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Abstract

In 2011, Penttila and Williford constructed an infinite new family of prim-
itive Q-polynomial 3-class association schemes, not arising from distance reg-
ular graphs, by exploring the geometry of the lines of the unitary polar space
H(3, q2), q even, with respect to a symplectic polar space W (3, q) embedded
in it.

In a private communication to Penttila and Williford, H. Tanaka pointed
out that these schemes have the same parameters as the 3-class schemes found
by Hollmann and Xiang in 2006 by considering the action of PGL(2, q2), q
even, on a non-degenerate conic of PG(2, q2) extended in PG(2, q4). Therefore,
the question arises whether the above association schemes are isomorphic.
In this paper we provide the positive answer. As by product, we get an
isomorphism of strongly regular graphs.
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1 Introduction

Let X = (X, {Ri}0≤i≤d) be a (symmetric) association scheme with d classes. For
0 ≤ i ≤ d, let Ai be the adjacency matrix of the relation Ri, and Ei the i-th
primitive idempotent of the Bose-Mesner algebra of X which projects on the i-th
maximal common eigenspace of A0, . . . , Ad. The matrices P and Q defined by

(A0 A1 . . . Ad) = (E0 E1 . . . Ed)P

and
(E0 E1 . . . Ed) = |X|−1(A0 A1 . . . Ad)Q

are the first and the second eigenmatrix of X, respectively.

An association scheme is said to be P -polynomial, or metric, if, after a reordering
of the relations, there are polynomials pi of degree i such that Ai = pi(A1); an
association scheme is called Q-polynomial, or cometric, if, after a reordering of the
eigenspaces, there are polynomials qi of degree i such that Ei = qi(E1), where mul-
tiplication is done entrywise. The reader is referred to [1, 3] for further information
on association schemes.

Two association schemes X = (X, {Ri}0≤i≤d) and X′ = (X ′, {R′i}0≤i≤d) are iso-
morphic if there exists a bijection ϕ from X to X ′ such that for each i ∈ {0, . . . , d}
there exists j ∈ {0, . . . , d} satisfying {(ϕ(x), ϕ(y)) : (x, y) ∈ Ri} = R′j; the mapping
ϕ is called an isomorphism from X to X′.

The idea of P -polynomial and Q-polynomial schemes was introduced by Delsarte
in [9], who observed a formal duality between the two notions. Delsarte also noted
that X is P -polynomial if and only if, after a proper re-ordering of the relations,
(X,R1) is a distance-regular graph [9, Theorems 5.6 and 5.16]. On the other hand,
Q-polynomial schemes which are neither P -polynomial nor duals of P -polynomial
schemes seem to be quite rare. In [7] van Dam, Martin and Muzychuk constructed
an infinite family of such schemes from hemisystems of the unitary polar space
H(3, q2) provided in [16]. In 2011, Penttila and Williford [14] constructed another
infinite family of Q-polynomial 3-class association schemes, not P -polynomial nor
the dual of a P -polynomial, by considering a relative hemisystem of H(3, q2), q even,
with respect to a symplectic polar space W (3, q) embedded in it. These schemes
differ from all those previously known, they being primitive. The known examples
of Q-polynomial schemes which are not P -polynomial are listed in [13, 16].

We underline that the Penttila-Williford 3-class schemes are obtained by applying
[14, Theorem 2] which provides primitive Q-polynomial subschemes of Q-polynomial
Q-bipartite schemes defined on certain generalized quadrangles. This result can be

2



viewed as a reversal of the so-called “extended Q-bipartite double” construction
given in [13]. On the other hand, looking at the Krein array of the generic Penttila-
Williford scheme, we may note that it comes from a strongly regular graph after
splitting one of its relations in two.

In a private communication to the authors of [14], H. Tanaka pointed out that
their 3-class schemes have the same parameters as the 3-class schemes provided by
Hollmann and Xiang in [11]. The latter, which were previously not noticed to be
Q-polynomial, are obtained as fusion of association schemes constructed from the
action of the projective group PGL(2, q2), q even, on a non-degenerate conic in the
Desarguesian projective plane PG(2, q2) extended in PG(2, q4).

Therefore the question arises whether there exists an isomorphism that takes the
Pentilla-Williford association schemes to the Hollmann-Xiang fusion schemes. In
this paper, we provide the answer by proving the following result:

Main Theorem. The Penttila-Williford 3-class association schemes and the Hollmann-
Xiang fusion association schemes are isomorphic.

