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Abstract

Flocks are an important topic in the field of finite geometry, with many
relations with other objects of interest. This paper is a contribution to the
difficult problem of classifying flocks up to projective equivalence. We com-
plete the classification of flocks of the quadratic cone in PG(3, q) for q ≤ 71,
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by showing by computer that there are exactly three flocks of the quadratic
cone in PG(3, 64), up to equivalence. The three flocks had previously been
discovered, and they are the linear flock, the Subiaco flock and the Adelaide
flock. The classification proceeds via the connection between flocks and herds
of ovals in PG(2, q), q even, and uses the prior classification of hyperovals in
PG(2, 64).
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AMS Class.: 51E21, 51E20, 51E12

1 Introduction

Circle planes were introduced by van der Waerden and Smid in [59] as an inci-
dence theoretic analogue of the study of quadrics in projective 3-space containing
a non-empty non-degenerate conic. They come in three kinds: inversive planes
(corresponding to elliptic quadrics), Minkowski planes (corresponding to hyperbolic
quadrics) and Laguerre planes (corresponding to quadratic cones). There are non-
classical circle planes, such as inversive planes arising from ovoids that are not elliptic
quadrics, Minkowski planes arising from sharply 3-transitive sets of permutations
other than PGL(2, F ) and Laguerre planes arising from cones with base an oval that
is not a conic. Van der Waerden and Smid [59] (for inversive and Laguerre planes)
and Kaerlein [30] (for Minkowski planes) characterized the circle planes arising from
quadrics as those that satisfy Miquel’s Theorem [20]. The study of flocks of the
quadratic cone grew out of an analogous study of flocks of Miquelian inversive and
Minkowski planes in the period 1968 -1976. The foundational papers on flocks of
the quadratic cone are [58] and [27].

Flocks of finite Miquelian circle planes were classified for inversive planes in even
characteristic by Thas [53] and in odd characteristic by Orr [39] (correcting an
error of Dembowski [21]); for Minkowski planes the classification was obtained by
combining the results of Thas [54], Bader and Lunardon [3] and Thas [56], with a
simplified proof in [25]. There is little hope for a corresponding result for flocks
of Miquelian Laguerre planes: rather the best that can be done is classification for
small order. This paper completes the classification of those of order up to 71 by
supplying the last omitted case (that of order 64). A brief overview of the subject
is given in [49].

Flocks play an important role in finite geometry. Here, we summarize some of the
main lines of research involving flocks. One of the original motivations for studying
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flocks of the quadratic cone was the Thas-Walker construction of a translation plane
(via the connection of translation planes with spreads from the construction of André
[2] and Bruck-Bose [14]) which appears in Walker [58] and Fisher-Thas [27]. (A
similar construction of translation planes from flocks of Miquelian Minkowski planes
was given by Thas [54] and Walker [58]; and the corresponding construction of
translation planes from flocks of Miquelian inversive planes was given by Thas [53]
and used by Orr [39].)

A method of constructing generalized quadrangles was developed by Kantor and
Payne from 1980 to 1986 [31, 40, 41, 32] which was linked to the study of flocks of
the quadratic cone by Thas in 1987 [55] giving a further motivation for their study.
This paper of Thas inspired the paper [28] where the conditions on a translation
plane to arise from a flock of the quadratic cone via the Thas-Walker construction
were established. Furthermore, the paper [28] contains an easy proof that isomor-
phic flocks correspond to isomorphic translation planes, and conversely; this means
that the correspondence between flocks and translation planes via the Thas-Walker
construction is functorial.

In [23] sets of points in a generalized quadrangle meeting every line in 0 or 2
points were introduced; in [24] these sets in the classical quadrangle Q(4, q), q odd,
were used to characterize the quadrangle itself. Later, in [5], the same sets in
Q(4, q), q odd, were used to construct new flocks of the quadratic cone derived from
old ones, and Kantor named them BLT-sets in [33], after the intial letters of the
surnames of the authors of [5]. The corresponding procedure in even characteristic
was introduced by Payne and Thas in [46]. In [34], Knarr simplified the connection
between BLT-sets and generalized quadrangles. The Knarr construction clarified
(in odd characteristic) the non-functorial nature of the connection between flocks
of the quadratic cone and generalized quadrangles, as the connection between BLT-
sets and generalized quadrangles is functorial (isomorphic BLT-sets correspond to
isomorphic generalized quadrangles) while that between BLT-sets and flocks of the
quadratic cone is not (isomorphic flocks correspond to isomorphic BLT-sets with a
distinguished point). Thus, isomorphic flocks correspond to isomorphic generalized
quadrangles with a distinguished line on the elation point.

