—1.
9092+l + 9k+19k+2+z =0

In the case i — 1 € {0,k + 1}, we have

(14) . gogk+z+gkgz = 0 fori=0,...,k—1,
go gz+gk+1gk+1 = 0 fori=k+1,...,2k.

Let ¢ be odd. By putting ¢ = 0 and ¢ = k£ + 1 in the first and in the second
equation of (14), respectively, we get gr = gx+1 = 0. Hence, from (13) and (14), we
have g,, =0form=1,....k—1,k+2,...,n—1, thatisg € S.

Let ¢ be even. By applying a suitable element of S we may assume gg = 1. As
k > 1, Equations (13) and (14) give

ql _ ql
(15) { géfrl B gkg“gfrl , forl=0,...,k—1,
Jor1 = Gk+19k404
and
(16) Jk+i = grkkgi for z =0,....,k—1,
9i = gk+1 Gk+i fori=k+1,...,2k.

Assume g, = 0. Then g; = 0 for i = 1,...,2k — 1, and gop = 0 from the second
equation of (16), as gx—1 = 0. Therefore, g € S.

Assume gi+1 = 0. Then g; =0 for i = 2,...,2k, and g; = 0 from the first of (15),
as g = 0. Therefore, g € S.

Assume by contradiction that g # 0 # gg+1. From (15) with I =k — 1 we get

k—1
{ 9 = O
g1 .
941 = Gk+1
From the first of (13) with [ = 0 we get g1 = grgr+2, which plugged in (16) with
i =k +2 gives gri2 = g} 19kgrt2. From (16) with i = 1 follows g1 # 0, whence

gkt2 7# 0. Therefore, gl 1 gr =1, 1. gp = (g,:jl)q. From the first equation of (15)

we get
l

¢ a _ d _
Gi419%+1 = propry  forl=0,.... k-1,
which for I = 1 gives g3g{,, = g5, that is gagri1 = grys, Where gy # 0 from
(16) with ¢ = 2. By comparing this equation with (16) with ¢ = k + 3 we see that
gk+1 € Fy, as n is odd. Thus, g; = gkjl € F,, and substituting this in (16) we have

(17) 9i = Gl 19k-+is
fori=0,...,k—1,k+1,...,2k. Finally, induction on ¢ in Eq. (17) provides
gi = 91%11
2i41’ fori=0,...,k—1,
Jk+i+1 = gkﬁrl
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that is,

g = o _
it fori=0,...,k—1,
Ghtiv1 = o't

for some non-zero o € Fy, and gi, = a~!. Substituting once again these equalities
in the second of (15) with I = k — 2, we get a™ = 1. Since g fixes U, setwise, also
ag does. Therefore, we may assume that Dé is the g-circulant matrix generated by
the array (go, .- ., gax), where

g = a2t
. 5 fOI'Z-:O,...7I€—17 andgkzl,
Gkyit1 = a?it?

By taking into account that g; € Fy, for ¢ € {0,...,n — 1} and using (11), the k-th
t L.
entry of (DgB,Dg) o) is
n— 4 _ i k
Zi:(]l (912 + 9k+i9k+i+1)aq1 = Efzol ((]12 + gk+igk+i+1)aqL + (912c + 92k90)a? +
n—1 (.2 . 4t
Ez:k+1 (gz + gk+zgk+z+1)a
= (a®+aa+ Zfz—ll (a¥i+2 4 a2(i—1)+2a2i+2)aqi+
(1+ az(k71)+2a)aq’“ + Zf;oz (aditt 4 a21+1a2(i+1)+1)aq’€+77+1

+(a* 4+ a2k71)aq2k_

As ¢ is even and o™ = 1, we see that the k-th entry of (DéBaDg)(O) is zero. On
the other hand, since g fixes Uy, the g-circulant Gram matrix DéBaDg is associated
with the polar form S, for some b € Fgn \ {0}. This gives a contradiction. Hence,
gk = gk+1 = 0, and g € S. This completes the proof. O

Remark 2. In the particular case when n is a prime, Theorem 4.2 follows from a
result of Kantor [33].

