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ABSTRACT 

Seasonal influenza is the leading infectious disease in terms of its health and 
socioeconomic impact. Annual immunization is the most efficient way to reduce this burden. 
To be clinically effective, influenza vaccines must be immunogenic, and several 
immunological assays to test their immunogenicity have been developed. 

The overall aim of this PhD thesis is to provide the principal stakeholders (including 

scientists, healthcare professionals, policy-makers, pharmaceutical industry, etc.) with state-

of-the-art knowledge and practices related to influenza vaccine-induced immunogenicity. To 

achieve this aim, we developed a novel empirical approach that incorporated some modern 

techniques, including, for example, evidence mapping. 

Basically, this thesis is composed of three main domains. In the introductory part, we 

will briefly cover the topics of influenza disease, influenza vaccination, the immunogenicity 

measurements of influenza vaccines and their correlates of protection.  

The second part, which is the core of the present project, is composed of two original 

case studies. The first study aimed to describe the patterns of use of the various 

immunological assays available to measure the influenza vaccine-induced adaptive immune 

response and to determine its correlates of protection. For this purpose, we analyzed 1,164 

phase I–IV studies that enrolled a total of 754,935 subjects. Of the studies included in our 

analysis, 76.5% measured only the humoral immune response. Among these, the 

hemagglutination-inhibition assay was by far the most widely used. Other, less common, 

humoral immune response assays were: virus neutralization (21.7%), enzyme-linked 

immunosorbent (10.1%), single radial hemolysis (4.6%) and assays able to quantify anti-

neuraminidase antibodies (1.7%). By contrast, cell-mediated immunity was quantified in only 

23.5% of studies. Several variables were significantly (P < .05) associated with the use of 

single assays. Specifically, some influenza vaccine types (e.g. adjuvanted, live attenuated and 

cell culture-derived or recombinant), study phase and study sponsorship pattern were usually 

found to be statistically significant predictors. 

In the second study, we went further by systematically analyzing host-related factors 

able to modify influenza vaccine-induced immunogenicity. To this end, a total of 28 

systematic reviews/meta-analyses (with thousands of participants) were analyzed. These 

covered the following domains: intravenous drug use, psychological stress, acute and chronic 

physical exercise, genetic polymorphisms, use of pre-/pro-/symbiotics, previous Bacillus 

Calmette–Guérin vaccination, diabetes mellitus, vitamin D supplementation/deficiency, latent 

cytomegalovirus infection and various forms of immunosuppression. In order to present effect 

sizes on the same scale, all meta-analyses were re-performed, whenever possible, and 

cumulative evidence synthesis ranking was carried out. Meta-analysis was conducted 

separately on each health condition category and virus (sub)type. A total of 295 meta-analyses 

were re-performed/performed ex novo; of these, 97 pooled estimates were used in order to 

construct an evidence-based stakeholder-friendly map. 

Finally, we discussed the principal findings, made some suggestions from the point of 

view of the various stakeholders and proposed a novel immunogenicity pathway. 
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RIASSUNTO 

Influenza stagionale è la principale malattia infettiva per il suo impatto sia sanitario 
che socioeconomico. La vaccinazione annuale rappresenta il mezzo più efficace per ridurre 
questo impatto. Per essere clinicamente efficaci, i vaccini antinfluenzali devono essere 
immunogeni; a tal fine diversi saggi immunologici sono stati sviluppati. 

L’obiettivo principale della presente tesi di dottorato è di fornire le più attuali 
conoscenze e le pratiche cliniche relative all’immunogenicità dei vaccini antinfluenzali ai 
principali portatori di interesse (e.g. scienziati, operatori sanitari, decisori politici, industria 
farmaceutica, ecc.). Questo obiettivo è stato perseguito tramite lo sviluppo di un innovativo 
approccio empirico che ha inglobato alcune metodologie moderne (e.g. evidence mapping). 

Schematicamente, la presente tesi può essere suddivisa in tre parti principali. Nella 
prima parte introduttiva saranno brevemente descritte le tematiche relative alla malattia 
influenzale, alla vaccinazione antinfluenzale, all’immunogenicità dei vaccini disponibili e ai 
correlati di protezione. 

La seconda parte invece rappresenta il fulcro del presente progetto ed include due 
studi innovativi. Il primo studio aveva l’obiettivo di descrivere i metodi di utilizzo dei diversi 
test immunologici che misurano la risposta immune in seguito alla vaccinazione 
antinfluenzale e per determinare i relativi correlati di protezione. A questo scopo abbiamo 
analizzato 1.164 studi clinici di fase I–IV che avevano arruolato un totale di 754,935 soggetti. 
Il 76,5% degli studi inclusi ha misurato soltanto la risposta umorale. Tra i test utilizzati, è 
stato usato nella maggior parte dei casi il test dell’inibizione dell’emoagglutinazione. Altri 
test meno utilizzati erano: test di neutralizzazione (21,7%), test immuno-assorbente legato ad 
un enzima (ELISA) (10,1%), emolisi singola radiale (4,6%) e test che quantificano l’attività 
antineuraminidasica (1,7%). Contrariamente, l’immunità cellulo-mediata è stata quantificata 
soltanto nel 23,5% degli studi. Diverse variabili sono state significativamente (P < ,05) 
associate con l’utilizzo dei singoli test. È stato rilevato in particolare che alcuni tipi dei 
vaccini antinfluenzali (e.g. adiuvati, vivi attenuati, propagati nella coltura cellulare o 
ricombinanti), la fase dello studio e le caratteristiche relative allo sponsor dello studio sono 
stati i principali correlati. 

Il secondo studio ha invece approfondito il primo: abbiamo analizzato 
sistematicamente i fattori relativi all’ospite che possono modificare l’immunogenicità dei 
vaccini antinfluenzali. A questo scopo un totale di 28 rassegne sistematiche e/o meta-analisi 
(che includevano migliaia di soggetti) sono state analizzate. Le seguenti aree di interesse sono 
state esaminate: l’uso di droga somministrata per via endovenosa, stress psicologico, esercizio 
fisico abituale ed eccentrico, polimorfismi genetici, l’uso di pre-/pro-/simbiotici, previa 
vaccinazione antitubercolare, diabete mellito, l’utilizzo degli integratori della vitamina 
D/carenza della vitamina D, infezione cronica da citomegalovirus e diverse forme di 
immunosoppressione. Al fine di rappresentare sulla stessa scala gli effetti osservati, abbiamo 
ricalcolato tutte le possibile stime meta-analitiche. Ogni meta-analisi condotta è stata specifica 
sia per la condizione di salute che il (sotto)tipo virale. Un totale di 295 meta-analisi sono stati 
(ri)eseguite e 97 stime meta-analitiche sono state utilizzate al fine di costruire una mappa 
evidence-based e stakeholder-friendly. 

Infine, abbiamo discusso i principali risultati, mettendo in luce alcuni suggerimenti 
che possono essere utili ai diversi portatori di interesse e abbiamo sviluppato un innovativo 
modello relativo all’immunogenicità dei vaccini antinfluenzali “precisi”.  
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CHAPTER 1. INTRODUCTION 

 

Influenza and its Burden 
 

Influenza is a common, typically seasonal disease (although with pandemic potential) 

caused by an enveloped single-stranded ribonucleic acid (RNA) virus belonging to the family 

of Orthomyxoviridae. The viral RNA is composed of seven or eight segments, each of which 

forms a ribonucleotide nucleoprotein (RNP) by encapsidating the nucleoprotein (NP). In turn, 

each segment codes for the following functional proteins: polymerase B1 (PB1); polymerase 

B2 (PB2); polymerase A (PA); hemagglutinin (HA; in the description of a virus subtype 

referred to as H); neuraminidase (NA; in the description of a virus subtype referred to as N); 

NP; matrix proteins 1 (M1) and 2 (M2); and non-structural (NS) proteins [Wright et al. 2001; 

Cox et al. 2004; Bouvier and Palese 2008; Wang 2016]. 

The two outer-layer glycoproteins of HA and NA play a fundamental role in the 

pathogenesis of disease [Wright et al. 2001; Wang 2016; Petrova and Russell 2018]. 

Specifically, HA enables the virus to enter the host cell by binding sialic acid on the surface 

of sialylated cells, thereby causing membrane fusion, while NA enables the viral progeny to 

be released from infected cells by cleaving the bonds between HA and sialic acid and by 

facilitating movement of the virus through mucus [Petrova and Russell 2018]. 

On the basis of their NP antigenic specificity, influenza viruses are classified in types; 

to date, four types have been identified, namely A, B, C and D [Wright et al. 2001; Su et al. 

2017]. Types A, B and C can cause human disease, while the role of the recently identified 

type D in causing human pathology is unclear [Wright et al. 2001; Su et al. 2017; Trombetta 

et al. 2020]. The disease caused by virus type C is usually described as mild and cold-like; it 

is therefore considered to be of limited public health importance [Wright et al. 2001]. 

