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Editorial on the Research Topic

Recent Insights Into the Double Role of Hydrogen Peroxide in Plants

Reactive oxygen species (ROS) of varied types can be yielded in plants at several primary sites
(such as the chloroplast, mitochondria, and peroxisomes) under normal aerobic metabolism via
processes including photosynthetic and respiratory electron transport chains. However, impaired
oxidant-antioxidant balance and extreme growth conditions in plants are bound to cause increases
in the cellular concentrations of radical and non-radical ROS such as superoxide anions (O2•−),
hydroxyl radical (OH•), singlet oxygen (1O

2), and hydrogen peroxide (H2O2). On the one hand,
H2O2 has no unpaired electrons and is moderately reactive. Owing to its relative stability compared
to other ROS and its capacity for diffusing through aquaporins in the membranes and over more
considerable distances within the cell (Bienert et al., 2007), H2O2 acts as a stress signal transducer
and contributes to numerous physiological functions in plants. On the other hand, H2O2 is a
relatively long-lived molecule with a half-life of 1ms, readily crosses biological membranes, and
consequently can bring oxidative consequences far from the site of its formation (Neill et al., 2002;
Sharma et al., 2012; Sehar et al., 2021). The Frontiers Research Topic “Recent Insights into the Double
Role of Hydrogen Peroxide in Plants” highlighted the major mechanisms underlying the dual role
of H2O2 in response to different abiotic stresses in plants. This Research Topic incorporated 19
publications, including 10 original research articles, 8 reviews, and one perspective article.

H2O2-METABOLISM AND H2O2-PRIMING ROLES IN ABIOTIC

STRESS MANAGEMENT

As a potent signaling molecule H2O2 gets produced in routine in stressed or
non-stressed conditions via dismutation of O2•− radicals through superoxide
dismutase (SOD) during electron transport in different compartments of the plant
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cell, and is involved in the regulation of the plant growth,
metabolism, and stress tolerance. It has also been noted that
at higher concentrations in the cell during oxidative stress,
ROS, including H2O2, can oxidize vital biomolecules (like
nucleic acids, proteins, and lipids) and significantly impacts the
seed germination process (Wojtyla et al.). Among the major
abiotic stress factors, several heavy metals provoke increases
in the production of ROS through plasma membrane-bound
NADPH oxidases. However, the relationship of H2O2 has
also been established in heavy metal tolerance in crop plants
(Cuypers et al.). H2O2 directly mediates metal-induced oxidative
signaling, where the production of H2O2 may involve H2O2

receptors, redox-sensitive transcription factors and inhibition
of phosphatases (Miller et al., 2008). H2O2 sensing in metal-
exposed plants also involves activation of mitogen-activated
protein kinase (MAPK) pathways (Opdenakker et al., 2012).
Additionally, interaction of H2O2 with Ca2+ (Baliardini et al.,
2015), NO (Arasimowicz-Jelonek et al., 2012) and oxylipins
(Tamás et al., 2009; Keunen et al., 2013) was also reported
in metal-exposed plants. Though excess accumulation of H2O2

and polyamines (PAs) can be detrimental for the plant cell
leading to premature cell death, a fine-tuning of these signaling
molecules (H2O2 and PAs) can result in stress management
by coordinating intra-cellular and systemic signaling systems
(Gupta et al.). Polyamine oxidase (PAO)-induced production of
H2O2 was found to be involved in the coleorhiza-limited rice
seed germination (Chen et al.). ROS-specific probe DCFH2-DA
enabled confocal laser scanning microscopy revealed a high level
of ROS in the stigma at different developmental stages (unopened
flower buds, recently opened flowers, dehiscent anthers, and
flowers after fertilization) of scrutinized plants (Zafra et al.).

During evolution, plants have developed an efficient ROS-
scavenging system constituting an array of enzymatic (SOD;
CAT, catalase; APX, ascorbate peroxidase; GR, glutathione
reductase; MDHAR, monodehydroascorbate reductase; DHAR,
dehydroascorbate reductase; GPX, glutathione peroxidase;
GOPX, guaiacol peroxidase, and GST, glutathione-S-transferase)
and non-enzymatic (AsA, ascorbic acid; GSH, glutathione;
phenolic compounds, alkaloids, non-protein amino acids, and
α-tocopherols) antioxidants to get rid of excessive ROS in the
cell (Singh et al.). Notably, NADH oxidase (RBOH), alternative
oxidase (AOX), the plastid terminal oxidase (PTOX), and
the malate valve with the malate dehydrogenase isoforms are
involved in maintenance of the cellular redox homeostasis under
salinity stress (Hossain and Dietz). In Arabidopsis cell suspension
cultures, anoxia stress/shock led to significant increases in H2O2