Let us consider the orbit code Us = UGL(V) = {U§ : ¢ € GL(V)}. From
Theorem 4.2 and the Orbit-Stabilizer Theorem [2, p.16], we obtain the following
result.

Corollary 3. The size of Us is
"D (¢ - 1)

n .

Remark 3. In the case n = 3, the orbit code Us has minimum distance 4 and the
group GL(3,q) acts transitively on it [11].

At this point the main goal is the determination of the minimum distance of
Us. We will do this in the case n = 5 by using geometric arguments, while this
computation remains an open problem for n > 5 odd. However, before to do that
we consider it appropriate to give here the representation over I, of the subspace
Us and of the set Us. If (ug,...,un—1) is an ordered basis for V.= V(n,q), and
v eV, write v = xoup + ...+ Tp—1Upn—1 € V. Then, for any Q € Q(V) we have

Qv) = Zaijxixj7
i<j
for some a;; € Fq, so Q can be identified with the homogeneous polynomial Zi<j ai; Xi X

of degree two in the n coordinates X; of V relative to the given basis; by abuse of
notation we will denote this polynomial by Q(X). Let Q(n, q) be the set of all the



ORBIT CODES FROM FORMS ON VECTOR SPACES OVER A FINITE FIELD 13

homogeneous polynomials of degree two over I, in the variables X;, ¢ =0,...,n—1.
It is evident that {Q;;(X) = X;X; : 0 < i < j < n—1}, is a basis for Q(n, g).
Let C;; be the n x n matrix over IF, whose all entries are all 0 but the (i, j)-entry
which is 1. Then we may write X;X; = X'C;;X. If Q € Q(V) corresponds to the
polynomial Q(X) = >_,; a;; X;X; in the given basis, then Q(X) can be written
as X'CX = 37, a;;X'C;;X. Conversely, given any upper-triangular matrix C,
then X'CX € Q(n,q), ie. Q(X) = X'CX is a quadratic form of F?. We denote
by T (n,q) the set of all the upper triangular matrices over F,. It is evident that
{Ci; : 0 <i < j <n—1}is a basis for T(n,q) and the map
(18) Viug,ottn_1} * Q(V) - T(n7q)

Q@ = (ay)igj
is an isomorphism. To get the action of A € GL(n,q) on Q(n,q) it suffices to
know the action of A on Q;;(X) and then to extend it by linearity. To do this we
need to write ij (X) in a matrix form. As Q;;(X) = X'C;;X, we first compute
C’;;‘ = A'C;jA and then define the upper-triangular matrix T(CZ-‘;‘.) as follows:

CA(k, k) if k=1;
[TCHIk, 1) = Cik, )+ CALK) i k<1
0 if k> 1.

It turns out that the coefficient of X;X; in the polynomial Qﬁ (X) is precisely the
(k,1)-entry of the matrix T(C7}).

We are now in position to give the g-ary representation of the subspace Uj
and the set Us. For n = 2k + 1 and any a € Fgn, the quadratic form Q,(x) =

Tryn /g (aqu“) can be written as x'C,x where x = (z,2%,...,27 ), 2 € Fyn,
and it

0 -~ 0 a a9 0 - 0

0 --- 0 0 a?d g .0

: LT e . . .0

Co=10 .- 0 0 0 0 o |;
0 -~ 0 0 0 e 00
0O - 0 0 0 - 0 0

Therefore the F,-subspace Uz can be identified with the F,-subspace {Cy : @ € Fyn }
of T(n,q"), and the elements of Uy with the subspaces {T(CaDg) ca € Fyn}, for all
Dy € 7,,(¢™). As we did for Uy and U, the representation of Uy and Us over F, is
obtained by considering the matrix E,, of the change of basis from (vg,...,v,—1) to
the Singer basis (s, ..., Sr—1)w. Therefore, the subspace Us can be identified with
the F,-subspace {T'(CFn) :a € Fyn} of T(n,q), and the elements of Us = UGL(V)
can be identified with the subspaces {T(ngE") ta € Fyn}, for all Dg € Z,,(Fyn).
At this point one can easily obtain the representation of the elements of Uy as
n(n+1)/2
subspaces of F, .
Now set V = V(5,q). In what follows we show that the orbit code Us of Q(V)
has minimum distance 8.