Conversely, virus types A and B are the main protagonists of annual epidemics and 

evolve continuously through the phenomena of antigenic drift (i.e. minor mutations in the 

surface glycoproteins of HA and NA able to change the antigenicity of the virus) and shift (a 

major change associated with the appearance of a novel virus subtype) [Wright et al. 2001; 

Petrova and Russell 2018]. 

On the basis of HA and NA, virus type A, which originates mainly from birds and 

swine, is further classified in subtypes. To date, at least 18 HA and 11 NA subtypes have been 

identified; however, subtypes H1N1 and H3N2 have predominated on the world 

epidemiological scene for several decades [Petrova and Russell 2018; Tong et al. 2013]. Virus 
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type B, by contrast, has evolved into two antigenically distinct lineages, Victoria and 

Yamagata, which have been co-circulating for about 40 years [Rota et al. 1990; Biere et al. 

2010]. 

In summary, the phenomenon of antigenic drift is common to both A and B types and 

causes seasonal influenza epidemics. By contrast, antigenic shift is pathognomonic to virus 

type A and may cause a pandemic [Wright et al. 2001; Paules and Subbarao 2017]. 

Influenza is the most common infectious disease in the world. Indeed, the World 

Health Organization (WHO) estimates [WHO 2012] that 5–10% of adults and 20–30% of 

children get influenza each year. In Europe, seasonal influenza ranks first in terms of both 

incidence and mortality rates, causing on average a burden of 81.8/100,000 disability-adjusted 

life years (DALYs) [Cassini et al. 2018]. In Italy alone, seasonal influenza may cause up to 

25,000 excess deaths [Rosano et al. 2019] and have an annual economic impact of nearly € 

1,356,000,000 on average [Lai et al. 2011]. 

 

Influenza Vaccination 
 

Annual active influenza immunization is the single public health intervention most 

able to reduce the burden of disease [WHO 2012]. Several target groups for annual influenza 

vaccination (IV) have been identified; these, however, display marked between-country 

variability in terms of both recommendation and reimbursement policies. In Italy, for 

instance, IV is recommended, and its cost reimbursed, for the following population strata: (i) 

persons aged 60/65 years or more; (ii) subjects aged 6 months to 64 years who have certain, 

predefined health conditions (e.g. chronic respiratory and cardiovascular pathologies, some 

forms of immunodeficiency, etc.); (iii) professionals employed in public services of primary 

interest (e.g. healthcare professionals, police, firefighters); (iv) professionals who come into 

close contact with animals that may be the sources of non-human influenza viruses (e.g. 

farmers, butchers, veterinarians, etc.); (v) some other risk categories (e.g. blood donors, 

institutionalized individuals) [Italian Ministry of Health 2020]. The Italian recommendations 

are similar to those issued by many other countries of the European Union (EU) [European 

Centre for Disease Prevention and Control (ECDC) 2018]. In the United States (US), by 

contrast, the recommendation is universal (for subjects aged ≥ 6 months) [Grohskopf et al. 

2018]. 

 Several types of  IVs are currently available. IVs can be broadly classified on the basis 

of: (i) inactivation issues; (ii) valence; (iii) production platform; (iv) formulation and (v) 

mode of administration. First of all, IVs may be either live attenuated (LAIV) or inactivated; 
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this latter category may be further subdivided into whole-virion, split and subunit. Regarding 

the valence (i.e. the number of virus subtypes/lineages included in the vaccine), currently or 

formerly available IVs may be mono- (MIV), bi-, tri- (TIV) or quadrivalent (QIV). MIVs 

usually constitute pandemic or pre-pandemic vaccines, while the currently available seasonal 

IVs are TIVs [containing the 2009 pandemic H1N1 (H1N1pdm09), H3N2 and either B 

lineage strain) and QIVs (containing H1N1pdm09, H3N2, B/Victoria and B/Yamagata). Most 

available IVs are prepared in the traditional way, i.e. through propagation in embryonated hen 

eggs. However, in recent years, some alternative platforms have become available; these 

basically include mammalian cell cultures or recombinant platforms. The IV formulation may 

depend on the amount of antigen, the presence of adjuvants and some other characteristics. 

IVs may be administered intranasally (mostly LAIVs), intramuscularly/subcutaneously (most 

available IVs), intradermally or orally (IV candidates).  Furthermore, tens of IV candidates at 

different stages of preclinical and clinical development are being studied [WHO 2012; 

Grohskopf et al. 2018; Barr et al. 2018; Manini et al. 2015; Chen et al. 2020]. 

 Unlike the case of several other vaccine-preventable diseases, the efficacy of IVs is 

often judged suboptimal and varies (even to a huge extent) from year to year. Indeed, three 

Cochrane reviews [Jefferson et al. 2018; Demicheli et al. 2018a; Demicheli et al. 2018b] 

conducted in order to establish the efficacy of IVs in children, adults and the elderly seem to 

confirm this thesis. In these reviews, the pooled absolute efficacy (i.e. versus placebo) of the 

inactivated IVs was 64% [95% confidence interval (CI): 52–72%], 59% (95% CI: 53–64%) 

and 58% (95% CI: 34–73%) in healthy children [Jefferson et al. 2018], adults [Demicheli et 

al. 2018a] and the elderly [Demicheli et al. 2018b], respectively. However, these three 

Cochrane reviews did not distinguish between different IV types; in this regard, it has been 

shown, for example, that MF59®-adjuvanted TIV [Domnich et al. 2017] and high-dose TIV 

(hdTIV) [Lee et al. 2018] formulations may be more effective than standard TIVs in 

preventing several influenza-related outcomes. 

However, it should be borne in mind that influenza is a very common, annually 

occurring disease; therefore, even in seasons when the observed efficacy of IVs has been low, 

both the health-related and economic benefits of vaccination have still been significant 

(although relatively low purchase prices of IVs have been applied) [Gasparini et al. 2002; de 

Waure et al. 2012]. In this regard, in 2009 the European Council recognized the value of 

seasonal influenza immunization, and recommended that the EU Member States reach a  

vaccination coverage rate of at least 75% (ideally 95%) in the elderly and, if possible, other 

risk categories [EU 2009]. However, despite the documented benefit of annual IV and the 
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clearly established goals, IV coverage rates are still low/suboptimal and, on average, far 

below these targets [ECDC 2018]. 

 

Influenza Vaccine Immunogenicity and Correlates of Protection of 
Influenza Vaccines 
 

Immunogenicity can be broadly defined as the ability of an antigen to provoke an 

immune response in the immunized subject [Leroux-Roels et al. 2011]. In turn, the immune 

response is usually categorized as innate and adaptive; the adaptive response may be further 

divided into humoral and cell-mediated immunity (CMI). Briefly, the cells of the innate 

immune system (e.g. macrophages and neutrophils) constitute the first line of defense against 

many common pathogens; however, in some situations, they may be unable to recognize, and 

hence to eliminate, certain microorganisms. A more versatile and evolutionarily newer 

mechanism of host defense is the adaptive immune response, which is basically implemented 

by lymphocytes. These cells may provide increased protection against subsequent reinfections 

by the same microorganisms. Humoral adaptive immunity is realized via antibodies against a 

specific antigen that are produced by plasmablasts (in turn, differentiated from B lymphocytes 

and with assistance from T helpers). CMI, by contrast, is mediated by T cells: T helper 

(CD4+) cells release chemokines that help activated T lymphocytes to bind to the main 

histocompatibility complex of the infected host cells and differentiate the T cells into 

cytotoxic T cells (CD8+) with subsequent lysis of the infected host cell [Janeway et al. 2001; 

Plotkin et al. 2017]. 

The host–virus interaction involves both mucosal and systemic immunity, and 

humoral and CMI responses. Locally secreted immunoglobulin A (IgA) and, to some extent, 

IgM are the main neutralizing antibodies involved in protecting the upper respiratory tract, i.e. 

they prevent viral entry and subsequent replication. IgG also plays an important role in the 

first-line defense; IgG, however, is derived as a serum transudate. In sum, nasal secretions 

contain all three major Ig classes directed against the viral proteins, HA and NA in particular 

[Cox et al. 2004; Choi et al. 2020]. 

Serum antibodies produced by B cells are primarily directed against HA, and can be 

detected within 10–14 days following infection. Of note, IgM and IgG play a crucial role 

during the primary immune response, while IgA and IgG are mainly involved in secondary 

immunogenicity. The NA‐specific antibodies, by contrast, reduce the release of virions from 
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infected host cells; at the same time, however, they are probably less effective in preventing 

infection [Cox et al. 2004; Choi et al. 2020]. 

Finally, CMI is particularly effective in clearing virus‐infected cells and probably in 

preventing influenza‐related complications, though its role in preventing infection seems to be 

less significant. On the other hand, CMI is an effective mechanism that seems to be essential 

to both the establishment of long-term immunological memory and heterologous protection 

[Cox et al. 2004; Gianchecchi et al. 2019]. 