The proof essentially uses geometric arguments. We start off with an explicit
description of the Penttila-Williford relative hemisystems in terms of coordinates
in the projective space PG(3, q2). Via the Klein correspondence from the lines of
PG(3, q2) to the points of the Klein quadric of PG(5, q2), we obtain a geometric
representation of the Penttila-Williford association schemes in the orthogonal polar
space Q−(5, q) whose points are the image of the lines in H(3, q2) [10]. Thanks to
this representation we are able to find a desired isomorphism.

In [11] it was pointed out that a further fusion scheme of the 3-class Hollmann-
Xiang scheme produces a strongly regular graph with parameters v = q2(q2 − 1)/2,
k = (q2 + 1)(q − 1), λ = q2 + q − 2, ν = 2(q2 − q). These graphs have the same
parameters of the ones found by R. Metz [8], which can be also constructed from
a fusion of the Penttila-Williford schemes; see also [4, p.189]. These graphs are
denoted by NO−(5, q) in Brouwer’s table of strongly regular graphs [2].

The paper [11] announced an alleged isomorphism between the above graphs in a
forthcoming paper. To the best of our knowledge, such a paper appears to have never
been published. Anyway, the Main Theorem confirms the conjectured isomorphism.

The paper is structured as follows: in Section 2 we recall the construction of the
Hollmann-Xiang and Penttila-Williford association schemes. In Sections 3 we give a
coordinatization of the relative hemisystems of Penttila and Williford together with
their representation in Q−(5, q). Finally, Section 4 contains the proof of the Main
Theorem.

3



2 Preliminaries

For any given n-dimensional vector space V = V (n, F ) over a field F , the projective
geometry defined by V is the partially ordered set of all subspaces of V , and it will
be denoted by PG(V ). If F is the finite field Fq with q elements, then we may
write V = V (n, q) and PG(n−1, q) instead of PG(V ). The 1-dimensional subspaces
are called points, the 2-dimensional subspaces are called lines, and the (n − 1)-
dimensional subspaces are called hyperplanes of PG(V ). For a nonzero v ∈ V , 〈v〉
will denote the point of PG(V ) spanned by v. In order to simplify notation, for
each subspace U of V , that is an element of PG(V ), we will use the same letter
for the projective geometry defined by U . If V is endowed with a non-degenerate
alternating, quadratic or hermitian form of Witt index m, the set P of totally
isotropic (or singular, in the case of quadratic form) subspaces of V is a polar space
of rank m of PG(V ), which is called symplectic, orthogonal or unitary, respectively.
Our principal reference on projective geometries and polar spaces is [15].

2.1 The Hollmann-Xiang association schemes

A non-degenerate conic C of PG(2, q2) is an orthogonal polar space (of rank 1) arising
from a non-degenerate quadratic form Q on V (3, q2). A line ` of PG(2, q2) is called
a passant, tangent or secant of C according as |` ∩ C| = 0, 1 or 2.

Embed PG(2, q2) in PG(2, q4). Concretely this can be done by extending the
scalars in V (3, q2). It follows that each point of PG(2, q2) extends to a point of
PG(2, q4). Similarly, each line ` of PG(2, q2) extends to a line ¯̀ of PG(2, q4). The
extension Q of Q in V (3, q4) is a non-degenerate quadratic form, and it defines a
(non-degenerate) conic C in PG(2, q4). While the extension ¯̀of a tangent (or secant)
line ` of C is a tangent (or secant) of C, the extension of a passant line of C is a
secant of C. Such a line is called an elliptic line of C, and we will denote by E the
set of these lines. Note that E has size (q4 − q2)/2.

Since all non-degenerate quadratic forms on V (3, q2) are equivalent, we may as-
sume

Q : V (3, q4) → Fq4
(x, y, z) 7→ y2 − xz.

Therefore,
C = {〈(1, t, t2)〉 : t ∈ Fq4} ∪ {〈(0, 0, 1)〉}

and
C = {〈(1, t, t2)〉 : t ∈ Fq2} ∪ {〈(0, 0, 1)〉}.
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Therefore, for every elliptic line ¯̀ of C we have ¯̀∩ C = {〈(1, t, t2)〉, 〈(1, tq2 , t2q2)〉},
for some t ∈ Fq4 \ Fq2 . The reader is referred to [11] for more details.

Under the identification of Fq4 ∪ {∞} with C given by

ξ : t↔ 〈(1, t, t2)〉, ∞↔ 〈(0, 0, 1)〉, (1)

the pair t = {t, tq2}, with t ∈ Fq4 \ Fq2 , may be associated with the elliptic line

intersecting C at {〈(1, t, t2)〉, 〈(1, tq2 , t2q2)〉}. We will use ¯̀
t to denote this line.

