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Abstract
Through the action of the Weyl algebra on the geometric series, we establish a gen-
eralization of the Worpitzky identity and new recursive formulae for a family of
polynomials including the classical Eulerian polynomials. We obtain an extension
of the Dobiński formula for the sum of rook numbers of a Young diagram by replac-
ing the geometric series with the exponential series. Also, by replacing the derivative
operator with the q-derivative operator, we extend these results to the q-analogue set-
ting including the q-hit numbers. Finally, a combinatorial description and a proof of
the symmetry of a family of polynomials introduced by one of the authors are provided.

Keywords Eulerian polynomials · Weyl algebra · Rook numbers · Permutation
statistics · Formal power series

1 Introduction

This paper is mainly motivated by the idea of developing a theory for Eulerian poly-
nomials and their generalizations through the formalism of the Weyl algebra. Our
starting point is a family of polynomials, occasionally called hit polynomials [4,5],
already covered in Riordan’s book [16] in the late 1950s, and introduced by Kaplansky
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and Riordan [14]. Among other reasons, hit polynomials are interesting because of
their combinatorial properties linked to rook numbers. Let us recall some notions and
briefly describe the context. A non-attacking rook placement on a board D is a set P
of boxes of D with no two boxes in the same row or column. The number rk(D) of
non-attacking rook placements P on D with |P| = k is said to be the k-th rook number
of D. If D = Dλ is the Young diagram of a partition λ, then we write rk(λ) for the k-th
rook number of Dλ. In particular, for the staircase partition δn := (n, n − 1, . . . , 1), it
is well-known that the rook numbers rk(δn−1) are the Stirling numbers of the second
kind S(n, n − k). In this sense, the sum Rλ = ∑

k rk(λ) can be regarded as a gener-
alized Bell number. By identifying the permutations in the symmetric groupSn with
the placements on the square diagram Dn consisting of n rows of length n, for any
partition λ such that Dλ ⊆ Dn , we set

An,λ(x) :=
∑

σ∈Sn

x |σ∩Dλ|.

The polynomialsAn,λ(x) often occur within the well developed literature on rook the-
ory [4,6,9–14]. It is well-known that the classical Eulerian polynomials An(x) arise as
An,δn−1(x). In Sect. 3, wewill show thatAn,δn−r (x) agrees with the polynomial rAn(x)
introduced by Foata and Schützenberger [7]. This connection motivates a generalized
notion of the excedance statistic that allows another combinatorial description of the
polynomial An,λ(x). A classical formula of Frobenius, relating the Stirling numbers
of the second kind and the Eulerian polynomials, extends in a straightforward manner
to the following identity [4]

An,λ(x) =
∑

k≥0

rk(λ) (n − k)! (x − 1)k . (1)

Based on aq-analogue of rook numbers,Garsia andRemmel [8] provided aq-analogue
for the polynomialsAn,λ(x) that generalizes identity (1). Dworkin [5] further studied
the recursive properties of such polynomials and also gave a direct combinatorial
interpretation of their coefficients, the q-hit numbers.

In the seventies, Navon [15] showed that rook placements also provide a natural
combinatorial framework for the algebras generated by annihilation and creation oper-
ators, and in particular for the so-called normal ordering problem [2,3,17]. Recall that,
ifX denotes the operator of multiplication by x , andD = d

dx denotes the usual deriva-
tive operator, then DX−XD = 1 and the algebra generated by X and D is referred to
as the Weyl algebra. The normal ordering of any product � involving a occurrences
of the operator X and b occurrences of the operator D is given by

� =
∑

k≥0

rk(λ)Xa−kDb−k,

where λ is a suitable partition associated with �. In this setting, the Stirling numbers
of the second kind arise as the normal ordering coefficients of � = (XD)n .
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We show that the polynomialsAn,λ(x) naturally describe the action of any product
of the operators D and X on the geometric series 1/(1 − x). More precisely, given
a partition λ = (λ1, λ2, . . . , λl), we define an operator �λ such that for any square
diagram Dn containing Dλ,

�λDn−λ1
1

1 − x
= An,λ(n) (x)

(1 − x)n+1 ,

where λ(n) is a partition that we call the reduced complement of λ in Dn (Theorem 5).
A first consequence of this point of view is that the polynomials of Garsia and Remmel
arise when the operator �λ,qD

n−λ1
q , obtained from �λDn−λ1 by replacing D with the

q-derivativeDq , acts on 1/(1−x).More precisely, they are the polynomialsAn,λ(x, q)

such that

�λ,qDn−λ1
q

1

1 − x
= An,λ(n) (x, q)

(1 − x)(1 − xq) · · · (1 − xqn)
.

