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Abstract

A new and elementary proof of the Artin-Zorn theorem that finite
alternative division rings are fields is given. The characterisation of
finite fields of Glauberman and Heimbeck is also extended to a broader
class of fields, the two subjects being connected via geometry.

1 Introduction

In 1905, Wedderburn [29] proved that a finite (associative) division ring is
a field – a result now known as Wedderburn’s little theorem. A recent proof
was given by Bamberg and Penttila [2], which exploited the connection with
geometry – that the theorem is equivalent to the statement that a finite De-
sarguesian projective space is Pappian. Artin proved a stronger theorem, first
published by his student Zorn in 1931 [30] and now known as the Artin-Zorn
theorem: a finite alternative division ring is a field. It, too, has an equiv-
alent geometric counterpart, first stated by Levi in 1942 [19, Sixth lecture]:
a finite projective plane satisfying little Desargues’ theorem is Pappian. The
connection between alternative division rings and projective planes satisfying
the special case of Desargues’ theorem known as little Desargues’ theorem
(where the point of perspective is incident with the line of perspective) first
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arose in work of Moufang [21] (but she credits Brauer for pointing this out to
her: see [7, p.333]) and, as a consequence, projective planes satisfying little
Desargues’ theorem are now called Moufang planes.

On another topic, in his 1972 exploration of p-stability and the control
of strong fusion in finite groups, Glauberman [12] had occasion to use the
following characterisation of finite fields of odd order: a subset S of invertible
matrices over finite field of odd order containing the identity matrix forms,
together with the zero matrix, a field under matrix addition and matrix multi-
plication if and only if S is closed under inversion and S∪{0} is closed under
addition and scalar multiplication. In 1984, Heimbeck [16] gave an elemen-
tary proof of Glauberman’s characterisation and also extended it to fields of
even order (while additionally dropping the condition about closure under
scalar multiplication). Glauberman’s original proof was not elementary, in-
volving, for instance, results on Jordan algebras due to McCrimmon [20] and
Albert [1]. Despite having used arguments from Section 11 of Bruck-Bose
[4] in the earlier paper [11], Glauberman failed to notice that the conditions
he used to characterise finite fields of odd order had arisen in that section in
connection with Moufang planes.

This paper exploits the connection between three areas: group theory,
projective geometry and the theory of alternative division rings, to give a
new and elementary proof of the Artin-Zorn theorem that finite alternative
division rings are fields (see Sections 3, 4). We note that the ”standard”
proof of Artin-Zorn is also elementary; see [24].

The corresponding result in projective geometry is that a finite Moufang
plane satisfies Pappus theorem. In fact, while the inspiration is geometric,
the proofs are written so as to require no geometry. This connection does
not depend on finiteness, which allows the extension of the Glauberman-
Heimbeck result in the case where the dimension of the set S∪{0} is maximal
to a broader class of fields (see Section 5). In particular, by exploiting the
Bruck-Kleinfeld-Skornyakov-San Soucie theorem that Moufang planes (finite
or infinite) are coordinatised by fields or octonion algebras, the Glauberman-
Heimbeck result can be extended to algebraically closed fields, to complete,
discretely valued fields with finite residue class field, and to perfect fields
with cohomological dimension at most two.

Special care must be taken with 8m by 8m matrices, as there is a con-
nection with non-associative alternative division rings. All examples of sets
of matrices of maximal dimension satisfying Glauberman’s conditions over a
general field that are not themselves associative division rings are also charac-
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terised (Theorem 5.7) by using the Bruck-Kleinfeld-Skornyakov classification
of alternative division rings (Theorem 2.7).

The results contained in this paper are in a similar vein to the results
by Bamberg and Penttila [2] and Penttila and Siciliano [22] (proving that a
finite Bol field of even order is a nearfield without using the Feit-Thomson
theorem that group of odd order are soluble), both also obtained using the
underlying connections between the three areas.