We assume q is even. For any given pair of distinct elliptic lines ¯̀
s, ¯̀

t, let

ρ̂(¯̀
s, ¯̀

t) = ρ̂(s, t) =
1

ρ(s, t) + ρ(s, t)−1
, (2)

where

ρ(s, t) =
(s+ t)(sq

2
+ tq

2
)

(s+ tq2)(sq2 + t)
. (3)

It is evident that Im ρ̂ is a subset of Fq2 . The following result is straigtforward.

Lemma 2.1. [11, Lemma 5.1]

ρ̂(s, t) =
(s+ t)(sq

2
+ tq

2
)(s+ tq

2
)(sq

2
+ t)

(s+ sq2)2(t+ tq2)2
=

(
1

ρ(s, t) + 1

)2

+

(
1

ρ(s, t) + 1

)
.

Set q = 2h. For r ∈ {1, 2}, let T0(qr) be the set of elements of Fqr with absolute
trace zero:

T0(qr) =

{
x ∈ Fqr :

rh−1∑
i=0

x2i = 0

}
.

In [11] Hollmann and Xiang consider the following sets to construct a 3-class asso-
ciation scheme:

T0 = T0(q2), S∗0 = T0(q) \ {0}, S1 = Fq \ S0.

Note that T0 = {α + α2 : α ∈ Fq2} as q is even. By Lemma 2.1, Im ρ̂ is contained
in T0.

Theorem 2.2. [11] On the set of the elliptic lines E define the following relations:

R1: (¯̀
s, ¯̀

t) ∈ R1 if and only ρ̂(¯̀
s, ¯̀

t) ∈ S∗0;

R2: (¯̀
s, ¯̀

t) ∈ R2 if and only ρ̂(¯̀
s, ¯̀

t) ∈ S1;
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R3: (¯̀
s, ¯̀

t) ∈ R3 if and only ρ̂(¯̀
s, ¯̀

t) ∈ T0 \ Fq.

Then the pair (E , {Ri}3
i=0), where R0 is the identity relation, is a 3-class association

scheme.

The first eigen-matrix of the scheme is

P =


1 (q − 2)(q2 + 1)/2 q(q2 + 1)/2 q(q − 2)(q2 + 1)/2

1 −(q − 1)(q − 2)/2 −q(q − 1)/2 q(q − 2)

1 −(q2 − q + 2)/2 q(q + 1)/2 −q
1 q − 1 0 −q

 ; (4)

see [11, Section 7].

Remark 2.3. By identification (1), the set E may be replaced by the set X = {t =
{t, tq2} : t ∈ Fq4 \ Fq2} and the relations Ri, i = 1, 2, 3, replaced by

R′1: (s, t) ∈ R′1 if and only ρ̂(s, t) ∈ S∗0;

R′2: (s, t) ∈ R′2 if and only ρ̂(s, t) ∈ S1;

R′3: (s, t) ∈ R′3 if and only ρ̂(s, t) ∈ T0 \ Fq;

here ρ̂(s, t) is the quantity defined in (2). Hence, (X , {R′i}3
i=0) is an association

scheme isomorphic to (E , {Ri}3
i=0).

Remark 2.4. Actually, the scheme (X , {R′i}3
i=0) arises as a fusion of the one given

by the following result [11].

Theorem. Under the identification ξ, the action of PGL(2, q2) on E × E gives
rise to an association scheme on X with q2/2− 1 classes R{λ,λ−1}, λ ∈ Fq2 \ {0, 1},
where (s, t) ∈ R{λ,λ−1} if and only if {ρ(s, t), ρ(s, t)−1} = {λ, λ−1}.

2.2 The Penttila-Williford association schemes

Up to isometries, the vector space V (4, q2) has precisely one non-degenerate her-
mitian form, and its Witt index is 2. As usual, H(3, q2) denotes the unitary polar
space of rank 2 defined by it. A point (resp. line) of H(3, q2) is a 1-dimensional
(resp. 2-dimensional) subspace in H(3, q2).

Assume q even for the rest of the current section. In V (4, q2) there is a 4-

dimensional Fq-vector space V̂ such that the restriction of the hermitian form on
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it induces a non-degenerate alternating form b̂ which defines a symplectic polar
space W (3, q) of rank 2 of PG(V̂ ) [5]. In addition, b̂ is the polar of a non-degenerate

quadratic form Q̂ of Witt index 1, whose set of singular point is denoted by Q−(3, q).

