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Abstract

A pseudo-oval of a finite projective space over a finite field of odd order q is a
configuration of equidimensional subspaces that is essentially equivalent to a trans-
lation generalised quadrangle of order (qn, qn) and a Laguerre plane of order qn (for
some n). In setting out a programme to construct new generalised quadrangles,
Shult and Thas [17] asked whether there are pseudo-ovals consisting only of lines
of an elliptic quadric Q−(5, q), non-equivalent to the classical example, a so-called
pseudo-conic. To date, every known pseudo-oval of lines of Q−(5, q) is projectively
equivalent to a pseudo-conic. Thas [18] characterised pseudo-conics as pseudo-ovals
satisfying the perspective property, and this paper is on characterisations of pseudo-
conics from an algebraic combinatorial point of view. In particular, we show that
pseudo-ovals in Q−(5, q) and pseudo-conics can be characterised as certain Delsarte
designs of an interesting five-class association scheme. These association schemes
are introduced and explored, and we provide a complete theory of how pseudo-ovals
of lines of Q−(5, q) can be analysed from this viewpoint.
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1 Introduction

A pseudo-oval of the finite projective space PG(3n−1, q) is a set of qn+1 subspaces, each
of dimension n− 1, such that any three distinct elements of the set span the whole space.
Such configurations are essentially equivalent to translation generalised quadrangles of
order (qn, qn) [13]. For q odd, a pseudo-oval of PG(3n− 1, q) is equivalent to a Laguerre
plane of order qn.

The classical example can be constructed in the following way. If we consider the
GF(qn)-vector space underlying PG(2, qn) as a GF(q)-vector space, each point of PG(2, qn)
becomes an (n − 1)−subspace of PG(3n − 1, q). In particular, the qn + 1 subspaces
corresponding to the points of a non-degenerate conic of PG(2, qn) form a pseudo-oval,
known as pseudo-conic. Thas [18] characterised pseudo-conics as pseudo-ovals of PG(3n−
1, q), q odd, satisfying the perspective property (see Section 3 for more details).

Let q be odd. For n even any pseudo-conic belongs to an elliptic quadric Q−(3n −
1, q), and for n odd any pseudo-conic belongs to a non-degenerate parabolic quadric of
PG(3n−1, q) [17]. For q even a pseudo-oval is never contained in a non-degenerate quadric
[18]. In the quest to construct new generalised quadrangles, Shult and Thas [17] asked
whether there are pseudo-ovals consisting only of lines of an elliptic quadric Q−(5, q), non-
equivalent to the classical example. To date, every known pseudo-oval of lines of Q−(5, q)
is projectively equivalent to a pseudo-conic. Indeed, the discovery of a new pseudo-oval
of Q−(5, q) would result in a new generalised quadrangle and new Laguerre plane.

Under the Klein correspondence, pseudo-ovals contained in Q−(5, q) are mapped onto
special sets of H(3, q2) [16]. A special set of the Hermitian surface H(3, q2) is a set S of
q2 + 1 points such that any point of H(3, q2) not in S is orthogonal to 0 or 2 points of
S [16]. From a result by De Soete and Thas [8], q is necessarily odd. Bader, O’Keefe,
Penttila in [1] and, independently, Shult in [16] constructed an example of a special set of
H(3, q2). This consists of the q2 + 1 points of an elliptic quadric over GF(q) which is the
complete intersection of H(3, q2) with a hyperbolic quadric of PG(3, q2) whose polarity
commutes with the given unitary one. The special sets in this class are called of CP-type
[4]. Theorem 3.1 in [4] gives a characterisation of special sets of CP-type in terms of the
unitary form defining H(3, q2). By [5, Theorem 2.1], a special set of CP-type corresponds
to a pseudo-conic.

This paper is on characterisations of pseudo-conics from an algebraic combinatorial
point of view. In particular, we will show (see Theorem 5.6) that pseudo-ovals and
pseudo-conics in Q−(5, q) can be characterised as certain Delsarte designs of an interesting
five-class association scheme. These association schemes are introduced and explored, and
we provide a complete theory of how pseudo-ovals of lines of Q−(5, q) can be analysed
from this viewpoint.

The paper is organised as follows. Section 2 contains some notation and introductory
material on projective geometry, classical polar geometries and association schemes. In
Section 3 we investigate the perspective property for lines of Q−(5, q). By representing
subspaces of PG(5, q) in a matrix form, we give an algebraic characterisation of being in
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perspective for a triple of lines of Q−(5, q) (Proposition 3.1). This allows us to translate
the above algebraic condition in terms of a (local) geometric property involving certain
configurations arising from non-degenerate hyperplanes (Proposition 3.5). In Section 4 an
imprimitive five-class association scheme is constructed on certain points of H(3, q2). The
relations of the scheme are defined by considering a function, introduced by Shult in [16],
associated with the hermitian form of H(3, q2). As a by-product, the study of its quotient
scheme produces a strongly regular graph isomorphic to the bilinear forms graph Bil2(q)
(Proposition 4.10). Section 5 is the real core of the whole paper: the opening theorem,
providing the link between Shult’s function and the property to be in perspective for the
lines of Q−(5, q), allows us to consider pseudo-ovals of Q−(5, q), as well as pseudo-conics,
as subsets of a five-class association scheme on certain lines of Q−(5, q), isomorphic to the
scheme explored in Section 4. In this setting, from comparing the characteristic vector of
a pseudo-oval with the common eigenspaces of the scheme, we provide a characterisation
of pseudo-conics in terms of the configurations introduced in Section 3.1. Finally, Section
6 contains some computational results leading to the conjecture that every pseudo-oval
in Q−(5, q) is a pseudo-conic, for all q odd.

2 Background theory

For any given n−dimensional vector space V = V (n, F ) over the field F , the projective
geometry defined by V is the partially ordered set of all subspaces of V , and it will be
denoted by PG(V ). Two elements of PG(V ) are said to be disjoint or skew if they intersect
in the zero vector. In order to simplify notation, for each proper subspace U of V , that
is an element of PG(V ), we will use the same letter for the projective geometry defined
by U . If S ⊂ V , we use 〈S〉 to denote the subspace spanned by S.

If F is the finite field GF(q) with q elements, then we may write V = V (n, q) and
PG(n − 1, q) instead of PG(V ). The 1-dimensional subspaces are called points, the 2-
dimensional subspaces are called lines, the 3-dimensional subspaces are called planes, and
the (n − 1)−dimensional subspaces are called hyperplanes of PG(V ). If V is endowed
with a non-degenerate alternating, quadratic or Hermitian form of Witt index m, the
set of totally isotropic (or totally singular, in case of a quadratic form) subspaces of
V is a polar geometry of rank m of PG(V ), which is called symplectic, orthogonal or
unitary, respectively. When n = 2r, the vector space V has precisely two (non-degenerate)
quadratic forms, and they differ by their Witt index. It can be r−1 or r, and the quadratic
form is elliptic or hyperbolic, respectively. It is customary to set sgn(Q) = − in the former
case, and sgn(Q) = + in the latter. In terms of the associated projective geometry PG(V ),
the orthogonal polar geometry arising from an elliptic (resp. hyperbolic) quadratic form is
known as an elliptic (resp. hyperbolic) quadric of PG(V ), and it is denoted by Q−(n−1, q)
(resp. Q+(n−1, q)). Our principal reference on projective geometries and polar geometries
is [19].

Association schemes are important objects in algebraic combinatorics that generalise
distance-regular graphs, linear codes, and combinatorial designs. As we shall see, the
theory of association schemes can be a powerful tool when applied to some problems in
finite geometry. An association scheme X = (X, {Ri}06i6d) is a set of vertices X and
binary relations Ri on X satisfying the following:

1. R0 is the diagonal relation, that is, R0 = {(x, x) : x ∈ X}.
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2. {Ri} is closed under taking the opposite relation; that is, R∗j := {(x, y) : (y, x) ∈ Rj}
is in {Ri}, for each j.

3. For each i, j, k ∈ {0, . . . , d}, there exist constants pki,j, such that if (x, y) ∈ Rk, then
there are pki,j vertices z such that (x, z) ∈ Ri and (z, y) ∈ Rj. The pki,j are called
intersection numbers.

We will say that the association scheme is symmetric if each relation is equal to its
opposite. Let X = (X, {Ri}06i6d) be an association scheme with d classes. For 0 6 i 6 d,
let Ai be the adjacency matrix of the relation Ri, and Ei the i−th primitive idempotent of
the Bose-Mesner algebra of X which projects onto the i−th maximal common eigenspace
of A0, . . . , Ad. The matrices P and Q defined by

(A0 A1 . . . Ad) = (E0 E1 . . . Ed)P

and
(E0 E1 . . . Ed) = |X|−1(A0 A1 . . . Ad)Q

are the first and the second eigenmatrix of X, respectively. The reader is referred to
[2, 3, 7] for additional information on association schemes.

3 Investigating the perspective property

In V = V (6, q2) consider the 6-dimensional GF(q)−subspace

V̂ = {(x, xq, y, yq, z, zq) : x, y, z ∈ GF(q2)}.

Let PG(V̂ ) be the projective geometry defined by V̂ . For any vector (x, xq, y, yq, z, zq) ∈ V̂
we will use the short-hand notation (x, y, z)2.

We consider the hyperbolic quadric Q+(5, q2) of PG(5, q2) (known as Klein quadric)
defined by the (non-degenerate) quadratic form Q(X) = −X1X6 − X2X5 + X3X4 on

V (6, q2). For any given v = (x, y, z)2 ∈ V̂ ,

Q̂(v) = Q|V̂ (v) = −xzq − xqz + yq+1. (1)

It turns out that Q̂ is a non-degenerate quadratic form of rank 2 on V̂ with associated
symmetric form

b̂(v, v′) = −xz′q − xqz′ + yy′q + yqy′ − zx′q − zqx′.

Therefore, Q̂ gives rise to an elliptic quadric Q−(5, q) of PG(V̂ ) embedded in Q+(5, q2).

For any subspace W of V̂ , set

W⊥ = {v ∈ V̂ : b̂(v, u) = 0, for all u ∈ W}.

In the following, Trq2/q and Nq2/q will denote the relative trace and norm functions from
GF(q2) onto GF(q). Let F be a GF(q)−linear transformation from GF(q2) to itself.
Then, F can be represented by a unique polynomial over GF(q2) of type F (x) = ax+bxq.
Such a polynomial is called a q−polynomial over GF(q2) [12, Chapter 3]. The trivial
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q−polynomial will be denoted by I. The adjoint of a linearised polynomial F (x) =
ax + bxq, with respect to the symmetric bilinear form (a, b) → Trq2/q(ab), is given by
F ∗(x) = ax+ bqxq.

In V̂ , any line l is written as

l = {(F0(x), F1(x), F2(x))2 : x ∈ GF(q2)}

where F0, F1, F2 are q−polynomials over GF(q2); for short, we will write l = L(F0, F1, F2).
The triple (F0, F1, F2) is determined by l up to a right factor of proportion, which is a non-

singular q−polynomial. Since a 4-dimensional subspace of V̂ is a 2-dimensional subspace
in the dual space V̂ ∗, any such a subspace T can be represented by three q−polynomials
H0, H1, H2 over GF(q2). A way to write equations for T is the following. Fix an element
θ ∈ GF(q2) \GF(q). Let Hi be the 2× 2 Dickson matrix1 associated with Hi, i = 1, 2, 3,
then T has equations

(
1 1
θ θq

)(
H0 H1 H2

)

x
xq

y
yq

z
zq

 = 0 .

For short, write T = π(H0, H1, H2). The triple (H0, H1, H2) is determined by T up to a
left factor of proportion, which is a non-singular q−polynomial. It is easy to check that
a line L(F0, F1, F2) is contained in the subspace π(H0, H1, H2) if and only if

H0 ◦ F0 +H1 ◦ F1 +H1 ◦ F1 = 0;

where H ◦ F is the q−polynomial H(F (x)) mod (xq
2 − x).

The line l = L(F0, F1, F2) is totally singular with respect to the symmetric form b̂ if
and only if

F ∗2 ◦K ◦ F0 − F ∗1 ◦K ◦ F1 + F ∗0 ◦K ◦ F2 = 0, (2)

where K(x) = xq (note that K∗ = K). Let Fi(x) = fix + gix
q, i = 0, 1, 2. Then, Eq. (2)

is equivalent to {
f2g

q
0 + f0g

q
2 = f1g

q
1

f0f
q
2 + f q0f2 + g0g

q
2 + gq0g2 = f q+1

1 + gq+1
1

. (3)

Let l1, l2, l3 be mutually skew lines of PG(V̂ ), Ti be a 4-dimensional space containing
li but skew to lj and lk, and sk = Ti ∩ Tj, with {i, j, k} = {1, 2, 3}. The space spanned
by si and li will be denoted by Σi, with i = 1, 2, 3. If Σ1, Σ2 and Σ3 have non-trivial
intersection, then {l1, l2, l3} and {T1, T2, T3} are said to be in semi-perspective; if Σ1, Σ2

and Σ3 share a line, then {l1, l2, l3} and {T1, T2, T3} are said to be in perspective. For our
aims, if l1, l2, l3 are lines of Q−(5, q), we set Ti = l⊥i and we will simply say that l1, l2, l3
are in semi-perspective or perspective.

1The Dickson matrix of the q−polynomial
∑n−1
i=0 aix

qi ∈ GF(qn)[x] is


a0 a1 · · · an−1
aqn−1 aq0 · · · aqn−2

...
...