In addition, straightforward manipulations of derivatives and formal power series
allow us to establish a generalization of the classical Worpitzky identity (Corollary 6),
a remarkably and seemingly new property of the polynomialsAn,λ(x) with respect to
derivation (Corollary 7), and a recursion formula to compute An,λ(x) (Corollary 8).
When λ = δn−r a new recursive formula relating the polynomials rAn(x) and the
classical Eulerian polynomials is obtained. In turn, each of these results provide a
corresponding q-analogue simply by replacing D with Dq (Corollaries 9,10,11). Fur-
thermore, by letting �λDn−λ1 act on the formal power series expansion of ex , we
recover an extension of the classical Dobiński formula for the Bell numbers (iden-
tity (27)), and its q-analogue (identity (28)). Finally, we provide a combinatorial
description and a proof of the symmetry property of the polynomials Ar ,s,n(x) (Propo-
sition 13), defined by

(XrDs)n
1

1 − x
= Ar ,s,n(x)

(1 − x)sn+1 ,

and introduced by one of the authors of the present paper [1].

2 Partitions and rook numbers

By a partition, wemean a finite non-increasing vector λ = (λ1, λ2, . . . , λl) of positive
integers called parts ofλ. The number of parts ofλ is called the length ofλ, and denoted
by �(λ). The Young diagram (or Ferrers board) of λ is a left-aligned array of boxes,
displayed in �(λ) rows consisting of λ1, λ2, . . . , λl boxes, from top to bottom. In
analogy with matrix notation, given a Young diagram D, we let Di, j denote the box
of D occurring at the i-th row (counting from top to bottom) and at the j-th column
(counting from left to right). For instance, the Young diagram of λ = (4, 4, 4, 2, 2, 1)
is shown in Fig. 1A, with a bullet drawn in the box D3,2. The conjugate of λ is the
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partition λ′ whose diagram Dλ′ is obtained by reflecting Dλ with respect to its main
diagonal. For example, the conjugate of λ = (4, 4, 4, 2, 2, 1) is λ′ = (6, 5, 3, 3) and its
Young diagram is shown in Fig. 1B. The border of a Young diagram D is by definition
the subset of those sides lying at the rightmost position in a row, or at a lowest position
in a column. The border of D(4,4,4,2,2,1) is highlighted in Fig. 1c.

Given any vectors r = (r1, r2, . . . , rk) and u = (u1, u2, . . . , uk) of positive inte-
gers, we let λr,u denote the unique partition whose Young diagram has border with
horizontal strips of lengths r1, r2, . . . , rk (from left to right), and vertical strips of
lengths u1, u2, . . . , uk (from bottom to top). For instance, we have λ(1,1,2),(1,2,3) =
(4, 4, 4, 2, 2, 1) as one may check from the horizontal and vertical strips in Fig. 2.

Given two partitions λ and μ, we write λ ⊆ μ to mean that Dλ ⊆ Dμ. Moreover,
we let Dn denote the square Young diagram of n rows, and for any partition λ =
(λ1, λ2, . . . , λl) such that Dλ ⊆ Dn , we call reduced complement of λ in Dn the
partition λ(n) := (n − λl , n − λl−1, . . . , n − λ1). In terms of Young diagrams, Dλ(n)

is obtained from Dn by removing the boxes of Dλ, deleting all the rows of Dn lying
below Dλ, then rotating by 180◦. For instance, the reduced complement of (2, 2, 1)
in D4 is (3, 2, 2) and of (6, 6, 3, 3) in D9 is (6, 6, 3, 3). They are obtained by rotating
the white diagrams in Fig. 3.