The clinical protection provided by IVs can be measured though both randomized 

controlled trails (RCTs) and observational studies. In the former case, we are measuring 

vaccine efficacy (which could be deemed the “gold standard”), which is manifested as a 

reduction of disease following vaccination in ideal conditions. Instead, vaccine effectiveness 

refers to the same reduction when it occurs in real-life conditions, as estimated through 

observational studies (case–control, cohort and their modifications) [WHO 2017a]. However, 

RCTs aimed at quantifying IV efficacy face several challenges, such as the probability of low 

attack rates, high seasonality, multiplicity of circulating strains and their frequent intra-

seasonal mutations. As RCTs require a large number of study participants, they are also costly 

[Dewe et al. 2013]. Moreover, placebo-controlled trials may be ethically unsuitable for those 

population groups for whom IV is highly recommended (e.g. the elderly) [Domnich et al. 

2017]. A relatively simpler, more efficient and less expensive way of measuring IV-induced 

protection is to conduct observational studies. However, the resulting parameter of vaccine 

effectiveness (even if the study is well-designed) may be affected by a number of typical 

biases (selection bias in primis) [Jackson et al. 2018]. Furthermore, as observational research 

can be conducted only in the post-marketing phase of the product's life-cycle, these studies 

are usually inappropriate for licensing/regulatory issues. In sum, the above-described facts 

provide some rationale for using immunogenicity endpoints not only in RCTs but also in 

some observational studies. 

 To be clinically protective, a vaccine must be immunogenic. On the other hand, the 

fact that the vaccine of interest is immunogenic does not necessarily mean that it is also 

protective. In order to address these issues, the concept of “correlates of protection” (CoPs) 

was introduced several decades ago. According to the classical definition, a CoP is “an 

immune response that is responsible for and statistically interrelated with protection” 

[Plotkin 2010]. The immunogenicity of IVs can be quantified by several immunological 

assays that cover a variety of viral targets. The principal assays will be described and 

discussed in the following thesis sections. 
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The Overall Rationale and Objective of the PhD program 
 

The nature of the present PhD thesis is intended to be both multidisciplinary and 

multi-stakeholder. National, regional and local health policies and strategies may be 

effectively implemented by engaging a variety of stakeholders, who may even come from 

outside the healthcare sector. According to the WHO [WHO 2020], the principal stakeholders 

are: governments (which may include not only the Ministry of Health, but also Finance, 

Treasury, Education, etc.); political parties; local governments; non-governmental 

organizations and the not-for-profit sector; community groups and civil society organizations; 

business and the private sector (including the pharmaceutical industry); healthcare payers (e.g. 

insurance groups); donors and aid agencies, including global health initiatives; United Nations 

(UN) agencies, including the WHO; healthcare workers’ associations; patients and health 

service users [WHO 2020]. Obviously, this stakeholder heterogeneity may generate some 

conflicts of interest, since each stakeholder category pursues its own specific aims. However, 

the ultimate goal of all the above-listed stakeholders is to improve the overall health of the 

population [Omachonu and Einspruch 2010]. 

Unlike other vaccines, IVs are somewhat stand-alone products, since they have several 

particularities. First of all, on account of the above-mentioned evolutionary patterns of the 

virus, the vaccine composition has to be updated annually. Vaccine strains are selected under 

the guidance of the WHO, which reviews the Global Influenza Surveillance and Response 

System (GISRS) data on circulating viral populations throughout the world [Russell et al. 

2008]. This review is carried out twice a year: in February for the northern hemisphere and in 

September for the southern hemisphere. The WHO's recommendations are based on several 

factors, including: (i) forecasts of which strains will probably cause the next epidemic; (ii) the 

degree of antigenic similarity between the chosen vaccine strains and the predicted circulating 

strains; (iii) the immunogenicity of the selected vaccine strains; and (iv) suitability of the 

selected vaccine strains for large-scale vaccine manufacturing [Tosh et al. 2010; Keshavarz et 

al. 2019]. 

Secondly, the efficacy/effectiveness of the currently available IVs may be far below 

those of other vaccines. For instance, the effectiveness of tick-borne encephalitis vaccines is 

approximately 99%, with non-significant between-age differences [Heinz et al. 2007], while 

meta-analytical estimates of the effectiveness of IVs range from 7% to 74% [Belongia et al. 

2016]. Moreover, efficacy and effectiveness differ markedly according to the virus (sub)type, 
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the age-class of vaccinees and the seasonal degree of matching [Tricco et al. 2013; Belongia 

et al. 2016]. 

Thirdly, the current market of the available IVs is probably the most diversified 

[Centers for Disease Control and Prevention (CDC) 2019; Italian Ministry of Health 2020]. 

Indeed, the availability of single products differs substantially from one country or 

jurisdiction to another, the US being the largest market. Table 1.1 reports the principal IV 

types available in Europe during the 2019/20 season [ECDC 2019]. 

 

Table 1.1. Seasonal influenza vaccine types available during the 2019/20 influenza season in 

Europe. 

 

Type/valence Inactivated/Live attenuated Production platform Adjuvant 
TIVe Inactivated Egg – 
QIVe Inactivated Egg – 
QIVc Inactivated Cell culture – 

QLAIV Live attenuated Egg – 
aTIV Inactivated Egg MF59® 

hdTIV Inactivated Egg – 
aTIV: adjuvanted trivalent influenza vaccine; hdTIV: high-dose trivalent trivalent influenza vaccine; MF59: 
microfluidized emulsion; QIVc: cell culture-derived quadrivalent influenza vaccine; QIVe: egg-derived 
quadrivalent influenza vaccine; QLAIV: quadrivalent live attenuated influenza vaccine; TIVe: egg-derived 
trivalent influenza vaccine. 
 

Fourthly, as mentioned above, some CoPs of IV-induced immunogenicity were 

established several decades ago. Consequently, they have been unable to keep up with novel 

technologies and currently circulating influenza virus populations [Trombetta et al. 2014].  

In this thesis, we will try to incorporate the above-described features of influenza 

viruses into a novel ad hoc empirical approach that focuses on identifying, characterizing, 

systemizing and mapping modifiers of IV-induced immunogenicity from the multi-

stakeholder point of view. Methodologically, the empirical approach adopted is essentially 

based on four high-grade evidence-based techniques, namely: (i) systematic synthesis; (ii) 

umbrella review; (iii) meta-analysis and/or meta-regression; and (iv) evidence-based 

mapping. 

In the hierarchy of evidence-based medicine, systematic reviews (SRs) and meta-

analyses (MAs) or both (SRMAs) stand at the top of the so-called “evidence-based medicine 

pyramid”, as they have the highest level of internal validity and, therefore, the lowest risk of 

bias (Figure 1.1) [Murad et al. 2016]. On the other hand, despite their methodological rigor 

and minimization of the risk of bias SRMAs, which are usually performed by scientists whose 
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final product is an academic paper, are rarely consulted by policymakers and practitioners, 

who may need to think strategically and require a more user-friendly output (e.g. a summary 

written in a plain language). In this regard, a “knowledge-brokering platform pyramid” was 

recently constructed by White (2018) in order to describe evidence-based medicine platforms 

that adopt systematic approaches to drawing on bodies of rigorous evidence. Indeed, in the 

pyramid depicted in Figure 1.2, SRs are no longer located at the top [White 2018]. 

 

Figure 1.1. The traditional evidence-based medicine pyramid [adapted from Murad et al. 

2016]. 

 

 

 

In the context of knowledge brokering, evidence mapping is given a prominent place. 

This novel evidence-based technique is characterized by five key components: (i) 

identification of gaps or needs; (ii) audience engagement/user-friendly products; (iii) broad 

field; (iv) systematic process; and (v) visual depiction [Miake-Lye et al. 2016]. Evidence 

maps may be constructed by using a variety of systematic methods, one of the most efficient 

of which is the umbrella review approach. This involves making a systematic synthesis of the 

existing SRMAs; as they preserve all the major strengths of SRMAs, umbrella reviews can be 

located at a higher level of evidence in the “classical” evidence-based medicine pyramid 
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depicted in Figure 1.1 [Fusar-Poli and Radua 2018]. The main advantage of umbrella reviews 

is that they are ideally suited to revealing whether the evidence surrounding the topic of 

interest yields similar conclusions or discrepant findings. Any discrepancies may then be 

explored in order to identify potential reasons for them [Aromataris and Munn 2020]. 

 

Figure 1.2. The knowledge-brokering platform pyramid [adapted from White 2018]. 
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CHAPTER 2. STUDY 1: IMMUNOGENICITY MEASURES OF 

INFLUENZA VACCINES. A MAPPING STUDY OF 

REGISTERED CLINICAL TRIALS 

 

Declarations 
 

This chapter is a slightly modified version of the manuscript entitled “Immunogenicity 

Measures of Influenza Vaccines: A Study of 1,164 Registered Clinical Trials” by Alexander 

Domnich, Ilaria Manini, Donatella Panatto, Giovanna Elisa Calabrò and Emanuele 

Montomoli (© 2020 by the authors) published in Vaccines [Domnich et al. 2020]. The article 

is published in open access modality and distributed under the terms and conditions of the 

Creative Commons Attribution (CC BY) license 

(http://creativecommons.org/licenses/by/4.0/), which permits any use, distribution, and 

reproduction in any medium, provided the original author(s) and source are credited. 