2 Background on alternative division rings

A (not necessarily associative) division ring is a set A endowed with two
operations, addition and multiplication that is an abelian group under addi-
tion, satisfies both distributive laws, has a multiplicative identity 1 6= 0 and
such that, for all a, b ∈ A, with a 6= 0, the equation ax = b has a unique
solution x ∈ A and the equation xa = b has a unique solution x ∈ A. A (not
necessarily associative) division ring has the left inverse property if when-
ever x ∈ A, x 6= 0, then y = x−1(xy), for all y ∈ A. An alternative ring is
an abelian group A under addition, together with a product which satisfies
both distributive laws, and such that a(ab) = (aa)b and (ba)a = b(aa), for
all a, b ∈ A. (Note that multiplication need not be associative.)

The centre of a (not necessarily associative) ring A is the set Z(A) of
all elements a of A such that (ab)c = a(bc), (ba)c = b(ac), b(ca) = (bc)a, and
ab = ba, for all b, c ∈ A. Note that the centre of an alternative division
ring is a field. The characteristic of an alternative division ring is the
characteristic of its centre.

An involution in a ring A is an anti-automorphism (so that it preserves
addition and reverses multiplication) with square the identity. An involution
a 7→ a of a ring A is central if both aa and a + a lie in the centre of A, for
all a ∈ A.

Non-associative alternative rings date back to the construction of the
octonions, which Graves, in a letter of 26 December, 1843 to Hamilton,
described in response to Hamilton’s construction of the quaternions on 16
October, 1843, which Hamilton in turn had described in a letter to Graves
the day after Hamilton had constructed them. This led to the coining of the
term associative, either by Graves or by Hamilton in 1843 or 1844. Graves
did not publish the result until 1845, by which time it had been indepen-
dently discovered by Cayley [6]. In 1914, Dickson [9, p.15] recontextualised
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the octonions by constructing them as pairs of quaternions, much as Hamil-
ton had recontextualised the complex numbers as pairs of real numbers in
1835 [15]. This method is now referred to as the Cayley-Dickson process.

Given a ring A with identity and with a central involution a 7→ a, fix an
element ζ of the centre of A such that ζ = ζ. Define A′ to have underlying
set A× A with addition

(a1, a2) + (b1, b2) = (a1 + b1, a2 + b2)

and multiplication

(a1, a2)(b1, b2) = (a1b1 + ζb2a2, a1b2 + b1a2).

We say that A′ is obtained from A by the Cayley-Dickson process.

Lemma 2.1 ([10, Lemma 4.8]). Suppose that A′ is obtained from A by the
Cayley-Dickson process via the central involution a 7→ a. Then
(i) A′ is an alternative ring if and only if A is associative.
(ii) A′ is an associative ring if and only if A is associative and commutative.
(iii) A′ is a commutative ring if and only if the involution of A used was the
identity.
Moreover, (a1, a2) 7→ (a1,−a2) is a central involution of A′.

So Hamilton’s [15] construction of the complex numbers can be described
as applying the Cayley-Dickson process to the real numbers with the identity
involution and ζ = −1. If the Cayley-Dickson process is applied to the
complex numbers with complex conjugation as the involution and ζ = −1,
the result is Hamilton’s quaternions. If the Cayley-Dickson process is applied
to the quaternions with conjugation of quaternions as the involution and ζ =
−1, the result is Graves’ (and Cayley’s) octonions. Moreover, the octonions
are a non-associative alternative division ring.

An octonion algebra over a field F is the result of applying the Cayley-
Dickson process twice to a separable quadratic extension of F (with the
intermediate result being a quaternion algebra over F ). We take the
quadratic extension, rather then applying the Cayley-Dickson process three
times to F , in order to include characteristic 2.

Artin conjectured that octonion algebras are alternative rings, and this
was proved by his student Zorn in 1931 [30].

Theorem 2.2. An octonion algebra is an alternative ring.
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The octonion algebra constructed from a quaternion algebra by the Cayley-
Dickson process with ζ = 1 is not a division ring. Octonion algebras of this
form are called split.

Theorem 2.3 ([10, Theorems 4.9, 4.10]). An octonion algebra is either split
or an alternative division ring.