A non attacking rook placement on a Young diagram D, simply placement from
now on, is a set P of blocks of D with no two boxes occurring in the same row or
column. The number of placements on Dλ consisting of k boxes, usually called the
k-th rook number of λ, will be denoted by rk(λ). For instance, we have r3(4, 3, 1) = 4
and indeed the four placements of three boxes on D(4,3,1) are depicted in Fig. 4.

•

Dλ Dλ The border of Dλ(a) (b) (c)

Fig. 1 Young diagrams and their border

Fig. 2 Horizontal and vertical
strips of a border

Fig. 3 The reduced complement
(white boxes) of a partition (dark
gray boxes)
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Fig. 4 A bullet is marked in each box of the placement

Fig. 5 Dλ in dark gray, Bλ in
light gray

σ
•

•
•

•
•

σλ

•
•

•
•

•

A placement of n boxes on Dn can be identified with a permutation matrix of
order n. Thus, denoting the symmetric group of degree n by Sn , we will consider
the permutation σ = σ1σ2 . . . σn and the placement {D1,σ (1), D2,σ (2), . . . , Dn,σ (n)}
on D = Dn as the same object. For instance, we identify the permutations 123, 132,
213, 231, 312, 321 in S3 with the following placements on D3:

• • •
• ••

•• •
• ••

•• •
•••
.

Note that σ−1 is obtained by reflecting σ in the main diagonal of Dn . Hence, for all
σ ∈ Sn and for all λ such that Dλ ⊆ Dn we have

∣
∣σ ∩ Dλ

∣
∣ = ∣

∣σ−1 ∩ Dλ′
∣
∣. (2)

Moreover, given σ ∈ Sn , let σλ = σλ
1 σλ

2 . . . σ λ
n be defined by

σλ
i :=

{
n + 1 − σ�(λ)+1−i if 1 ≤ i ≤ �(λ);
n + 1 − σn+1+�(λ)−i if �(λ) + 1 ≤ i ≤ n.

(3)

It is easy to deduce that σ 	→ σλ is a bijective map. Now, set

Aλ := {Di, j | 1 ≤ i ≤ �(λ), 1 ≤ j ≤ n} and Bλ := D \ Aλ.

Observe that σλ is obtained by separately rotating by 180◦ the rectangles Aλ and Bλ

(with respect to their center). For instance, let λ = (2, 2, 1), n = 5 and σ = 13425,
then we have σλ = 23514 as depicted in Fig. 5.

As
∣
∣σ ∩ Aλ

∣
∣ = �(λ), we obtain

∣
∣σ ∩ Dλ

∣
∣ = �(λ) − ∣

∣σλ ∩ Dλ(n)

∣
∣. (4)

123



Journal of Algebraic Combinatorics

3 Generalized Eulerian polynomials

Given a partition λ, and a positive integer n such that Dλ ⊆ Dn , we define the
polynomial An,λ(x) as follows:

An,λ(x) :=
∑

σ∈Sn

x |σ∩Dλ|. (5)

Moreover, we set

An,k,λ := ∣
∣{σ ∈ Sn : |σ ∩ Dλ| = k}∣∣, for k = 0, 1, . . . , n, (6)

and obtain

An,λ(x) :=
∑

k≥0

An,k,λ x
k .

Example 1 Let λ = (2, 2, 1) and n = 3. In order to obtain A3,(2,2,1)(x), we compute
the cardinality of σ ∩ Dλ, for each σ ∈ S3.

• • •
• ••

•• •
• ••

•• •
•••
.

We get A3,(2,2,1)(x) = 4x2 + 2x . Note that by reflecting with respect to the main
diagonal of D3 (i.e., taking images under the bijection σ 	→ σ−1) one obtains
A3,(3,2)(x) = 4x2 + 2x = A3,λ′(x),

• • •
• ••

•• •
•• •

• ••
•••
.

Proposition 1 Given a partition λ and a positive integer n such that Dλ ⊆ Dn, we
have

(i) An,λ(1) = n!;
(ii) An,λ′(x) = An,λ(x);
(iii) An,λ(n) (x) = x�(λ)An,λ(1/x).