...
...

aq
n−1

1 aq
n−1

2 · · · aq
n−1

0

.
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Since for q even pseudo-ovals are never contained in an orthogonal polar geometry [18],
from now on we assume q is odd.

Let θ ∈ GF(q2) \ GF(q) be taken such that θ2 = ξ with ξ a non-square in GF(q), i.e.,
θq = −θ.

The following result translates [18, Theorem 5.1] in terms of the projective geometry

PG(V̂ ).

Proposition 3.1. Consider the three lines of the Q−(5, q), arising from Q̂,

l = L(I, 0, 0), m = L(0, 0, I), n = L(F0, F1, F2),

with Fi(x) = fix + gix
q, i = 0, 1, 2, spanning the whole space. Then, l,m, n are in

perspective if and only if f q0f2 + g0g
q
2 ∈ GF(q).

Proof. As 〈l,m〉 = {(x, 0, z)2 : x, z ∈ GF(q2)} and n trivially intersects 〈l,m〉, then F1 is
invertible. We set T1 = l⊥, T2 = m⊥, T3 = n⊥. Straightforward calculation yields

T1 = π(0, 0, I), T2 = π(I, 0, 0), T3 = π(F ∗2 ◦K,−F ∗1 ◦K,F ∗0 ◦K).

Further,
s3 = T1 ∩ T2 = L(0, I, 0),

s2 = T1 ∩ T3 = L(I, (K ◦ F2 ◦ F−11 ◦K)∗, 0),

s1 = T2 ∩ T3 = L(0, (K ◦ F0 ◦ F−11 ◦K)∗, I).

Now we want to write Σ1 = 〈l, s1〉 and Σ2 = 〈m, s2〉 in the form π(H0, H1, H2). To do
this, we solve the linear system

(
1 1
θ θq

)(
H0 H1 H2

)

x
xq

y
yq

z
zq

 = 0 ,

where, in turn, we substitute in the coordinates of four linearly independent vectors of
Σi, i = 1, 2. Consequently,

Σ1 = π(0, I,−(K ◦ F0 ◦ F−11 ◦K)∗), Σ2 = π(−(K ◦ F2 ◦ F−11 ◦K)∗, I, 0).

Since Σ3 = 〈n, s3〉 = {(F0(x), y, F2(x))2 : x, y ∈ GF(q2)}, by imposing that the generic
point of Σ3 belongs to Σ1 as to Σ2, the points of Σ1 ∩Σ2 ∩Σ3 are obtained by solving the
following system of linear equations{

y − (F ∗2 ◦K ◦ F0 ◦ F−11 ◦K)∗(x) = 0

y − (F ∗0 ◦K ◦ F2 ◦ F−11 ◦K)∗(x) = 0.

This yields
(F ∗2 ◦K ◦ F0 − F ∗0 ◦K ◦ F2)(x) = 0.
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From Eq. (2), we get

(2F ∗2 ◦K ◦ F0 − F ∗1 ◦K ◦ F1)(x) = 0. (4)

Note that (F ∗2 ◦ K ◦ F0)(x) = (f0g
q
2 + f2g

q
0)x + (f q0f2 + g0g

q
2)x

q and (F ∗1 ◦ K ◦ F1)(x) =
2f1g

q
1x+ (f q+1

1 + gq+1
1 )xq. Therefore,

(2F ∗2 ◦K ◦ F0 − F ∗1 ◦K ◦ F1)(x) = 2(f0g
q
2 + f2g

q
0 − f1g

q
1)x+ [2(f q0f2 + g0g

q
2)− f q+1

1 − gq+1
1 ]xq

= (f q0f2 − f0f
q
2 + g0g

q
2 − g

q
0g2)x

q,

by Eq. (3). Consequently, Σ1 ∩ Σ2 ∩ Σ3 = {0} if and only if 0 is the unique solution of
(4) if and only if f q0f2 + g0g

q
2 6∈ GF(q). Similarly, Σ1 ∩ Σ2 ∩ Σ3 is a line if and only if

f q0f2 + g0g
q
2 ∈ GF(q).

Remark 3.2. In the proof of the previous result we used that F1 is invertible. This property
holds also for F0 and F2, because n trivially intersects m and l.

3.1 Construction of the subsets of type Up1,p2

As above, let Q−(5, q) be the elliptic quadric of PG(V̂ ) defined by Q̂, and fix a totally
singular line l. For any given non-degenerate hyperplane Π not containing l, let B =
l ∩ Π and σ be the line 〈l,Π⊥〉 ∩ Π. As l ⊂ B⊥ and B ∈ Π then 〈l,Π⊥〉 ⊂ B⊥, hence
σ ⊂ B⊥ ∩ Π. In particular, σ corresponds to an internal point for the non-singular conic
(B⊥ ∩ Π ∩ Q−(5, q))/B of the quotient space (B⊥ ∩ Π)/B. To see this we observe that
σ⊥ = 〈l⊥ ∩ Π,Π⊥〉 shares with the quadratic cone B⊥ ∩ Π ∩ Q−(5, q) just the point
B. Therefore, if σ corresponded to an external point, σ⊥ would have two generators in
common with the cone, which is a contradiction. Then, for any given totally singular line
p1 lying in Π and passing through B, the plane 〈p1, σ〉 meets Q−(5, q) in a further line p2.
Let Oi, i = 1, 2, be the totally singular lines in Π intersecting pi, but not at B. We set
Up1,p2 = O1 ∪ O2, and Up1,p2 is said to be constructed on the flag (B, l).

By the reasoning above, it is now evident that the line σ induces an involution σ̃ on the
generators of the quadratic cone B⊥ ∩ Π ∩Q−(5, q).

Lemma 3.3. Let B = 〈(1, 0, 0)2〉 and l = L(I, 0, 0).

(i) A non-degenerate hyperplane Π through B not containing l has equation

Π : θ(X −Xq) + βqY + βY q − αqZ − αZq = 0

for all α, β ∈ GF(q2), such that βq+1 − θ(αq − α) 6= 0;

(ii) the generators of the quadratic cone B⊥ ∩Π∩Q−(5, q) have the form ly = L(F0, F1, F2),
where

F0(x) = (2ξ − yq+1)x+ (2ξ + yq+1)xq, F1(x) = 2θy(x− xq), F2(x) = 2ξ(x− xq),

for all y ∈ GF(q2) such that

yq+1 − (βqy + βyq) + θ(αq − α) = 0. (5)
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(iii) the involution induced by σ = 〈l,Π⊥〉 ∩ Π on the ly’s is

ly
σ̃7−→ l2β−y .

Proof. (i) Under the polarity ⊥ of PG(V̂ ) associated with b̂, a non-degenerate hyperplane
Π not containing l corresponds to a non-singular point P ∈ B⊥ \ l⊥. Such a point has the
form P = 〈(α, β, θ)2〉, with α, β ∈ GF(q2), such that βq+1 − θ(αq − α) 6= 0.

(ii) In order to find the totally singular lines through B, we consider the restriction of Q̂
on the 4-dimensional subspace Σ = {(θa, y, θb)2 : a, b ∈ GF(q), y ∈ GF(q2)} of B⊥ not on
B. We get that these totally singular lines, apart from l, have the form ly = L(F0, F1, F2),
where

F0(x) = (2ξ − yq+1)x+ (2ξ + yq+1)xq, F1(x) = 2θy(x− xq), F2(x) = 2ξ(x− xq),

for all y ∈ GF(q2). In particular, ly is in Π if and only if Eq. (5) holds.

(iii) By definition, σ = 〈l,Π⊥〉 ∩ Π is L(F0, F1, F2) where

F0(x) =

(
2βq+1

θ
+ α− 2αq

)
x− αxq, F1(x) = −β(x+ xq), F2(x) = θ(x+ xq),

Fix the points R = 〈(αq − βq+1

θ
, β, θ)2〉 of σ and R1 = 〈(−θyq+1

1 , 2ξy1, 2ξθ)2〉 of p1 = ly1
with y1 satisfying Eq. (5). Since σ corresponds to an internal point for the non-singular
conic (B⊥ ∩Π ∩Q−(5, q))/B of the quotient space (B⊥ ∩Π)/B, the line p2 is the unique
totally singular line ly, y 6= y1, intersecting the line 〈R,R1〉. Thus, we are required to
determine the triples (y, x, λ) ∈ GF(q2)×GF(q2)×GF(q)∗, satisfying the system

(2ξ − yq+1)x+ (2ξ + yq+1)xq = (αq − βq+1

θ
)− θyq+1

1 λ

2θy(x− xq) = β + 2ξy1λ

2ξ(x− xq) = θ + 2ξθλ

, (6)

together with the condition Eq. (5). By plugging x = x0+θx1, α = a0+θa1, xi, ai ∈ GF(q),
into (6) (note that x1 6= 0 otherwise the intersection point would coincide with B), we
rewrite (6) in the equivalent form

4ξx0 = a0

2ξx1y
q+1 = a1ξ + βq+1 + ξyq+1

1 λ

4ξx1y = β + 2ξy1λ

4ξx1 = 1 + 2ξλ

. (7)

Hence,

x =
a0
4ξ

+ θ
β − y1

4ξ(y − y1)
, λ =

β − y
2ξ(y − y1)

.

By using Eq. (5) in the second equation of (7), we come to

β(βq(y − y1)− β(yq − yq1) + (yqy1 − yyq1)) = 0.

Assume β = 0. From (5), it follows that y = y1c, for some c 6= 1 with N(c) = 1. As
x1 = −1/(4ξ(c − 1)) ∈ GF(q), c ∈ GF(q) with cq+1 = c2 = 1, that is, c = −1. Assume
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βq(y− y1)− β(yq − yq1) + (yqy1− yyq1) = 0, i.e., (βq − yq1)(y− y1))− (β − y1)(yq − yq1) = 0,
where βq − yq1 6= 0 (as Π⊥ is non-singular). Then,

y =
a+ (βq − yq1)y1

βq − yq1
(8)

for some a ∈ GF(q)∗. Substituting (8) into (5) yields a = 2(β−y1)q+1, whence y = 2β−y1.
This concludes the proof.

Remark 3.4. The line (B⊥ ∩Π)⊥ contains precisely q non-singular points, one of which is
Π⊥. Under the polarity defined by Q−(5, q), the corresponding hyperplanes share B⊥∩Π.
For any such a hyperplane H, the line 〈l, H⊥〉 ∩H coincides with the line σ constructed
from Π 2. Therefore, these hyperplanes define the same involution on the generators of
the quadratic cone B⊥ ∩ Π ∩Q−(5, q).

Proposition 3.5. Let l1, l2, l3 be three distinct lines of Q−(5, q) spanning the whole space.
Then, l1, l2, l3 are in perspective if and only if, for some flag (B, li), the totally singular
lines through B concurrent with lj and lk, i 6= j 6= k 6= i, correspond under the map σ̃
defined by the hyperplane containing B, lj and lk.

Proof. Fix B ∈ li. By [19, Theorem 10.12], up to the Klein correspondence, we may choose
coordinates such that li = l = L(I, 0, 0), lj = m = L(0, 0, I) and lk = n = L(F0, F1, I),
with B = 〈(1, 0, 0)2〉. Let Π be the (non-degenerate) hyperplane spanned by B, m and n.
Let p1 and p2 be the two totally singular lines on B concurrent with m and n, respectively.
Since m⊥ = π(I, 0, 0), by Lemma 3.3(i) Π has an equation of the form

Π : θ(X −Xq) + βqY + βY q = 0,

for some β ∈ GF(q2)∗.

Since the line p1 has the form given by Lemma 3.3(ii), p1 = l0. Lemma 3.3(ii) and (iii)
imply pσ̃1 = l2β = L(G0, G1, G2), with

G0(x) = (2ξ − 4βq+1)x+ (2ξ + 4βq+1)xq, G1(x) = 4θβ(x− xq), G2(x) = 2ξ(x− xq).

By Remark 3.2, we may assume F2 = I, that is, n = L(F0, F1, I), with F0(x) =
f0x+ g0x

q, F1(x) = f1x+ g1x
q. The condition that n belongs to Π is equivalent to have

βgq1 + βqf1 + θ(f0 − gq0) = 0. (9)

Therefore, n is concurrent with l2β if and only if there exist x, x̄ ∈ GF(q2)∗ such that
f0x+ g0x

q = (2ξ − 4βq+1)x̄+ (2ξ + 4βq+1)x̄q

f1x+ g1x
q = 4θβ(x̄− x̄q)
x = 2ξ(x̄− x̄q)

. (10)

Write x̄ = x̄0 + θx̄1, x̄i ∈ GF(q). Then, x = 4ξθx̄1 6= 0.

2To see this, just note that these hyperplanes are the “perp” of the non-singular points on the line
〈B,Π⊥〉, and have the form 〈(λ + α, β, θ)2〉, for all λ ∈ GF(q). Straightforward calculations show that
the corresponding line σλ = 〈l,H⊥〉 ∩H coincides with σ.
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From the second equation of (10), we get 2β = θ(f1 − g1). This, together with Eq. (9),
yields

2f1g
q
1 + 2(f0 − gq0)− (f q+1

1 + gq+1
1 ) = 0. (11)

The equations (3) with f2 = 1 and g2 = 0, applied to (11), give f0 ∈ GF(q), and
Proposition 3.1 leads to the result.

Remark 3.6. Note that if Proposition 3.5 holds for one point B ∈ li, then it holds for all
points of li.