 

Background and Rationale 
 

Influenza is the leading infectious disease worldwide from the point of view of both 

attack rate and socioeconomic burden [Cassini et al. 2018]. Together with some general 

preventive strategies (e.g. frequent hand-washing, social distancing, etc.), IV is a cornerstone 

public health intervention and can substantially reduce the burden of disease [WHO 2012]. 

To be clinically effective, vaccines must, first of all, be immunogenic. Almost all 

currently available vaccines, including IVs, work through serum or mucosal antibodies that 

can block infection or bacteremia/viremia; the antibody level therefore predicts protection 

[Plotkin 2010]. In these situations, a precise, widely recognized threshold of the magnitude of 

antibody levels (as determined through a well-standardized immunological assay) may 

constitute the so-called CoP. According to a definition by Plotkin (2010), a CoP is “an 

immune response that is responsible for and statistically interrelated with protection”. 

The immune response to an IV can be measured by means of a variety of 

immunological assays, the most common being the hemagglutination-inhibition (HAI) assay. 

The almost ubiquitous use of the HAI assay is probably due to several factors. First of all, this 

assay is simple, rapid and inexpensive [Trombetta et al. 2018]. Second, it is/was required by 
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the principal regulatory agencies, such as the US Food and Drug Administration (FDA) 

(2007) and the European Medicines Agency (EMA) (2016), in order to register and/or update 

annual IV formulations. Third, unlike many other immunological assays, the HAI assay has a 

universally accepted CoP threshold (≥ 1:40) that is assumed to indicate a 50% reduction in the 

risk of acquiring laboratory-confirmed influenza [Trombetta et al. 2018; FDA 2007; EMA 

2016]. This estimate comes from an old challenge study conducted in the early ‘70s [Hobson 

et al. 1972]. More recent studies have tried to verify the previously established ≥ 1:40 

threshold of the HAI titer as a CoP. Some investigations have mostly corroborated this 

threshold [de Jong et al. 2003; Coudeville et al. 2010], while others have underlined the age-

dependence of this cut-off [Black et al. 2011]. Indeed, it seems that children need a higher 

HAI titer (at least 1:110) in order to be protected. 

Single radial hemolysis (SRH) is another immunological assay used to determine the 

immunogenicity of IVs. An SRH output of ≥ 25 mm2 lysis zone roughly corresponds to the 

HAI cut-off titer of ≥ 1:40 [Delem and Jovanovic 1978]. Of note, the SRH assay has been 

officially recognized as a CoP by the EMA (2016) but not by the FDA (2007). 

Apart from HAI and SRH, other tests are commonly used and may provide some 

additional and useful immunogenicity information. Specifically, virus neutralization (VN) 

assays quantify neutralizing antibodies, are among the only tests that measure the so-called 

“functional” antibodies directly [Trombetta et al. 2018], and may therefore predict vaccine 

effectiveness better [Cheng et al. 2012]. VN assays, however, are more laborious and time-

consuming and less standardized than HAI; moreover, although HAI and VN titers usually 

show a high correlation, agreement in terms of nominal titers has been found to be relatively 

low [Sicca et al. 2020]. No universally recognized VN titer for 50% protection has been 

established so far [Dunning et al. 2016]. 

The enzyme-linked immunosorbent assay (ELISA), by contrast, is able to measure 

several class‐specific antibodies (including IgM, IgA and IgG) in both serum and 

oropharyngeal/nasal wash samples [Trombetta et al. 2018]. ELISA correlates well with the 

output of HAI, SRH and VN [Trombetta et al. 2018]. However, it has the advantages of: (i) 

quantifying HA stalk‐specific antibodies and (ii) assessing the immunogenicity of novel 

universal IV candidates. This is why ELISA is particularly suitable for large studies, as it can 

yield relatively unbiased results in little time, being fully automatic [Trombetta et al. 2018]. 

The quantification of anti-NA antibodies is becoming more common. After HA, NA is 

the second most abundant surface glycoprotein and allows the virus, in general terms, to 

spread the viral progeny from the infected host cell to uninfected cells [Eichelberger and Wan 
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2015]. Nevertheless, the NA antigen has been somewhat neglected in recent decades 

[Eichelberger and Monto 2019]. However, IVs containing optimal quantities of NA may be 

particularly useful in order to counteract the phenomena of viral drift and shift, given that NA 

immunity can offer broader protection [Eichelberger and Monto 2019]. 

Finally, only the humoral adaptive immunity assays have so far been discussed. 

However, CMI plays an important role in the host immune response in protecting against 

virus-related illness and in establishing long-term immunological memory. Although 

correlates of protection are not currently available for CMI, it would be advisable to 

investigate this kind of immunological response with a view to evaluating next-generation 

vaccines [Gianchecchi et al. 2019]. 

The objectives of this study were to summarize current patterns of the use of the 

various available immunological assays for measuring the IV-induced immune response and 

to identify the determinants of their use. 

 

Materials and Methods 
 
 
Search Strategy, Eligibility Criteria and Data Extraction 
 

In the present study, clinical trials of interest were sought from the freely available 

US-based prospective registry of studies ClinicalTrials.gov [US National Library of Medicine 

2020], which is the largest in the world. 

In order to ensure the maximum number of potentially eligible items, we searched 

only for the term “Influenza” in the field “Condition or disease”. Adding the more colloquial 

word “Flu” did not increase the search output. No filters were used. 

To be included in the study, clinical trials had both to be composed of vaccinees in at 

least one study arm and to use at least one immunological assay to quantify IV-induced 

immunogenicity. Studies were excluded if the actual enrollment was zero, as these trials 

probably never started. No other restrictions were applied. 

The search output (all available columns) was downloaded in a comma-separated 

values file on 23 April 2020. Data of interest were then extracted in an ad hoc spreadsheet. If 

any information was unclear and/or missing, we consulted (whenever possible) publications 

of the results in peer-reviewed journals that are automatically linked to that particular study 

by ClinicalTrials.gov unique identifier. 
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Study Variables 
 

As per our main objective, the study outcome was the relative distribution of 

immunological assays used to quantify IV-induced immunogenicity. On the basis of our 

previous experience, the following outcomes were set a priori: HAI, VN, ELISA, SRH, anti-

NA and any CMI assays. 

The independent variables of interest were categorized in three domains, namely: 

spatiotemporal, design-related and IV-related. The first included the start year and location of 

the study. The study location was categorized in macro-areas as follows: (i) Europe; (ii) US & 

Canada; (iii) Asia & Pacific; (iv) rest of the world (RoW) and (v) “Multicontinental”. This 

last category included multicenter trials conducted in different parts of the world. 

Attributes regarding the study design included: (i) age-class of the study population; 

(ii) study type; (iii) study phase; (iv) sponsorship characteristics and (v) sample size. As per 

ClinicalTrials.gov, three principle age-groups were defined: children (< 18 years), adults (18–

64 years) and the elderly (≥ 65 years). Study type was either interventional or observational, 

while the study phase was I to IV. Regarding the latter variable, observational research was 

attributed to phase IV. Studies of phase I/II and II/III were classified as phase II and phase III, 

respectively. Regarding study sponsorship characteristics, we dichotomized this variable into 

“industry-sponsored” if a for-profit organization was the study (co)-sponsor, and “non-

industry-sponsored” otherwise. The study sample size was the size on enrollment and was 

readily available in the downloaded file. 

The IVs used were classified according to their valence [MIVs (usually pre-

pandemic/pandemic), TIVs or QIVs], production platform (traditional egg-based or cell 

culture-derived/recombinant), presence of adjuvants, mode of administration (e.g. 

intramuscular/subcutaneous, intradermal, intranasal) and inactivation-related issues 

(inactivated and LAIV). The inactivated IVs included whole-virion, split or subunit 

formulations. Moreover, a dummy variable of the universal/supra-seasonal vaccine candidates 

(e.g. peptide-based, DNA-based) was also created. Virosomal and virus-like particle vaccines 

were included in the category of adjuvanted IVs [Kang et al. 2012]. As almost all intranasally 

administered IVs were LAIV, these two attributes were analyzed as the single dummy 

variable “live/intranasal” IVs. Of note, single studies could use different IV types. 
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Data Analysis 
 

For descriptive purposes, the study outcome of the use of immunological assays was 

expressed as proportions with 95% CIs. 

In order to identify potential predictors of the use of single immunological assays, we 

implemented a set of multivariable logistic regression models in which the outcome was a 

binary variable concerning the use of a given immunological assay (0 = No, 1 = Yes). The 

potential predictors were the variables described in the above subsection. We implemented 

both the fully-adjusted models and models selected on the basis of the Bayesian information 

criterion (BIC) minimization approach. The regression outputs were expressed as adjusted 

odds ratios (aORs) with their corresponding 95% CIs. 