Proof From (5) and (2), we have (i) and (ii), respectively. Moreover, by means of
σ 	→ σλ and (4) we have

x�(λ)An,λ(1/x) =
∑

σ∈Sn

x�(λ)−|σ∩Dλ| =
∑

σ∈Sn

x |σλ∩D
λ(n) | = An,λ(n) (x),

which gives (i). ��

123



Journal of Algebraic Combinatorics

Note that (iii) means that the coefficients of An,λ(x), read in decreasing order of
degree, agree with the coefficients of An,λ(n) (x), read in increasing order of degree.
For instance, if λ = (3, 3, 2, 1) then λ(7) = (6, 5, 4, 4) and in fact we have

A7,(3,3,2,1)(x) = 192x3 + 1704x2 + 2496x + 648

and

A7,(6,5,4,4)(x) = 648x4 + 2496x3 + 1704x2 + 192x .

In particular, the following symmetry property holds.

Corollary 2 Let n be a positive integer andλ a partition such that Dλ ⊆ Dn. Ifλ(n) = λ

then

An,λ(x) = x�(λ)An,λ(1/x). (7)

Moreover, if (λ′)(n) = λ′ then

An,λ(x) = xλ1An,λ(1/x). (8)

Proof Identity (7) follows from λ = λ(n) and (iii). Identity (8) follows from (iii) taking
into account that �(λ′) = λ1. ��
An explicit expansion of An,λ(x) in terms of the basis {(x − 1)i | i ≥ 0} has been
known since [14], where it is proved by using the inclusion–exclusion principle. Here,
we provide an alternative and explicit proof.

Theorem 3 Given a partition λ and a positive integer n such that Dλ ⊆ Dn, we have

An,λ(x) =
∑

i≥0

ri (λ) (n − i)! (x − 1)i . (9)

Proof By (5) we have

An,λ(x + 1) =
∑

σ∈Sn

(x + 1)|σ∩Dλ| =
∑

(σ,B)∈Pairs
x |B|,

where Pairs denotes the set of all (σ, B) such that σ ∈ Sn and B ⊆ (σ ∩ Dλ). Note
that for all (σ, B) ∈ Pairs, B is a placement on Dλ. Now, for any given placement B0
on Dλ, let us count the pairs (σ, B) such that B = B0. Assume |B0| = i and consider
the permutation σ B0 obtained by adding to B0 the n − i available boxes on the main
diagonal of D := Dn , that is

σ B0 := B0 ∪ {Di,i | Di, j /∈ B0 for all j = 1, 2, . . . , n}.

Clearly (σ B0 , B0) ∈ Pairs. Moreover, we obtain all the pairs of type (σ, B0) by per-
muting the n−i columns of Dwith no boxes in σ B0 \B0. As there are ri (λ) placements

123



Journal of Algebraic Combinatorics

B on Dλ with |B| = i , the number of pairs (σ, B) such that |B| = i is ri (λ) (n − i)!.
We recover

An,λ(x + 1) =
∑

i≥0

ri (λ) (n − i)! xi ,

which gives (9) when x is replaced by x − 1. ��
Example 2 Let r be a nonnegative integer. Following Foata and Schützenberger [7],
we consider the polynomial

rAn(x) :=
∑

σ∈Sn

xexcr (σ ),

where

excr (σ ) := ∣
∣{i | 1 ≤ i ≤ n, σi ≥ i + r}∣∣.

Clearly, 1An(x) is the classical Eulerian polynomial. Now, let σ 	→ σ ′ denote the
bijection defined on Sn+r by σ ′

i := n + r + 1 − σi , for i = 1, 2, . . . n + r . Observe
that σi ≤ n + 1 − i if and only if σ ′

i ≥ r + i . As a consequence, we obtain

An+r ,δn (x) =
∑

σ∈Sn+r

x |σ∩Dδn | =
∑

σ∈Sn+r

xexcr (σ
′) = rAn+r (x), (10)

or equivalently rAn(x) = An,δn−r (x). From (9), we recover the following Frobenius
identity for the polynomials rAn(x) [7]:

rAn(x) =
∑

k≥0

S(n + 1 − r , n + 1 − r − k) (n − k)! (x − 1)k .