Lemma 4.3. Let a € Fye \ F, and let €, be the line of PG(V) spanned by ((a —
al, a?’ —a,0,0,0)) and {(0,0, a?’ —a%,a?—a,0)). For any x € Fye\Fy, let §, denote
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the polarity of PG(‘A/) defined by the extension Bz onV of the polar form B, of Q.
Then, for each point P = (v) € {,, the hyperplanes P and P coincide if and
only if y = cx, for some ¢ € Fy \ {0}.

PTOOf' Let v = (ao, a,az,as, O) = ()‘(a - aq)a )\(aq3 - CL), /u‘(aqg - aq)v :u(aq - a)a 0)7
where X\, u € Fge are not both zero. For any « € Fqe \ Fy, the hyperplane P% has
equation

(zag + :cq3a3)X0 + 2%3 X + ragXs + (xq3a0 + a%a;1) X3 + (zq4a1 + xq2a2)X4 =0.
The two hyperplanes P% and P% coincide if and only if the matrix

3 3 4 2
zas +x% a3 x% sz wag x99 a9+ x%a1 7 a1 + 29 as
q* q q° q q* 'S
yaz +y* a3 y'az yao Y* ap+ylar y? ar +y? a2

has rank 1. This happens if and only if y = cx for some ¢ € F, \ {0}. O

Theorem 4.4. For any g € GL(V), g € S x C, the subspaces Uy and U3 meet
either trivially or in a 1-dimensional Fy-subspace.

Proof. Throughout the proof, we will use the fact that every plane of PG(‘A/) con-
taining two lines which are totally singular for a non-degenerate quadratic form
contains no further singular point.

Let g € GL(V), g € S x C and assume that (Dgl)t is generated by the array
(ko,...,k4). Then

—1 i % (3
ef = (k§_; kg, k1)

for i = 0,...,4, where indices are taken modulo 5.

For any i =0, ...,4, the line r; = (e;,€;41) of PG(IA/) is totally singular for each
Qu € Uy, ie. @a\ri = 0 and the lines rf_l = <ef-’_1,ef_:> are totally singular for
the non-degenerate quadratic form @g Note that the semilinear transformation 7

of V with matrix (4) and associated automorphism a € Fgn — a? € Fn fixes the
—1 —1
cyclic model of V' pointwise, maps r; and r{  into r;41 and 7Y "1, respectively.

Let @ € Uy NU3. Suppose there is Q' € Uy NUY, Q' ¢ (Q)r,. By applying a
suitable element in the Singer group S, we may assume @ = Q1. Then Q' = Q,,
—1 ~
for some a € Fye \ Fy. Thus the lines r; and r{  are totally singular for both Q4
and Qg, for i =0,...,4. It r¢ =7, for some j € {0,1,2,3,4}, then
-1 —1 -1 _

rig =007 =] =] =rin

3
setwise, contradicting g ¢ S x C. In particular observe that

. .
(ef )¢ {(ey):1<j<4}.
Let II4 be the hyperplane of PG(‘A/) with equation Xy = 0. Assume that 7“1971 =

-1 —1 -1 -1
g g ; 97 _ 97 _
(e ,e],) CIly, for somei=0,...,4. Then e] = (wop,wr,w2,0,0)and e}, =
(0, wd, wi, wi,0), for some wy, wr, ws € Fye not all zero. Some computations show

and hence U?:o r; = U?:o 9", Therefore g ! € GL(V) fixes {({e;) : 0 < i < 4}

that @1 N @a NIy = roUry Ury UL, and hence r{  should coincide with ¢,. This
g™t g~
i

implies that wy = wg = 0, i.e., r = ry, a contradiction. Therefore, ] is not

contained in Ily, for all i = 0, ...,4 and similarly the lines rf_17 1 =20,...,4 are not
contained in the hyperplanes II; : X; =0, for all j =0,...,4, since Hj- =1L44.
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R Let P be the point rig_l N II4. Note that P is a singular point for both @1 and
Qa, whence P € rgUry Urg U/,.