We will also need the following lemma. Indeed, it is vital to our approach.

Lemma 2.4 ([10, Lemma 4.6]). In an alternative ring A with identity the
following are equivalent:

(a) left multiplication by a is invertible with inverse left multiplication by
b;

(b) right multiplication by a is invertible with inverse right multiplication
by b;

(c) ab = ba = 1 and (ab)c = a(bc), for all c ∈ A.

When any of the conditions of Lemma 2.4 hold, we say that a is invert-
ible with inverse a−1 = b.

Corollary 2.5. In an alternative division ring, all non-zero elements are
invertible.

We note that a unit in a ring is not necessarily invertible, unless the ring
is alternative.

Theorem 2.6 ([8, 3.1.22],[14, p.81], [17, Theorem 6.17]). In an alternative
division ring A, if x ∈ A, x 6= 0, then y = x−1(xy), for all y ∈ A.

The following theorem was proved for characteristic not equal to two
or three by Skornyakov [26], for characteristic not equal to two by Bruck-
Kleinfeld [5] and for characteristic two by Kleinfeld [18].

Theorem 2.7 (Bruck-Kleinfeld-Skornyakov Theorem, [10, Theorem 4.13]).
An alternative division ring is either associative or an octonion algebra over
its centre.

The following theorem was proved by Skornyakov [27] for characteristic
not two and San Soucie [23] for characteristic two. For this theorem, we’re
going to need to extend the concept of a division ring to non-associative
rings. Theorem 2.6 shows that an alternative division ring has the left inverse
property. The converse also holds:
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Theorem 2.8 (Skornyakov-San Soucie Theorem, [17, Theorem 6.16]). A
(not necessarily associative) division ring that has the left inverse property is
alternative.

3 Glauberman’s characterisation of finite fields

of odd order and its extension by Heimbeck

Theorem 3.1 ( [12, Lemma 4.3]). A subset S of the n by n invertible ma-
trices over a finite field of odd order containing the identity matrix forms,
together with the zero matrix, a field under matrix addition and matrix mul-
tiplication if and only if S is closed under inversion and S ∪ {0} is closed
under addition and scalar multiplication.

Theorem 3.2 (Glauberman-Heimbeck Theorem, [16]). Let V 6= {0} be a
finite vector space and M be a subset of GL(V ) which is closed under inverses,
has M ∪ {0} closed under addition and contains the identity. Then M ∪ {0}
is a field.

Proof. We give the proof of Heimbeck [16] to keep the paper self-contained.
Since V is finite, the underlying associative division ring K of V is finite

of characteristic p > 0. Let L = M ∪ {0}. Then L is an abelian group under
addition of exponent equal to p, a prime number. We denote the subgroup
of GL(V ) generated by a subset X by 〈X〉. We proceed by a sequence of
observations.
a) α, β ∈M implies αβα ∈M .
We may assume that α 6= β−1. Then α − β−1 ∈ M and also −α−1 + (α −
β−1)−1 =

(−α−1(α−β−1) + 1)(α−β−1)−1 = α−1β−1(α−β−1)−1 = ((α−β−1)βα)−1 =

(αβα− α)−1 is an element of M . Thus αβα− α ∈M , so αβα ∈M .
b) α ∈M implies 〈α〉 ∈M .
Put β = 1 ∈ M in a). Then α2 ∈ M . It now follows from a) that αn ∈ M ,
for all natural numbers n. Since 〈α〉 is finite, this completes the proof of b).
c) α, β, γ ∈M implies αβ + βα ∈ L and αβγ + γβα ∈ L.
Since L is a group under addition, it follows from a) that αβγ + γβα =
(α + γ)β(α + γ)− αβα− γβγ ∈ L. Setting γ = 1 gives αβ + βα ∈ L.
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d) For α, β ∈M and integers ε0, . . . , εr, η0, . . . , ηr, we have

r∏
i=0

(αεiβηi) +
r∏
i=0

(βηr−iαεr−i) ∈ L.