4 A five-class association scheme on H(3, q2)

Let V = V (4, q2) equipped with a non-degenerate Hermitian form h : V × V → GF(q2).
As usual, H(3, q2) denotes the unitary polar geometry of rank 2 defined by h, and it is
called a Hermitian surface of PG(3, q2). A point (resp. line) of H(3, q2) is a 1-dimensional
(resp. 2-dimensional) subspace in H(3, q2), that is, totally isotropic with respect to h. A
pair of vectors (x,y) such that x and y are isotropic with h(x,y) = 1 is called a hyperbolic
pair; in this case, 〈x,y〉 in PG(3, q2) is said to be a hyperbolic line. Any hyperbolic line
intersects H(3, q2) in q + 1 points. Two distinct points P = 〈p〉 and Q = 〈q〉 of H(3, q2)
are said to be orthogonal or collinear if h(p,q) = 0; in other words, they span a totally
isotropic line.

Since all non-degenerate Hermitian forms on V are isometric, we may take an ordered
basis (v0,v1,v2,v3) for V such that

h(x,y) = x0y
q
3 − x1y

q
1 − x2y

q
2 + x3y

q
0, (12)

where x = x0v0 + x1v1 + x2v2 + x3v3 and y = y0v0 + y1v1 + y2v2 + y3v3.

In [16], Shult introduced the following function on H(3, q2). For any three distinct
points P = 〈p〉, Q = 〈q〉 and R = 〈r〉 of H(3, q2), let

z(P,Q,R) = h(p,q)h(q, r)h(r,p)GF(q)∗,

where GF(q)∗ denotes the multiplicative group of non-zero elements of GF(q). Then,
z(P,Q,R) is well-defined and

z(P,Q,R) = z(R,Q, P ) = z(Q,P,R);

z(P,Q,R) = z(Q,P,R)q.

In the multiplicative group T = GF(q2)∗/GF(q)∗ ' Z(q+1), with identity e = GF(q)∗,
the element t = θGF(q)∗ is the unique involution.

Lemma 4.1 ([16]). Let P,Q,R be three pairwise non-collinear points of H(3, q2). Then,
the span of P,Q,R is a degenerate plane if and only if z(P,Q,R) = t.

Let Γ = T \ {e, t}. Fix a point P of H(3, q2) and consider the set X of all the points
of H(3, q2) that are not collinear with P . On the set X , which consists of q5 points, we
define the following relations:

R1 = {(Q,R) : z(P,Q,R) = 0},
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R2 = {(Q,R) : 〈P,Q,R〉 is a (hyperbolic) line},

R3 = {(Q,R) : z(P,Q,R) = t},

R4 = {(Q,R) : z(P,Q,R) ∈ Γ},

R5 = {(Q,R) : z(P,Q,R) = e}.

Note that (Q,R) ∈ R1 if and only if Q is collinear with R and (Q,R) ∈ R3 if and only
if P,Q,R span a degenerate plane (see Lemma 4.1).

Set R = {R0, R1, . . . , R5}, where R0 is the diagonal relation. We are going to prove that
XP = (X ,R) is a symmetric, hence commutative, imprimitive association scheme. Clearly
all the above relations are symmetric. We now show that all of the intersection numbers
pkij are well defined. Note that if pkij is well defined then so too is pkji = pkij. We will be aided
by the fact that the projective unitary group PGU(4, q2) is transitive on the set of pairs
of non-collinear points of H(3, q2) [9, Corollary 11.12]. Thus, in the computations of the
parameters we may assume P = 〈(0, 0, 0, 1)〉, Q = 〈(1, 0, 0, 0)〉, and R = 〈(1, r1, r2, r3)〉,
with rq+1

1 +rq+1
2 = r3+rq3, since R ∈ X . Note that z(P,Q,R) = h(q, r)GF(q)∗ = rq3GF(q)∗.

Lemma 4.2. The valencies ηk = p0kk are as follows: η1 = (q2 − 1)(q + 1), η2 = q − 1,
η3 = (q2 − 1)2, η4 = (q3 − q)(q − 1)2, η5 = (q3 − q)(q − 1).

Proof. We calculate η1, η2, η3, η5 directly, obtaining η4 by subtraction. First,

η1 = |{R ∈ X : (Q,R) ∈ R1}|
= |{R ∈ X : r3 = 0}|
= |{(1, r1, r2, 0) : rq+1

1 + rq+1
2 = 0}|.

Note that r1, r2 6= 0, otherwise R = Q. Fix r1 ∈ GF(q2)∗. There exist q + 1 elements
r2 ∈ GF(q2)∗ satisfying rq+1

2 = −rq+1
1 . Therefore, η1 = (q + 1)(q2 − 1). Next,

η2 = |{R ∈ X : (Q,R) ∈ R2}|
= |{R ∈ X : R ∈ 〈P,Q〉}|
= |{R ∈ X : r1 = r2 = 0}|
= |{(1, 0, 0, r3) : r3 + rq3 = 0}|,

where r3 6= 0, otherwise R = Q. Since there exist q elements r3 ∈ GF(q2)∗ satisfying
Trq2/q(r3) = 0, we have η2 = q − 1.

η3 = |{R ∈ X : (Q,R) ∈ R3}|
= |{R ∈ X : r3 ∈ θGF(q)∗}|
= |{(1, r1, r2, θa) : a ∈ GF(q)∗, rq+1

1 + rq+1
2 = 0}|.

Note that r1, r2 6= 0, otherwise (Q,R) ∈ R2. For fixed r1 ∈ GF(q2)∗, there are q + 1
elements r2 ∈ GF(q2)∗ such that rq+1

2 = −rq+1
1 . Therefore, as r3 = θa, a ∈ GF(q)∗,

η3 = (q + 1)(q2 − 1)(q − 1). Finally,

η5 = |{R ∈ X : (Q,R) ∈ R5}|
= |{R ∈ X : r3 ∈ GF(q)∗}|
= |{(1, r1, r2, r3) : r3 ∈ GF(q)∗, rq+1

1 + rq+1
2 = 2r3}|.
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Fix r3 ∈ GF(q)∗. Then, for any r1 ∈ GF(q2) such that rq+1
1 6= 2r3, we find q + 1

non-zero elements r2 ∈ GF(q2) which satisfy rq+1
2 = 2r3 − rq+1

1 ; for any r1 ∈ GF(q2) with
rq+1
1 = 2r3, r2 = 0 necessarily. Therefore, η5 = ((q + 1)(q2 − q − 1) + q + 1)(q − 1).

Finally, η4 = |X | − (1 + η1 + η2 + η3 + η5) = q(q2 − 1)(q − 1)2.

Lemma 4.3. The intersection numbers pk1j are well defined. They are collected in the
following intersection matrix L1 whose (k, j)−entry is pk1j:

L1 =


0 (q2 − 1)(q + 1) 0 0 0 0
1 q2 − 2 0 q(q − 1) q(q − 1)2 q(q − 1)
0 0 0 (q − 1)(q + 1)2 0 0
0 q 1 2(q2 − q − 1) q(q − 1)2 q(q − 1)
0 q + 1 0 q2 − 1 q3 − q2 − 2q q2 − 1
0 q + 1 0 q2 − 1 (q + 1)(q − 1)2 (q − 2)(q + 1)


Proof. To check that pk1j is well defined, for any pair (X,Q) ∈ Rk we count the number of
points R collinear with Q and j−related with X. As R = 〈(1, r1, r2, r3)〉 is collinear with
Q = 〈(1, 0, 0, 0)〉, we have r3 = 0, so rq+1

1 + rq+1
2 = 0.

Assume k = 1, and let X be collinear with Q. Then, X = 〈(1, x1, x2, 0)〉 and

z(P,R,X) = (r1x
q
1 + r2x

q
2)GF(q)∗.

Any pair (r1, r2) ∈ GF(q2)2 \ {(0, 0), (x1, x2)} such that r1x
q
1 + r2x

q
2 = 0 is of type

(−(x2/x1)
qa, a), for some a ∈ GF(q2)∗ \{x2}. This implies p111 = q2−2. When R ∈ 〈P,Q〉

it is easy to check that p112 = 0.

Let (r1, r2) ∈ GF(q2)2\{(0, 0), (x1, x2)} such that r1x
q
1+r2x

q
2 ∈ θGF(q)∗. Then, θ(r1x

q
1+

r2x
q
2) ∈ θ2GF(q)∗ = GF(q)∗. Since (θx1)

q+1 + (θx2)
q+1 = θq+1(xq+1

1 + xq+1
2 ) = 0, counting

the elements 3-related with X = 〈(1, x1, x2, 0)〉 is equivalent to counting the elements 5-
related with 〈(1, θx1, θx2, 0)〉, that is, p113 = p115. So we assume r1x

q
1 + r2x

q
2 ∈ GF(q)∗. For

any fixed a ∈ GF(q)∗, we have r2 = (a− r1xq1)/x
q
2. From rq+1

1 + rq+1
2 = 0, it follows that

Trq2/q(r1x
q
1) = a. As for any given a there are q elements x ∈ GF(q2) such that Trq2/q(x) =

a, we see that p113 = p115 = q(q−1). Finally p114 = η1−(p110+p111+p112+p113+p115) = q(q−1)2.

Assume k = 2, and let X ∈ 〈P,Q〉 ∩ H(3, q2). Then, X = 〈(1, 0, 0, θa)〉, for some
a ∈ GF(q)∗, and z(P,R,X) = θqGF(q)∗ = t. This implies p211 = p212 = p214 = p215 = 0 and
p213 = η1 = (q − 1)(q + 1)2.

Assume k = 3, and let X ∈ X such that 〈P,Q,X〉 is a degenerate plane. Then,
X = 〈(1, x1, x2, θa)〉 for some a ∈ GF(q)∗, with xq+1

1 + xq+1
2 = 0, x1 6= 0 6= x2. We have

z(P,R,X) = (θa+ r1x
q
1 + r2x

q
2)GF(q)∗.

It is easy to see that p311 = p113 = q(q − 1) and p312 = 1.

Let (r1, r2) ∈ GF(q2)2 \ {(0, 0), (x1, x2)} such that r1x
q
1 + r2x

q
2 = θ(b − a) for some b ∈

GF(q)∗. For any given b 6= a, we have q such pairs, and this gives q(q−2) pairs as b varies
in GF(q)∗\{a}. Let b = a. Then, the number of pairs (r1, r2) ∈ GF(q2)2\{(0, 0), (x1, x2)}
with rq+1

1 + rq+1
2 = 0 and r1x

q
1 + r2x

q
2 = 0 is q2 − 2 = p111. Therefore, p313 = 2(q2 − q − 1).

Let (r1, r2) ∈ GF(q2)2 \ {(0, 0), (x1, x2)} such that r1x
q
1 + r2x

q
2 = b − θa, for some

b ∈ GF(q)∗. For any fixed b ∈ GF(q)∗, we have r2 = (b − θa − r1xq1)/x
q
2. By plugging

this into rq+1
1 + rq+1

2 = 0, we get Trq2/q((b + θa)r1x
q
1) = b2 − ξa2 = Nq2/q(b − θa). As
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there are q elements x ∈ GF(q2) such that Trq2/q(x) = c, for any given c ∈ GF(q), we get
p315 = q(q − 1). Finally p314 = η1 − (p310 + p311 + p312 + p313 + p315) = q(q − 1)2.

Assume k = 4, and let X ∈ X such that z(P,Q,X) ∈ Γ. Then, X = 〈(1, x1, x2, wia)〉
for some i 6= 0, (q + 1)/2 and a ∈ GF(q)∗, with xq+1

1 + xq+1
2 = aTrq2/q(w

i). We have

z(P,R,X) = (wiqa− r1xq1 − r2x
q
2)GF(q)∗.

Let wiqa − r1xq1 − r2x
q
2 = 0. Assume x2 = 0. Then, x1 6= 0 (otherwise (X,Q) ∈ R2),

r1 = wiqa/xq1 and rq+1
2 = −Nq2/q(r1) = −aNq2/q(w

i)/Trq2/q(w
i). Therefore, in this case

there are q + 1 pairs (r1, r2) which satisfy the above properties.

Assume x2 6= 0. Then, r2 = (wiqa− r1xq1)/x
q
2. By plugging this into rq+1

1 + rq+1
2 = 0, we

get
Trq2/q(w

i)rq+1
1 − Trq2/q(w

ir1x
q
1) + aNq2/q(w

i) = 0,

or

(r1, 1)

(
Trq2/q(w

i) −wixq1
−wiqx1 aNq2/q(w

i)

)(
rq1
1

)
= 0,

with Nq2/q(w
i)(aTrq2/q(w

i) − xq+1
1 ) 6= 0, as x2 6= 0. Since Trq2/q(w

i) 6= 0, the above
non-singular Hermitian matrix defines a unitary form of V (2, q2) not admitting the point
〈(1, 0)〉 as a totally isotropic point. Therefore, there are q + 1 values for r1, whence q + 1
pairs (r1, r2) satisfying the above properties. Hence, p411 = q + 1.

Let R ∈ 〈P,X〉 ∩H(3, q2), i.e., R = 〈(1, r1, r2, 0)〉. Since rq+1
1 + rq+1

2 = aTrq2/q(w
i) 6= 0,

we get R /∈ H(3, q2), whence p412 = 0. By arguing as we did for p411, we find p413 = p415 =
q2 − 1.

Finally, p414 = η1 − (p410 + p411 + p412 + p413 + p415) = q3 − q2 − 2q.

Assume k = 5, and let X ∈ X such that z(P,Q,X) = e. Then, X = 〈(1, x1, x2, a)〉 for
some a ∈ GF(q)∗, with xq+1

1 + xq+1
2 = 2a. We have

z(P,R,X) = (a− r1xq1 − r2x
q
2)GF(q)∗.