Assume first P = (ei-fl), for some i = 0,...,4. If ei-fl er; \ {(e;),(ej+1)}, for
some j = 0,1,2, then ef_: € rj41. This implies that rf_l is contained in the plane
(rj,rj+1) with r; # 7"1571 # rj+1, a contradiction. On the other hand, if ef71 € Ly,

1 —1 —1 —1 —1
since (ef ) =r! N, the hyperplane spanned by r{ , r{_; and ¢, should
-1
coincide with both P% and P, contradicting Lemma 4.3. Then P # (e ),
0< <4,
-1 -1
Note that at least one among 7 ~ and 7, must intersect roUr; Ury. Therefore,

-1 s
up to the action of (7), we may assume that P =r¢ NII4 € rg. Then P™" € rj, for

9

j=0,...,4. We now show that both (r;'fl)fg and (rifl)# meet £,. If (7’{1)7
meets rg, then (rf_l)ft should be contained in the hyperplane I, spanned by
ro, r3, 4. Similarly, if (rfil)% meets 71, then (7‘19_1)%3 should be contained in
the hyperplane Ily spanned by ry, ry, r3. If (rf 71)? meets 73, then the plane

73 CINT
spanned by (rf 71) and (rf 1) should contain the further totally singular line

CINT
ro. In all these cases we get a contradiction. It follows that (rig ) meets £,.

_ 74 _ T
Similarly (rig 1) intersects £,. This implies that the plane spanned by (rf 1)
—4

-1
and (rf ) would contain the further totally singular line ¢,, a contradiction. [

Theorem 4.5. The set Uy = UsGL(V') is an orbit code with parameters

10 774 i1
<157q szé(q ),8,5> .
q

Moreover, GL(V) acts transitively on it.
Proof. The result follows from Corollary 3 and Theorem 4.4. O

4.1. A GEOMETRIC INTERPRETATION. In this section we set 6,, = (¢™—1)/(¢—1).

For any quadratic form Q on V =V (n,q), n = 2k + 1, the quadric defined by Q
is the set 9 of points of PG(V) arising from the singular vectors of Q). We refer to
the quadric defined by a non-singular quadratic form of V' as a parabolic quadric of
PG(V). For any set of k linearly independent quadratic forms Q1,...,Q, on V, let
L be the subspace of Q(V') spanned by Q1,...,Q,. The set of points Z, = NI_;Q;
is contained in any quadric defined by an element of £, and it is called the base
locus of L.

In [36], Kestenband proved that in Q(V'), with V' = V(n,q) and both n and ¢
odd, there exists an n-dimensional subspace B such that all its elements are non-
degenerate and with the property that the parabolic quadrics defined by any r
linearly independent elements of B, 0 < r < n, share 0,,_, singular points. In
particular, the quadrics defined by any n — 2 independent elements in 5 intersect in
a (qg+1)-cap of PG(V) [36, Theorem 1], where a (g+1)-cap of PG(V) is a set of ¢+1
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points no three of which are collinear. Consider the following incidence structure:
the points are the points of PG(V'), the lines are the (¢ + 1)-caps whose points are
the common singular points of any n— 2 independent elements in B, and incidence is
defined by inclusion. This incidence structure is a projective geometry II isomorphic
to PG(V) [36, Theorem 2]. In particular, the quadrics defined by the forms in B
play the role of hyperplanes in II, and the r-dimensional subspaces, 0 < r < n, are
the intersections of the quadrics defined by n — 1 — r linearly independent elements
from B. However, no construction for the projective geometry II was ruled out
in [36] for n odd and ¢ even. In this section, we fill this gap by showing that the
incidence geometry II can be constructed for any ¢ by using the subspace U, defined
by (10).