In our models, almost all independent variables were dichotomous. The only exception 

was the study sample size, which was continuous. This latter variable was highly right-

skewed (skewness coefficient: 12.7) with an average of 649 [standard deviation (SD): 1,855] 

and a median of 180 (interquartile range: 78–471). For modeling purposes, we split the 

median. Indeed, the use of the continuous variable worsened the model fits. 

P-values of < .050 were deemed statistically significant. McKelvey–Zavoina’s 

pseudo-R2 was used to quantify the explained variability. The Hosmer–Lemeshov test was 

performed to test the goodness-of-fit. Other model diagnostics included a formal check for 

multicollinearity; indeed, some potential predictors (e.g. study phase and sample size) could 

be highly correlated. Multicollinearity was tested by verifying the variance inflation factor 

(VIF). 

All analyses were done in R stats packages, version 4.0.0 [R Core Team 2020]. 

 

Results 
 

Selection of Clinical Trials and Immunological Assays Used 
 

In total, 2,294 search items were available on the date of retrieval. Of these, 1,186 met 

the inclusion criteria. Another 22 studies reported zero enrollment and were excluded. Thus, 

1,164 (50.7%) trials were analyzed (Annex A). 

As expected, the HAI assay was used in the majority (80.6%) of studies, and about 

half of the studies used only this test. Other, less commonly used, humoral immunity assays 

were distributed as follows: VN (21.7%), ELISA (10.1%) and SRH (4.6%). Anti-NA 

antibodies were quantified only in 20 trials (1.7%). CMI was measured in 273 [23.5% (95% 
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CI: 21.1–26.0%)] trials. About 60% of the studies included employed a single assay. Table 

2.1 reports the descriptive statistics on the immunological assays used across the trials. The 

most common single co-occurrences of the use of HAI with other assays are instead reported 

in Figure 2.1.  

 

Table 2.1. Frequency of the immunological assays used in the clinical trials included (N = 

1,164). 

 

Parameter % (N) 95% CI 
Humoral response only 76.5 (891) 74.0–79.0 

Cell-mediated response only 3.0 (35) 2.1–4.2 
One assay only 61.3 (714) 58.5–64.2 

Two assays 26.8 (312) 24.3–29.4 
Three assays or more 11.9 (138) 10.1–13.9 

HAI assay 80.6 (938) 78.2–82.8 
HAI assay only 47.8 (556) 44.9–50.7 

VN assays 21.7 (253) 19.4–24.2 
VN assays only 1.0 (12) 0.5–1.8 

ELISA 10.1 (117) 8.4–11.9 
ELISA only 0.9 (10) 0.4–1.6 
SRH assay 4.6 (54) 3.5–6.0 

SRH assay only 1.2 (14) 0.7–2.0 
Anti-NA response 1.7 (20) 1.1–2.6 

Anti-NA response only 0 (0) 0.0–0.3 
Humoral response assay unclear 11.4 (133) 9.7–13.4 

ELISA: enzyme-linked immunosorbent assay; HAI: hemagglutination-inhibition; NA: neuraminidase; SRH: 
single radial hemolysis; VN: virus neutralization. 

 

Figure 2.1. Relative frequency of the single co-usage of hemagglutination-inhibition assay 

(HAI) and other tests of interest. 

 

 

CMI: cell-mediated immunity; ELISA: enzyme-linked immunosorbent assay; HAI: hemagglutination-inhibition; 
NA: neuraminidase; SRH: single radial hemolysis; VN: virus neutralization. 
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Determinants of the Immunological Assays Used 
 

As HAI was used in most of the studies included, it was deemed useless to establish its 

correlates. 

The results of the multivariable models predicting the assessment of neutralizing 

antibodies are reported in Table 2.2. Compared with the fully-adjusted model, the best-subset 

model was associated with a significant (-6.5%) BIC reduction; however, the model fit of the 

latter was poor (Hosmer-Lemeshov test: P = .043). By contrast, the fully adjusted model fitted 

well (Hosmer-Lemeshov test: P = .90); we therefore retained this latter model for 

interpretation. From the point of view of the vaccine characteristics, monovalent, adjuvanted 

and cell culture-derived/recombinant IV formulations were significantly associated with a 

higher use of VN. There was also some increase in VN use as age increased; however, the 

effect was not significant in the mixed age-classes. Each additional year was associated with 

about a 7% increase (P = .016) in the odds of performing a VN. By contrast, studies (co)-

sponsored by an industry and those conducted in the RoW were associated with lower odds of 

using VN assays. Moreover, the later phases of clinical development (phases III and IV) 

correlated negatively with the use of VN. The model explained 35.3% of variance. 

 

Table 2.2. Multivariable logistic regression models to predict the use of immunological 

assays measuring neutralizing antibodies. 

 

Variable Level 
Best-subset model Full model 

aOR (95% CI) P aOR (95% CI) P 

Vaccine 

Monovalenta 5.68 (3.89–8.30) < .001 3.35 (1.75–6.44) < .001 
Trivalenta – – 0.70 (0.41–1.22) .21 

Quadrivalenta – – 1.07 (0.57–1.98) .84 
Adjuvanteda 1.48 (1.02–2.15) .038 1.65 (1.10–2.46) .015* 
Intradermala – – 1.04 (0.45–2.37) .93 

Live/intranasala – – 1.43 (0.81–2.54) .22 
Cell-derived/recombinanta 2.03 (1.37–3.00) < .001 1.82 (1.18–2.80) .006 

Universal candidatesa – – 0.55 (0.19–1.63) .28 

Age 

Any Ref – Ref – 
Children only 3.49 (1.22–9.99) .020 2.92 (0.97–8.83) .058 
Adults only 3.59 (1.32–9.75) .012 2.90 (1.01–8.34) .048 
Elderly only 5.58 (1.85–16.89) .002 4.71 (1.49–14.88) .008 

Children and adults 1.83 (0.52–6.42) .35 1.68 (0.45–6.22) .44 
Adults and elderly 1.67 (0.60–4.65) .33 1.59 (0.54–4.66) .40 
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Table 2.2 (continued). Multivariable logistic regression models to predict the use of 

immunological assays measuring neutralizing antibodies. 

 

Variable Level 
Best-subset model Full model 

aOR (95% CI) P aOR (95% CI) P 

Study type 
Observational – – Ref – 
Interventional – – 0.63 (0.26–1.49) .29 

Study phase 

1 – – Ref – 
2 – – 0.72 (0.45–1.16) .17 
3 – – 0.49 (0.26–0.90) .022 
4 – – 0.36 (0.20–0.64) < .001 

Industry 
sponsored 

No Ref – Ref – 
Yes 0.48 (0.33–0.68) < .001 0.40 (0.26–0.90) < .001 

Time Yearb 1.08 (1.04–1.13) < .001 1.07 (1.01–1.12) .016 

Sample size 
< 180 – – Ref – 
≥ 180 – – 1.27 (0.87–1.86) .21 

Study 
location 

Multicontinental – – Ref – 
Europe – – 0.67 (0.28–1.58) .36 

US & Canada – – 0.62 (0.27–1.46) .27 
Asia & Pacific – – 0.85 (0.36–2.04) .72 

Rest of the world – – 0.09 (0.02–0.49) .006 
Pseudo-R2, % 30.0 35.3 

BIC 1008.6 1074.2 
aYes versus No; bOne-year increase; ∙P < .10; aOR: adjusted odds ratio; BIC: bayesian information criterion. 

 

 Factors associated with the use of ELISA are described in Table 2.3. Both models 

showed similar results, fit reasonably well (Hosmer-Lemeshov test: P ≥ .80) and explained up 

to 42% of variance. Live attenuated/intranasal (aOR = 8.28) and cell-derived/recombinant 

(aOR = 2.41) IVs were positively associated with ELISA testing. By contrast, the use of 

adjuvanted IV formulations was a significant negative predictor. Compared with phase I 

clinical trials, those of phases II to IV were associated with a 64–90% lower rate of ELISA 

testing. Analogously, trials involving industry made less use of ELISA. 

CMI was among the outcomes in 273 of the trials included [23.5% (95% CI: 21.1–

26.0%)]. Results of the adjusted logistic models with the outcome of CMI assays are reported 

in Table 2.4. On the basis of goodness-of-fit, only the fully adjusted model was retained 

(Hosmer-Lemeshov test: P = .61) since the best-subset model proved to have a poor fit 

(Hosmer-Lemeshov test: P = .002). Trials investigating adjuvanted, live attenuated/intranasal 

IVs and, especially, universal vaccine candidates displayed significantly higher odds of 

quantifying CMI. As in the previously described models, industry co-sponsored trials and 

phase III studies reported a lower use of CMI assays. Moreover, larger studies were also 

associated with 38% lower odds of the model outcome. 
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In none of the models reported in Tables 2.2–2.4, did multicollinearity issues emerge: 

no VIF exceeded the nominal value of 5. 