A connection between flocks of the quadratic cone in even characteristic and ovals
was developed by Payne [42] and Cherowitzo et al. [17] which led to a collection of
ovals that, in the latter paper, was named a herd. The action of PΓL(2, q) introduced
in [38] shows that herds of ovals play a role in even characteristic analogous to that
of BLT-sets in odd characteristic: the correspondence between herds of ovals and
generalized quadrangles is functorial, while that between herds of ovals and flocks
of the quadratic cone is not; again, isomorphic flocks correspond to isomorphic
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generalized quadrangles with a distinguished line on the elation point.

A hyperbolic fibration is a partition of the projective 3-space into two lines and
a certain number of hyperbolic quadrics. The study of hyperbolic fibrations goes
back to Denniston [22] and was developed, principally, by Baker and Ebert in a
series of papers from 1988 to 2005 [6, 26, 35, 8, 7] before being brought under the
umbrella of a single construction from flocks of the quadratic cone by Baker, Ebert
and Penttila in [9]. This gives a second connection between flocks of the quadratic
cone and translation planes.

Further, subsequent, connections with flocks of the quadratic cone also exist -
with partial geometries (mediated by hemisystems) and with spreads of general-
ized quadrangle (mediated by ovals). The quadrangles arising from flocks contain
hemisystems, from which partial geometries arise [10]. The ovals of a herd give rise
to Tits quadrangles, which, in turn, admit spreads [13].

Let us now turn to the important problem of classifying flocks up to projective
equivalence. The present paper is a contribution to this problem. All flocks of the
quadratic cone of PG(3, q) have been classified for q up to 71, except for q = 64, by
using in most of cases the equivalences discussed above. We emphasise that these
kinds of problems are best attacked via the objects with the coarsest equivalence
relations. It is much easier to determine the flocks after having determined the
BLT-sets or the herds, and much easier to determine the hyperbolic fibrations after
determining the flocks, as each simply requires an orbit calculation of a group already
determined. Moreover, the lists involved are shorter this way - there is less hair-
splitting.

In this paper, we classify the herds in PG(2, 64), up to isomorphism. By the
correspondence between flocks of the quadratic cone in PG(3, q) and herds of ovals
in PG(2, q) for q even, this is equivalent to classifying the flocks of the quadratic
cone in PG(3, 64), up to equivalence. That we are able to do this depends upon
Vandendriessche’s recent determination of the hyperovals of PG(2, 64) [57]. This
is a second reason to approach this problem via herds: applying the knowledge of
hyperovals is easiest in the herd setting.

2 Preliminaries and known results

Let K be a quadratic cone in PG(3, q) with vertex V . A flock of K is a set of
q planes partitioning the cone minus V into disjoint conics. If all the planes of
the flock meet in an (external) line, the flock is called linear, and linear flocks
exist for all q. As all quadratic cones of PG(3, q) are equivalent under the action
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of PΓL(4, q), we can choose K to have equation y2 − xz = 0, with the vertex
V (0, 0, 0, 1). In accordance with this choice of coordinates, a flock of K is a set of
planes J = {[at, bt, ct, 1] : t ∈ GF(q)}. Two flocks of K are projectively equivalent if
there is a collineation of PG(3, q) fixing K and taking the first flock to the second.

On the set of all 2 × 2 matrices over GF(q), there exists an equivalence relation

defined as follows. Let A =

(
x y
w z

)
and B =

(
x′ y′

w′ z′

)
. Then A ≡ B if and only if

x = x′, z = z′ and y + w = y′ + w′. Note that A ≡ B if and only if αAαT = αBαT

if and only if α(A+ AT ) = α(B +BT ), for all α ∈ GF(q)2.

A q-clan is a set of q equivalence classes

C =
{
At : t ∈ GF(q)

}
,

such that As − At is anisotropic, that is u(As − At)u
T = 0 if and only if u = 0.