We may argue as above to show that p511 = q+1, p512 = 0, p513 = q2−1, p515 = (q−2)(q+1),
and p514 = (q + 1)(q − 1)2.

Lemma 4.4. The intersection numbers pk2j are well defined. They are collected in the
following intersection matrix L2 whose (k, j)−entry is pk2j:

L2 =


0 0 q − 1 0 0 0
0 0 0 q − 1 0 0
1 0 q − 2 0 0 0
0 1 0 q − 2 0 0
0 0 0 0 q − 2 1
0 0 0 0 q − 1 0


Proof. To check that pk2j is well defined, for any pair (X,Q) ∈ Rk we count the number of
points R ∈ X such that R is on the hyperbolic line spanned by P and Q with (R,X) ∈ Rj.
It is easily seen that R = 〈(1, 0, 0, aθ)〉, for some a ∈ GF(q)∗. We have pk21 = pk12, for
k = 0, . . . , 5.
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Assume k = 1. Then, X = 〈(1, x1, x2, 0)〉, with x1 6= 0 6= x2. Therefore, there is no
point R on the hyperbolic line spanned by P and X giving p122 = 0. In addition,

z(P,R,X) = θaGF(q)∗ = t.

This implies p124 = p125 = 0 and p123 = q − 1.

Assume k = 2, and let X = 〈(1, 0, 0, bθ)〉, for some b ∈ GF(q)∗. Since R ∈ 〈P,Q〉 \
{Q,X}, we have p222 = q − 2. This also implies p223 = p224 = p225 = 0.

Assume k = 3, and let X = 〈(1, x1, x2, bθ)〉 for some b ∈ GF(q)∗, with xq+1
1 + xq+1

2 = 0,
x1 6= 0 6= x2. Then, p322 = 0. In addition,

z(P,R,X) = θ(a+ b)GF(q)∗.

For a = −b, (R,X) ∈ R1. For a 6= −b, z(P,R,X) = t. Therefore, p324 = p325 = 0 and
p323 = q − 2.

Assume k = 4, and let X = 〈(1, x1, x2, x3)〉 for some x3 /∈ GF(q)∗ ∪ θGF(q)∗. Then,
p422 = 0, otherwise x3 ∈ θGF(q)∗. In addition,

z(P,R,X) = (aθ + xq3)GF(q)∗.

Therefore, p423 = 0. To calculate p425 we see that aθ + xq3 ∈ GF(q)∗ if and only if
a = (x3 − xq3)/2θ. Therefore, p425 = 1 and p424 = q − 2.

Assume k = 5, and let X = 〈(1, x1, x2, b)〉 for some b ∈ GF(q)∗. Then, p522 = 0,
otherwise b = 0. In addition,

z(P,R,X) = (aθ + b)GF(q)∗.

Therefore, there are no a ∈ GF(q)∗ such that aθ + b ∈ GF(q)∗ or aθ + b ∈ θGF(q)∗.
This implies, p525 = p523 = 0 and p524 = q − 1.

Lemma 4.5. The intersection numbers pk3j are well defined. They are collected in the

following intersection matrix L3 whose (k, j)−entry is pk3j:

L3 =


0 0 0 (q2 − 1)2 0 0
0 q(q − 1) q − 1 2(q − 1)(q2 − q − 1) q(q − 1)3 q(q − 1)2

0 (q − 1)(q + 1)2 0 (q2 − 1)(q2 − q − 2) 0 0
1 2(q2 − q − 1) q − 2 2q3 − 5q2 + q + 4 q(q − 1)3 q(q − 1)2

0 q2 − 1 0 (q2 − 1)(q − 1) q4 − 2q3 − q2 + 3q + 1 q(q + 1)(q − 2)
0 q2 − 1 0 (q2 − 1)(q − 1) q(q2 − 1)(q − 2) (q2 − 1)(q − 1)


Proof. To check that pk3j is well defined, for any pair (X,Q) ∈ Rk we count the number
of points R which are 3−related with Q and j−related with X. It is easily seen that
R = 〈(1, r1, r2, aθ)〉, for some a ∈ GF(q)∗, with rq+1

1 + rq+1
2 = 0, r1 6= 0 6= r2 (otherwise

(Q,R) ∈ R2). From the previous calculations, we already have pk31 = pk13, p
k
32 = pk23, for

k = 0, . . . , 5.

Assume k = 1. Then, X = 〈(1, x1, x2, 0)〉, with xq+1
1 +xq+1

2 = 0, x1 6= 0 6= x2. Therefore,
(R,X) ∈ R3 if and only if there exists b ∈ GF(q)∗ such that r1x

q
1 + r2x

q
2 = θ(a− b). First

of all, suppose a 6= b. As θ(r1x
q
1 + r2x

q
2) ∈ GF(q)∗ and (θx1)

q+1 + (θx2)
q+1 = θq+1(xq+1

1 +
xq+1
2 ) = 0, we may consider (r1, r2) ∈ GF(q2)∗ ×GF(q2)∗ such that r1x

q
1 + r2x

q
2 ∈ GF(q)∗
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(see the calculation of p115). Let c ∈ GF(q)∗, and write r2 = x−q2 (c − r1x
q
1). By using

rq+1
1 + rq+1

2 = 0, it follows that Trq2/q(r1x
q
1) = c, which is true for exactly q elements

r1 ∈ GF(q)∗. Therefore, for b ∈ GF(q)∗ \ {a}, q(q − 1)(q − 2) is the number of the triples
(r1, r2, a), c being one-to-one with b. Now, consider a = b. Then, r1x

q
1 + r2x

q
2 = 0, for

(r1, r2) ∈ GF(q2)2 \ {(0, 0), (x1, x2)}. So, in the case a = b, the number of the triples
(r1, r2, a) is equal to (q− 1)(q2− 2). Finally, by summing the previous two quantities, we
have p133 = 2(q − 1)(q2 − q − 1).

We show now that p135 is well-defined, by explicitly calculating it. Thus, (R,X) ∈ R5

if and only if there exists b ∈ GF(q)∗ such that r1x
q
1 + r2x

q
2 = θa − b. By deriving

r2 from the previous expression and considering rq+1
1 + rq+1

2 = 0 as usual, we obtain
Trq2/q((θa + b)(r1x

q
1)) = θ2a2 − b2, which is satisfied by exactly q elements r1. As a, b ∈

GF(q)∗, p135 = q(q − 1)2.

Finally, p134 = η3 − (p130 + p131 + p132 + p133 + p135) = q(q − 1)3.

Assume k = 2. Then, X = 〈(1, 0, 0, θb)〉 with b ∈ GF(q)∗, and

z(P,R,X) = θ(a+ b)GF(q)∗.

This means that, for a + b 6= 0 (otherwise p231 = p213), (R,X) ∈ R3, from which p23j = 0,
for j = 0, 2, 4, 5, and p233 = η3 − p231 = (q2 − 1)(q2 − q − 2).

Take k = 3. Then, X = 〈(1, x1, x2, θb)〉, with xq+1
1 + xq+1

2 = 0, x1 6= 0 6= x2, for some
b ∈ GF(q)∗. Here, (R,X) ∈ R3 if and only if r1x

q
1+r2x

q
2 = θ(c−b+a) for some c ∈ GF(q)∗.

We need, at this point, to distinguish different cases. First of all, let c 6= b and a 6= b− c.
Once multiplied the right hand-side by θ, in order to simplify the calculation, we may
equivalentely look at the triples (r1, r2, a) such that r1x

q
1 + r2x

q
2 = θ2(c− b+ a), i.e., r2 =

x−q2 (θ2(c−b+a)−r1xq1). By using rq+1
1 +rq+1

2 = 0, we find Trq2/q(r1x
q
1) = θ2(c−b+a), which

provides q values for r1. Hence, for c ∈ GF(q)∗\{b}, a ∈ GF(q)∗\{b−c}, the number of the
triples (r1, r2, a) is q(q− 2)2. Consider now the subcase c− b+ a = 0. Then, r2 = x−q2 r1x

q
1

for r1 ∈ GF(q2)∗ \ {x1} (otherwise r2 = x2 and (R,X) ∈ R2). So, for a = b − c 6= 0, the
number of the triples (r1, r2, a) is equal to (q−2)(q2−2). Finally, we explore the case c = b.
As before, the computation may be reduced to considering the triples (r1, r2, a) such that
r1x

q
1+r2x

q
2 = θ2a, i.e., r2 = x−q2 (θ2a−r1xq1). Since rq+1

1 +rq+1
2 = 0 yields Trq2/q(r1x

q
1) = θ2a,

the number of all possible choices for r1 is q. To conclude, by putting together all the
previous results, we have p333 = q(q − 2)2 + (q − 2)(q2 − 2) + q(q − 1) = 2q3 − 5q2 + q + 4.

We count now R = 〈(1, r1, r2, aθ)〉 such that (R,X) ∈ R5. This condition means
r1x

q
1 + r2x

q
2 = c+ θ(a− b), for some c ∈ GF(q)∗. By plugging this into rq+1

1 + rq+1
2 = 0, we

get Trq2/q((c − θ(a − b))r1xq1) = c2 − θ2(a − b)2. Thus, there are q elements r1 satisfying
this equation, and p335 = q(q − 1)2, as c, a ∈ GF(q)∗.

Finally, in order to conclude the study of the case k = 3, write p334 = η3 − (p330 + p331 +
p332 + p333 + p335) = q(q − 1)3.

Take k = 4. Therefore, X = 〈(1, x1, x2, ωib)〉, where xq+1
1 + xq+1

2 = Trq2/q(ω
ib), b ∈

GF(q)∗. Suppose R is 3−related with X. This means there exists c ∈ GF(q)∗ such
that r1x

q
1 + r2x

q
2 = ωiqb + θ(a − c). At this point, we distinguish when x2 is zero and

when it is not. Suppose x2 = 0. As x1 6= 0, we have r1 = x−q1 (ωiqb + θ(a − c)), hence

rq+1
2 = −rq+1

1 = −x−(q+1)
1 Nq2/q(ω

iqb+θ(a−c)), which is satisfied by exactly q+1 elements
r2. Since a, c ∈ GF(q)∗, the number of the triples (r1, r2, a) is (q+1)(q−1)2. Now suppose
x2 6= 0. Then, r2 = (θ(a− c) + ωiqb− r1xq1)/x

q
2. By plugging this into rq+1

1 + rq+1
2 = 0, we
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get

rq+1
1 Trq2/q(ω

ib)− Trq2/q((ω
iqb+ θ(a− c))x1rq1) + Nq2/q(w

iqb+ θ(a− c)) = 0,

or

(r1, 1)

(
Trq2/q(ω

ib) −(ωib− θ(a− c))xq1
−(ωiqb+ θ(a− c))x1 Nq2/q(ω

iqb+ θ(a− c))

)(
rq1
1

)
= 0,

with Nq2/q(ω
iqb + θ(a − c))(Trq2/q(ω

ib) − xq+1
1 ) 6= 0, as x2 6= 0. Since Trq2/q(ω

i) 6= 0, the
above non-singular Hermitian matrix defines a unitary form of V (2, q2) not admitting the
point 〈(1, 0)〉 as a totally isotropic point. Therefore, there are q + 1 values for r1. As
a, c ∈ GF(q)∗, the number of the triples (r1, r2, a) is again (q+ 1)(q− 1)2. Hence, we may
write p433 = (q + 1)(q − 1)2.

Suppose now (R,X) ∈ R5. This is equivalent to having, for some c ∈ GF(q)∗, r1x
q
1 +

r2x
q
2 = ωiqb + θa + c. The second member is zero if and only if the pair (a, c) concides

with the unique pair (a′, c′) such that −ωiqb = θa′ + c′, {1, θ} being a basis for GF(q2)
over GF(q). Anyway, for this pair of values, we would have r1x

q
1 + r2x

q
2 = 0, from which

r1 = 0 (or r2 = 0), a contradiction. Then, let (a, c) 6= (a′, c′). At this point, by proceeding
as before for the computation of p433, we distinguish the case x2 = 0 from x2 6= 0, and
p435 = (q + 1)((q − 1)2 − 1) = (q + 1)q(q − 2) is obtained.

Finally, p434 = η3 − (p430 + p431 + p432 + p433 + p435) = q4 − 2q3 − q2 + 3q + 1.

Assume k = 5, and let X = 〈(1, x1, x2, b)〉 for some b ∈ GF(q)∗, with xq+1
1 + xq+1

2 = 2b.
Then, (R,X) ∈ R3 if and only if there exists c ∈ GF(q)∗ such that r1x

q
1 + r2x

q
2 =

θ(c − a) − b. First of all, take x2 = 0. Here, r1 = x−q1 (θ(c − a) − b) (x1 6= 0) and

rq+1
2 = −rq+1

1 = −x−(q+1)
1 Nq2/q(θ(c − a) − b). Since for any a, c ∈ GF(q)∗ there are q + 1

values of r2 solving the previous equation, we have (q + 1)(q − 1)2 triples (r1, r2, a) when
x2 = 0. Now, take x2 6= 0. Then, r2 = (θ(c − a) − b − r1xq1)/x

q
2. By plugging this into

rq+1
1 + rq+1

2 = 0, we obtain

rq+1
1 2b− Trq2/q((θ(c− a)− b)x1rq1) + Nq2/q(θ(c− a)− b) = 0,

or

(r1, 1)

(
2b −(−θ(c− a)− b)xq1

−(θ(c− a)− b)x1 Nq2/q(θ(c− a)− b)

)(
rq1
1

)
= 0,

with Nq2/q(θ(c − a) − b)(2b − xq+1
1 ) 6= 0, as x2 6= 0. Since b 6= 0, the above non-singular

Hermitian matrix defines a unitary form of V (2, q2) not admitting the point 〈(1, 0)〉 as
a totally isotropic point. Therefore, there are q + 1 values for r1. As a, c ∈ GF(q)∗,
the number of the triples (r1, r2, a) is again (q + 1)(q − 1)2. Thus, we may write p533 =
(q + 1)(q − 1)2.