Finally, the outcomes of SRH and anti-NA assay use were relatively infrequent, and 

thus displayed a low event-per-predictor ratio. We therefore decided against the multivariable 

regression approach. However, two notable features regarding the SRH assay emerged: (i) all 

[100% (95% CI: 93.4–100%)] studies were industry sponsored and (ii) two thirds [66.7% 

(95% CI: 52.5–78.9%)] were conducted in Europe. By contrast, most [65.0% (95% CI: 40.8–

84.6%)] anti-NA antibody testing was performed in the US. 

 

Table 2.3. Multivariable logistic regression models to predict the use of enzyme-linked 

immunosorbent assay (ELISA). 

 

Variable Level 
Best-subset model Full model 

aOR (95% CI) P aOR (95% CI) P 

Vaccine 

Monovalenta – – 1.04 (0.37–2.96) .94 
Trivalenta – – 1.62 (0.65–4.04) .30 

Quadrivalenta – – 0.82 (0.34–2.01) .67 
Adjuvanteda 0.34 (0.17–0.67) .002 0.32 (0.15–0.65) .002 
Intradermala – – 0.30 (0.06–1.37) .12 

Live/intranasala 8.28 (4.86–14.11) < .001 8.60 (4.75–15.56) < .001 
Cell-derived/recombinanta 2.41 (1.37–4.24) .002 2.28 (1.19–4.37) .013 

Universal candidatesa – – 1.97 (0.57–6.80) .28 

Age 

Any – – Ref – 
Children only – – 1.40 (0.33–6.02) .65 
Adults only – – 1.34 (0.34–5.35) .68 
Elderly only – – 2.62 (0.56–12.29) .22 

Children and adults – – 1.26 (0.25–6.33) .78 
Adults and elderly – – 1.06 (0.26–4.35) .94 

Study type 
Observational – – Ref – 
Interventional – – 0.57 (0.21–1.55) .27 

Study phase 

1 Ref – Ref – 
2 0.36 (0.19–0.66) .001 0.37 (0.19–0.71) .003 
3 0.10 (0.04–0.29) < .001 0.12 (0.04–0.36) < .001 
4 0.32 (0.18–0.59) < .001 0.28 (0.14–0.59) < .001 

Industry 
sponsored 

No Ref – Ref – 
Yes 0.45 (0.27–0.75) .002 0.46 (0.27–0.81) .007 

Time Yearb – – 1.06 (0.99–1.14) .090 

Sample size 
< 180 – – Ref – 
≥ 180 – – 0.72 (0.41–1.27) .26 

 

Table 2.3 (continued). Multivariable logistic regression models to predict the use of enzyme-

linked immunosorbent assay (ELISA). 

 

Variable Level Best-subset model Full model 
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aOR (95% CI) P aOR (95% CI) P 

Study 
location 

Multicontinental – – Ref – 
Europe – – 1.89 (0.22–16.63) .57 

US & Canada – – 1.16 (0.13–10.10) .90 
Asia & Pacific – – 1.02 (0.11–9.36) .98 

Rest of the world – – 0.89 (0.06–12.55) .93 
Pseudo-R2, % 38.3 42.4 

BIC 571.3 666.9 
aYes versus No; bOne-year increase; aOR: adjusted odds ratio; BIC: bayesian information criterion. 

 

Table 2.4 Multivariable logistic regression models to predict the use of immunological assays 

measuring cell-mediated immunity. 

 

Variable Level 
Best-subset model Full model 

aOR (95% CI) P aOR (95% CI) P 

Vaccine 

Monovalenta – – 1.48 (0.79–2.78) .22 
Trivalenta – – 1.56 (0.90–2.70) .11 

Quadrivalenta – – 1.76 (0.99–3.14) .055 
Adjuvanteda 1.56 (1.09–2.23) .014 1.53 (1.03–2.29) .035 
Intradermala – – 1.15 (0.58–2.27) .69 

Live/intranasala 2.56 (1.65–3.96) < .001 2.66 (1.65–4.29) < .001 
Cell-derived/recombinanta – – 1.35 (0.86–2.12) .20 

Universal candidatesa 10.10 (4.17–24.19) < .001 10.05 (4.17–24.19) < .001 

Age 

Any – – Ref – 
Children only – – 0.63 (0.27–1.48) .29 
Adults only – – 1.16 (0.55–2.47) .70 
Elderly only – – 0.92 (0.38–2.26) .86 

Children and adults – – 0.60 (0.22–1.63) .32 
Adults and elderly – – 0.83 (0.40–1.76) .63 

Study type 
Observational – – Ref – 
Interventional – – 0.64 (0.35–1.17) .15 

Study phase 

1 Ref – Ref – 
2 0.56 (0.37–0.87) .009 0.72 (0.45–1.14) .16 
3 0.32 (0.18–0.56) < .001 0.47 (0.25–0.90) .022 
4 0.94 (0.62–1.42) .76 1.17 (0.70–1.95) .54 

Industry 
sponsored 

No Ref – Ref – 
Yes 0.32 (0.23–0.45) < .001 0.31 (0.21–0.46) < .001 

Time Yearb – – 0.99 (0.94–1.03) .60 

Sample size 
< 180 – – Ref – 
≥ 180 – – 0.62 (0.44–0.88) .007 

 

Table 2.4 (continued). Multivariable logistic regression models to predict the use of 

immunological assays measuring cell-mediated immunity. 

 

Variable Level 
Best-subset model Full model 

aOR (95% CI) P aOR (95% CI) P 

Study 
location 

Multicontinental – – Ref – 
Europe – – 3.95 (0.84–18.54) .08 

US & Canada – – 2.28 (0.49–10.68) .30 
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Asia & Pacific – – 1.68 (0.35–8.14) .52 
Rest of the world – – 2.32 (0.41–13.31) .34 

Pseudo-R2, % 23.4 29.5 
BIC 1144.4 1224.4 

aYes versus No; bOne-year increase; aOR: adjusted odds ratio; BIC: bayesian information criterion 

 

Discussion 
 

To our knowledge, the present study is the first to describe and analyze the use of the 

available immunological assays for quantifying the immunogenicity of the currently licensed 

IVs and vaccine candidates. Several findings emerged from the present analysis. First (and 

not to our surprise), we found that most of the studies included used only one assay, which in 

most cases was the HAI. Second, we found that some IV formulations and some study design 

attributes, such as phase or sponsorship, were associated with the patterns of use of particular 

immunological assays. We will now discuss our principal findings. 

Regarding IV valence characteristics, we did not generally find any meaningful 

correlation, the only exception being the significantly higher probability of neutralizing 

antibody quantification in trials involving MIVs. In our study most MIVs were either 

pandemic A(H1N1)pdm09 or pre-pandemic vaccines against several avian type A subtypes 

with pandemic potential [e.g. A(H5N1), A(H7N9)]. Indeed, VN has proved to be particularly 

useful in studying the serology of avian type A strains, and several studies have documented 

the unsuitability of HAI for the detection of antibodies against these viruses [Rowe et al. 

1999; Stephenson et al. 2009; Trombetta et al. 2014]. Moreover, the pattern observed may be 

somehow linked to antigen-sparing as a strategy for pandemic preparedness promoted by the 

WHO (2004). Indeed, in the present analysis, many (pre)-/pandemic studies were dose 

finding. Compared with HAI, VN can detect antibodies at lower titers, distinguish better 

between small differences (e.g. less than two-fold) in pre- and post-vaccination titers, and 

requires a lower concentration in order to yield a judgment of protection (though no formally 

established threshold has been universally recognized) [Trombetta et al. 2014; Sui et al. 2009; 

Nunes et al. 2018; Hsu et al. 2014; Verschoor et al. 2016]. 

Adjuvanted IVs (including virosomal and virus-like particle formulations) were 

associated with a higher use of both VN and CMI assays. Adjuvanted IVs have been 

systematically shown to induce both stronger and broader humoral immune responses 

[Nicolay et al. 2019; Banzhoff et al. 2003]. However, widespread use of the standard HAI 

assay may downplay some important potential advantages of the adjuvanted formulations, 

such as cross-protection and immunological memory. According to the FDA’s Center for 
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Biologics Evaluation and Research (CBER) guidelines [FDA 2007] despite the public health 

advantage of adjuvants in terms of dose-sparing, some safety issues may arise; however, the 

subsequent risk–benefit assessment asserts that “meaningful differences may also include a 

demonstration of cross-reactivity against drifted strains” [FDA 2007]. In such situations, VN 

assays may provide an advantage: they identify a wide range of antibodies, including those 

that neutralize the virus by inhibiting its entry/replication in mammalian cells, while HAI only 

measures antibodies against HA, which act by preventing the agglutination of red blood cells 

[Trombetta et al. 2014]. Ansaldi et al. (2010), for example, showed that, in elderly subjects 

immunized with an adjuvanted TIV, the correlation coefficient r between the mean-fold 

increase in neutralizing antibody titers (from pre- to post-vaccination) and the antigenic 

distance of several drifted A(H3N2) strains was substantially higher than the r between the 

corresponding mean-fold increase in HAI titers (.701 vs .501). Analogously, the use of CMI, 

which plays a crucial role in protecting against influenza by establishing the long-term 

immunological memory [Gianchecchi et al. 2019], may also positively “differentiate” the 

adjuvanted formulations from their non-adjuvanted counterparts. For instance, Zedda et al. 