Note that the definition does not depend on the choice of the representatives of the

classes in C. Therefore, one may assume that At =

(
at bt
0 ct

)
. In [55] Thas proved

that the set C is a q-clan if and only if J (C) = {[at, bt, ct, 1] : t ∈ GF(q)} is a flock
of K.

Two q-clans C = {At : t ∈ GF(q)} and C ′ = {A′t : t ∈ GF(q)} are equivalent if there
are λ ∈ GF(q) \ {0}, B ∈ GL(2, q), M a 2× 2 matrix over GF(q), σ ∈ Aut(GF(q))
and a permutation π : t 7→ t′ of GF(q) such that

At′ ≡ λBAσtB
T +M,

for all t ∈ GF(q). Hence, one can assume that A0 is the zero matrix.

Let C = {At : t ∈ GF(q)} be a q-clan. Consider the group G = {(α, c, β) : α, β ∈
GF(q)2, c ∈ GF(q)} with the binary operation (α, c, β) · (α′, c′, β′) = (α+α′, c+ c′+
β(α′)T , β + β′). Then, the following subgroups of G are defined:

A(∞) = {(0, 0, β) : β ∈ GF(q)2}, A∗(∞) = {(0, c, β) : c ∈ GF(q), β ∈ GF(q)2}

A(t) = {(α, αAtαT , α(At + ATt )) : α ∈ GF(q)2},

A∗(t) = {(α, c, α(At + ATt )) : α ∈ GF(q)2, c ∈ GF(q)},
for t ∈ GF(q). These form a so called 4-gonal family for G [32, 41], starting from
which a generalized quadrangle GQ(C) of order (q2, q) may be constructed in the
standard way [31], [47, A.1.1, A.1.2].

The points are:
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(i) the elements of G;

(ii) the cosets A∗(t)g, t ∈ GF(q) ∪ {∞}, g ∈ G;

(iii) the symbol (∞).

The lines are:

(a) the cosets A(t)g, t ∈ GF(q) ∪ {∞}, g ∈ G;

(b) the symbols [A(t)], t ∈ GF(q) ∪ {∞}.

Incidence is defined by the following rules: the point (∞) is on the q + 1 lines of
type (b); a point A∗(t)g is on the line [A(t)] and on the q lines of type (a) contained
in A∗(t)g; a point g is on the q + 1 lines A(t)g that contain it. There are no other
incidences.

Therefore, a q-clan C gives rise to the generalized quadrangle GQ(C). In particular
GQ(C) is an elation GQ about the (elation) point (∞) [32, 40, 41]. Because of the
connection between q-clans and flocks of the quadratic cone, a GQ(C) is also called
a flock quadrangle.

Theorem 2.1. [44] (The Fundamental theorem of q-clan geometry) For any prime
power q, let C = {At : t ∈ GF(q)} and C ′ = {A′t : t ∈ GF(q)} be two (not necessarily

distinct) q-clans such that A0 = A′0 =

(
0 0
0 0

)
. Then, the following are equivalent:

(i) C and C ′ are equivalent.

(ii) The flocks J (C) and J (C ′) are projectively equivalent.

(iii) GQ(C) and GQ(C ′) are isomorphic by an isomorphism mapping (∞) to (∞),
[A(∞)] to [A′(∞)], and (0, 0, 0) to (0, 0, 0).

Remark 2.2. In [4], it is proved that, for a given q-clan C, there are, up to equiv-
alence, q + 1 flocks of the quadratic cone associated with GQ(C), one for each line
through (∞). Two such flocks are projectively equivalent if and only if the corre-
sponding lines belong to the same orbit of the stabilizer of (∞) in the automorphism
group of the quadrangle.
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When q is odd, flocks of the quadratic cone are related to BLT-sets of the parabolic
quadric Q(4, q) in PG(4, q). A BLT-set of Q(4, q) is a set B of q + 1 points such
that every point of Q(4, q) not in B is collinear (on Q(4, q)) with 0 or 2 points of B.
BLT-sets exist only for q odd [23]. Two BLT-sets are equivalent if they are in the
same orbit of the automorphism group PΓO(5, q) of Q(4, q).