We prove this by induction on r. The case r = 0 follows from b) and c). Using
the fact that L is a group under addition, c) and the following calculation
completes the proof of d).

αε0(αεr+1βηrαεrβηr−1 . . . αε1βη0 + βη0αε1 . . . βηr−1αεrβηrαεr+1)βηr+1

+βηr+1(αεr+1βηrαεrβηr−1 . . . αε1βη0 + βη0αε1 . . . βηr−1αεrβηrαεr+1)αε0

= (αε0+εr+1βηrαεrβηr−1 . . . αε1βη0+ηr+1 + βη0+ηr+1αε1 . . . βηr−1αεrβηrαε0+εr+1)

+(αε0βη0αε1βη1 . . . αεr+1βηr+1 + βηr+1αεr+1 . . . βη1αε1βη0αε0).

e) If the elements of M pairwise commute under multiplication, then L is a
field.
We have only to show that M is closed under multiplication. Let α, β ∈M .
Case 1. p 6= 2. From c), 2αβ = αβ+βα ∈ L giving αβ ∈ L. Since α, β ∈M ,
they are invertible, so αβ 6= 0, giving αβ ∈M .
Case 2. p = 2. By b) and the fact that L is a group under addition, the
subring of the endomorphism ring of V generated by α is a field, necessarily
of even order. Hence α has odd multiplicative order, and so, there exists
γ ∈ L with γ2 = α. Now αβ = γ2β = γβγ ∈M , by a).

We now complete the proof of the theorem by induction on the dimension
n of V . If n = 1, then GL(V ) is isomorphic to the multiplicative group of K,
and K is a field, by Wedderburn’s little theorem, so the elements of M pair-
wise commute under multiplication. Thus, by e), L is a field. Now suppose
n > 1 and that the theorem holds for finite vector spaces of dimension less
then n over their underlying associative division ring. By e), it is enough to
show that any pair α, β of elements of M commute under multiplication.

Case 1. 〈α, β〉 leaves a non-trivial, proper subspace U of V invariant. Let
MU = {γ ∈ M : Uγ = U}. For γ ∈ MU the restriction γ to U of γ is in
GL(U). The system M = {γ : γ ∈ MU} therefore satisfies the hypotheses
of the theorem, and so, by our inductive hypothesis forms a field. Since
the multiplicative group of a finite field is cyclic, there exists γ ∈ MU with
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M = 〈γ〉. For every δ ∈MU , there is an integer k with δ = γk. From b) and
the fact that L is a group under addition, it follows that δ−γk ∈ L and then
since δ− γk has kernel containing U , it is not invertible, so δ− γk = 0. Thus
δ = γk ∈ 〈γ〉. Hence α, β ∈MU ⊆ 〈γ〉, and therefore, αβ = βα.

Case 2. 〈α, β〉 acts irreducibly on V . Since a finite integral domain is a
division ring, which by Wedderburn’s little theorem is a field, it is sufficient to
show that the subring R of the endomorphism ring of V generated by 〈α, β〉
has no zero divisors. So suppose u is a zero divisor of R. As u ∈ 〈α, β〉, it can
be written as a sum of elements ui of 〈α, β〉: u =

∑s
i=1 ui. Each summand

ui has a representation of the form

ui =

ri∏
j=0

(αεijβηij),

for some positive integer ri and some integers εij, ηij. We set

u′i =

ri∏
j=0

(βηi,ri−jαεi,ri−j),

for 1 ≤ i ≤ s, and

u′ =
s∑
i=1

u′i,

and claim that
u+ u′ ∈ L, (1)

and that
uγu′ = 0, (2)

for all γ ∈ 〈α〉 ∪ 〈β〉. The first claim follows from d) and the fact that L is a
group under addition. To prove the second claim we first note that

uγu′ =
s∑
i=1

uiγu
′
i +

∑
i<j

(uiγu
′
j + ujγu

′
i).