In order to complete the entries of L3, the case (R,X) ∈ R5 (k = 5) remains to
be studied, as p534 will be obtained by taking a difference. Considering (R,X) ∈ R5 is
equivalent to having r1x

q
1+r2x

q
2 = c−b−θa, for some c ∈ GF(q)∗. Since xq+1

1 +xq+1
2 = 2b,

with b ∈ GF(q)∗, we may distinguish the two cases x2 = 0 and x2 6= 0, and then proceed
exactly as before in the computation of p533, so getting p535 = p533 = (q + 1)(q − 1)2.

Finally, p534 = η3 − (p530 + p531 + p532 + p533 + p535) = (q2 − 1)q(q − 2).
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Lemma 4.6. The intersection numbers pk5j are well defined. They are collected in the
following intersection matrix L5 whose (k, j)−entry is pk5j:

L5 =


0 0 0 0 0 (q3 − q)(q − 1)
0 q(q − 1) 0 q(q − 1)2 q(q − 1)3 q(q − 2)(q − 1)
0 0 0 0 (q3 − q)(q − 1) 0
0 q(q − 1) 0 q(q − 1)2 q2(q − 1)(q − 2) q(q − 1)2

0 q2 − 1 1 q(q + 1)(q − 2) q4 − 3q3 + q2 + 4q − 1 q3 − 2q2 − q + 1
1 (q − 2)(q + 1) 0 (q2 − 1)(q − 1) q4 − 3q3 + q2 + 2q − 1 q3 − 2q2 + q + 1


Proof. To check that pk5j is well defined, for any pair (X,Q) ∈ Rk we count the number
of points R that are 5−related with Q and j−related with X. It is easy to see that
R = 〈(1, r1, r2, a)〉, for some a ∈ GF(q)∗, with rq+1

1 + rq+1
2 = 2a. From the previous

calculations, we already have pk51 = pk15, p
k
52 = pk25, p

k
53 = pk35, for k = 0, . . . , 5.

Let k = 1. Thus, X = 〈(1, x1, x2, 0)〉, with xq+1
1 + xq+1

2 = 0, x1 6= 0 6= x2. Therefore,
(R,X) ∈ R5 if and only if there exists b ∈ GF(q)∗ such that r1x

q
1 + r2x

q
2 = a − b. Note

that for a = b, there is no triple (r1, r2, a) satysfing the previous equation because of the
conditions on (x1, x2). For this reason, set a 6= b. By writing r2 = x−q2 (a− b− r1xq1) and
substituting it into rq+1

1 + rq+1
2 = 2a, we get Trq2/q(r1x

q
1) = (a− b)−1((a− b)2 − 2axq+1

2 ),
that is satisfied by q elements r1. Therefore, as b ∈ GF(q)∗, a ∈ GF(q)∗ \ {b}, we obtain
p155 = (q − 2)(q − 1)q.

Then, p154 = η5 − (p150 + p151 + p152 + p153 + p155) = q(q − 1)3.

Assume k = 2, and let X = 〈(1, 0, 0, θb)〉 with b ∈ GF(q)∗. Note that

z(P,R,X) = (a− θb)GF(q)∗ ∈ Γ,

i.e., j = 4, from which p255 = 0, p254 = η5.

Assume k = 3, and let X = 〈(1, x1, x2, θb)〉, with xq+1
1 + xq+1

2 = 0, x1 6= 0 6= x2.
Thus, (R,X) ∈ R5 if and only if there exists c ∈ GF(q)∗ such that r1x

q
1 + r2x

q
2 =

c + a − θb, i.e., r2 = x−q2 (c + a − θb − r1xq1). By using rq+1
1 + rq+1

2 = 2a, it follows that
Trq2/q((c+ a+ θb)r1x

q
1) = (c+ a)2 − θ2b2 − 2a. Since the latter equation in the unknown

r1 admits q solutions, for any a, c ∈ GF(q)∗, we have q(q − 1)2 triples (r1, r2, a), i.e.,
p355 = q(q − 1)2.

Therefore, p354 = η5 − (p350 + p351 + p352 + p353 + p355) = q2(q − 1)(q − 2).

Take k = 4. Thus, X = 〈(1, x1, x2, ωib)〉, where xq+1
1 + xq+1

2 = Trq2/q(ω
ib), b ∈ GF(q)∗.

Suppose R is 5−related with X. This means there exists c ∈ GF(q)∗ such that r1x
q
1 +

r2x
q
2 = ωiqb + a − c. At this point, we study separately when x2 is zero and when it

is not. Suppose x2 = 0. As x1 6= 0, we find r1 = x−q1 (ωiqb + a − c), hence rq+1
2 =

−rq+1
1 + 2a = −x−(q+1)

1 Nq2/q(ω
iqb+ a− c) + 2a. The latter equation is satisfied by exactly

q+ 1 elements r2 if −rq+1
1 + 2a 6= 0, otherwise r2 = 0. So it is necessary to study the case

−rq+1
1 + 2a = 0. Consider rq+1

1 = 2a, i.e., x
−(q+1)
1 Nq2/q(ω

iqb+ a− c) = 2a. By writing this

expression explicitly, we find that the elements a ∈ GF(q)∗ for which rq+1
1 = 2a are the

solutions of the equation

X2 + (Trq2/q(ω
ib)− 2xq+1

1 − 2c)X + c2 − cTrq2/q(ω
ib) + Nq2/q(ω

ib) = 0, (13)

whose discriminant is

∆ = 8cxq+1
1 − 4Nq2/q(ω

ib) + (Trq2/q(ω
ib)− 2xq+1

1 )2
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= 8cxq+1
1 + b2(ωiq − ωi)2.

For c = −b2(ωiq−ωi)2/8xq+1
1 , ∆ = 0 holds, i.e., there is a unique X = a satisfying (13),

to which r1 = x−q1 (ωiqb + a − c) and r2 = 0 correspond. Therefore, for c = c, we get the
triple (r1, 0, a) and further (q + 1)(q − 2) triples (r1, r2, a) with r1 = x−q1 (ωiqb + a − c),
a 6= a, r2 6= 0.

Assume ∆ is a square in GF(q)∗, i.e., ∆ is a q−1
2
−th root of the unity. Precisely one

element c corresponds with any such a root, and for any such a c, there are two values
of X satisfying (13). Therefore, for every fixed c among the previous ones, we get two
triples of type (r1, 0, a) and further (q+ 1)(q− 3) triples with r2 6= 0, i.e., in total we have
q−1
2

(2 + (q + 1)(q − 3)).

For the remaining q− 1− (1 + q−1
2

) = q−3
2

values of c ∈ GF(q)∗, ∆ is a non-square, i.e.,

there is no a ∈ GF(q)∗ making −rq+1
1 +2a equal to zero. This means that, here, in the light

of the initial considerations on both r1 and r2, we have q−3
2

(q− 1)(q+ 1). To sum up, for

x2 = 0, the number we seek is 1+(q−2)(q+1)+ q−1
2

(2+(q+1)(q−3))+ q−3
2

(q−1)(q+1) =
q3 − 2q2 − q + 1.

Now suppose x2 6= 0. Then, r2 = (a − c + ωiqb − r1x
q
1)/x

q
2. By plugging this into

rq+1
1 + rq+1

2 = 2a, we get

rq+1
1 Trq2/q(ω

ib)− Trq2/q((ω
ib+ a− c)r1xq1) + Nq2/q(w

ib+ a− c)− 2axq+1
2 = 0,

or

(r1, 1)

(
Trq2/q(ω

ib) −(ωib+ a− c)xq1
−(ωiqb+ a− c)x1 Nq2/q(ω

ib+ a− c)− 2axq+1
2

)(
rq1
1

)
= 0,

whose determinant is Nq2/q(ω
ib+ a− c)(Trq2/q(ω

ib)− xq+1
1 )− 2aTrq2/q(ω

ib)xq+1
2 , or better

(Nq2/q(ω
ib + a − c) − 2aTrq2/q(ω

ib))xq+1
2 . If Nq2/q(ω

ib + a − c) 6= 2aTrq2/q(ω
ib), since

Trq2/q(ω
i) 6= 0, the above Hermitian matrix is a non-singular matrix which defines a

unitary form of V (2, q2) not admitting the point 〈(1, 0)〉 as a totally isotropic point.
Therefore, there are q+ 1 values for r1 if the determinant is non-zero, otherwise there is a
unique r1 satisfying the above sesquilinear form. So Nq2/q(ω

ib+a− c)−2aTrq2/q(ω
ib) = 0

needs to be studied. In this case, by writing the expression explicitly, we find that the
elements a ∈ GF(q)∗ making the determinant equal to zero are the solutions of the
equation

X2 − (Trq2/q(ω
ib) + 2c)X + c2 − cTrq2/q(ω

ib) + Nq2/q(ω
ib) = 0,

whose discriminant is

∆ = 8cTrq2/q(ω
ib)− 4Nq2/q(ω

ib) + (Trq2/q(ω
ib))2.

Here, for x2 6= 0, by arguing exactly as before, the number of triples obtained is again
q3 − 2q2 − q + 1, and so we may denote it by p455.

Finally, we have p454 = η5 − (p450 + p451 + p452 + p453 + p455) = q4 − 3q3 + q2 + 4q − 1.

Assume k = 5. Then, X = 〈(1, x1, x2, b)〉 for some b ∈ GF(q)∗, with xq+1
1 + xq+1

2 = 2b.
Therefore, (R,X) ∈ R5 if and only if there is c ∈ GF(q)∗ such that r1x

q
1 +r2x

q
2 = a+b−c.

As b is fixed, we may set d = b− c with d ∈ GF(q) \ {b}. Assume x2 = 0, i.e., xq+1
1 = 2b.

Thus r1 = x−q1 (a+ d), from which

rq+1
2 = −rq+1

1 + 2a = −x−(q+1)
1 (a+ d)2 + 2a.
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This equation gives r2 = 0 whenever the latter quantity is zero, otherwise it gives q + 1
non-zero values for r2. Assume first d = 0. Then, a2 − 2xq+1

1 a = 0 if and only if
a = 2xq+1

1 = 4b, thus r1 = 4b/xq1. Therefore, for d = 0, we get only one triple with r2 = 0
and (q − 2)(q + 1) triples with r2 6= 0. Now assume d 6= 0. The values of a ∈ GF(q)∗

making −rq+1
1 +2a = −x−(q+1)

1 (a+d)2 +2a equal to zero are the solutions of the equation
X2 + 2(d − xq+1

1 )X + d2 = 0, whose discriminant is ∆ = xq+1
1 (xq+1

1 − 2d) = 4bc 6= 0.
Thus ∆ is either a non-zero square or a non-square in GF(q). When ∆ is a non-zero
square, xq+1

1 (xq+1
1 − 2d) is a q−1

2
−th root of unity, and for such a root, and hence for the

corresponding d, there are two values of a satisfying the previous quadratic equation in
X. Note that for d = 0, x

2(q+1)
1 is evidently a q−1

2
−th root of unity (but d = 0 has already

been analysed before), while ∆ would be 0 for d = b. Therefore, for any q−1
2
−th root of

unity but x
2(q+1)
1 , we find two triples with r2 = 0 and (q − 3)(q + 1) triples with r2 6= 0.

For the remaining q−1
2

non-zero elements of GF(q), ∆ is a non-square in GF(q). Thus, for
any such an element we get (q − 1)(q + 1) triples (r1, r2, a).

By taking into account all the above results, for x2 = 0, the following number of triples
is obtained:

1 + (q − 2)(q + 1) +
q − 3

2
(2 + (q − 3)(q + 1)) +

q − 1

2
(q − 1)(q + 1) = q3 − 2q2 + q + 1.

In order to conclude the study of the case k = 5, consider x2 6= 0. Therefore, by deriving
r2 from r1x

q
1 + r2x

q
2 = a+ d, where d ∈ GF(q) \ {b}, and plugging it into rq+1

1 + rq+1
2 = 2a,

we get
rq+1
1 2b− (a+ d)Trq2/q(r1x

q
1) + (a+ d)2 − 2axq+1

2 = 0,

or

(r1, 1)

(
2b −(a+ d)xq1

−(a+ d)x1 (a+ d)2 − 2axq+1
2

)(
rq1
1

)
= 0, (14)

whose determinant is ((a+ d)2− 4ab)xq+1
2 . If (a+ d)2 6= 4ab, the above Hermitian matrix

is a non-singular matrix which defines a unitary form of V (2, q2) not admitting the point
〈(1, 0)〉 as a totally isotropic point. Therefore, if (a + d)2 − 4ab = 0, there is a unique r1
satisfying (14), otherwise there are q + 1 values for r1 satisfying (14). It is evident that
the a ∈ GF(q)∗ making (a + d)2 − 4ab equal to zero are the solutions of the equation
X2 + 2(d− 2b)X + d2 = 0, whose discriminant is ∆ = 4bc 6= 0. By arguing exactly as in
the case x2 = 0, we find that the number of triples obtained is again q3− 2q2 + q+ 1, and
so we may denote it by p555.