The following generalization of the notion of excedance is motivated by Example 2.
Given a partition λ = (λ1, λ2, . . . , λl), a positive integer n such that Dλ ⊆ Dn , and a
permutation σ = σ1σ2 . . . σn ∈ Sn , we set

excλ(σ ) := ∣
∣{i | 1 ≤ i ≤ n, σi > n + 1 − λi }

∣
∣, (11)

where λi = 0 is assumed for �(λ) < i ≤ n. As before, the complement bijection
σ 	→ σ ′ provides

∣
∣σ ∩ Dλ

∣
∣ = excλ(σ

′),

so that we get

An,λ(x) =
∑

σ∈Sn

xexcλ(σ ). (12)
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4 TheWeyl algebra action

Let D,X : Z[x] → Z[x] denote the derivative operator and the operator of multipli-
cation by x , respectively. As DX − XD = 1 the following normal ordering problem
may be posed: given any product � involving a occurrences of the operator D and b
occurrences of the operator X, find the coefficients ci (�) satisfying

� =
∑

i≥0

ci (�)Xb−iDa−i .

A beautiful answer to this problemwas given by Navon [15] in terms of placements on
Young diagrams. Here, we recast Navon’s result following the work of Varvak [17].
For any partition λ, we set

�λ := Dr1Xu1Dr2Xu2 · · ·DrkXuk , (13)

where r = (r1, r2, . . . , rk) and u = (u1, u2, . . . , uk) are the unique vectors satisfying
λ = λr,u. Note that λ1 = r1 + r2 + · · · + rk and �(λ) = u1 + u2 + · · · + uk .

Theorem 4 For any partition λ, we have

�λ =
∑

i≥0

ri (λ)X�(λ)−iDλ1−i . (14)

Proof Let λ = (λ1, λ2, . . . , λl). A straightforward computation shows that �λ 1 =
rλ1(λ) x�(λ)−λ1 . Set

μ := (λ1, λ1, . . . , λ1︸ ︷︷ ︸
m+1

, λ2, . . . , λl) and μ \ λ := (λ1, λ1, . . . , λ1︸ ︷︷ ︸
m

).

It follows that �λ xm = �λXm 1 = �μ 1 = rλ1(μ) xm+�(λ)−λ1 . On the other hand,
we may compute rλ1(μ) in the following alternative way,

rλ1(μ) =
∑

k≥0

rk(λ) rλ1−i (μ \ λ) =
∑

i≥0

ri (λ)
m!

(m − λ1 − i)! .

Then, we conclude

∑

i≥0

ri (λ)X�(λ)−iDλ1−i xm = rλ1(μ) xm+�(λ)−λ1 = �λ x
m .

��
The following theorem makes explicit the connection between the Weyl algebra and
the polynomials An,λ(x).
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Theorem 5 For any partition λ and any positive integer n such that Dλ ⊆ Dn, we
have

�λDn−λ1
1

1 − x
= An,λ(n) (x)

(1 − x)n+1 . (15)

Proof By (14) we obtain

�λDn−λ1
1

1 − x
=

∑

i≥0

ri (λ)X�(λ)−iDn−i 1

1 − x

=
∑

i≥0

ri (λ)
(
n − i

)! x�(λ)−i

(1 − x)n−i+1 ,

hence

(1 − x)n+1�λDn−λ1
1

1 − x
=

∑

i≥0

ri (λ)
(
n − i

)! x�(λ)−i (1 − x)i . (16)

Moreover, by (9) we have

x�(λ) An,λ(1/x) =
∑

i≥0

ri (λ) (n − i)! x�(λ)−i (1 − x)i . (17)

Finally, by comparing (17), (16) and Proposition 1 (iii), we have

An,λ(n) (x)

(1 − x)n+1 = x�(λ)An,λ(1/x)

(1 − x)n+1 = �λDn−λ1
1

1 − x
.

��
A first consequence of (15) is the following extension of the Worpitzky identity for
Eulerian polynomials.

Corollary 6 Let m be a positive integer. For any partition λ = (λ1, λ2, . . . , λl) and
any positive integer n such that Dλ ⊆ Dn, we have

n−1∏

i=0

(m + λ′
n−i − i) =

∑

k≥0

(
m + �(λ) − k

n

)

An,k,λ(n) , (18)

where λ′ = (λ′
1, λ

′
2, . . . , λ

′
l ′) is the conjugate of λ and we assume that λ′

i = 0 for
i > l ′ = λ1.

