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SARS-CoV2 infection not only causes abnormal severe pneumonia but also induces other 
relevant pathophysiological effects on several tissues and organs. In this regard, the clinical 
complications observed in COVID-19 include acute coronary syndrome, pulmonary 
thromboembolism, myocarditis and, in the severe cases, the occurrence of disseminated 
intravascular coagulation. Literature on COVID-19 highlighted the central role of the Renin 
Angiotensin Aldosterone System in the determinism of SARS-CoV2 cellular internalization 
in the target tissues. Lung degeneration and respiratory distress appear to be dependent 
on the perturbance of physiological mechanisms, such as the uncontrolled release of 
pro-inflammatory cytokines, a dysregulation of the fibrinolytic coagulative cascade and 
the hyperactivation of immune effector cells. In this mini review, we address the physiology 
of Midkine, a growth factor able to bind heparin, and its pathophysiological potential role 
in COVID-19 determinism. Midkine increases in many inflammatory and autoimmune 
conditions and correlates with several dysfunctional immune-inflammatory responses that 
appear to show similarities with the pathophysiological elicited by SARS-CoV2. Midkine, 
together with its receptor, could facilitate the virus entry, fostering its accumulation and 
increasing its affinity with Ace2 receptor. We also focus on Netosis, a particular mechanism 
of pathogen clearance exerted by neutrophils, which under certain pathological condition 
becomes dysfunctional and can cause tissue damage. Moreover, we highlight the 
mechanism of autophagy that the new coronavirus could try to escape in order to replicate 
itself, as well as on pulmonary fibrosis induced by hypoxia and on the release of cytokines 
and mediators of inflammation, correlating the interplay between Midkine and SARS-CoV2.
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INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infection not only causes 
abnormal severe pneumonia but also induces other relevant pathophysiological effects on several 
tissues and organs. In this regard, the cardiovascular complications observed in Corona Virus 
Disease of 2019 (COVID-19) include acute coronary syndrome, pulmonary thromboembolism, 
myocarditis and, in the severe cases, the occurrence of disseminated intravascular coagulation 
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FIGURE 1 | Midkine multi-complex receptor, actions and involvement in disease. Midkine multi-complex receptor includes Syndecan-n-1, low density lipoprotein 
receptor-related protein 1 (LRP-1), Neurogenic locus notch homolog protein 2 (Notch-2), integrins, protein tyrosine phosphatase zeta (PTP ζ), and Anaplastic 
lymphoma kinase (ALK). The signaling pathway of Midkine multi-complex receptor involves several molecules as the nuclear factor kappa-light-chain-enhancer of 
activated B cells (NF-kB), signal transducer and activator of transcription 3 and 5 (STAT3/STAT5), phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT), and 
nuclear factor of activated T-cells (NFAT). Midkine promotes several actions ad is involved in various diseases.

system (Vallamkondu et  al., 2020; Verdecchia et  al., 2020). 
Literature on COVID-19 highlighted the central role of the 
SAAR in SARS-CoV2 cellular internalization, particularly for 
the virus binding to angiotensin I converting enzyme 2 (ACE2) 
receptor expressed on the cell membrane of the tissues targeted 
by SARS-CoV2 (Hoffmann et  al., 2020; Ingraham et  al., 2020; 
Liu et  al., 2020; Mycroft-West et  al., 2020). Lung degeneration 
and respiratory distress appear to be  dependent on the 
perturbance of host response mechanisms that could foster 
the uncontrolled release of pro-inflammatory cytokines, the 
dysregulation of the fibrinolytic coagulative cascade, as well 
as the hyper-activation of immune effector cells (Ackermann 
et  al., 2020; Azkur et  al., 2020; Becker, 2020; Stephen-Victor 
et al., 2020; Vallamkondu et al., 2020). Inflammation mediators, 
endothelial cells, neutrophils, and macrophages are responsible 
for the amplification of inflammation processes and concur 
to the cross talk between enzymatic cascades and signal pathways 
(Ackermann et al., 2020; Becker, 2020; Vallamkondu et al., 2020).