Finally, we get p554 = η5 − (p550 + p551 + p552 + p553 + p555) = q4 − 3q3 + q2 + 2q − 1.

Lemma 4.7. The intersection numbers pk4j are well defined. They are collected in the
following intersection matrix L4 whose (k, j)−entry is pk4j

L4 =


0 0 0 0 (q3 − q)(q − 1)2 0
0 q(q − 1)2 0 q(q − 1)3 q2(q − 1)2(q − 2) q(q − 1)3

0 0 0 0 (q3 − q)(q − 1)(q − 2) (q3 − q)(q − 1)
0 q(q − 1)2 0 q(q − 1)3 q(q − 1)(q3 − 3q2 + 2q + 1) q2(q − 1)(q − 2)
1 q3 − q2 − 2q q − 2 q4 − 2q3 − q2 + 3q + 1 q5 − 4q4 + 4q3 + 3q2 − 7q + 1 q4 − 3q3 + q2 + 4q − 1
0 (q + 1)(q − 1)2 q − 1 q(q2 − 1)(q − 2) q5 − 4q4 + 4q3 + 3q2 − 5q + 1 q4 − 3q3 + q2 + 2q − 1


Proof. To check that pk4j is well defined, for any pair (X,Q) ∈ Rk we would have to count
the number of points R that are 4−related with Q and j−related with X. However,
thanks to the previous Lemmas 4.3, 4.4, 4.5, 4.6, we already have all the entries of L4

except for pk44, with k = 1, . . . , 5. These can be derived from the well-known relations
ηi =

∑
j p

k
ij, i.e., pk44 = η4 − (pk40 + pk41 + pk42 + pk43 + pk45), for k = 1, . . . , 5.
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Set I = {0, 2}. For i, j ∈ I and k ∈ {0, . . . , 5} \ I, we have pki,j = 0. By Theorem 9.3
(iii) in [2], the scheme XP is imprimitive.

Summarising, we have the following result.

Theorem 4.8. For any point P of H(3, q2), XP = (X ,R) is a symmetric and imprimitive
association scheme, whose first and second eigenmatrices are

P =



1 (q2 − 1)(q + 1) q − 1 (q2 − 1)2 (q3 − q)(q − 1)2 (q3 − q)(q − 1)
1 q2 − q − 1 q − 1 q3 − 2q2 + 1 −q(q − 1)2 −q(q − 1)
1 q2 − 1 −1 −q2 + 1 0 0
1 −q − 1 q − 1 −q2 + 1 q(q − 1) q
1 −q − 1 −1 q + 1 −q(q + 1) q(q + 1)
1 −q − 1 −1 q + 1 q(q − 1) −q(q − 1)



Q =



1 (q − 1)(q + 1)2 q3(q − 1) q(q − 1)2(q + 1) 1
2q

2(q − 1)3 1
2q

2(q + 1)(q − 1)2

1 q2 − q − 1 q3(q−1)
q+1 −q(q − 1) − q

2(q−1)2
2(q+1) − 1

2q
2(q − 1)

1 (q − 1)(q + 1)2 −q3 q(q − 1)2(q + 1) − 1
2q

2(q − 1)2 − 1
2q

2(q + 1)(q − 1)

1 q2 − q − 1 − q3

q+1 −q(q − 1) q2(q−1)
2(q+1)

q2

2

1 −q − 1 0 q − q
2

2
q2

2
1 −q − 1 0 q 1

2q
2(q − 1) − 1

2q
2(q − 1)


Remark 4.9. We point out that XP = (X ,R) is a fusion of a Schurian scheme. Let G
be the collineation group of H(3, q2) and let GP be the stabiliser of the point P . Then,
it is not difficult to see that the action of GP on the set X of points not collinear with
P is generously transitive. Hence, the permutation group GXP induced by GP acting on
X yields a Schurian scheme. In fact, this association scheme has 4 + (q − 1)/2 classes,
since the relation R4 splits up under the action of GXP . Hence, an alternative proof of
Theorem 4.8 could be given that would rely on understanding the irreducible constituents
of the permutation character GXP and computation of the intersections of double cosets
HgH ∩ kGP , where H is a point stabiliser in GXP and kG

X
P is a conjugacy class of elements

of GXP .

A quotient scheme

We now explore the quotient scheme, say B, arising from the imprimitivity of XP . Since
R0∪R2 is an equivalence relation on X , the vertices of B are the hyperbolic lines through
P ; this set will be denoted by Σ. Let ∼ be the equivalence relation on {0, . . . , 5} defined
by

i ∼ j if and only if pjiα 6= 0, for some α ∈ I.

The equivalence classes are I = {0, 2}, 1′ = {1, 3}, 2′ = {4, 5}. This yields that the
non-trivial relations of B are

R1′ = {([x], [y]) ∈ Σ× Σ : (x, y) ∈ R1 ∪R3},
R2′ = {([x], [y]) ∈ Σ× Σ : (x, y) ∈ R4 ∪R5},

i.e., (Σ, R1′) is a strongly regular graph (and the same holds for its complementary graph
(Σ, R2′)).
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Since ∼ is an equivalence relation, the set R1(x) ∪R3(x) is partitioned into hyperbolic
lines, for any x ∈ X . Then, the valency of the graph is k = (η1 + η3)/q = (q2 − 1)(q + 1).
Similarly, the set ⋃

a,b=1,3

P(x,y)
a,b ,

where P(x,y)
a,b = {z ∈ X : (x, z) ∈ Ra, (y, z) ∈ Rb}, for (x, y) ∈ Ri, i /∈ I, is partitioned into

hyperbolic lines. This implies that the other parameters of (Σ, R1′) are

λ =
p111 + 2p113 + p133

q
=
p311 + 2p313 + p333

q
= 2q2 − q − 2

and

µ =
p411 + 2p413 + p433

q
=
p511 + 2p513 + p533

q
= q(q + 1).

Let Bil2(q) be the graph defined on the set of bilinear forms from V (2, q) × V (2, q) to
GF(q), with two forms f and g being adjacent if and only if rank(f − g) = 1. By [6,
Proposition 2.6], Bil2(q) is isomorphic to the matrix algebra D2(q

2) consisting of all 2× 2
Dickson matrices over GF(q2), where a 2× 2 Dickson matrix over GF(q2) has the form

D(a,b) =

(
a b
bq aq

)
,

with a, b ∈ GF(q2).

Proposition 4.10. The graph (Σ, R1′) is isomorphic to Bil2(q).

Proof. Any point 〈(1, r1, r2, r3)〉 with r3+rq3 = rq+1
1 +rq+1

2 , together with P = 〈(0, 0, 0, 1)〉,
spans a hyperbolic line of H(3, q2), denoted by l(r1,r2). Fix δ ∈ GF(q2) with Nq2/q(δ) = −1,
and define the bijection

ϕ : Σ → Bil2(GF(q))
l(r1,r2) 7→ D(r1,δr2)

.

Let m = l(m1,m2), n = l(r1,r2) ∈ Σ. For any Q ∈ m and R ∈ n, z(P,Q,R) = h(q, r)GF(q)∗.
Straightforward calculations show that (m,n) ∈ R1′ if and only if Trq2/q(h(q, r)) = 0, i.e.,
det(ϕ(m)− ϕ(n)) = 0.

5 Pseudo-ovals as subsets in the scheme XP on Q−(5, q)

Via the Klein correspondence κ, the lines of PG(3, q2) are mapped to the points of a
hyperbolic quadric Q+(5, q2) of PG(5, q2). In particular, the lines of a unitary polar
geometry of rank 2 of PG(3, q2) are mapped to the points of an elliptic quadric Q−(5, q)
of a PG(5, q) embedded in PG(5, q2). The reader is referred to [11] for more details on
the Klein correspondence.

Let

τ : V (6, q2) −→ V (6, q2)

(X1, X2, X3, X4, X5, X6) 7→ (X1,−µqX2, X3,−µqX4, X5, µ
qX6),
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for a fixed µ ∈ GF(q2) with Nq2/q(µ) = −1, and set ρ = τ ◦ κ. It turns out that the lines

of H(3, q2) defined by (12) are mapped by ρ to the points of the Q−(5, q) defined by Q̂
in (1). For any point P ∈ H(3, q2), by abuse of notation, we write ρ(P ) to denote the
totally singular line {ρ(r) : r is a totally isotropic line on P}.

Proposition 5.1. Let P , Q and R be three distinct points of the H(3, q2) defined by (12).
Then, z(P,Q,R) = e if and only if l = ρ(P ), m = ρ(Q), n = ρ(R) are in perspective.

Proof. Let P , Q and R such that z(P,Q,R) = e. Since 〈P,Q,R〉 is a non-degenerate
plane, coordinates can be chosen such that P = 〈(1, 0, 0, 0)〉, Q = 〈(0, 0, 0, 1)〉 and R =
〈(1, t1, t2, t3)〉, with t3 = 1

2
(tq+1

1 + tq+1
2 ) 6= 0.

The totally isotropic lines on P have the form 〈(1, 0, 0, 0), (0, x, µxq, 0)〉, for some non-
zero x ∈ GF(q2). Thus, ρ(P ) = L(I, 0, 0). Similarly, ρ(Q) = L(0, 0, I).

The totally isotropic lines on R have the form 〈(1, t1, t2, t3), (0, x, µxq, tq1x+ tq2µx
q)〉, for

some non-zero x ∈ GF(q2). Thus, ρ(R) = L(I, F1, F2), with F1(x) = tq1x + t2µx
q and

F2(x) = 1
2
(tq+1

1 − tq+1
2 )x + t1t

q
2µx

q. By using Proposition 3.1, it is immediate that l, m
and n are in perspective.

Let l, m, n be three lines of the Q−(5, q) arising from Q̂ which are in perspective. Set
P = ρ−1(l), Q = ρ−1(m), R = ρ−1(n). We proceed to show that z(P,Q,R) = e.

Coordinates in V̂ can be chosen such that

l = L(I, 0, 0), m = L(0, 0, I), n = L(I, F1, F2),

with F1, F2 non-singular. Let n be the extension of n in V (6, q2), that is

n = {(x, y, f1x+ g1y, g
q
1x+ f q1y, f2x+ g2y, g

q
2x+ f q2y) : x, y ∈ GF(q2)}.

Note that P = ρ−1(l) = 〈(1, 0, 0, 0)〉, Q = ρ−1(m) = 〈(0, 0, 0, 1)〉. Furthermore, we find
that ρ−1(n) actually consists of q2 + 1 coplanar lines of PG(3, q2) through R, q + 1 of
them are totally isotropic. Since m and n are not concurrent, then we may write R =
〈(1, t1, t2, t3〉, with tq3 + t3 = tq+1

1 + tq+1
2 . Straightforward calculations show that these lines

have the form 〈(1, t1, t2, t3), (0, x1, x2, tq1x1 + tq2x2)〉, for some x1, x2 ∈ GF(q2). For x1 = 1
and x2 = 0, the ρ−image of the corresponding line is 〈(1, 0, tq1, µqt2, t

q+1
1 − t3, µqtq1t2)〉 ∈ n.

On the other hand, the unique point of n of this form is 〈(1, 0, f1, gq1, f2, g
q
2)〉, whence

tq1 = f1
µqt2 = gq1
tq+1
1 − t3 = f2
µqtq1t2 = gq2
tq3 + t3 = tq+1

1 + tq+1
2

.

Eqs. (3) with F0 = I make the system compatible, and so we get the unique solution
t1 = f q1 , t2 = −µgq1 and t3 = f q+1

1 − f2. By Proposition 3.1, f2 ∈ GF(q) providing
t3 ∈ GF(q). Then, z(P,Q,R) = t3GF(q)∗ = e, which is the desired conclusion.

Proposition 5.1 allows us to view the association scheme XP in the dual setting. Fix
a line l of Q−(5, q) and consider the set X ′ of all lines of Q−(5, q) that are disjoint from
l⊥, that is, from l. There are q5 such lines and we equip this set with the following five
non-trivial relations:
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R′1 = {(m,n) : m and n are concurrent},

R′2 = {(m,n) : dim 〈l,m, n〉 = 4},

R′3 = {(m,n) : m and n are disjoint and dim 〈l,m, n〉 = 5},

R′4 = {(m,n) : l,m, n span the whole space and they are not in perspective},

R′5 = {(m,n) : l,m, n span the whole space and they are in perspective}.

By using the well-known correspondences given by the Klein map from H(3, q2) to
Q−(5, q), we get that {(ρ(P ), ρ(Q)) : (P,Q) ∈ Ri} = R′i, for i = 1, 2, 3. Proposition 5.1
provides the equivalence between R5 and R′5, hence the one between R4 and R′4. The
transitivity of the unitary group on the points of H(3, q2), as well as the transitivity of
the orthogonal group on the lines of Q−(5, q), leads to the following result.

Theorem 5.2. Set R′ = {R′0, R′1, . . . , R′5}, where R′0 is the diagonal relation. Xl =
(X ′,R′) is a symmetric, imprimitive association scheme, isomorphic to XP = (X ,R), for
any line l of Q−(5, q) and any point P of H(3, q2).

Let {Ai}06i6d be the adjacency matrices for a d−class association scheme X = (X , {Ri}06i6d),
and let {Ei}06i6d be the set of minimal idempotents for X. For any subset Y of X , χY
will denote the characteristic vector of Y .

The inner distribution of a non-empty subset Y of X is the array a = (a0, . . . , ad) of
the non-negative rational numbers ai given by

ai = |Y |−1|Ri ∩ Y 2| = |Y |−1χYAiχ>Y .