Proof Set

μ := (n, n, . . . , n
︸ ︷︷ ︸

m

, λ1, λ2, . . . , λl)
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and observe that

rn(μ) =
n−1∏

i=0

(m + λ′
n−i − i).

Moreover, we have �λDn−λ1 xm = �μ 1 = rn(μ) xm+�(λ)−n and then the left-hand
side of (15) is given by

�λDn−λ1
1

1 − x
=

∑

m≥0

n−1∏

i=0

(m + λ′
n−i − i) xm+�(λ)−n .

From (6), the right-hand side of (15) may be rewritten as

∑

i≥0

( ∑

k≥0

(
n + i − k

n

)

An,k,λ(n)

)

xi .

Hence, (18) follows by extracting the coefficient of xm−n+�(λ) from both sides in (15).
��

Example 3 Setting λ = (n − 1, n − 2, . . . , r) in (18), and observing that λ(n) = δn−r ,
we obtain the following Worpitzky identity [7],

mn−r m!
(m − r)! =

∑

k≥0

(
m + r − k

n

)
rAn,k .

Of course, r = 1 leads to the Worpitzky identity for Eulerian numbers:

mn =
∑

k≥0

(
m + 1 − k

n

)

An,k .

A further consequence of (15) is a remarkable property of the polynomials An,λ(x)
with respect to derivation. In terms of the underlined Young diagrams, this property
encodes the evolution of the polynomialsAn,λ(x), for a fixed partition λ, with respect
to square diagrams Dn of increasing size.

Corollary 7 For any partition λ and any positive integer n such that Dλ ⊆ Dn, we
have

D
An,λ(x)

(1 − x)n+1 = An+1,λ(x)

(1 − x)n+2 . (19)

Proof If λ = (λ1, λ2, . . . , λl) then we set λ+ 1 := (λ1 + 1, λ2 + 1, . . . , λl + 1). Note
that the reduced complements of λ in Dn and of λ+ 1 in Dn+1 agree, hence from (15)
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we have

D
An,λ(n) (x)

(1 − x)n+1 = D�λDn−λ1
1

1 − x
= �λ+1D(n+1)−(λ1+1) 1

1 − x
= An+1,λ(n) (x)

(1 − x)n+2 .

��
Identity (19) suggests that the polynomials An,λ(x) indexed by the smallest n such
that Dλ ⊆ Dn , play a special role. Indeed, for any partition λ, we set

n(λ) := max{λ1, �(λ)} (20)

and define

Aλ(x) := An(λ),λ(x). (21)

Hence, we obtain the following recursive rule.

Corollary 8 For any partition λ and any positive integer n such that Dλ ⊆ Dn, we
have

An,λ(x) = (1 − x)n+1 Dn−n(λ) Aλ(x)

(1 − x)n(λ)+1
. (22)

Proof Identity (22) follows by iterating (19). ��
Remark 1 Note that, by Proposition 1 (iii) and (7) we haveAδn (x) = x An(x). There-
fore, by setting λ = δn−r in (22), the polynomials rAn(x) are obtained via suitable
derivatives involving the classical Eulerian polynomials,

rAn(x) = (1 − x)n+1 Dr x An−r (x)

(1 − x)n−r+1 .

5 q-analogues arising from the q-Weyl algebra

Let Dq denote the q-derivative operator acting on the polynomial p(x) according to
the following rule,

Dq p(x) = p(qx) − p(x)

qx − x
.

We have DqX − qXDq = 1 and the algebra generated by X,Dq is a q-analogue of
the Weyl algebra. Now, let [i] := 1 + q + · · · + qi−1 denote the q-integer, and for
all partitions λ, let �λ,q be obtained from (13) by replacing D with Dq . As Di

q x
m =

[m][m − 1] · · · [m − i + 1] xm−i , straightforward computations show that

�λ,qDn−λ1
q

1

1 − x
=

∑

m≥0

n−1∏

i=0

[m + λ′
n−i − i] xm−n+�(λ). (23)
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Note that the right-hand side of (23) agrees with the right-hand side of identity (I.11) in
the paper of Garsia and Remmel [8] , as can be seen by setting ai+1 = n−�(λ)+λ′

n−i

for 0 ≤ i ≤ n − 1, that is by setting λ = μ(n) for μ := (an, an−1, . . . , a1). Now, we
let An,λ(n) (x, q) denote the polynomial defined by