By Ŵ (resp. Q̂) we denote the set of all the totally isotropic (resp. singular) sub-
spaces of W (3, q) (resp. Q−(3, q)) extended over Fq2 . As a consequence, for every

point of H(3, q2) not in Ŵ there are exactly q lines of H(3, q2) disjoint from Ŵ and

one in Ŵ . Note that Ŵ is an embedding of W (3, q) in H(3, q2).

The following definition was introduced in [14]. A relative hemisystem of H(3, q2)

with respect to W (3, q) is a set H of lines of H(3, q2) disjoint from Ŵ such that every

point of H(3, q2) not in Ŵ lies on exactly q/2 lines of H. For any given line l of

H(3, q2) disjoint from Ŵ , let Sl denote the set of lines of H(3, q2) which meet both

l and Ŵ . We stress the fact that Sl consists of the lines of Ŵ that extend elements
of a regular spread of W (3, q)1, and refer to Sl as the spread subtended by l.

Theorem 2.5. [14, Theorem 4] Let H be a relative hemisystem of H(3, q2) with
respect to W (3, q). Then a primitive Q-polynomial 3-class association scheme can
be constructed on H by the defining the following relations:

R̃1: (l,m) ∈ R̃1 if and only |l ∩m| = 1;

R̃2: (l,m) ∈ R̃2 if and only l ∩m = ∅ and |Sl ∩ Sm| = 1;

R̃3: (l,m) ∈ R̃3 if and only l ∩m = ∅ are |Sl ∩ Sm| = q + 1.

Let PO−(V̂ ) be the stabilizer of Q̂ in the projective unitary group PGU(4, q2). By

looking at the action of the commutator subgroup PΩ−(V̂ ) of PO−(V̂ ) on the lines
of H(3, q2), the following result was proved in [14].

Theorem 2.6. PΩ−(V̂ ) has two orbits on the lines of H(3, q2) disjoint from Ŵ,
and each orbit is a relative hemisystem with respect to W (3, q).

We consider an association scheme (H, {R̃i}3
i=0) as in Theorem 2.5 by using the

hemisystems from Theorem 2.6. As expected, the first eigen-matrix of the scheme
is precisely the matrix in (4).

1A spread of W (3, q) in PG(3, q) is a set S of totally isotropic lines which partition the pointset
of PG(3, q). S is regular if for any three distinct lines of S there is a set R of q + 1 lines of S
containing them, with the following property: any line of PG(3, q) intersecting three lines in R
meets all the lines of R.
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3 The explicit construction of the relative hemisys-

tem of Penttila-Williford

Let G and H be groups acting on the sets Ω and ∆, respectively. The two actions
are said to be permutationally isomorphic if there exist a bijection θ : Ω → ∆ and
an isomorphism χ : G→ H such that the following diagram commutes:

G×Ω Ω

H×∆ ∆

φ

φ̃

χ θ θ

Here φ and φ̃ are the maps defining the action of G and H on Ω and ∆, respectively.

Let Q−(3, q) be the orthogonal polar space (of rank 1) defined by Q̂ on the 4-

dimensional Fq-vector space V̂ introduced in Section 2.2.

It is known that (PSL(2, q2),PG(1, q2)) and (PΩ−(V̂ ), Q−(3, q)) are permutationally
isomorphic for all prime powers q. For sake of completeness, we give an explicit
description of the above isomorphism which is more suitable for our computation.

In V (4, q2) = {(X1, X2, X3, X4) : Xi ∈ Fq2}, let V̂ be the set of all vectors v =
(α, xq, x, β) with α, β ∈ Fq, x ∈ Fq2 . With the usual sum and multiplication by

scalars from Fq, V̂ is a 4-dimensional vector space over Fq.
As usual we identify PG(1, q2) with Fq2 ∪ {∞} and we consider the following

injective map:

θ : Fq2 ∪ {∞} −→ PG(V̂ )

t 7→ 〈(1, tq, t, tq+1)〉
∞ 7→ 〈(0, 0, 0, 1)〉

. (5)

Proposition 3.1. [6] The image of θ is an orthogonal polar space of rank 1 of

PG(V̂ ).