Theorem 2.3. [5] Every flock of the quadratic cone in PG(3, q), q odd, determines
a BLT-set of Q(4, q). Conversely, given a BLT-set B of Q(4, q), q odd, and a point
P of B, there arises a flock of the quadratic cone of PG(3, q). Moreover, equivalent
flocks give equivalent BLT-sets, and conversely, two flocks arising from the points P
and Q of a BLT-set B are equivalent if and only if P and Q lie in the same orbit of
the stabilizer of B in PΓO(5, q).

When q is even, flocks of the quadratic cone are related to herds of ovals in
PG(2, q). An oval in PG(2, q) is a set of q+1 points, no three collinear. A hyperoval is
a set of q+2 points, no three collinear, and hyperovals exist only when q is even. Since
PGL(3, q) is transitive on the ordered quadrangles of PG(2, q), we may assume that a
hyperoval contains the fundamental quadrangle {(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)}.
Thus, up to equivalence, a hyperoval H can be represented as

H = {(1, t, f(t)) : t ∈ GF(q)} ∪ {(0, 0, 1), (0, 1, 0)},

where f is a permutation of GF(q), with f(0) = 0 and f(1) = 1. Permutations that
describe hyperovals in this way are called o-polynomials [29].

Starting from an oval O in PG(2, q) embedded in PG(3, q), Tits constructed a
class of (non-classical) GQs of order (q, q) [21, 47].
The points are: (i) the points of PG(3, q) not in PG(2, q), (ii) the planes of PG(3, q)
meeting PG(2, q) in a unique point of O and (iii) the symbol (∞).
The lines are: (a) the lines of PG(3, q) not in PG(2, q) meeting PG(2, q) in a point
of O and (b) the points of O.
Incidences are as follows: a point of type (i) is incident only with the lines of type (a)
which contain it, a point of type (ii) is incident with all lines of type (a) contained
in it and with the unique line of type (b) on it, the point of type (iii) is incident
with all lines of type (b) and no line of type (a). This GQ is denoted by T2(O).

Theorem 2.4. [41] Let q be even, C a q-clan, Q a point of GQ(C) not collinear
with (∞). Then, GQ(C) has q + 1 subquadrangles on (∞) and Q, each isomorphic
to T2(Oi), for some ovals O1, . . . ,Oq+1 in PG(2, q).

The above theorem led Cherowitzo, Penttila, Pinneri and Royle [17] to introduce
the concept of a herd of ovals, and to prove that in even characteristic every flock of
the quadratic cone, via the associated q-clan, gives a herd of ovals, and conversely.
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A herd of ovals in PG(2, q), q even, is a family of q+1 ovals {Os : s ∈ GF(q)∪{∞}},
each of which has nucleus (0, 0, 1), contains the points (1, 0, 0), (0, 1, 0), (1, 1, 1), and
such that

O∞ = {(1, t, f∞(t)) : t ∈ GF(q)} ∪ {(0, 1, 0)}

Os = {(1, t, fs(t)) : t ∈ GF(q)} ∪ {(0, 1, 0)}, s ∈ GF(q),

where

fs(t) =
f0(t) + κsf∞(t) + s1/2t1/2

1 + κs+ s1/2
, s 6= 0, (1)

for some κ ∈ GF(q) with Tr(κ) = 1; here and below, Tr stands for the absolute
trace function of GF(q), and the exponent 1/2 represents the field automorphism
x 7→ xq/2. Furthermore, D(fs) and D(f∞) will be used to refer to Os and O∞ in the
herd, respectively.

When q is even, for a q-clan C =
{
At : t ∈ GF(q)

}
, it is possible to assume that

At =

(
f0(t) t1/2

0 κf∞(t)

)
, where Tr(κ) = 1, f0 and f∞ are permutations of GF(q)

satisfying f0(0) = 0 = f∞(0), f0(1) = 1 = f∞(1) and

Tr

(
κ(f0(s) + f0(t))(f∞(s) + f∞(t))

s+ t

)
= 1,

for all s, t ∈ GF(q) with s 6= t. A q-clan (q even) written in this form is said to be
normalized.

In [17] it is proved that a herd of ovals gives rise to a (normalized) q-clan C =
{At : t ∈ GF(q)}, with

At =

(
f0(t) t1/2

0 κf∞(t)

)
.