�λ,qDn−λ1
q

1

1 − x
= An,λ(n) (x, q)

(1 − x)(1 − xq) · · · (1 − xqn)
, (24)

and the right-hand side of (I.12) in [8] ensures that QA(x, q) = An,λ(n) (x, q) when
the partition λ is chosen such that ai+1 = n − �(λ) + λ′

n−i for 0 ≤ i ≤ n − 1. First,
we recall that

1

(1 − x)(1 − xq) · · · (1 − xqn)
=

∑

k≥0

[
n + k

n

]

xk .

Moreover, we define An,k,λ(n) (q) by

An,λ(n) (x, q) =
∑

k≥0

An,k,λ(n) (q) xk,

and compare the coefficients of (23) and (24) to obtain the following q-analogue of
Corollary 6.

Corollary 9 Let m be a positive integer. For any partition λ = (λ1, λ2, . . . , λl) and
any positive integer n such that Dλ ⊆ Dn, we have

n−1∏

i=0

[m + λ′
n−i − i] =

∑

k≥0

[
m + �(λ) − k

n

]

An,k,λ(n) (q),

where λ′ = (λ′
1, λ

′
2, . . . , λ

′
l ′) is the conjugate of λ and we assume that λ′

i = 0 for
i > l ′ = λ1.

Moreover, simply by replacing D with Dq in the proof of Corollary 7, we obtain the
following q-analogue of (19).

Corollary 10 For any partition λ = (λ1, λ2, . . . , λl) and any positive integer n such
that Dλ ⊆ Dn, we have

Dq
An,λ(x, q)

(1 − x)(1 − xq) · · · (1 − xqn)
= An+1,λ(x, q)

(1 − x)(1 − xq) · · · (1 − xqn+1)
.

We let Aλ(x, q) := An(λ),λ(x, q) and easily obtain the q-analogue of the recursive
property (22).
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Corollary 11 For any partition λ = (λ1, λ2, . . . , λl) and any positive integer n such
that Dλ ⊆ Dn, we have

An+1,λ(x, q) = (1 − x)(1 − xq) · · · (1 − xqn+1)Dn−n(λ)
q

Aλ(x, q)

(1 − x)(1 − xq) · · · (1 − xqn(λ))
.

We explicitly remark that the polynomials An,k,λ(q) are the so-called q-hit numbers
[5].

6 Further generalizations and applications

6.1 An application to the operator (XrDs)n

We now consider the polynomials Ar ,s,n(x) introduced in [1] and defined by

(XrDs)n
1

1 − x
= Ar ,s,n(x)

(1 − x)sn+1 ,

for all positive integers r ≤ s and n ≥ 1. Let r = (r1, r2, . . . , rn) and u =
(u1, u2, . . . , un) satisfy r1 = r2 = . . . = rn = s and u1 = u2 = . . . = un = r ,
set δr ,s,n := λr,u. The Young diagram of δr ,s,n is obtained from Dδn by replacing
each box in Dδn with a rectangular diagram of s columns and r rows. For example,
the Young diagram of δ2,3,2 is D(6,6,3,3) , as shown in Fig. 3 (dark gray) as a subset
of D9. We denote by excr ,s,n the deformation of the excedance statistic induced by
λ = δr ,s,n via (11). In particular, for all σ ∈ Ssn , we have

excr ,s,n−1(σ ) = ∣
∣{i = (i1 − 1)r + i2 | 1 ≤ i1 ≤ n − 1, 1 ≤ i2 ≤ r , σi > si1)}

∣
∣.