Proof. Let Q be the quadratic form on V (4, q2) defined by

Q(X) = X1X4 −X2X3,

which has b(X,Y) = X1Y4 +X4Y1−X2Y3−X3Y2 as the associated non-degenerate

bilinear form. The restriction Q̂ = Q|V̂ is the quadratic form given by

Q̂(v) = αβ − xq+1,
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which has
b̂(v, v′) = αβ′ + βα′ − xx′q − xqx′ (6)

as the associated bilinear form. Let v = (α, xq, x, β) ∈ Rad(V̂ ), that is b̂(v, v′) = 0,

for all v′ ∈ V̂ . If α′ = β′ = 0, a necessary condition for v ∈ Rad(V̂ ) is

xqx′ + xx′q = 0,

for all x′ ∈ Fq2 . This shows that the polynomial in x′ of degree q on the left hand
side has at least q2 roots. Therefore, it must be the zero polynomial, and x = 0. We
repeat the above argument for α′ = x′ = 0 and for x′ = β′ = 0 to show that v = 0.
This yields that b̂, and hence Q̂, is non-degenerate. Let u be a singular vector for
Q̂. Without loss of generality we may take u = (1, 0, 0, 0). Therefore, the subspace

U = {v ∈ V̂ : b̂(v, u) = 0} coincides with {(α, xq, x, 0) : β ∈ Fq, x ∈ Fq2}. It is easily

seen that U ∩ ker Q̂ = {αu : α ∈ Fq}. Thus, Q̂ is a quadratic form of Witt index 1
giving rise to the orthogonal polar space

Q−(3, q) = {〈(1, tq, t, tq+1)〉 : t ∈ Fq2} ∪ {〈(0, 0, 0, 1)〉},

which is precisely Im θ.

Let χ be the monomorphism defined by

χ : SL(2, q2) −→ SL(4, q2)
g 7→ g ⊗ gq ,

where ⊗ is the Kronecker product and gq denotes the matrix g with its entries raised
to the q-th power. It is straightforward to check that χ(g) is a Q̂-isometry, for every
g ∈ SL(2, q2). Therefore, χ can be regarded as a monomorphism from PSL(2, q2)

to PO−(V̂ ). It is actually an isomorphism from PSL(2, q2) to PΩ−(V̂ ), as it will be
shown below.

Let ta be the transvection in SL(2, q2) with matrix

(
1 0
a 1

)
, for some a ∈ F∗q2 .

The isometry χ(ta) maps (α, xq, x, β) to (α, aqα+xq, aα+x, aq+1α+axq +aqx+β).

Its restriction on the hyperplane of all b̂-orthogonal vectors to u = (0, 0, 0, 1) is the
map

ηu,y(w) = w + b̂(w, y)u,

where y = (0,−aq,−a, 0). This yields that χ(ta) is actually the unique Siegel trans-
formation ρu,y which extends ηu,y [15, Theorem 11.18]. By using [15, Theorem 11.19
(ii)] it is possible to show that as a varies in F∗q2 , ρu,y describes all the Siegel trans-
formations centered at u.
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Every transvection g is conjugate in SL(2, q2) to a transvection of type ta. This im-
plies that χ(g) is also a Siegel transformation [15, Theorem 11.19 (iii)]. Therefore, χ
gives rise to a bijection from the set of all transvections in SL(2, q2) to all Siegel trans-

formations of V̂ . Since transvections generate SL(2, q2), and Siegel transformations

generate Ω−(V̂ ), we achieve χ(PSL(2, q2)) ≤ PΩ−(V̂ ). As |PSL(2, q2)| = |PΩ−(V̂ )|,
χ is actually the desired isomorphism. It is a matter of fact that the diagram

PSL(2, q2) ×Fq2 ∪ {∞} Fq2 ∪ {∞}

PΩ−(V̂ ) × Q−(3, q) Q−(3, q)

φ

φ̃

χ θ θ

commutes.

For the rest of this section, assume q is even. The bilinear form b̂ defined by (6) is

a (non-degenerate) alternating form on V̂ . Let h be the non-degenerate hermitian
form on V (4, q2) given by

h(X,Y) = X1Y
q

4 +X2Y
q

2 +X3Y
q

3 +X4Y
q

1 ,

with associated unitary polar space H(3, q2). It is evident that h|V̂ = b̂. Therefore,

the symplectic polar space W (3, q) defined by b̂, as well as the orthogonal polar

space Q−(3, q), can be embedded in H(3, q2) by extending the scalars, so getting Ŵ
and Q̂ introduced in Section 2.2. This also implies that PΩ−(V̂ ) is a subgroup of the

projective symplectic group PSp(V̂ ) which is in turn a subgroup of the projective
unitary group PGU(4, q2).

The semilinear involutorial transformation τ of V (4, q2) given by

τ : V (4, q2) −→ V (4, q2)
(X1, X2, X3, X4) 7→ (Xq

1 , X
q
3 , X

q
2 , X

q
4).

fixes H(3, q2) and acts as the identity on Ŵ .