The summands uiγu
′
i and uiγu

′
j + ujγu

′
i lie in L by a) and d). Since L is a

group under addition, it follows that uγu′ ∈ L. Since u is a zero divisor of
R it doesn’t lie in GL(V ), so neither does uγu′. Hence uγu′ = 0.
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Let γ ∈ 〈α〉∪〈β〉. In the case where u+u′ = 0, we have γu−uγ = γu+u′γ,
which is in L, by d) and the fact that L is a group under addition. By (2),
(γu − uγ)2 = 0. So γu − uγ /∈ GL(V ), which forces γu − uγ = 0. Thus
γu = uγ. Hence the image of u is γ−invariant for all γ ∈ 〈α〉 ∪ 〈β〉. Thus
the image of u is 〈α, β〉−invariant. Since u is a zero divisor on R, the image
of u is not V , and so it is {0}, and therefore u = 0.

In the case where u+u′ 6= 0, we have u+u′ ∈M and hence u+u′ ∈ GL(V ).
By 2 with γ = 1, we get uu′ = 0. Thus the image of u is contained in the
kernel of u′. Since u+ u′ ∈ GL(V ), the kernel of u and the kernel of u′ meet
just in {0}, so, by dimensions, the image of u equals to kernel of u′. But now
(2) shows that the image of u is γ−invariant for all γ ∈ 〈α〉 ∪ 〈β〉. Thus the
image of u is 〈α, β〉−invariant. Since u is a zero divisor on R, the image of
u is not V , and so it is {0}, and therefore u = 0.

Thus R has no zero divisors.

To help the exposition below, we introduce the name a Glauberman-
Heimbeck set over the field F for a subset S of the n by n invertible matrices
over F containing the identity matrix such that S is closed under inversion
and S ∪ {0} is closed under both addition and multiplication by elements of
F , for some n. We will also call n the degree of the Glauberman-Heimbeck
set S. The dimension of a Glauberman-Heimbeck set S is the dimension
of S ∪ {0} as a vector space over F . Glauberman-Heimbeck sets of degree
equal to their dimension play a special role in the sequel.

4 An elementary proof of the Artin-Zorn the-

orem

We denote left multiplication by an element a of a (not necessarily associa-
tive) ring A by `a, and the set {`a : a ∈ A} by L(A).

Theorem 4.1. Let A be a (not necessarily associative) ring with identity.
Then A is associative if and only if L(A) is closed under composition.

Proof. If A is associative, then (ab)c = a(bc), for all a, b, c ∈ A, so `ab = `a`b,
for all a, b ∈ A, and hence L(A) is closed under composition. Conversely, if
L(A) is closed under composition, then , for all a, b ∈ A, `a`b = `d, for some
d ∈ A, and hence a(bc) = dc, for all c ∈ A. Putting c = 1, we have a(b1) = d1,
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that is, ab = d. So `ab = `a`b, for all a, b ∈ A, giving (ab)c = a(bc), for all
a, b, c ∈ A.

Theorem 4.2. Let A be an alternative division ring. Then L(A) is closed
under addition and under inverses of non-zero elements.

Proof. The distributive law (a + b)c = ac + bc, for all a, b, c ∈ A, implies
`a+b = `a + `b, for all a, b, c ∈ A. Thus L(A) is closed under addition. Let
a ∈ A with a 6= 0. Then `a is invertible with inverse `a−1 , by Lemma 2.4.
Hence L(A) is closed under inverses of non-zero elements.

Theorem 4.3 (Artin-Zorn Theorem). A finite alternative division ring is a
field.

Proof. For any given finite alternative division ring A, Z(A) is a field, and
elements of L(A) are linear over Z(A), that is L(A) is a finite vector space
over Z(A). Let S be the set of matrices of non-zero elements of L(A) with
respect to a fixed basis of A over Z(A). By Theorem 4.2, the hypotheses of
the Glauberman-Heimbeck Theorem are satisfied, so S ∪ {0} is a field under
matrix addition and matrix multiplication, and hence L(A) is a field under
addition and composition. By Theorem 4.1, it follows that A is a field.