Lemma 4.6. Let L be a r-dimensional subspace in Q(V) and let Z; be the base
locus of L. Then, every point P of PG(V) not in Z. lies in exactly 0,._1 quadrics
defined by the quadratic forms of a (r — 1)-dimensional subspace contained in L.

Proof. Let L be generated by the quadratic forms Q1,...,Q, on V, and let P =
<X> ¢ Zﬁa with X = (X07 s aX’rL—l)' As (Ql(X)7 RS QT(X)) 7& (07 ey 0)7 the

equation

(19) MQ1(X) + -+ @ (X) =0
is not trivial. Tt is then clear that the solutions (A1,. .., \x) of (19) form a (r — 1)-
dimensional [F -vector space. O

Lemma 4.7. Let B be an n-dimensional subspace of Q(V') such that each non-zero
element is non-singular. Then the base locus of any r-dimensional subspace of B
consists of 0, _, points.

Proof. Let £ be a r-dimensional subspace of B and let Z, be its base locus. We
count in two different ways the pairs (P, ), where P is a point of PG(n—1,9)\ Z¢,
£ is a quadric defined by a non-zero element of £ and P is on 9. By using Lemma
4.6, we get

(9n - |Z£|) 97“—1 =0, (en—l - |ZL|) .
This yields |Zz| = 60— O

Theorem 4.8. Let B be an n-dimensional subspace of Q(V'), such that each non-
zero element is non-singular. Then the base locus of any (n — 2)-dimensional sub-
space of B is a (q + 1)-cap in PG(V).

Proof. If n = 3, the quadric defined by a non-singular quadratic form consists of
¢ + 1 points of PG(2,¢) no three of which are collinear [26]. Hence the theorem
holds true in this case.

Assume n > 3. From Lemma 4.7 the base locus of B is empty, and, by Lemma
4.6, every point of PG(V) is contained in precisely the 6,,_1 quadrics defined by the
forms of an (n — 1)-dimensional subspace contained in B.

Let R and T be two distinct points of PG(V') and Lg 1 be the (n—2)-dimensional
subspace of B consisting of elements having both R and T as singular points. Note
that the base locus of Lg r consists of ¢ + 1 points by Lemma 4.7. Hence, two
possibilities arise: either the line £ = (R, T) is contained in the base locus of Lg 1
or it does not. In the former case there are 6,_o quadrics defined by members
of B containing ¢, whereas in the latter case there are 6,,_3 quadrics defined by
members of B containing £. We denote by n; and ns the number of lines which are
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contained in 6,,_5 and 6, _3 quadrics defined by members of B, respectively. Clearly
ny +ng = 0,0,_1/(q+ 1), which is the number of lines of PG(V). We recall that a
parabolic quadric contains 6,,_16,_3/(q + 1) lines [46, p.174].

We count in two different ways the pairs (¢,Q), where £ is a line of PG(V) and
£ is a quadric defined by an element of B containing ¢:

en% n16n—2 + 1260, _3
= ni(¢" %+ 0n_3) + 120, 3
= mq"? + (n1+n2)bn_s
nig" 3 + 70";1"1_1 On—3,
which yields n; = 0. The result then follows. O

The subspace Us of Q(V) defined in Section 3, satisfies the hypothesis of Theorem
4.8 for any ¢ and hence has the property that the base locus of any of its (n — 2)-
dimensional subspaces is a (¢ + 1)-cap of the ambient projective space. Therefore
we have the following result.

Theorem 4.9. Let P denote the set of points of PG(V), V =V (n,q), n odd. Then,
in PG(V) there exists a family KC of (¢ + 1)-caps and an incidence relation T such
that the incidence geometry Il = (P, K, I) is isomorphic to PG(V).