(2015) found that adding an adjuvant to standard IVs induced a larger expansion of vaccine-

specific CD4+ cells, and that this advantage was evident with regard to the drifted 

heterologous strains. In sum, our results suggest that measuring neutralizing antibodies and 

CMI may constitute the so-called “correlates of adjuvanticity” [Del Giudice et al. 2018]; it is 

therefore advisable to better standardize protocols for these assays, in order to reduce intra- 

and inter-laboratory variation, and to revise the current immunogenicity guidelines 

[Trombetta et al. 2014]. 

Intranasal IV formulations (mostly LAIV) proved more likely to be tested in ELISA, 

with a huge effect size (ES) of 8.3. The use of LAIV formulations was also seen to be a 

positive predictor of CMI assays. The standard HAI assay is often judged poorly suitable for 

LAIVs [Trombetta et al. 2014] and, unlike the case of inactivated IVs, no CoPs have been 

established for LAIVs [Weinberg et al. 2016]. For instance, in their challenge study, Wright et 

al. (2016) showed that some traditional measurements of immune response, such as HAI, did 

not correlate with protection provided by a LAIV. Indeed, LAIV formulations are believed to 

induce multifaceted immunogenicity ascribable to both local/mucosal immunoglobulins and T 

cell responses [Mohn et al. 2018]. In an analysis of three clinical studies, Ambrose et al. 

(2012) found that nasal wash IgA measured by means of ELISA contributed to the efficacy of 

LAIV in young children. Nasal wash IgG and IgM may also increase in recipients of LAIV 

[Ambrose et al. 2012]. With regard to CMI, Forrest et al. (2008) showed that this may have 
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greater importance in subjects immunized with LAIVs in comparison with inactivated 

formulations. In their study, it was also estimated that the majority of children with ≥ 100 

interferon-γ spot-forming cells per 106 peripheral blood mononuclear cells were protected 

against clinical influenza, suggesting that this level could be a possible target in clinical trials. 

As discussed by Ambrose et al. (2012), in Plotkin’s framework of CoPs [Plotkin 2010], the 

association between the protection induced by live IV and IgA responses measured by means 

of ELISA constitutes the so-called co-correlate of protection, which is “one of two or more 

factors that correlate with protection in alternative, additive, or synergistic ways” [Plotkin 

2010]. Indeed, strain-specific IgA responses are associated with protection in vaccinees, but 

the level of response may vary by strain and trial, and IV-induced protection may be 

correlated with other components of the immune response [Ambrose et al. 2012]. 

Universal vaccine candidates have likewise showed far greater odds of being 

scrutinized through CMI assays. Universal IVs comprise a large and heterogeneous variety of 

experimental vaccine formulations with different platforms, targets and mechanisms of action 

[Pica and Palese 2013; Gilbert 2013; Zhang et al. 2014]. As we have already mentioned, the 

currently accepted as a CoP assays of HAI and SRH target the viral HA. By contrast, most 

next-generation universal IVs target some highly conserved proteins that are common across 

viral (sub)types [Pica and Palese 2013; Gilbert 2013; Zhang et al. 2014]. This is why the 

recognized CoPs and other widely used immunological assays are likely to prove unsuitable 

for the universal vaccine candidates. On the other hand, CMI will undoubtedly be quantified 

in future trials on the next-generation IVs, since cross-reactive CD4+ and CD8+ T cells have 

already been proposed as future CoPs in human challenge and cohort studies [Krammer et al. 

2020]. 

Unlike the other tests analyzed, and independently from the IV formulations used, VN 

assays were employed increasingly over the 20-year period considered. As described earlier, 

the proliferating interest in quantifying neutralizing antibodies is probably determined by the 

fact that, unlike the conventional assays, VN tests measure the functional capability of 

antibodies and not just their total quantity, and are more efficient in quantifying cross-

reactivity/cross-immunogenicity. 

Industry-(co)sponsored trials quantified neutralizing and ELISA antibodies and 

determined CMI to a significantly lesser extent than non-industry-sponsored studies. By 

contrast, about 85% of industry-(co)sponsored studies determined the HAI response, while 

100% of studies that used the SRH assay were industry-(co)sponsored. The most probable 

explanation is two-fold: (i) both HAI and SRH have a well-recognized threshold as a CoP [de 
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Jong et al. 2003; Coudeville et al. 2010; Black et al. 2011; Delem and Jovanovic 1978] and 

(ii) clinical guidelines are available for industry to support the licensure of seasonal IVs [FDA 

2007; EMA 2016]. Indeed, the US document issued by the CBER [FDA 2007] cites some 

criteria to support accelerated approval of new IVs, and all these criteria are based on the HAI 

assay. Indeed, in the case of children and adults aged < 65 years, clinical trials should show 

that the lower limit of the two-sided 95% CI for the percentage of subjects achieving 

seroconversion (defined as the proportion of vaccinees with at least a 4-fold increase from 

before to after IV) and seroprotection (defined as the proportion of vaccinees with an HAI 

titer ≥ 1:40) reaches or exceeds 40% and 70%, respectively. In the case of elderly subjects 

these proportions are reduced by 10% (to 30% and 60%, respectively) [FDA 2007]. The 

previous European criteria issued by the EMA’s Committee for Medicinal Products for 

Human Use (CHMP) [EMA 2016] were similar, but were based on the point estimates rather 

than the 95% CIs. Moreover, unlike in the US guidelines, the endpoints determined by the 

SRH assay were recommended only from the European perspective [EMA 2016]; this is 

probably why we found that most SRH assays were performed in Europe. 

In all our analyses, a later phase of clinical development was generally associated with 

a lower use of VN, ELISA and CMI assays. Contrary to our expectations, we did not 

encounter any problem of collinearity between the study phase and sample size; an adequately 

powered sample size is usually directly related to the study phase. The observed absence of 

collinearity issues was probably driven by the sample size dichotomization rule adopted. 

Early phase trials on vaccines usually have safety endpoints as primary outcomes; however, 

some exploratory immunogenicity endpoints may also be assessed (usually as secondary 

outcomes). By contrast, pivotal phase III trials are designed to provide robust clinical data in 

support of licensure [WHO 2016; WHO 2017b]. Modern phase III immunogenicity trials 

enroll thousands of individuals, each of whom is tested for the IV-induced immune response 

at least twice. In these conditions, the HAI assay was most frequently used, not least because 

this test is both widely recognized as a CoP and relatively cheap [Trombetta et al. 2018]. 

Indeed, the reproducibility and unbiased assessment of an assay should be weighed against its 

cost-effectiveness [Sicca et al. 2020]. On the other hand, the EMA guidelines [EMA 2016] 

state that “It is essential that neutralizing antibody titers are determined in all studies”, 

“Measurement of … CMI is encouraged” and “Applicants may consider evaluating anti-NA 

antibodies”. We therefore believe that more sophisticated techniques should also be used in at 

least a subset of participants in pivotal clinical trials. 
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Despite its strengths, such as its large sample size and meaningful set of predictors, the 

current study may have some notable limitations. First of all, the information retrieved came 

mostly from the registered information on clinical trials and is therefore is highly dependent 

on the quality of this latter. In this regard, Viergever et al. (2014) have shown that the quality 

of registration at ClinicalTrials.gov is suboptimal, although some slight improvements have 

been seen over time. We tried to attenuate this bias by consulting the available peer-reviewed 

publications linked to a given trial; however, this was not always possible. Indeed, in 11.4% 

of the trials included, we failed to identify the humoral immunity assays used (although we 

believe that most of these used the HAI assay). This is also why we cannot completely rule 

out mistakes due to misclassification bias of the study outcome. For instance, records 

indicating that the immune response was measured according to the CBER criteria were 

assumed to refer to studies that used the HAI assay, given that the US criteria consider only 

the HAI assay [FDA 2007]. 

Second, although ClinicalTrials.gov is the world's largest and first-established registry, 

we acknowledge that a certain number of studies were registered in other supranational (e.g. 

the European register available at www.clinicaltrialsregister.eu) or country-specific databases, 

which were not searched systematically. At present, it is not possible to perform a 

simultaneous search in more databases nor can double-registered trials be directly linked via a 

single identifier (in order to avoid duplicates). We believe, however, that the sample of 

registered trials analyzed is globally representative, given the pioneering nature of 

ClinicalTrials.gov. We also believe that this shortcoming is particularly relevant with regard 

to the non-industry-sponsored trials; indeed, in our sample approximately 62% of items were 

industry-(co)sponsored. Vaccine manufacturers are obliged to prospectively register their 

trials, and the technical documents commonly submitted to the regulatory agencies have to 

contain a complete list of the studies that support marketing authorization applications 

[Jørgensen et al. 2018]. 