Given a division ring A, the incidence structure with points the elements
of A×A and lines the sets {(x,mx+b) : x ∈ A}, for all m, b ∈ A and {(c, y) :
y ∈ A}, for all c ∈ A, with incidence set membership is an affine plane,
which we denote by Aff(A) whose projective completion is a projective plane,
which we denote by Π(A). A projective plane is Pappian if and only if it is
isomorphic to Π(A), where A is a field. A projective plane is Desarguesian
if and only if it is isomorphic to Π(A), where A is an associative division
ring. It is a theorem of Moufang that a projective plane is Moufang if and
only if it is isomorphic to Π(A), where A is an alternative division ring [17,
Theorem 6.15]).

Corollary 4.4 (Artin-Zorn-Levi theorem). A finite Moufang projective plane
is Pappian.

5 Extensions of the Glauberman-Heimbeck

theorem to more general fields

We wish to reverse the connection between an alternative division ring A and
the set L(A) of left multiplications, given by Theorem 4.2. Each is a vector
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space over the centre of the alternative division ring (and the centre is a
field) and they have the same dimension over the centre. Moreover, choosing
a basis for the algebra over its centre and assigning to each left multiplication
by a non-zero element of the algebra its matrix with respect to that basis,
gives rise to a Glauberman-Heimbeck set of degree equal to its dimension.
This is why Glauberman-Heimbeck sets of degree equal to their dimension
play a special role in the sequel: there’s no hope of reversing the connection
between an alternative division ring and its ring of left multiplications unless
we begin with a Glauberman-Heimbeck set of degree equal to its dimension.
This also means that our extensions of the Glauberman-Heimbeck theorem
to more general fields are restricted to this case.

Let S be a Glauberman-Heimbeck set over a field F of degree n and
dimension n. Let e be a fixed non-zero element of F n, and {C1, . . . Cn} be a
basis for S ∪ {0}. Suppose c1(C1e) + · · ·+ cn(Cne) = 0. Then (c1C1 + · · ·+
cnCn)e = 0, but c1C1 + · · ·+ cnCn ∈ S ∪{0}, so c1C1 + · · ·+ cnCn = 0, which
implies c1 = · · · = cn = 0. Hence the subspace W = {Ce : C ∈ S ∪ {0}}
has dimension n. Thus W = F n. If Ce = C ′e, then (C − C ′)e = 0 and
C − C ′ ∈ S, so C − C ′ not invertible implies C − C ′ = 0. Therefore, every
element x of F n can be written in a unique way as x = Ce, for some C ∈ S.

Denote that unique C by C(x). Now define a multiplication on F n by
xy = C(x)y. Define R(S) to be F n under addition and this multiplication.

The left distributive law x(y+z) = xy+xz in R(S) follows from distribu-
tivity of matrix multiplication over vector addition. The right distributive
law (x + x′)y = xy + x′y follows from C(x + x′) = C(x) + C(x′), which, in
turn follows from C1e = x and C2e = x′ implying (C1 +C2)e = x+ x′. Since
C(e) = I, e is the left identity. Furthermore, xe = C(x)e = x, by definition
of C(x), so our left identity is the right identity. Let a, b ∈ R(S) with a 6= 0.
Then ax = C(a)x = b if and only if x = C(a)−1b, so ax = b has a unique
solution x. Moreover, xa = b if and only if C(x)a = b. By the dimension
argument above {Ca : C ∈ S ∪ {0}} = F n, so there exists x ∈ R(S) with
xa = b. If Ca = C ′a, for C,C ′ ∈ S, then C − C ′ ∈ S is not invertible, so
C = C ′. Thus there is a unique x ∈ R(S) with xa = b. Then R(S) is a (not
necessarily associative) division ring.

Thus we have:

Theorem 5.1. Let S be a Glauberman-Heimbeck set over a field F of degree
of degree equal to its dimension. Then R(S) is a (not necessarily associative)
division ring.
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Theorem 5.2. Let S be a Glauberman-Heimbeck set over a field F of degree
equal to its dimension. Then R(S) is associative if and only if S is closed
under matrix multiplication. Moreover, R(S) is an alternative division ring.