Midkine is a growth factor able to bind heparin and showing 
a physiological role in embryonic development (Kadomatsu et al., 
1988). Midkine is poorly expressed in the adult organism cells, 
while is highly incremented in cancer cells and correlated with 
a less favorable prognosis in cancer patients (O’Brien et al., 1996; 
Maeda et  al., 2007). Midkine has a crucial role in the interplay 
between kidney and lung (Salvati et  al., 2011), is involved in 
inflammation (Weckbach et  al., 2011), angiogenesis (Weckbach 
et  al., 2012), tumor growth (Kadomatsu, 2005), vascular stenosis 
(Weckbach et al., 2011), renal (Sato et al., 2001), neurodegenerative 
(Kadomatsu, 2005; Takeuchi, 2014), and autoimmune diseases 
(Takada et  al., 1997; Kadomatsu, 2005; Figure  1). It is of note 

that Midkine is significantly involved in inflammation determinism 
(Weckbach et al., 2011), is induced during inflammation process, 
and enhances the recruitment of inflammatory cells (Kadomatsu 
et al., 2013; Figure 1). Midkine is expressed in several pathological 
renal conditions including diabetic nephropathy (Figure  1) and 
can exacerbate several kidney diseases through leukocyte 
recruitment (Weckbach et  al., 2011). Patients with rheumatoid 
arthritis highly expressed Midkine (Weckbach et  al., 2011). 
Endothelial lesions caused increase expression of Midkine that 
has been observed in macrophages infiltrated into the injured 
vascular wall (Weckbach et  al., 2011).

Midkine can be  easily detected by enzyme-linked 
immunosorbent assay (ELISA) in serum and urine (Ikematsu 
et  al., 2000; Xia et  al., 2016), and its tissue expression in 
histochemistry has been described (Kim et  al., 2017).

Midkine is an important physiological mediator of Renin 
Angiotensin Aldosterone System (SAAR; Kadomatsu, 2010; 
Figure  1). SAAR regulates the migration and proliferation of 
smooth muscle cells and the extracellular matrix (ECM) 
production, the increased expression of adhesion proteins and 
pro-inflammatory cytokine production (Hoffmann et  al., 2020; 
Ingraham et  al., 2020; Liu et  al., 2020). Plasma concentration 
of Midkine dramatically increased in patients with acute 
respiratory distress syndrome (ARDS; Zhang and Baker, 2017). 
Midkine appears to be  overregulated upon mechanical stress 
in lung epithelial cells (Zhang et  al., 2015; Zhang and Baker, 
2017) and induces ACE2 level in the lung (Ezquerra et  al., 
2005; Kadomatsu, 2010). A recent study showed the interplay 
between Midkine and ACE2  in mechanically ventilated lung 
tissue (Huang S. et  al., 2020). In addition, the overregulation 
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of Midkine upon the mechanical stress was found in lung 
epithelial cells (Zhang et  al., 2015; Zhang and Baker, 2017).

In this mini review, we  focus the physiology of Midkine 
and its pathophysiological potential role in COVID-19, and 
we  suggest to investigate Midkine as a putative biomarker of 
altered physiological conditions and/or a potential therapeutic 
target in the fight against pandemic COVID-19.

MIDKINE, HEPARAN SULFATE, AND 
EXTRACELLULAR MATRIX: A ROLE 
FOR VIRUS ENTRY FACILITATION?

The ECM contains proteoglycans that are very important for 
the structural integrity and tissue morphogenesis and homeostasis 
(Frantz et  al., 2010). Heparan sulfate proteoglycans (HSPGs) 
are mainly present in the ECM and in the cell cytoplasmatic 
membrane and bind the Heparan sulfate (HS) chains (Lu et  al., 
2011). Syndecans (SDC) are HSPGs acting as regulators of cell 
migration, endocytosis, and cell signals (Beauvais and Rapraeger, 
2003; Afratis et al., 2012; Christianson and Belting, 2014; Gallagher, 
2015; Changyaleket et  al., 2017). HS chains, according to their 
different degree of sulfation, can interfere with the growth factors/
receptors interplay and promote the signal activation (Lu et  al., 
2011; Changyaleket et  al., 2017). ADAM and ADAMTS 
metalloproteases and heparanase (Lu et  al., 2011; Changyaleket 
et  al., 2017) shed “soluble syndecans,” which interact with the 
microenvironment, where they are released (Lu et  al., 2011; 
Changyaleket et  al., 2017). Several viruses use highly sulfated 
proteoglycans to bind the membrane surface of target cells 
(Rusnati et al., 2009; Cagno et al., 2019). The negative electrostatic 
proteoglycans charges interact with glycoproteins basic residues 
on the viral surface (Rusnati et  al., 2009). The SARS-CoV2 
spike protein (S-protein) interact with HS (Liu et  al., 2020) 
and the binding affinity increases if HS is added to the S-protein 
proteolytic cleavage site (Liu et  al., 2020). The HSPGs could 
increase the HCov-NL63 expression and could promote virus 
entry (Milewska et  al., 2014; Kim et  al., 2020).