(and also nitric oxide, NO); however, re-oxygenation maintained
the components of ROS scavenging machinery like ascorbate-
glutathione (AsA-GSH) system, α-tocopherol, and eventual cell
survival as result of decreased H2O2 (Paradiso et al.). Eutrema
salsugineum (halophyte) and Arabidopsis thaliana (glycophyte)
exhibited a differential pattern of accumulation and scavenging
of ROS. In particular, compared to A. thaliana chloroplasts, E.
salsugineum chloroplasts showed a constitutive increase and
the cell’s steady-state regulation of H2O2 level which prepared
this plant for ROS-control mainly due to an efficient ROS-
scavenging machinery including glucosinolates content and

well-coordinated tuning of hormonal signaling (Pilarska et al.).
Elevation in the cellular level of H2O2 and its consequences
can be controlled by brassinosteroids, a class of plant-specific
essential steroid hormones. To this end, in tomato seedlings,
brassinosteroid (24-epibrassinolide) ameliorated the impacts of
zinc oxide nanoparticles-caused elevated H2O2 by enhancing
the activity of enzyme involved in superoxide-dismutation
(SOD), H2O2-metabolizing enzymes (catalase, CAT; and APX),
increasing GSH-regeneration (as a result of increased GSH
reductase activity; and consequently decreasing GSH-oxidation),
finally inducing the transcripts of Cu/Zn SOD, GSH1, CAT1,
and GR1 (Li et al.). In a comprehensive in silico study, APX
and GSH-peroxidase (GPX) genes/proteins from 18 different
plant species were identified and compared in order to unravel
their significance in excessive H2O2 management (Ozyigit
et al.). Notably, APX and GPX were found to be involved in the
metabolism of antioxidants and secondary metabolites, redox
homeostasis, stress adaptation, and photosynthesis/respiration.
The major redox proteins namely plant peroxiredoxins (Prxs)
and sulfiredoxins (Srxs) are involved in antioxidant defense and
redox signaling in stressed plants. Srxs were are also found to be
involved in antioxidant defense and redox signaling in response
to environmental stimuli; post-translational modifications of
Srxs regulate the ROS-transduction and bioactivity. On the other
hand, Prxs are sensitive to glutathionylation. Investigation of the
glutathionylation of recombinant chloroplastic 2-Cys Prx and
mitochondrial Prx IIF of pea plants revealed glutathionylation-
mediated change of the decameric form of 2-Cys Prx into
its dimeric glutathionylated form. Additionally, the reduced
dimeric form of Prx IIF was glutathionylated without changing
its oligomeric state (Calderón et al.). Thus, glutathionylation
was argued to depend on the GSH/GSSG ratio owing to the
perceptible difference in the exact effect on the 2-Cys Prx and
Prx IIF proteins.

H2O2-priming (exposure of seeds, seedlings, or plants to
stressors/chemical compounds that makes them ready to tolerate
the later stress events) helps in biotic and abiotic stress tolerance
in various crop plants by triggering the ROS scavenging
machinery (Dikilitas et al., 2020). Exogenous supply of H2O2

can induce stress tolerance under salt, drought, chilling, high
temperatures, and heavy metal stress (Hossain et al.). In a study
on mustard (Brassica juncea L.) cultivars, H2O2-induced reversal
of the major negative impacts of Ni stress (200mg Ni kg−1

soil) led to increased photosynthetic nitrogen-use efficiency,
sulfur-use efficiency, and GSH content and decreased levels of
lipid peroxidation and electrolyte leakage (Khan et al.). Notably,
H2O2 priming-mediated increased tolerance to cadmium-caused
oxidative stress in Brassica napus involved fine-tuning between
the glyoxalase system and the components of ROS-scavenging
machinery (Hasanuzzaman et al.).

H2O2 CROSSTALK WITH OTHER

MOLECULES

Along with H2O2, other signalingmolecules (such as nitric oxide,
NO; and calcium, Ca2+) and phytohormones (such as jasmonic
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acid, JA; salicylic acid, SA; and abscisic acid, ABA) play key roles
in stress signaling cascades and crosstalk during plants’ stress
responses (Saxena et al., 2016). To this end, the crosstalk of
H2O2 with NO and Ca2+ was argued to contribute to regulation
of the plant development and abiotic stress responses (Niu and
Liao). Notably, the role of SA in adventitious root formation
involved H2O2 acting as a downstream messenger (Yang et al.,
2013). Having emerged as a master regulator of stress responses,
ABA signaling pathway triggers significant changes in gene
expression and plants’ adaptive physiological responses (Saxena
et al., 2016). There occurs a close relation among the MAPK
cascades, ABA, JA, SA, and H2O2 where exogenous application
of H2O2 triggers MAPK cascade, which in turn involves ABA,
JA, and SA (Saxena et al.). ABA-induced H2O2 accumulation
can protect plant parts (such as pumpkin-grafted cucumber
leaves) against Ca(NO3)2 via ABA/H2O2 signaling-led induction
of ROS-scavenging machinery (Shu et al.). S-nitrosoglutathione
reductase (GSNOR) determines the level of S-nitrosothiol and
thereby regulates NO-signaling in plants (Lindermayr, 2018;
Jahnová et al., 2019). In A. thaliana, H2O2 in vitro led to
inhibition of the activity of GSNOR and significantly changed
NO-homeostasis, which in turn resulted in the activation of ROS-
scavenging machinery in order to suppress the oxidative damage
(Kovacs et al.).

CONCLUSIONS AND FUTURE

PERSPECTIVE

In the current Research Topic “Recent insights into the double
role of hydrogen peroxide in plants,” the contributions discussed

the versatile role of H2O2 as a signaling molecule that triggers
the upregulation of the components of antioxidant defense
machinery and imparts tolerance in crop plants against the
variety of environmental cues. The crosstalk of H2O2 with
other signaling molecules and phytohormones leads to signal
transduction in response to various stresses and regulates
plant growth, development, and stress tolerance. Therefore,
further understanding on the coordination of H2O2 and other
signaling molecules NO, Ca2+, MAPK, SA, and ABA can pave
the way to achieving tolerance in crop plants to increasing
stress conditions.
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