Proof. Apply the identification `x 7→ C(x) from L(R(S)) to S. It shows that
S is closed under matrix multiplication if and only if L(R(S)) is closed under
multiplication. Now apply Theorem 4.1.

To show that R(S) is alternative, we apply the Skornyakov-San Soucie
Theorem (Theorem 2.8). Thus we need only prove the left inverse prop-
erty. Let x ∈ R(S) with x 6= 0. Now, for all y ∈ R(S), x−1(xy) =
C(x−1)(C(x)y) = (C(x−1)C(x))y, and C(x)e = x, so e = C(x)−1x. Since
C(x)−1 ∈ S, it follows that C(x)−1 = C(x−1). Hence x−1(xy) = y, for all
x, y ∈ R(S) with x 6= 0, which is the left inverse property for R(S).

Corollary 5.3. Given an alternative division ring A, L(A) is a subspace of
the endomorphism ring of A over Z(A) closed under inverses of non-zero
elements and having the same dimension over Z(A) as A does. Conversely,
given a subspace L of the endomorphism ring of a vector space V over the field
F closed under inverses of non-zero elements and having the same dimension
over F as V does, V can be endowed with the structure of an alternative
division ring with centre containing F in such a way that L = L(V ).

Theorem 5.4. Every Glauberman-Heimbeck set S over a field F of degree
equal to its dimension is, together with 0, an associative division ring under
matrix addition and multiplication if the dimension is not divisible by 8.

Proof. By Theorem 5.2 and Bruck-Kleinfeld-Skornyakov Theorem (Theorem
2.7), R(S) is either associative or an octonion algebra over its center (which
contains F ). Thus, if 8 does not divide the dimension, then R(S) is asso-
ciative. By Theorem 5.2 and Corollary 5.3, S = L(R(S)) is closed under
multiplication, whence S is an associative division ring.

Theorem 5.5. Every Glauberman-Heimbeck set S over a field F of degree
equal to its dimension is, together with 0, an associative division ring under
matrix addition and multiplication if F is a complete, discretely valued field
with finite residue class field, or a perfect field with cohomological dimension
at most two.

Proof. By Theorem 5.2, Bruck-Kleinfeld-Skornyakov Theorem (Theorem 2.7)
and [28, pp.21-23], R(S) is either an associative division ring or the split
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octonion algebra over its center. As the latter is not a division ring, then
R(S) is an associative division ring. The result then follows from Theorem
5.2 and Corollary 5.3.

Remark 5.6. Examples of perfect fields with cohomological dimension at
most two are finite fields (which have dimension 1), p-adic fields and totally
imaginary algebraic number fields .

Theorem 5.7. Every Glauberman-Heimbeck set S over a field F of degree
equal to its dimension that is not, together with 0, an associative division ring
under matrix addition and multiplication is isomorphic to the vector space
L(A) of left multiplications of an octonion algebra A whose centre Z contains
a subfield F ′ isomorphic to F such that |Z : F ′| is finite, and conversely.

Proof. This follows from Theorem 5.2, Corollary 5.3 and Theorem 2.7.

Remark 5.8. In the preceding sections, there has been a subterranean un-
dercurrent of ideas from geometry. The two key results connecting the prop-
erties of A and L(A) in Theorem 4.2 and the construction of the ring R(S)
at the beginning of Section 5 both appeared in works of Bruck and Bose
on representing translation planes by sets of square matrices, the former in
Bruck-Bose [4, Section 11], and the latter in Bruck-Bose [3, Section 6]. In
[22], another current of ideas from geometry was used to prove, without the
use of deep results on finite groups, that a finite Bol quasifield of even order
is a nearfield. It is desirable to find a similar proof for the case of odd order,
which would give a combined algebraic result stronger than the Artin-Zorn
theorem; a result previously obtained by six authors using the classification
of finite simple groups during the period 1968-2006 (see the references in
[22]).
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