Scientific Literature on COVID-19 highlighted the central 
role of the SAAR in the mechanisms of SARS-CoV2 cellular 
internalization, particularly for the occurrence of virus binding 
to ACE2 receptor expressed on the cell membrane of the tissues 
targeted by SARS-CoV2 infection (Hoffmann et  al., 2020; 
Ingraham et  al., 2020; Liu et  al., 2020).

Midkine is a relevant component of heparin releasable 
endothelial proteins (HREPs) that are bound to the endothelial 
surface through proteoglycans and exert several specific functions 
in the vascular homeostasis (Novotny et  al., 1993). Midkine 
strongly binds the hypersulfated structures of HS (Kaneda 
et  al., 1996). Two Cardin and Weintraub (CW) motifs form 
a binding site based on heparan HS at the Midkine dimerization 
occurrence (Gallagher, 2015). The interaction with all three 
Midkine sulfate groups (6-O, 2-O, and n-sulfates) is crucial 
for the heparin-binding (Muramatsu et al., 1994; Kaneda et al., 
1996; Asai et  al., 1997; Maeda et  al., 1999).

Midkine expression on cell surface strongly needs HS 
(Gallagher, 2015) and the tri-sulfate unit of HS is the binding 

site for Midkine itself (Kaneda et  al., 1996). Midkine role 
as neuronal growth factor is impaired when cells are deprived 
of HS and activity is suppressed by heparin saccharides, 
which may block the site of interaction between HS and 
Midkine (Gallagher, 2015). The main receptor complex of 
Midkine includes Syndecan-1, glycosaminoglycans (GAGs), 
low density lipoprotein receptor-related protein 1 (LRP-1), Notch-2, 
integrins, protein tyrosine phosphatase ζ (PTP ζ), and anaplastic 
lymphoma kinase (ALK; Maeda et  al., 1999). Other potential 
interplay between Midkine and some other extracellular ligands 
that bind Syndecans and/or interact with the LRP-1, as the 
tissue factor pathway inhibitor (TFPI), lipoprotein lypase, and 
several others, could have a relevant role in fostering Midkine 
activity and in determining other relevant biological functions 
(Kojima et  al., 1996; Tinholt et  al., 2015).

We hypothesize that Midkine could be  involved in the early 
stages of viral attack during COVID-19 (Figure 2). The S-protein 
fosters the entry of virus into cells (Hoffmann et  al., 2020). 
The SARS CoV2 S-protein is composed by the S1 and S2 
domains that are respectively correlated with the binding and 
fusion of virus to target cells (Hoffmann et  al., 2020). The S1 
expresses the receptor-binding domain (RBD) responsible for 
ACE2 receptor binding (He et  al., 2004). S1 subunit of RBD 
exists in two different conformations, closed and open: the 
open RBD is able to bind the virus more than closed conformation 
(Hao et  al., 2020). Enzymatic cleavage of protein S at the level 
of S1/S2 domains supports fusion of viruses to cell membranes 
via the S2 subunit (Liu et  al., 2020). SARS-CoV2 S-protein 
interacts with both the cellular HS and ACE2 through its 
RBD and can simultaneously engage heparin and ACE2 (Clausen 
et  al., 2020). Positively charged amino acids in a subdomain 
of RBD are responsible for the binding of heparin/HS complex 
via an interaction site that appears independent on the site 
involved in ACE2 binding (Clausen et  al., 2020). SARS CoV2 
protein S appears to bind HS cooperatively with ACE2 receptor 
on the cell surface (Clausen et  al., 2020).