5. ORBIT CODES FROM HERMITIAN FORMS
For the whole section n is odd, ¢ = ¢ and x = (z, 29, ... ,anfl), x €Fpn.
Proposition 1. The map
ha(x,y) = Trqn/q(axng)

is a Hermitian form on V, for all a € Fyn. Moreover, if a # 0, then h, is non—
degenerate.

Proof. We have

n—1 n—1

= n-1 . n-1
haly,x) = ayz® + qlydg@9 4 ... 4 g9 T y? T g9 T ...

n—1

n n n—1 n—1 2
— ameO + aququ q + . + aqO qu qu + ..

Therefore, (ha(y,x))? = Tryn/,(azy®) = he(x,y). The g-circulant Gram matrix
of h,, say H,, is generated by the array (0,...,0,a,0,...,0), with a in the (n—1)/2-
th position. It is then clear that h, is non—degenerate for a # 0. O

We set
Us = {ha ac ]Fqg)z}
It easily seen that Us is an n-dimensional Fg -vector subspace of H(V). Some
computations show that the group S x C fixes Us. By arguing as in the proof of
Theorem 3.1 the following result is obtained.

Theorem 5.1. The stabilizer of Us in GL(V') is S x C, where S is the Singer cyclic
group of GL(V') generated by o and C' is the cyclic group generated by T.

Corollary 4. The set Us = UsGL(V') has size

qn(n—l)/2 Hlﬂz—ll (qz' _ 1)
n .
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The set Us is an orbit code in H (V). In what follows we determine its minimum
dlstance Any Hermitian form h, € Us can be naturally extended to a semilinear
map h on V. Since the associated automorphlsm of ha isf:x€Fgn = 2% € Fyn,
ha is not a Hermltlan form. Note that ha is non-degenerate and hence it defines a
correlation of PG( ), with matrix H, and companion automorphism §. Therefore,
ﬁa maps the point ((zg,...,z,—1)) into the hyperplane of equation

2 n—2
am(" 1)/2X0 +a® x((zfz-f-l)/?Xl +-Fa® xt(zz_g)/gxnfl =0,
where exponents and indices are taken modulo n.

Lemma 5.2. Let h,, hy € Us and ha, hb be the correspondmg correlations of PG(V )
respectively. Then the collineation ¢ = hb o of PG( ) is given by

" PG(V) = PG(V)
2 2n—2 2
(@0, xnn)) (@b~ 2y (b= ) 2l (b)) 2 ),
where exponents are taken modulo n.
Proof. Straightforward calculations show that the collineation % is represented by the g-

circulant matrix H, "H, = H,-1, (which is generated by the array (0, ..., 0, b~ 'a,0,...,0))
and has 62 as a companion automorphism. O

Consider the following n-dimensional [Fy -vector space
Vo = {(z,xq"Q, .. ,zqoznd) cx€Fp} CV.
The restriction g of the collineation i to PG(Vp) is the projectivity given by
PG(Vp) - PG(Vo)

((z, 2 z©" 7)) o ((ab~la, (ab” )0 p07 L (ab1)a0"" T a0 Ty,
The projectivity 1o naturally extends to the projectivity 120 of PG(‘/}), whose ¢-

circulant matrix is generated by the array (ab=1,0,...,0). In addition, vy fixes
each (e;), fori=0,...,n—1.

Theorem 5.3. Let g € GL(V), with g ¢ S x C. Suppose that Dg_t is generated by
the array (ko, ..., kn—1) and that exactly [+1 > 0 entries of (ko,...,kn—1) are non-
zero, say ki, kiy, ... ki, with 0 <ip <iy < ... <19 <n—1. Then the Fy,-vector
subspaces Us and U3 meet either trivially or in a j-dimensional F, -subspace, where
j = ng(nail =40y b — ZO)
Proof. Assume that Us and U§ do not meet trivially, and let h, € Us N UY, for
some non-zero a € Fyn. Let hy, € Us N UY, with b € Fyn \ {0,a}. Note that
(D" = ef_l (kfl ook ). As ha,hb € Us, by Lemma 5.2, the linear
collineation 1 of PG(V) fixes (e;) and (e ), 0<i<n-—1L1