Conversely, such a (normalized) q-clan C is shown to correspond to a herd of
ovals H(C). We emphasize that this notation encloses all information, namely the
o-polynomials f0, f∞ and the parameter κ, to write the ovals in the herd.

In [38] the so-called magic action was introduced. Here, we recall the definition
and some results linked to it. Let F be the vector space of all functions f : GF(q)→
GF(q) such that f(0) = 0. It is well known that each element of F can be written as
a polynomial in one variable of degree at most q− 1. Furthermore, if f(x) =

∑
aix

i

and γ ∈ Aut(GF(q)), then fγ(x) =
∑
aγi x

i.
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Any element ψ = (A, γ) ∈ PΓL(2, q), with A =

(
a b
c d

)
and γ ∈ Aut(GF(q)), acts

on F by mapping f to ψf , where

ψf(x) = |A|−1/2
[
(bx+ d)fγ

(
ax+ c

bx+ d

)
+ b x fγ

(a
b

)
+ d fγ

( c
d

)]
.

This action of PΓL(2, q) on F is called magic action.

It is known that for each o-polynomial f ∈ F we have that its degree is at most
q−2, f(1) = 1, and the function fs, where fs(0) = 0 and fs(x) = (f(x+s)+f(s))/x,
x 6= 0, is a permutation of GF(q), for each s ∈ GF(q). Conversely, for every
polynomial f ∈ F satisfying the above properties, the point-set D = {(1, t, f(t)) :
t ∈ GF(q)} ∪ {(0, 1, 0)} is an oval of PG(2, q) with nucleus (0, 0, 1) [29]. If f(1) = 1
is not required but the other conditions are, then f is an o-permutation over GF(q).

For an o-polynomial there are q − 1 o-permutations, namely the non-zero scalar
multiples of the o-polynomial, and for an o-permutation f there is the unique o-
polynomial (1/f(1))f . For f ∈ F , 〈f〉 will denote the one-dimensional subspace of
F containing f . By extending the previous notation, if f is an o-permutation then
we use D(f) for the oval {(1, t, f(t)) : t ∈ GF(q)} ∪ {(0, 1, 0)}.

Theorem 2.5. [38, Theorem 4,Theorem 6] The magic action preserves the set of
o-permutations. Furthermore, if D(f) and D(g), with f, g o-permutations, are equiv-
alent under PΓL(3, q), then there is ψ ∈ PΓL(2, q) such that ψf ∈ 〈g〉.

Let H(C) = {D(fs) : s ∈ GF(q) ∪ {∞}} and H(C ′) = {D(f ′t) : t ∈ GF(q) ∪ {∞}}
be herds. We say that H(C) and H(C ′) are isomorphic if there exists ψ ∈ PΓL(2, q)
such that for all s ∈ GF(q) ∪ {∞} we have ψfs ∈ 〈f ′t〉 under the magic action, and
where the induced map s 7→ t is a permutation of GF(q) ∪ {∞}.

In the light of Theorem 16 in [38], for q even, we can re-write the Fundamental
Theorem augmented with the following result.

Theorem 2.6. The herds H(C) and H(C ′) are isomorphic if and only if GQ(C)
and GQ(C ′) are isomorphic by an isomorphism mapping (∞) to (∞) and (0, 0, 0) to
(0, 0, 0).

The above equivalences have been used by many researchers to classify the flocks
of the quadratic cone for 13 ≤ q ≤ 71, q 6= 64. The following result summarizes the
state of the art.

Theorem 2.7. All flocks of the quadratic cone in PG(3, q) are classified for q ≤ 71,
q 6= 64.
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See [55] for q = 2, 3, 4; [18] for q = 5, 7, 8; [37] for q = 9; [19] for q = 11; [51] for
q = 13; [19, 13] for q = 16; [50] for q = 17; [36] for q = 19, 23, 25, 27, 29; [13] for
q = 32; [11] for q = 31, 37, 41, 43, 47, 49, 53, 59, 61, 67; [1] for q = 71.

In this paper we fill the gap by providing the classification of the flocks of the
quadratic cone for q = 64.