SARS-CoV2 may employ several different promoting factors 
to infect ACE2 receptor-expressing cells in the upper respiratory 
tract with greater efficiency than SARS-CoV, and this occurrence 
may explain the greater transmissibility of SARS-CoV2 compared 
to SARS-CoV (Hoffmann et  al., 2020).

It is reasonable to assume that Midkine could amplify RBD 
sulfatation sites of S-protein, increasing the binding affinity 
with ACE2 receptor, and that Midkine would facilitate the 
open conformation of S1, in such way promoting the subsequent 
viral attack (Clausen et  al., 2020).

MIDKINE AND LIPID RAFTS

Scientific literature suggests the overall role of lipids in viral 
infection of target cells (Cervin and Anderson, 1991; Lajoie 
and Nabi, 2007; Li et  al., 2007; Lu et  al., 2008; Baglivo 
et  al., 2020). Lipid rafts result in microdomains rich in 
cholesterol, glycosphingolipids, and phospholipids on the 
plasma membrane, potentially involved in the fusion, 
internalization, transport, and assembly of viral proteins of 
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numerous viruses, including coronaviruses (Guo et  al., 2017; 
Fecchi et  al., 2020). Cholesterol represents the structural 
glue of lipid rafts (Fecchi et  al., 2020). The ACE2 receptor 
is precisely located in the lipid rafts and is responsible for 
the initial phase of the viral infection of SARS-Cov2 (Fecchi 
et  al., 2020). LRP-1 promotes endocytosis, is localized on 
lipid rafts, promotes the accumulation of cholesterol esters 
and the lipoproteins absorption (Actis Dato et  al., 2020). 
Midkine is translocated into the nucleus by LRP-1 via nucleolin 
(Muramatsu et  al., 2000).

In our hypothesis, the supposed interplay between the virus, 
Midkine, and HS and the presence of LRP-1 on lipid rafts 
might reveal new potential features of SARS-CoV2 infection 
mechanisms (Figure  2).

MIDKINE AND IMMUNE REGULATION: A 
POTENTIAL ROLE IN COVID-19?

Immunological tolerance and immune homeostasis involve 
regulatory T cells (Tregs; Terrazzano et al., 2020). Tolerogenic 
dendritic cells (DCregs) influence the inducible Tregs 
development (Takeuchi, 2014). mTOR (mammalian target of 
rapamycin) is a protein kinase, involved in apoptosis, cell 
cycle, metabolic disorders and autoimmunity, carcinogenesis, 
inflammation and autophagy, immunoregulation, and tolerance 
(Terrazzano et al., 2020). mTOR forms two complexes: mTORC1 
induces the T helper (Th) 1 and Th17 differentiation upon 

viral antigen presentation by dendritic cells (DC; Omarjee 
et al., 2020). mTORC2 mediates Th2 differentiation (Omarjee 
et al., 2020), while both complexes restrict Tregs differentiation. 
The two mTOR complexes are involved in the regulation 
of Tregs homeostasis (Omarjee et al., 2020). mTOR-dependent 
pathways may uncover molecular targets useful for controlling 
the cellular damage, oxidative stress, and hyperinflammation 
that occur in COVID-19. Recently, mTOR inhibition therapy 
has been hypothesized to mitigate the cytokine storm  
and to reduce hyperactivation of immune responses in  
COVID-19 (Terrazzano et  al., 2020).

COVID-19 patients who undergo ARDS are characterized 
by highly enhanced pro-inflammatory cytokine production (the 
cytokine storm) and lung repair dysfunction, which is partially 
due to reduced or defective Tregs involvement (Gladstone et al., 
2020). Midkine suppresses the generation DCregs, which drive 
the development of inducible Treg (Misa et al., 2017; Figure 1), 
and reduces phosphorylated STAT3 levels in DCregs (Misa 
et  al., 2017). The specific inhibition of Midkine by RNA-based 
aptamer increased the DCregs and Tregs and decreased the 
autoreactive Th1 and Th17 cells, and it has been associated 
with the amelioration of the clinical symptoms in experimental 
autoimmune encephalomyelitis model (Takeuchi, 2014).