(25)

Note that, as δ1,1,n−1 = δn−1 (by convention δ0 = (1)), we have exc1,1,n−1(σ ) =
exc(σ ) for all σ ∈ Sn . The following result gives a combinatorial explanation for the
identity Ar ,s,n(1) = (sn)! [1].
Proposition 12 For all positive integers r ≤ s and n ≥ 1, we have

Ar ,s,n(x) = xrAsn,δr ,s,n−1(x) = xr
∑

σ∈Ssn

xexcr ,s,n−1(σ ). (26)

Proof Let λ := δs,r ,n−1. From

(XrDs)n = Xr (DsXr )n−1Ds = Xr�λDsn−s(n−1),

by virtue of Theorem 5 we obtain

Ar ,s,n(x)

(1 − x)sn+1 = Xr�λDsn−s(n−1) 1

1 − x
= xr Asn,λ(sn) (x)

(1 − x)sn+1 .
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As δr ,s,n−1 = δ
(sn)
r ,s,n−1,

Ar ,s,n(x) = xr Asn,δr ,s,n−1(x),

and via (12) we deduce (26). ��
Now, we prove the following result originally conjectured in [1].

Proposition 13 For all positive integers r ≤ s and n ≥ 1, we have

Ar ,s,n(x) = xr(n−1)Ar ,s,n(1/x).

Proof By taking into account Proposition 1(iii), as δr ,s,n−1 = δ
(sn)
r ,s,n−1, and since

�(δr ,s,n−1) = r(n − 1), from (26), we have

xr(n−1) Ar ,s,n(1/x) = xr x�(δr ,s,n−1)Asn,δr ,s,n−1(1/x) = Ar ,s,n(x).

��

6.2 Generalizations of the Dobiński formula

One may think to replace the geometric series 1/(1 − x) in (15) and let any product
� act on an arbitrary power series f (x). More interestingly, one may look for those
series f (x) such that � f (x) has some combinatorial interest. Let us discuss the case
f (x) = ex , which leads to an extension of the Dobiński formula. Indeed, by (14) one
obtains

�λDn−λ1 ex = ex
∑

k≥0

rk(λ) x�(λ)−k = ex x�(λ) Rλ(1/x),

where Rλ(x) = ∑
k rk(λ) xk is the well-known rook polynomial associated with Dλ.

On the other hand, by expanding ex we also have

�λDn−λ1 ex =
∑

m≥0

n−1∏

i=0

(m + λ′
n−i − i)

xm−n+�(λ)

m! ,

and then

∑

m≥0

n−1∏

i=0

(m + λ′
n−i − i)

xm−n+�(λ)

m! = ex x�(λ) Rλ(1/x).

Setting x = 1 and Rλ := Rλ(1)we obtain the following generalization of theDobiński
formula

∑

m≥0

∏n−1
i=0 (m + λ′

n−i − i)

m! = e Rλ. (27)
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The classical case arises when λ = δn−1, and then Rδn−1 = Bn is the n-th Bell number,

∑

m≥0

mn

m! = e Bn .

Moreover, replacing n with sn, setting λ = δr ,s,n−1 and Br ,s,n := Rδr ,s,n−1 , we get
a Dobiński formula for the sum of all generalized Stirling numbers Sr ,s(n, k) :=
rsn−k(δr ,s,n−1) [2],

∑

m≥0

1
(
m − (s − r)n

)!
n∏

i=1

(
m − (s − r)i

)!
(
m − (s − r)i − r

)! = e Br ,s,n .

In particular, when r = s, we recover

∑

m≥0

1

m!
m!n

(m − r)!n = e Br ,r ,n .

In closing, to recover a q-analogue of (27), set

ε(x) :=
∑

k≥0

xk

[k]! ,

where [k]! := [1][2] · · · [k], and observe that Dq ε(x) = ε(x). We deduce

�λ,qDn−λ1
q ε(x) = ε(x)

∑

k≥0

rk(λ, q) x�(λ)−k = ε(x) x�(λ) Rλ(1/x, q),

where Rλ(x, q) = ∑
k rk(λ, q) x�(λ)−k , and the rk(λ, q) are the q-rook numbers

arising here as the normal ordering coefficients of �λ,qD
n−λ1
q (Theorem 6.1 in [17]).

Finally, we set ε := ε(1) and Rλ(q) := Rλ(1, q) and obtain the following result.

Proposition 14 For any partition λ = (λ1, λ2, . . . , λl) such that Dλ ⊆ Dn, we have

∑

m≥0

∏n−1
i=0 [m + λ′

n−i − i]
[m]! = ε Rλ(q), (28)

where λ′ = (λ′
1, λ

′
2, . . . , λ

′
l ′) is the conjugate of λ and we assume that λ′

i = 0 for
i > l ′ = λ1.
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