If we embed V (4, q2) in V (4, q4) by extending the scalars, then PG(3, q4) embeds

PG(V̂ ). Therefore, θ defined by (5) can be naturally thought as the restriction of
the following map:

θ : Fq4 ∪ {∞} −→ PG(3, q4)

t 7−→ 〈(1, tq, t, tq+1)〉
∞ 7−→ 〈(0, 0, 0, 1)〉.
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Note that, for any t ∈ Fq4 \ Fq2 , θ(t) is not the span of a vector of V (4, q2).
Moreover,

θ(tq
2

) = 〈(1, tq3 , tq2 , tq3+q2)〉 = θ(t)τ
2 6= θ(t).

For each t ∈ Fq4 \Fq2 , we associate the pair t = {t, tq2} with the line Mt of PG(3, q4)

spanned by θ(t) and θ(tq
2
), which is distinct from M τ

t .

Lemma 3.2. For each pair t, Mt ∩ V (4, q2) is a line of H(3, q2), say mt, which is

disjoint from Ŵ.

Proof. A straightforward computation shows that the vectors in Mt ∩ V (4, q2) are
precisely Xλ = (λ + λq

2
, λtq + λq

2
tq

3
, λt + λq

2
tq

2
, λtq+1 + λq

2
tq

3+q2), for all λ ∈ Fq4 ,
and they form a line mt of PG(3, q2). Since h(Xλ,Xλ) = 0 for all λ ∈ Fq4 , mt is a

line of H(3, q2). Finally, in order to prove that mt is disjoint from Ŵ , consider the
following system:

aα = λ+ λq
2

a xq = λtq + λq
2

tq
3

a x = λt+ λq
2

tq
2

a β = λtq+1 + λq
2

tq
3+q2 ,

(7)

with α, β ∈ Fq, x, a ∈ Fq2 , λ ∈ Fq4 , t ∈ Fq4 \Fq2 . The existence of a solution for (7),
or rather the existence of a ∈ Fq2 , makes the system inconsistent. This concludes
the proof.

Proposition 3.3. The sets {mt : t ∈ Fq4 \Fq2} and {mτ
t : t ∈ Fq4 \Fq2} are precisely

the two orbits of PΩ−(V̂ ) on the lines of H(3, q2) disjoint from Ŵ.

Proof. From the proof of [14, Theorem 5], PΩ−(V̂ ) has two orbits on the lines of

H(3, q2) disjoint from Ŵ , and these two orbits are interchanged by τ . We recall that
mt is uniquely defined by the line Mt of PG(3, q4), which is spanned by θ(t) and

θ(tq
2
). Hence, it suffices to prove that {Mt : t ∈ Fq4 \ Fq2} is an orbit of PΩ−(V̂ ).

Let ω ∈ Fq4 \ Fq2 such that ωq
2

= ω + 1 and ω2 + ω = δ, with δ ∈ Fq2 \T0, δ 6= 1.
For all t ∈ Fq4 \ Fq2 , write t = x+ yω, with x, y ∈ Fq2 , y 6= 0.

As a group acting on the projective line PG(1, q2) assimilated to the set Fq2∪{∞},
PSL(2, q2) may be identified with the group of linear fractional transformations

z 7→ az + b

cz + d
,
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where ad− bc is a non-zero square in Fq2 [15]. For any given t = x+ yω ∈ Fq4 \ Fq2 ,
let g ∈ PSL(2, q2) with matrix [ 1, 0; x, y ]. Then, χ(g) = g⊗gq maps

(
θ(ω), θ(ωq

2
)
)

to
(
θ(t), θ(tq

2
)
)

by taking into account ωq
2

= ω+1. This implies that χ(g) ∈ PΩ(V̂ )

maps the line M{ω,ωq2} to Mt.

Corollary 3.4. The sets {mt : t ∈ Fq4 \ Fq2} and {mτ
t : t ∈ Fq4 \ Fq2} are the

Penttila-Williford relative hemisystems.

4 The proof of the Main Theorem

Define T = {{t, tq2} : t ∈ Fq4 \ Fq2}, and put X = T . By Remark 2.3, we need to
find a bijection between the set X and the relative hemisystem H = {mt : t ∈ T}
preserving the relations defined on them.

From the arguments in Section 3, we may associate the pair t = {t, tq2} ∈ X
with the line mt ∈ H. Moreover, Corollary 3.4 gives |H| = (q4 − q2)/2 = |X |,
and this contributes to make the mapping ϕ : X → H, t 7→ mt a bijection. In
order to show that ϕ, in fact, preserves the relations, we will move into a different
geometric setting. More precisely, we will use the following dual representation of
H(3, q2). Via the Klein correspondence κ, the lines of PG(3, q2) are mapped to the
points of an orthogonal polar space Q+(5, q2) of rank 3 of PG(5, q2), which is the
so-called the Klein quadric. In particular, the lines of H(3, q2) are mapped to the
points of an orthogonal polar space Q−(5, q) of rank 2 in a PG(5, q) embedded in
PG(5, q2). When q is even, κ maps the lines of any symplectic polar space of rank
2 embedded in H(3, q2) to the points of an orthogonal polar space of rank 2, which
is the intersection of Q−(5, q) with a hyperplane of PG(5, q). The reader is referred
to [10] for more details on the Klein correspondence.