Let M be a subset of {0, . . . , d} with 0 ∈M . A non-empty subset Y of X is an M−clique
of X if it satisfies

Ri ∩ Y 2 = ∅, for all i ∈ {0, . . . , d} \M ,

or equivalently, the i−th entry of the inner distribution a of Y is zero, for all i ∈ {0, . . . , d}\
M . Let T be a subset of {1, . . . , d}. A non-empty subset Y of X is a T−design of X if
its inner distribution a satisfies∑

i

aiQ(i, j) = 0, for all j ∈ T,

where Q is the second eigenmatrix of the scheme. Equivalently, Y is a T−design if and
only if χYEj = 0, for all j ∈ T .

The dual degree set of a vector v ∈ R|X | is the set of indices j ∈ {1, . . . , d} such that
vEj 6= 0. Two vectors of R|X | are design-orthogonal if their dual degree sets are disjoint.

Recall that a pseudo-oval of PG(5, q) is a set S of q2 + 1 lines, such that any three
distinct elements of S span the whole space. We consider pseudo-ovals consisting only of
lines of Q−(5, q).

By transferring on H(3, q2) the characterization of pseudo-conics of Q−(5, q) by Thas
[18, Theorem 6.4], the characterization of Cossidente, King and Marino [4] is obtained as
a corollary of Proposition 5.1.
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Corollary 5.3 ([4, Theorem 3.1]). A special set S̃ of H(3, q2) is of CP-type if and only
if z(P,Q,R) = e, for all triples of distinct points P,Q,R of S̃.

Proof. By Theorem 2.1 in [5], a special set S̃ of CP-type corresponds to a pseudo-conic
S of Q−(5, q) under the Klein map ρ. By [18, Theorem 6.4], this means that any three
distinct elements l,m, n of S are in perspective, that is, by Proposition 5.1, z(P,Q,R) = e,
where P = ρ−1(l), Q = ρ−1(m) and R = ρ−1(n). We note that z(P,Q,R) = e is equivalent
to the fact that the Segre invariant of (P,Q,R) defined in [4] is equal to 1.

Proposition 5.4. Let S be a set of q2 + 1 lines of Q−(5, q). Then, S is a pseudo-oval if
and only if every non-degenerate hyperplane contains either 0 or 2 elements of S.

Proof. Let S be a pseudo-oval. There are q2(q3 + 1) non-degenerate hyperplanes in a
PG(5, q), among which q2(q + 1) contain a given totally singular line. A simple double
count shows that the number of non-degenerate hyperplanes containing a pair of disjoint
totally singular lines is q + 1. Now count the triples (l,m,Π) where l and m are distinct
totally singular lines of S, Π is a non-degenerate hyperplane, under the conditions that l
and m are disjoint and Π contains 〈l,m〉. For any non-degenerate hyperplane Πi, let µi
be the number of elements of S contained in Πi.

Then, we have ∑
i

µi(µi − 1) = |S|(|S| − 1)(q + 1)

= (q2 + 1)q2(q + 1).

On the other hand, the number of pairs (l,Πi), with l ∈ S contained in Πi, is∑
i

µi = |S|q2(q + 1)

= (q2 + 1)q2(q + 1).

Since the two sums are equal, it follows that∑
i

µi(2− µi) =
∑
i

µi −
∑
i

µi(µi − 1) = 0.

Every three elements of S span the whole space, so µi 6 2 for each i. Therefore, each
term of the left-most sum is positive, hence µi(2− µi) = 0 for each i, i.e., µi ∈ {0, 2}.

Conversely, let l,m, n be three lines of S. Assume that l and m intersect. Simple
geometric arguments show that 〈l,m, n〉 is a 4-dimensional subspace which is contained
in some non-degenerate hyperplane. This contradicts the property of S. Assume that l
and m are disjoint and n intersects 〈l,m〉 in a point. Then, 〈l,m, n〉 is a non-degenerate
hyperplane, and we have again a contradiction. Therefore, S is a pseudo-oval.

Remark 5.5. The “ if ” part of Proposition 5.4 was already proved in [13], see result 8.7.2.
To check this, note that a hyperplane containing l⊥, for some totally singular line l, is
degenerate; and conversely.

Theorem 5.6. Let S be a pseudo-oval of Q−(5, q). Then

(a) S \ {l} is a {0, 4, 5}−clique of Xl, and a {1}−design of Xl, for each l ∈ S.
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(b) The following are equivalent:

(i) S \ {l} is a {0, 5}−clique, for each l ∈ S;

(ii) S \ {l} is a {1, 5}−design, for each l ∈ S;

(iii) S is a pseudo-conic;

Proof. Let l be any line of S and set S ′ = S \ {l}. By the definition of pseudo-oval and
the scheme Xl, we find that S ′ is a {0, 4, 5}−clique of Xl.

Let a be the inner distribution of S ′ (note that |S ′| = q2):

a =
1

q2
(
χS′Aiχ

>
S′
)5
i=0

= (1, 0, 0, 0, x, q2 − x− 1),

where x is undetermined. The MacWilliams Transform aQ of a is

aQ =

(
q2, 0, q3(q − 1), q2(q2 − 1),

1

2
q3(2q2 − 4q + 2− x),

q3x

2

)
. (15)

Therefore, S ′ is a {1}−design, and (i) and (ii) are equivalent in (b). To see the equivalence
with (iii) in (b), note that S ′ is a {0, 5}−clique with respect to every l in S if and only
if l,m, n are in perspective, for every triple l,m, n of distinct lines of S, i.e., S is a
pseudo-conic by [18, Theorem 6.4].

Let Up1,p2 = O1 ∪ O2 be any set constructed as in Section 3.1, and Π the hyper-
plane containing it. Let χOi

be the characteristic vectors of Oi, , i = 1, 2. We will see
(Proposition 5.9) that v = χO1 − χO2 and the characteristic vector of a pseudo-conic are
design-orthogonal.

We introduce the following subsets of X referred to Up1,p2 :

- V is the set of lines of X contained in Π and not intersecting p1 ∪ p2;

- Ji is the set of lines of X not contained in Π and intersecting pi, i = 1, 2;

- W is the set of lines of X not contained in Π and intersecting (B⊥ ∩Π) \ (p1 ∪ p2);

- Z is the set of lines of X not contained in Π and not intersecting B⊥ ∩ Π.

Lemma 5.7.

χO1A1 = j + (q − 2)χO1 + (q − 1)(χO2∪V + χJ1)− χJ2∪W ;

χO1A2 = j− χO1 − χO2∪V − χJ2∪W − χZ;

χO1A3 = j + (q2 − q − 1)χO1 − χO2∪V + (q2 − q − 2)χJ1 + (q − 1)χJ2∪W + (q − 2)χZ;

χO1A4 = (q2 − 1)(j− χO1 − χO2 − χJ1)− (q − 1)(χJ2 + χV + 2χZ)− (2q − 1)χW ;

χO1A5 = j− χO1 + (q2 − q − 1)χO2 − χJ1 − χJ2 + (q − 1)χW + (q − 2)χZ,

where j is the all-ones vector. Similarly, for χO2.
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Proof. We calculate χO1A1. This is equivalent to counting how many lines of O1 are
concurrent with a fixed line n ∈ X .

Assume n ∈ O1. Then, there are q−1 lines ofO1 concurrent with n. Assume n ∈ O2∪V .
For each point of p1 \ {B} there is exactly one line of O1 intersecting n. So, we find q
lines of O1 concurrent with n. Assume n ∈ J1. Set R = n ∩ p1. Then, the unique lines
of O1 concurrent with n are those through R, which are q. Assume n ∈ J2 ∪W . Set
R = n ∩B⊥. The unique line joining R and p1 is 〈B,R〉, that is not in X . In this case n
contributes 0. Assume n ∈ Z. Set R = n ∩ Π. There is a unique line joining R and p1,
and it is in O1. In this case n contributes 1. Finally,

χO1A1 = (q − 1)χO1 + qχO2∪V + qχJ1 + (j− χO1 − χO2∪V − χJ1 − χJ2∪W )

= j + (q − 2)χO1 + (q − 1)(χO2∪V + χJ1)− χJ2∪W .

We now compute χO1A2. This is equivalent to counting how many lines of O1 are
contained in the 4-dimensional subspace 〈l, n〉, for a fixed n ∈ X .

Assume n ∈ O1. Since the plane 〈l, n〉∩Π, containing n and p1, is degenerate, there are
no lines of O1 different from n satisfying the property. Assume n ∈ O2 ∪ V . By arguing
as above, it is easy to see that there are no lines of O1 different from n satisfying the
property in this case too. Assume n ∈ J1. The plane 〈l, n〉 ∩ Π is degenerate containing
p1. Thus, it contains exactly a further totally singular line which is necessarily in O1.
Assume n ∈ J2∪W . By arguing as above, the plane 〈l, n〉∩Π is degenerate as it contains
a totally singular line p on B. Then, the plane contains exactly a further totally singular
line intersecting p, which is not in O1. Assume n ∈ Z. Since the plane 〈l, n〉 ∩ Π is
non-degenerate, there are no lines of O1 satisfying the property. Summarising,

χO1A2 = χJ1 = j− χO1 − χO2∪V − χJ2∪W − χZ .

We now compute χO1A3. This is equivalent to counting how many lines of O1 share a
point with the 4-dimensional subspace 〈l, n〉 which is not on n, for a fixed n ∈ X .

Assume n ∈ O1. Since the plane 〈l, n〉 ∩ Π, containing n and p1, is degenerate, there
are q(q − 1) lines of O1 sharing one point with p1, different from n ∩ p1. Assume n ∈
O2 ∪ V . By arguing as above, it is easy to see that there are no lines of O1 satisfying
the property. Assume n ∈ J1. The plane 〈l, n〉 ∩ Π, containing p1, is degenerate. Then,
it contains exactly a further totally singular line which is necessarily in O1. Hence, there
are (q − 2)q + q − 1 = q2 − q − 1 lines of O1 that intersect p1. Assume n ∈ J2 ∪W . The
plane 〈l, n〉 ∩ Π is degenerate as it contains a totally singular line p on B and a further
totally singular line, say s, intersecting p. For any R ∈ p1 \ {B}, there is a unique line of
O1 on R concurrent with s. Hence, there are q lines of O1 that intersect 〈l, n〉 in a point
not in n. Assume n ∈ Z. The plane 〈l, n〉 ∩ Π is non-degenerate, and, together with p1,
it spans a 4-dimensional subspace intersecting Q−(5, q) in either a hyperbolic quadric or
a quadratic cone projecting the conic in the plane from a point of p1 \ {B}. Anyway, the
number of lines of O1 that meet 〈l, n〉 in exactly one point not in n is q − 1. Therefore,

χO1A3 = q(q − 1)χO1 + (q2 − q − 1)χJ1 + qχJ2∪W + (q − 1)χZ

= j + (q2 − q − 1)χO1 − χO2∪V + (q2 − q − 2)χJ1 + (q − 1)χJ2∪W + (q − 2)χZ .

We now compute χO1A5. This is equivalent to counting how many lines m of O1 span
the whole space together with l and a fixed line n ∈ X , such that l,m, n are in perspective.
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For any n ∈ O1, there is no line of O1 satisfying the property. Assume n ∈ O2. By the
arguments used to calculate χO1A1, there are q lines of O1 which are concurrent with n.
All the other q2 − q lines of O1 satisfy the property by Lemma 3.5. If n ∈ V , there is
no line of O1 satisfying the property by Lemma 3.5. For any n ∈ J1, there is no line of
O1 satisfying the property. Assume n ∈ J2. For any given line m ∈ O1, by Lemmas 3.3
(iii) and 3.5, the lines in X that satisfy the property are those contained in the unique
hyperplane Π such that p1 and p2 correspond under the involution σ̃. Therefore, for any
line n ∈ J2, there are no lines in O1 satisfying the property. Assume n ∈ W . Let p 6= p2
the unique totally singular line on B concurrent with n. By Lemma 3.5, m ∈ O1 satisfies
the property if and only if p corresponds to p1 under the involution arising from some non-
degenerate hyperplane containing p1 and p but not l. Let Λ be such a hyperplane. The
4-dimensional subspace Λ ∩ Π, containing p and p1, meets Q−(5, q) in either a quadratic
cone or a hyperbolic quadric. If the former case occurred, Λ and Π would define the same
line σ by Remark 3.4, and then p = p2. Hence, the intersection is necessarily a hyperbolic
quadric. This implies that the number of lines of O1 satisfying the property is q. Assume
n ∈ Z. Let p the unique totally singular line on B concurrent with n. By Lemma 3.5,
m ∈ O1 satisfies the property if and only if p corresponds to p1 under the involution arising
from some non-degenerate hyperplane containing p1 and p but not l. Let Λ be such a
hyperplane. The 4-dimensional subspace Λ ∩Π, containing p1, meets Q−(5, q) in the line
p1, a quadratic cone or a hyperbolic quadric. If the former case occurred, Λ ∩ Π = p⊥1
from which Λ and Π would be degenerate (as Λ⊥,Π⊥ ∈ p1). Hence, the intersection is
necessarily a quadratic cone or a hyperbolic quadric. In each case, there is exactly one
line of O1 concurrent with n, and so there are q − 1 lines satisfying the property.

Finally,

χO1A5 = (q2 − q)χO2 + qχW + (q − 1)χZ

= j− χO1 + (q2 − q − 1)χO2 − χJ1 − χJ2 + (q − 1)χW + (q − 2)χZ .