3 Computational results

Our aim in this section is to classify all flocks of the quadratic cone in PG(3, 64), by
bringing to bear our knowledge of ovals of PG(2, 64), based on Vandendriessche’s
determination of the hyperovals of PG(2, 64) [57]. It is clear that the most convenient
model to approach this classification from this perspective is that of herds of ovals
of PG(2, 64). So, we aim to classify by computer all herds of ovals in PG(2, 64), up
to isomorphism.

Let us now discuss the flocks of the quadratic cone in PG(3, 64) arising from the
flock quadrangle by means of Remark 2.2. For convenience we introduce the Subiaco
herd as the herd of ovals associated with the Subiaco q-clan. Likewise, the Adelaide
herd is the herd of ovals associated with the Adelaide q-clan.

For q = 64 there are three known q-clans: the classical q-clan, the Subiaco q-clan
and the Adelaide q-clan, which we recall below. The q-clan associated with the linear
flock for q even is

CL : At =

(
t1/2 t1/2

0 κ t1/2

)
,

where Tr(κ) = 1. The herd H(CL) consists of q + 1 copies of a non-degenerate
conic. The elation generalized quadrangle associated with this q-clan is isomorphic
to H(3, q2) [47]. For this reason, both CL and H(CL) are called classical.

The Subiaco q-clan, q even, [17] is

CS : At =

(
f0(t) t1/2

0 κ f∞(t)

)
,

where, for some δ ∈ GF(q), with δ2 + δ + 1 6= 0 and Tr(1/δ) = 1, we have
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κ =
δ2 + δ5 + δ1/2

δ(1 + δ + δ2)

f0(t) =
δ2(t4 + t) + δ2(1 + δ + δ2)(t3 + t2)

(t2 + δt+ 1)2
+ t1/2

f∞(t) =
δ4t4 + δ3(1 + δ2 + δ4)t3 + δ3(1 + δ2)t

(δ2 + δ5 + δ1/2)(t2 + δt+ 1)2
+

δ1/2

(δ2 + δ5 + δ1/2)
t1/2.

For q = 2e, e > 2 even, m ≡ ± q−1
3

(mod q + 1) and some β ∈ GF(q2) \ {1} with
βq+1 = 1, the Adelaide q-clan [16] is

CA : At =

(
f0(t) t1/2

0 κ f∞(t)

)
,

where

κ =
T (βm)

T (β)
+

1

T (βm)
+ 1

f0(t) =
T (βm)(t+ 1)

T (β)
+

T ((βt+ βq)m)

T (β)(t+ T (β)t1/2 + 1)m−1
+ t1/2

κf∞(t) =
T (βm)

T (β)
t+

T ((β2t+ 1)m)

T (β)(T (βm)(t+ T (β)t1/2 + 1)m−1
+

1

T (βm)
t1/2,

with T (x) = x+ xq, for all x ∈ GF(q2).

As the automorphism group of each corresponding flock quadrangle acts transi-
tively on the lines through (∞), each of these quadrangles gives rise to only one
class of equivalence of flocks of the quadratic cone. The above property for the
automorphism group is true for the GQ arising from the classical q-clan since it is
isomorphic to H(3, q2); see [4, 43, 45] for the Subiaco q-clan and [16, Corollary 4.5]
for the Adelaide q-clan, with q = 2e, e ≥ 6. Therefore, up to isomorphism, there are
at least three herds in PG(2, 64) and so at least three flocks of the quadratic cone in
PG(3, 64). In addition, the ovals in the Subiaco herd H(CS) belong to two different
equivalence classes of ovals, one with stabilizer in PΓL(3, 64) of order 60, the other
with stabilizer of order 15 [45]; the Adelaide herd H(CA) consists of equivalent ovals
whose stabilizer in PΓL(3, 64) has order 12 [50].

Theorem 3.1. The flocks of the quadratic cone in PG(3, 64) are, up to equivalence,
the linear flock J (CL), the Subiaco flock J (CS) and the Adelaide flock J (CA).
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Proof. In [57] it was shown that, up to equivalence, there are exactly four hyperovals
in PG(2, 64): the regular hyperoval, the Adelaide hyperoval, the Subiaco I hyperoval,
the Subiaco II hyperoval. The corresponding o-polynomials can be read off from the
q-clans above: t1/2 gives the regular hyperoval, f0 from the Adelaide q-clan CA
gives the Adelaide hyperoval, f0 from the Subiaco q-clan CS gives the Subiaco I
hyperoval and fa from herd H(CS) arising from the Subiaco q-clan gives the Subiaco
II hyperoval, where a2 + a+ 1 = 0.