Assume q even. In V (6, q2) consider the 6-dimensional Fq-subspace Ṽ = {(x, xq, y, yq, z, zq) :

x, y, z ∈ Fq2}. Let PG(Ṽ ) be the projective geometry defined by Ṽ .

We consider the Klein quadric Q+(5, q2) defined by the (non-degenerate) quadratic
formQ(X) = X1X6+X2X5+X3X4 on V (6, q2). For any given w = (x, xq, y, yq, z, zq) ∈
Ṽ ,

Q̃(w) = Q|Ṽ (w) = xzq + xqz + yq+1.

From [12, Proposition 2.4], Q̃ is a non-degenerate quadratic form of Witt index 2

on Ṽ with associated alternating form

b̃(w,w′) = xz′q + xqz′ + yy′q + yqy′ + zx′q + zqx′.
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Therefore, Q̃ gives rise to an orthogonal polar space Q−(5, q) of PG(Ṽ ) embedded
in Q+(5, q2).

For any subspace X of Ṽ , set

X⊥ = {w ∈ Ṽ : b̃(w, u) = 0, for all u ∈ X}.

Let Q(4, q) be the polar space whose points are the κ-image of the lines of Ŵ , and

Γ be the hyperplane of PG(Ṽ ) containing Q(4, q). For a complete description of Γ
observe that the pairs

{(1, 0, 0, 0), (0, x, xq, 0)}, {(0, 0, 0, 1), (0, x, xq, 0)}, {(1, 1, 1, 1), (x+ xq, x, xq, 0)},

with x ∈ Fq2 , span lines of Ŵ which give three skew lines of Q(4, q) under κ gener-
ating Γ. It follows that Γ = {(x, xq, c, c, z, zq) : x, z ∈ Fq2 , c ∈ Fq}.

Under κ, the line mt of H is mapped to the point Pt = 〈wt〉 of PG(Ṽ ), where

wt = (tq + tq
3

, t+ tq
2

, t1+q + tq
2+q3 , t1+q3 + tq+q

2

, t1+q+q3 + tq+q
2+q3 , t1+q+q2 + t1+q2+q3).

Note that Pt is in Q−(5, q), but not in Q(4, q). Let P ′t = κ(mτ
t ). Since mt and mτ

t

are disjoint lines of H(3, q2), the line Lt spanned by Pt and P ′t intersects Q−(5, q)
just at Pt and P ′t. On the other hand, mt and mτ

t subtend the same spread St = Smt

in Ŵ . The κ-image of St is an orthogonal polar space of rank 1 contained in Q(4, q)
[10], and it turns out this is precisely Q(4, q) ∩ L⊥t . Consequently, L⊥t is in Γ and

Γ⊥ = 〈(0, 0, 1, 1, 0, 0)〉 = 〈w0〉 is a point of Lt, for all t ∈ Fq4 \ Fq2 . The symbol Õt

will be used to indicate Q(4, q) ∩ L⊥t .

For any given distinct pairs s and t, let Πs,t be the plane of PG(Ṽ ) spanned by

Γ⊥, Ps and Pt. The restriction of Q̃ and b̃ on Πs,t will be denoted by Q̃s,t and b̃s,t,
respectively. Identifying a triple (a, b, c) ∈ F3

q with the vector v = aws + bw0 + cwt ∈
Πs,t, we obtain that the action of b̃s,t induced on F3

q is given by the matrix

B =

b̃(ws, ws) b̃(ws, w0) b̃(ws, wt)

b̃(w0, ws) b̃(w0, w0) b̃(w0, wt)

b̃(wt, ws) b̃(wt, w0) b̃(wt, wt)

 =

 0 Tr(sq+1) b̃(ws, wt)
Tr(sq+1) 0 Tr(tq+1)

b̃(ws, wt) Tr(tq+1) 0

 ;

here Tr is the trace map from Fq4 on Fq. A straightforward calculation shows that
Πs,t is degenerate as Rad(Πs,t) = 〈vs,t〉, where

vs,t = Tr(tq+1)ws + b̃(ws, wt)w0 + Tr(sq+1)wt.
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It is easily seen that

Q̃s,t(vs,t) = b̃(ws, wt)
(
b̃(ws, wt) + Tr(sq+1)Tr(tq+1)

)
= b̃(ws, wt) b̃(ws, w

′
t),

(8)

where

w′t = (tq + tq
3

, t+ tq
2

, tq+q
2

+ t1+q3 , t1+q + tq
2+q3 , t1+q+q3 + tq+q

2+q3 , t1+q+q2 + t1+q2+q3).