Assume first that k; # 0 for all4 =0,...,n— 1. Then {<e0>, oo {eno1), (egil)}

is a projective frame in PG(A). Therefore 120 is the identity. A similar argument
as in Lemma 3.2 implies that ab=! = (ab™1)% % Since ab~! € Fgn, with n odd, then
abt € Fy, \ {0}. Hence U3 NUY = (ha)r,, -

Assume now that [+ 1 < n entries of (ko, ..., kn—1) are non-zero, say kiq, ki, - - -, ki,
with 0 < 4p < i1 < ... <4 < n—1. As the cyclic subgroup (1) fixes Us, we

may assume kg # 0, i.e., i9 = 0. Then {(e()), (eiy)s- -, (e, (egil>} is a projective
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frame of the subspace I' of PG(XA/) spanned by (eg), (€;,),...,(€;,), (eg_l> and 7y
induces the identity on T. Therefore ab~! = (ab=1)% ™, 1 < m < I. It follows that
ab™t € F,; \ {0}, with j = ged(n, 2i1,...,2i;) = ged(n, i1, ...,4). This implies
that Us and UY intersect in a j-dimensional F -subspace. O

Corollary 5. For each g € GL(V), g ¢ S x C, the F,-subspaces Us and U have
at most qj) elements in common, where j < n is the greatest divisor of n.

Theorem 5.4. Let j < n be the greatest divisor of n. Then Us is an orbit code
with parameters

n(n—1)/2 777 1(,i _ 1
<n27q Hz:l (q ),Z(n]),n> )
n
q0
Moreover, GL(V) acts transitively on it.

Proof. From Corollary 5, any two distinct elements of U3 meet either trivially or in
a j-dimensional F, -subspace. O

Example 2. Let n = 5 and ¢ = ¢3. For any given a € Fqg the matrix of the

Hermitian form h, in the Singer basis (s, ..., 8n—1)w 18
0 0 a O 0
0 0 0 a% 0
D= 0 0 0 0 a%
a0 0 O 0

0 a% 0 0 0O

Hence the Fy-subspace Us of V' can be identified with the F, -subspace {D, :
a € Fg} in the Dickson matrix algebra Ds(Fys), and the codewords of Us are
the subspaces {Dg Dy Dg : a € Fgs} for any non-singular g-circulant matrix
go 91 92 93 94
9 9 91 95 9
Dg = D(gy,91.92,95.94) = 95 95, 9, 91 9 J
q3 q3 q3 q3 q3
92, 93, 9a 9o 9
gi 93 95 95 9
with g; € Fgs. Note that D.D,Dg = Dy, with h = (ho,...,h,_1) where b =

>i-0 967igg+z—¢aql

Remark 4. The representation of Us and of the orbit code Us as vectors of length
n? over Fy, are obtained by considering the matrix E,, of the change of basis from
(vo, .. .,Vn—1) to the Singer basis (so, ..., Sr—1)w. The representation of Us into the
qgo-vector space H(n,q) is the subspace {E!D,E,, : a € Fy}, and the codewords
of Us = UsGL(V) are the subspaces {(DgE,)'Dy(DgEy,) : a € Fyy}, for all Dg €
Z,(Fyn). Let {1,¢} be a basis of F, over F,,. We write z = =) + 2(3)¢, for
any r € Fqg. Then it is easy to see there exists a bijection from the H(n,q) and

V(nQa qO)

Remark 5. In the case n = 5, the orbit code Us can be extended in such a way
that the subspace distance is preserved by adding (¢® + 1)(¢®> + ¢ + 1) codewords
that are orbits of a suitable subgroup of GL(3,¢), see [11]. So, it seems plausible

4
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that each of the orbit codes constructed in this paper could be enlarged by adding
orbits of subspaces under the action of a suitable subgroup of GL(V).
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