A dysregulation in the signaling pathways of mTOR, hypoxia-
inducible factor 1 (HIF-1) alpha, tumor necrosis factor (TNF) 
has been identified during SARS-CoV2 infection (Appelberg 
et  al., 2020). An increased expression of Midkine in the lung 
appears to be mediated by HIF-1 alpha (Reynolds et al., 2004).  

FIGURE 2 | The hypothesis over the role for Midkine in SARS CoV2 viral attack. The complex between Midkine, Syndecan-1, glycosaminoglycans (GAGs), and 
Heparan sulfate (HS) could play a pivotal role in the early phase of virus attack by amplifying receptor-binding domain (RBD) sulfatation sites of Spike (S)-protein, 
in such way enhancing the Angiotensin I converting enzyme 2 (ACE2) receptor binding affinity and determining virus localization on the extracellular membrane. 
After SARS-CoV2/ACE2 receptor binding, Midkine could facilitate virus entry into the cell through LRP-1-mediated endocytosis, allowing the virus cycle as 
described (V’kovski et al., 2020).
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The respiratory epithelium responds to hypoxia through 
Midkine dependent HIF-1 alpha regulation (Reynolds et  al., 
2004). Midkine expression in human polymorphonuclear 
neutrophils (PMNs), monocytes, and endothelium increased 
by hypoxia (Weckbach et  al., 2019).

Anaplastic lymphoma kinase (ALK) phosphorylates the insulin 
receptor substrate-1 and activates mitogen-activated protein 
(MAP) kinase and phosphoinositide 3 (PI3)-kinase leading to 
transcriptional activation of nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-κB; Filippou et  al., 2020). 
Filippou et al. (2020) recently reported that Midkine modulates 
the activity of the protein kinase B (Akt)/mTOR axis, via the 
ALK receptor, to prevent cell death mediated by cannabinoid-
induced autophagy. Autophagy is a useful mechanism against 
viral infection. Autophagy plays a role in innate immunity, in 
the degradation of viruses or intracellular pathogens, and in 
the presentation of pathogens to the immune system (Fecchi 
et al., 2020). Viruses evolved mechanisms to escape the autophagic 
process (Carmona-Gutierrez et  al., 2020).

SARS-CoV2, similarly to MERS-CoV, is able to reduce 
autophagy in infected cell lines by reducing the mTORC1-
pathway, autophagy-related signaling, and the fusion between 
autophagosome and lysosome (Fecchi et al., 2020). SARS-CoV2 
could benefit from reducing autophagy, preventing viral 
degradation, and improving the availability of double membrane 
vesicles (DMVs) needed for viral replication (Fecchi et al., 2020).

MIDKINE A KEY FACTOR FOR 
NEUTROPHIL ACTIVATION IN COVID-19?

The activation of neutrophils is very relevant during COVID-19 
occurrence (Leppkes et al., 2020). In the course of inflammatory 
diseases, neutrophils excrete chromatin, histones and the 
contents of their own granules in a cellular process described 
as neutrophil extracellular trap (NET) formation (Leppkes 
et al., 2020). NET has been correlated to lung disease (Leppkes 
et  al., 2020), neutrophils from pneumonia-associated ARDS 
undergo NET formation (Leppkes et  al., 2020), extracellular 
histones are elevated in ARDS (Lv et  al., 2017), and NET 
process is described in COVID-19 (Zuo et  al., 2020). 
Furthermore, exacerbated aggregation of NET (NETs) could 
alter vascular districts and damage tissues (Leppkes et  al., 
2020). In the vascular system, NETs determine platelet activation 
and thrombosis, probably due to the release of histones that 
can be recognized through toll-like receptors (TLRs) on platelets 
and immune cells (Becker, 2020).

A recent report described that NET formation increases 
in COVID-19 patients undergoing mechanical ventilation 
(Zuo et  al., 2020).

Patients with severe forms of COVID-19 show a marked 
increase in neutrophils compared to less severe subjects 
(Huang C. et al., 2020).

Midkine promotes the trafficking of neutrophils in 
myocardium and the NET formation in myocarditis (Weckbach 
et  al., 2019). We  suggest the occurrence of an important 
interplay between Midkine, PMN, NETs, and COVID-19.  