Since every oval lies in a unique hyperoval, all the ovals in PG(2, 64), up to equiv-
alence, can be obtained by removing one “representative” from each point-orbit of
the stabilizer in PΓL(3, 64) of each hyperoval, considered as a permutation group
acting on it. This operation produces 19 isomorphism classes of ovals in PG(2, 64)
(obtained by Siciliano on behalf of Penttila for a paper on the uniqueness of the
inversive plane of order 64 [48]). By Theorem 2.5, the magic action produces all
o-polynomials over GF(64), split in 19 classes. Then, taking into account the notion
of isomorphism of herd, we intend to find all herds containing one of the above 19
ovals.

According to the definition of herd, each oval is transformed to contain the points
(0, 1, 0), (1, 0, 0), (1, 1, 1) and have nucleus (0, 0, 1). Then, we obtain the associated
o-polynomials by Lagrange interpolation. Via the magic action, we get all the ovals
in PG(2, 64) on the fundamental quadrangle, whose number is 17297346, and we
store the corresponding o-polynomials just in terms of their coefficients.

Let f0 and f∞ be two o-polynomials defining the herd H = {Os : s ∈ GF(q) ∪
{∞}}, where Os = {(1, t, fs(t)) : t ∈ GF(q)} ∪ {(0, 1, 0)}, with fs(t) as in (1), for
some κ ∈ GF(q), Tr(κ) = 1. By replacing f∞ with fs, s 6= 0, the same herd arises
but for κ′ = κ + s−1 + s−1/2. It is well known that every element of GF(q), q even,
of absolute trace 0 can be written as α + α2, with α ∈ GF(q) [29]. This implies
that, as s varies in GF(q) \ {0}, κ′ describes all the elements of absolute trace 1 in
GF(q). Thus, in order to detect all pairs (f0, f∞) giving a herd, it suffices to fix
an element of absolute trace 1, say κ. Since we are looking for herds in PG(2, 64)
up to isomorphism, we may fix f0 to be one of the o-polynomials associated with
the 19 ovals in PG(2, 64). Because of the above arguments, for every such f0, two
distinct pairs of generators (f0, f∞) and (f0, f̃∞) will arise for each type of oval in
each corresponding herd, except for the classical one for which all polynomials are
equal to t1/2.

At this point, once f0 is fixed, for each o-polynomial f∞ in the 19 classes under
the magic action, we check if fs is an o-permutation, first for s = κ−2 (so that
1 + κs + s1/2 = 1). We find 25 such pairs. Having made this first selection, we
proceed by checking the same condition, on all the above 25 pairs, for all non-zero s
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in GF(64). Only 7 pairs survive, so only 7 herds are obtained. In order to recognize
the type of each heard, we calculate the stabilizer in PΓL(3, 64) of all the ovals in the
herd. Via this approach, we find one pair giving the classical herd, two pairs giving
the Adelaide herd and four pairs giving the Subiaco herd. Therefore, every herd
in PG(2, 64) is isomorphic to the classical herd, the Adelaide herd or the Subiaco
herd, from which the complete classification of the flocks of the quadratic cone in
PG(3, 64) follows.

Remark 3.2. Our programs, written in MAGMA [12], were run on a Mac OS
system with one quad core Intel Core i7 2.2 GHz processor. All the computational
operations take approximately 56 hours of CPU time. The code is available on
email request to the 3rd author. It is interesting to observe that writing a program
to Lagrange interpolate over GF(64) is faster than the inbuilt Magma Interpolation
command, and this difference in speed was necessary for us. In fact, we had to deal
with 17297346 o-polynomials. In order to reduce considerably the memory used
for these o-polynomials, we stored their coefficients as elements of the vector space
V (31, 64), the coefficients of odd powers of t being zero [52]. In this way we needed
just 1.5 Gb of RAM versus 6 Gb if the same data were stored as a set of arrays.
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