We will now calculate χO1A4, using the fact that the sum of the adjacency matrices is
the all-ones matrix J :

χO1A4 = χO1J − (χO1I + χO1A1 + χO1A2 + χO1A3 + χO1A5)

= (q2 − 1)(j− χO1 − χO2 − χJ1)− (q − 1)(χJ2 + χV + 2χZ)− (2q − 1)χW .

The same arguments work for the characteristic vector χO2 .

Corollary 5.8. Let v = χO1 − χO2. Then:

vA1 = −v + q(χJ1 − χJ2);

vA2 = χJ1 − χJ2;

vA3 = q(q − 1)v + (q2 − 2q − 1)(χJ1 − χJ2);

vA4 = −(q2 − q)(χJ1 − χJ2);

vA5 = −(q2 − q)v.

Proposition 5.9. The dual degree set of v = χO1 − χO2 is {1, 5}.

27



Proof. By using Theorem 4.8, we express each idempotent matrix Ej, j = 0, . . . , 5, of Xl

in terms of adjacency matrices as Ei = 1
q5

∑5
j=0Q(j, i)Aj, where Q(j, i) is the (j, i)−entry

of Q. From Corollary 5.8, we have:

q5vE0 = vJ = 0;

q5vE1 = v
[
(q − 1)(q + 1)2(I +A2) + (q2 − q − 1)(A1 +A3)− (q + 1)(A4 +A5)

]
= q4(v + χJ1 − χJ2) 6= 0;

q5vE2 = q3v

[
(q − 1)I +

(q − 1)

q + 1
A1 −A2 −

1

q + 1
A3

]
= 0;

q5vE3 = q v
[
(q − 1)2(q + 1)(I +A2)− (q − 1)(A1 +A3) +A4 +A5

]
= 0;

q5vE4 =
1

2
q2v

[
(q − 1)3I − (q − 1)2

(q + 1)
A1 − (q − 1)2A2 +

(q − 1)

(q + 1)
A3 −A4 + (q − 1)A5

]
= 0;

q5vE5 =
1

2
q2v

[
(q + 1)(q − 1)2I − (q − 1)(A1 +A5)− (q2 − 1)A2 +A3 +A4

]
= − q2(χJ1 − χJ2) 6= 0.

Fix a totally singular line l in Q−(5, q). For any given B on l, two vectors are associated
with each Up1,p2 = O1 ∪ O2 constructed on (B, l), namely, v = χO1 − χO2 and −v =
χO2 − χO1 . Let Vl be the set of all such vectors as B varies on l.

Lemma 5.10.

(a) The number of Up1,p2 constructed on the flag (B, l) is q+1
2
q3(q2 − 1).

(b) The number of Up1,p2 constructed on the flag (B, l) sharing a fixed line disjoint from
l is (q + 1)(q2 − 1).

Proof. To prove (a), by using the polarity associated with Q−(5, q), it suffices to count
the number of non-singular points in B⊥ \ l⊥, for all B ∈ l. Secondly, (b) follows from
the standard double counting of the pairs (Up1,p2 ,m), with m ∈ Up1,p2 , by considering (a)
and the fact that the number of lines of each Up1,p2 is 2q2.

Proposition 5.11. The size of Vl is dim(V1 ⊥ V5) = q3(q − 1)(q + 1)2.

Proof. This follows from Lemma 5.10, and taking into account that v = χO1 − χO2 6=
−v.

Each of the minimal idempotents Ei, i = 0, . . . , 5, of Xl projects onto a common
eigenspace Vi of the adjacency matrices of the scheme. The vector space R|X |, endowed
with the standard inner product · , decomposes as V0 ⊥ · · · ⊥ V5, and a basis for it is the
set of the characteristic vectors χm with m ∈ X . As usual, V0 is the space spanned by the
all-ones vector j. Therefore, the set {χmEi : m ∈ X} forms a basis for Vi, for 0 6 i 6 5,
that is, Vi = row(Ei).

Proposition 5.12. Vl spans V1 ⊥ V5.
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Proof. Let A be the matrix whose rows are the vectors χO1 − χO2 in Vl, and columns
are indexed by the elements of the scheme. Let M = A>A. Note that it consists of the
standard scalar products of columns of A.

For any line m, m will denote the column of A pertaining to m. Index the elements
of Vl by vi, where i ∈ {1, . . . , q3(q − 1)(q + 1)2}. Then, mi = (vi)m and, by writing
vi = χO1 − χO2 , we have mi = 1 if m lies in O1, mi = −1 if m lies in O2, mi = 0
otherwise.

First we calculate what the diagonal entries of M are. Note that m ·m =
∑

i m
2
i equals

the number of elements of Vl whose support contains the line m. By using the standard
double counting argument on pairs (O1,m), with m ∈ O1, we get m ·m = 2(q−1)(q+1)2.

Now suppose n is a line disjoint from l, not equal to m. To evaluate m ·n, we take into
account the equalities

mini =


1 if m,n ∈ O1 or m,n ∈ O2

−1 if m ∈ O1, n ∈ O2 or m ∈ O2, n ∈ O1

0 otherwise

(16)

and how m and n are related in the association scheme. We will use the calculations done
in the proof of Lemma 5.7.

Assume (m,n) ∈ R′1. We first count in two different ways the number of triples
(O1,m, n) with m,n ∈ O1. We obtain

c1η1 = (q − 1)(q − 1)(q + 1)2,

where c1 is the number of the sets of type O1 containing both m and n. Hence, c1 = q−1.
Similarly, for m,n ∈ O2.

We now count in different ways the number of triples (O1,m, n) with m ∈ O1 and
n ∈ O2. It follows that

c2η1 = q(q − 1)(q + 1)2,

where c2 is the number of the sets of type O1 ∪O2 such that m ∈ O1 and n ∈ O2. Hence,
c2 = q. Similarly, for m ∈ O2 and n ∈ O1. This yields m · n = 2(q − 1)− 2q = −2.

Assume (m,n) ∈ R′2. Consider the triples (O1,m, n) with m,n ∈ O1. From the proof
of Lemma 5.7, we see that the number of such triples is zero. Similarly, for all other cases
in (16). Hence, m · n = 0.

Assume (m,n) ∈ R′3. We first count in different ways the number of triples (O1,m, n)
with m,n ∈ O1. We obtain

c3η3 = q(q − 1)(q − 1)(q + 1)2,

where c3 is the number of the sets of type O1 containing both m and n. Hence, c3 = q.
Similarly, for m,n ∈ O2.

We now count in different ways the number of triples (O1,m, n) with m ∈ O1 and
n ∈ O2. From the proof of Lemma 5.7, this number is zero. Hence, m · n = 2q.

Assume (m,n) ∈ R′4. Consider the triples (O1,m, n) with m,n ∈ O1. From the proof
of Lemma 5.7, we see that the number of such triples is zero. Similarly, for all other cases
in (16). Hence, m · n = 0.
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Assume (m,n) ∈ R′5. Then, the number of triples (O1,m, n) with m,n ∈ O1 is zero.
Similarly for m,n ∈ O2.

We now count in different ways the number of triples (O1,m, n) with m ∈ O1 and
n ∈ O2. It follows that

c5η5 = (q2 − q)(q − 1)(q + 1)2,

where c5 is the number of the sets of type O1 ∪O2 such that m ∈ O1 and n ∈ O2. Hence,
c5 = q + 1. Similarly, for m ∈ O2 and n ∈ O1. This yields m · n = −2(q + 1).

Therefore,
M = 2

(
(q − 1)(q + 1)2I − A1 + qA3 − (q + 1)A5

)
and, from the first eigenmatrix P , we see that

M = 2q2(q2E1 + 2(q + 1)E5).

It is well known (c.f., [7, Eq. (2.10)]) that there exists an orthogonal matrix U which
simultaneously diagonalises each of the minimal idempotents of the scheme, i.e.,

U−1EiU = diag(0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸
dimVi

, 0, . . . , 0),

for i = 0, . . . , 5. This implies M itself takes a diagonal form with respect to the basis of
the eigenvectors of Ei, so that

row(M) = row(E1) ⊥ row(E5) = V1 ⊥ V5.

Therefore, V1 ⊥ V5 = row(M) 6 row(A) = 〈Vl〉. By Proposition 5.9, V1 ⊥ V5 = 〈Vl〉.

Theorem 5.13. Let S be a pseudo-oval of Q−(5, q). Then, the following are equivalent:

(a) S is a pseudo-conic;

(b) for any l in S and B in l, each set Up1,p2 constructed on (B, l) meets S\{l} in 0 or
2 elements.

Proof. By Theorem 5.6, S is a pseudo-conic if and only if S ′ = S \ {l} is a {1, 5}−design
of Xl, for any l in S. Fix l ∈ S. By Proposition 5.12, Vl spans V1 ⊥ V5. Hence, S ′ is a
{1, 5}−design of Xl if and only if χS′ · v = 0, for all v ∈ Vl. On the other hand,

χS′ · v = χS′ · χO1 − χS′ · χO2 = |S ∩ O1| − |S ∩ O2|.

Since S is a pseudo-oval, we have |S ∩ O1|, |S ∩ O2| 6 1. Furthermore,

|S ∩ (O1 ∪ O2)| = |S ∩ O1|+ |S ∩ O2|,

because O1 and O2 are disjoint sets of lines. Hence, χS′ · v = 0, for all v ∈ Vl, if and only
if each Up1,p2 meets S ′ in 0 or 2 elements.

Theorem 5.13 and the following proposition provide an additional way to characterise
pseudo-conics.
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Proposition 5.14. Let S be a pseudo-oval of Q−(5, q) and l ∈ S. Let A be the average
number of Up1,p2 over all flags (B, l) containing two distinct elements of S \ {l}. Then,
A = q + 1 if and only if each Up1,p2 meets S\{l} in 0 or 2 elements.

Proof. Let µi be the number of lines of S ′ = S \ {l} contained in the i−th set of type
Up1,p2 . We count in two ways the number of pairs (m,Up1,p2) such that m ∈ Up1,p2 ∩ S ′.
From Lemma 5.10(b), this number is∑

i

µi = |S ′|(q + 1)(q2 − 1) = q2(q + 1)(q2 − 1).

If we double count triples (m,n,Up1,p2) where m and n are distinct elements of S ′ lying
in Up1,p2 , we see that∑

i

µi(µi − 1) =
∑
m∈S′

∑
n∈S′\{m}

|{Up1,p2 : m,n ∈ Up1,p2}| = q2(q2 − 1)A.

Hence, ∑
i

µi(2− µi) =
∑
i

µi −
∑
i

µi(µi − 1) = q2(q2 − 1)(q + 1− A).

Therefore, A = q + 1 precisely when each µi is 0 or 2.

6 Concluding remarks

In [1], Theorem 5.1 shows that any special set of H(3, 9) is of CP-type, or dually, any
pseudo-oval in Q−(5, 3) is a pseudo-conic. By using GAP and the mixed integer linear
programming software Gurobi [10], we explored the case q = 5 and q = 7. Indeed, the
theory developed in this paper aided in the design of the computation.

We look at a given pseudo-oval as a set S of lines of Q−(5, q) such that every non-
degenerate hyperplane contains 0 or 2 elements of S by Proposition 5.4. As we have
done throughout this paper, we let l be a fixed line of Q−(5, q). Let M be the incidence
matrix with rows indexed by lines of Q−(5, q) disjoint from l, and columns indexed by the
non-degenerate hyperplanes not containing l. Then, we are seeking a solution to

xM = 2y, (17)

where x = (x1, . . . , xq5) and y = (y1, . . . , yq5−q3), with xi, yi ∈ {0, 1}, and
∑
xi = q2. In

fact, x will be the characteristic vector for S \{l}, with S a pseudo-oval in Q−(5, q), and y
will be the characteristic vector for the set of non-degenerate hyperplanes not containing
l, sharing two elements with S \ {l}.

There are a variety of approaches to solving equations such as (17). In particular, the
system of equations can be viewed either as an integer linear program or as a constraint
satisfaction problem. We used the software Gurobi for this problem.

A linear program attempts to find values for variables x1, x2, . . . , xn that maximise
(or minimise) a linear objective function subject to linear constraints. An integer linear
program, for short integer program, is a linear program with the additional restriction that
the variables must take integral values. Solving (17) does not involve any maximising or
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minimising, so the objective function can be taken to be a constant, say 0. Then, any
feasible solution to the following integer program yields a set of lines with the property:

Maximise: 0
subject to: xB − 2y = 0∑

i xi = q2

xi, yj ∈ {0, 1}.

(18)

There is one more ingredient we need to take into account. For a fixed set U = Up1,p2 , let
u be the characteristic vector for it. We assume that the set U meets S \ {l} in precisely
1 element. This adds the linear constraint

∑
uixi = 1. For q = 3, 5, 7, we found that

the linear program (18) is infeasible3 for each Up1,p2 . Therefore, in these cases, every set
S \{l} is forced to meet the sets Up1,p2 in 0 or 2 elements, and so every S is a pseudo-conic
by Theorem 5.13.

The above computational results suggest the following conjecture:

Conjecture 1. Every pseudo-oval in Q−(5, q) is a pseudo-conic, for any q (odd).

Results 5.4 and 5.13 allow us to state the above conjecture as follows:

Conjecture 2. Let S be a set of q2 + 1 lines of Q−(5, q), q odd, such that every non-
degenerate hyperplane contains 0 or 2 elements of S. Then, each Up1,p2 meets S\{l} in 0
or 2 elements, for every l ∈ S.
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