In this regard, we  hypothesize that Midkine could promote 
neutrophil infiltration and NET formation in the myocardium 
via LRP1.

Moreover, it is likely that the Midkine-dependent promotion 
of neutrophil activation and NETs formation strongly degenerates 
the complex homeostatic mechanism of coagulation and plays 
a relevant role in the determinism of thrombotic events correlated 
to neutrophil hyperactivation (Iba and Levy, 2018). In this 
regard, neutrophil hyperactivation and NETs formation have 
been associated with ARDS in influenza pneumonitis (Narasaraju 
et  al., 2011) and with thromboinflammatory response and 
intravascular thrombosis during sepsis (Iba and Levy, 2018). 
Finally, the molecules involved in hemostasis, as procoagulant 
or anticoagulant, should be deeply investigated for their potential 
relationship with Midkine, such as thrombin and 
thrombomodulin that are described to interplay each other to 
determine different effects on hemostasis (Rezaie, 2010) and 
have associated with NETs occurrence (Toh et al., 2016): Midkine 
could alter the balance between procoagulant and anticoagulant 
and could foster thromboinflammatory response and intravascular 
thrombosis during COVID-19 occurrence.

CONCLUSION

Since December 2019, SARS-Cov2 infection has manifested 
broad pandemic connotations and several pathophysiological 
conditions that do not limit COVID-19 to abnormal pneumonia 
(Cevik et  al., 2020; Chen et  al., 2020). In this regard, severe 
phases of COVID-19 present a poor prognosis in those patients 
underlying clinical conditions such as hypertension, chronic 
obstructive pulmonary disease, diabetes, and/or cardiovascular 
disease (Harapan et  al., 2020; Nikolich-Zugich et  al., 2020). 
Indeed, such compromised patients incur a greater risk of 
rapid progression to ARDS, septic-type systemic shock, 
coagulation dysfunction, arrhythmia and heart failure, renal 
and/or heart failure, hepatic dysfunction, and the occurrence 
of secondary infection (Cevik et  al., 2020; Chen et  al., 2020; 
Harapan et  al., 2020; Nikolich-Zugich et  al., 2020).

In this mini review, we  suggest the potential and intriguing 
scenario concerning the interaction between SARS-CoV2 and 
Midkine, in order to understand the pathophysiological 
mechanisms occurring in COVID-19.

We highlight a possible involvement of Midkine in the in 
SARS-CoV2 infection mechanisms. Indeed, Midkine could 
amplify S-protein RBD sulfatation sites, increasing the binding 
affinity of SARS-CoV2 with ACE2 receptor. In addition, the 
interplay between coronavirus, Midkine, HS, LRP-1, and lipid 
rafts could foster SARS-CoV2 internalization.

The main feature of the immune-mediated involvement in 
COVID-19 is characterized by neutrophil hyperactivation. In 
this regard, Midkine signaling could enhance neutrophil 
proliferation and migration. Several studies have showed that 
Midkine is involved in neutrophil infiltration and chemokine 
expression as well as in the Netosis occurrence (Figure  1). 
Moreover, a crucial interplay between Midkine, neutrophils, NET, 
and COVID-19 might occur. Severe COVID-19 correlates with 
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exacerbated neutrophil hyperactivation and NET occurrence. 
Midkine could promote neutrophil infiltration and NET formation 
in the myocardium via LRP-1. In addition, Midkine could 
be  involved in the pulmonary remodeling and fibrosis, through 
the collagen deposition and the Nox1, MK, Notch2, and ACE 
signaling pathway (Figure 1). We overviewed literature concerning 
Midkine-related pathway and its receptors, highlighting a common 
pathway with mTOR and autophagy that SARS-Cov2 could 
employ to elude in order to foster virus replication.

Taken in all, we hypothesize a key role of Midkine, particularly 
in organ dysfunction at the basis of COVID-19 pathogenesis 
and also propose such protein as a potential biomarker (Table 1) 

of pathophysiological conditions and as a key target for new 
potential COVID-19 therapeutical strategies by employing anti-
Midkine monoclonal antibodies to be  specifically prepared for 
clinical use in humans.
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