Note that P ′t = κ(mτ
t ) = 〈w′t〉.

Now two cases are possible according as vs,t is singular or not.

If Q̃s,t(vs,t) = 0, then Q̃s,t is degenerate, and Cs,t = Πs,t ∩ Q−(5, q) consists of
two distinct lines through 〈vs,t〉, as Ps, P

′
s, Pt and P ′t are distinct points no three

of them collinear. This yields that L⊥s meets L⊥t in the plane Π⊥s,t of Γ, with Q̃|Π⊥s,t
degenerate, and Õs ∩ Õt = Π⊥s,t ∩ Q−(5, q) = 〈vs,t〉. By taking into account (8),

there are two possibilities of obtaining zero for Q̃s,t(vs,t): either b̃(ws, wt) = 0 or

b̃(ws, w
′
t) = 0.

If b̃(ws, wt) = 0, then Ps and Pt are collinear in Q−(5, q), or equivalently, the lines

ms and mt are concurrent, that is (ms,mt) ∈ R̃1 (see Theorem 2.5). On the other
hand, by taking into account (3),

0 = b̃(ws, wt)

= (sq
2

+ s)q(tq
2

+ t)q(s+ tq
2

)(sq
2

+ t) + (sq
2

+ s)(tq
2

+ t)(s+ tq
2

)q(sq
2

+ t)q

if and only if

ν =
1

ρ(s, t) + 1
=

(s+ tq
2
)(sq

2
+ t)

(sq2 + s)(tq2 + t)
∈ Fq.

When ν ∈ Fq, ρ̂(s, t) ∈ S∗0 by Lemma 2.1, that is (s, t) ∈ R′1 (see Remark 2.3).
On the other hand, if ρ̂(s, t) = ν2 + ν ∈ S∗0, then there exists z ∈ Fq such that
(z+ν)2 + (z+ν) = 0, which implies either z = ν or z+ 1 = ν. In both cases ν ∈ Fq.
Therefore, (ms,mt) ∈ R̃1 if and only if (s, t) ∈ R′1.

If b̃(ws, w
′
t) = 0, then Ps and P ′t are collinear in Q−(5, q), and this leads to the

non-collinearity of Ps and Pt. This means that (ms,mt) ∈ R̃2 on one side, and
(s, t) ∈ R′2 on the other one. In fact,

0 = b̃(ws, w
′
t)

=(sq
2

+ s)q(tq
2

+ t)q(s+ tq
2

)(sq
2

+ t) + (sq
2

+ s)(tq
2

+ t)(s+ tq
2

)q(sq
2

+ t)q+

+ (sq
2

+ s)q+1(tq
2

+ t)q+1
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if and only if

νq + ν =

(
1

ρ(s, t) + 1

)q
+

1

ρ(s, t) + 1
= 1.

When νq + ν = 1, then ν /∈ Fq. This implies that the equation Z2 + Z = ρ̂(s, t)
has no solutions in Fq, that is ρ̂(s, t) ∈ S1, i.e. (s, t) ∈ R′2. On the other hand,
ρ̂(s, t) = ν2+ν ∈ S1 ⊂ Fq implies ν 6∈ Fq. As ρ̂(s, t) ∈ Fq, then (νq+ν)2+(νq+ν) = 0
holds, whence νq + ν = 1.

Finally, if Q̃s,t(vs,t) 6= 0, then Q̃s,t is non-degenerate and 〈vs,t〉 is the nucleus

of the (non-degenerate) conic Cs,t. Therefore, Õt and Õs meet in q + 1 points of

Π⊥s,t ∩Q(4, q). Then, Smt = κ−1(Õt) and Sms = κ−1(Õs) meet in exactly q + 1 lines

in Ŵ , that is (mt,ms) ∈ R̃3. It is clear that (ms,mt) ∈ R̃3 if and only if (s, t) ∈ R′3
by exclusion.

Summing up, for each i = 0, . . . , 3, we have

(s, t) ∈ R′i if and only if (ms,mt) = ϕ(s, t) ∈ R̃i,

i.e. ϕ induces a bijection between R′i and R̃i, thus achieving our aim.
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