Third, considering a relative paucity of studies that measured CMI, no attempt to 

further categorize CMI assays was made. It is therefore probable that some meaningful 

associations were “hidden” by the classification rule adopted. 

Finally, we were not able to identify determinants of the SRH and anti-NA assays, 

owing to the paucity of studies using these tests. Indeed, according to a widely applied “rule 

of thumb” [Harrell et al. 1996], we needed at least 10 events per independent variable. We 

tried to address this issue by applying Firth’s penalized logistic regression approach; the 

output was, however, not consistent (results not shown) [Puhr et al. 2017]. 
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In conclusion, the IV-induced immune response may be measured by means of a 

variety of immunological assays; these are, however, unevenly distributed across the available 

registered trials. Continuous diversification of the IV market and research into a universal IV 

will probably produce a gradual shift from the currently preferred HAI test to other more 

“functional” assays; assays that measure CMI seem particularly promising. Technological 

innovation can involve high costs and exerts strong financial pressure on health systems. 

Today’s healthcare systems cannot forgo technological innovation, but must take into account 

the point of view of the various stakeholders: patients should be guaranteed rapid access to 

more effective healthcare technologies; research and development efforts should be 

encouraged when oriented towards the production of high-value products; institutions and 

regulatory agencies should support innovation by using evidence-based tools for their 

evaluation, such as health technology assessment (HTA); and health systems should promote 

technological innovation while ensuring their own sustainability [European Commission 

2016]. In this regard, governments around the world are increasingly focusing on the use of 

public–private partnerships that can combine the strengths of private enterprise, such as 

innovation, technical knowledge and managerial skills, with the role of public institutions, 

including social responsibility and public accountability, in order to deliver high-quality 

health services [Roehrich et al. 2014]. Future IV clinical trials will undoubtedly benefit from 

functional public-private partnerships, especially from the point of view of searching for new 

CoPs. 
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CHAPTER 3. STUDY 2: MAPPING HOST-RELATED 

CORRELATES OF INFLUENZA VACCINE-INDUCED 

IMMUNE RESPONSE: AN UMBRELLA REVIEW WITH A 

SERIES OF META-ANALYSES OF THE AVAILABLE 

SYSTEMATIC EVIDENCE 
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Background and Rationale 
 

Influenza is the world's leading annually occurring infectious disease, and places an 

enormous burden on public health [WHO 2012]. For instance, in the general European 

population, it ranks first in terms of both attack and mortality rates [surpassing, for example, 

tuberculosis and human immunodeficiency virus (HIV) infection], and results in an average 

annual loss of 81.8 DALYs per 100,000 inhabitants) [Cassini et al. 2018]. 

Annual IV is the main public health intervention able to reduce the burden of disease 

[WHO 2012; de Lusignan et al. 2012]. Most currently available IVs are egg-derived, 

inactivated (either split or subunit), trivalent or quadrivalent [CDC 2019a; ECDC 2019]. The 

WHO’s most recent position paper [WHO 2012] has recognized some priority target groups 

for annual IV: pregnant women, children aged 6 months to 5 years, the elderly, subjects with 

specific chronic conditions, healthcare workers and international travelers. Despite the 
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recommendations of the WHO (which has also adopted the value-based approach) [WHO 

2012], seasonal IV policies are well-established only in high- and a few middle-/low- income 

countries [Sambala et al. 2019]. In most countries of the WHO European Region, for 

example, vaccination is recommended for the elderly, people with underlying risk conditions, 

institutionalized populations, healthcare workers and (in fewer countries) children and 

pregnant women [WHO 2014], while in the US, it is universally recommended (for all 

subjects aged 6 months and above) [Grohskopf et al. 2018]. 

IV-induced protection is ideally measured by conducting RCTs in which the clinical 

endpoint is laboratory-confirmed influenza. Such studies are, however, expensive. Moreover, 

their execution is hindered by some particularities of influenza, including its variable annual 

attack rates, extremely high seasonality pattern in most countries, frequent viral mutations, 

heterogeneity of the circulating virus population, and varying annual vaccine composition 

[Dewe et al. 2013]. This is why most IV RCTs use immunogenicity parameters as their 

primary endpoints. In a simplistic way, it may be claimed that IV-induced protection against 

laboratory-confirmed influenza is entirely mediated by a single surrogate endpoint (i.e. 

immune response). In other words, the IV-induced protection must correlate with the IV-

induced immune response [WHO 2013]. Plotkin [Plotkin 2010] has defined a correlate of 

vaccine-induced protection (CoP) as “an immune response that is responsible for and 

statistically interrelated with protection”; in this study, we will adopt this definition. 

HAI is the most commonly used assay in IV RCTs. Historically, an HAI threshold titer 

of 1:40 was associated with a 50% reduction in the absolute risk of contracting laboratory-

confirmed influenza [Trombetta and Montomoli 2016]; this figure comes from an adult 

challenge study dating back to the early ‘70s [Hobson et al. 1972]. More recent meta-

analytical models, however, seem to agree to some extent with that estimate. Specifically, de 

Jong et al. [de Jong et al. 2003] estimated that the HAI titer of 1:192 was associated with a 

90% median reduction in laboratory-confirmed influenza. The Bayesian meta-analytical 

approach adopted by Coudeville et al. [Coudeville et al. 2010] established that the 

incremental increase in clinical protection was very marked at HAI titers of up to 1:100, while 

the benefit became marginal at titers > 1:150. Nonetheless, the above-described HAI 

“universal” threshold of 1:40 may be not appropriate for some population groups. Indeed, it 

has been estimated [Black et al. 2011] that, in children, the conventional HAI titer cut-off of 

1:40 is associated only with a 22% protection rate, while the cut-offs of 1:110, 1:215, 1:330 

and 1:629 predict 50%, 70%, 80% and 90% protection, respectively. 
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Other, less commonly used, immunological assays are: SRH, VN and ELISA 

[Trombetta and Montomoli 2016]. Among these, only SRH has an established CoP threshold, 

which is ≥ 25 mm2 lysis zone; this roughly corresponds to the HAI cut-off titer of 1:40 

[Delem and Jovanovic 1978]. Apart from the humoral immune response CoPs, cellular CoPs 

are increasingly being recognized and used [Gianchecchi et al. 2018]. 

Schematically, the immunogenicity, efficacy and effectiveness of IVs may be deemed 

to be a function of the characteristics of the host, virus and vaccine [Belongia and McLean 

2019]. Among the host factors, the age of the vaccinee is probably the factor most known to 

affect the immunogenicity of IVs. While a poor immune response in the youngest age-class is 

usually ascribed to immaturity of the immune system [Mugitani et al. 2014], in the elderly it 

has been linked to immunosenescence [Haq and McElhaney 2014]. The factors related to the 

influenza virus are well-known: intense selection by the host immune system drives antigenic 

change in both A and B virus types and results in the continuous replacement of circulating 

strains with new ones that can re-infect hosts that are immune to previously circulating 

variants (the phenomenon known as “antigenic drift”) [Ferguson et al. 2003]. In the past few 

years, however, the “vaccine-related” factor has received more attention, owing to the 

continuously diversifying IV market. For instance, adjuvanted, intradermal and high-dose IVs 

have consistently been shown to enhance immunogenicity in comparison with standard-dose 

intramuscularly administered non-adjuvanted vaccines [Ng et al. 2019]. 

Several intrinsic host characteristics (e.g. age, sex, genetic polymorphisms, and many 

morbidities) can be viewed as unmodifiable factors that may alter the immune response 

following vaccination. On the other hand, modifiable host-related factors (e.g. lifestyle habits 

or dietary patterns) may also potentially interfere with IV-induced immunogenicity. A down-

to-earth appraisal of these factors and their impact on the IV-induced immune response is 

essential both to the design of future immunogenicity RCTs and to the potential development 

of better and/or more personalized IVs [Zimmermann and Curtis 2019] or, at least, IV-related 

public health policies. A recently published narrative review [Castrucci 2018] examined some 

host factors that affect the immune response to IV; the following factors were discussed: 

preexisting immunity, immunosenescence, genetic polymorphism, sex, obesity and the 

presence of chronic underlying medical conditions. In the present paper, we adopted a 

comprehensive approach, in that we conducted an analysis of the evidence from the available 

systematic analyses of the intrinsic host factors affecting IV-induced immunogenicity. Indeed, 

the objective was to analyze and graphically synthetize the available systematic evidence on 

the host factors able to modify IV-induced immunogenicity. 
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Materials and Methods 

 
General methodology 

 

The present paper was conceived as an umbrella review. The umbrella review [also 

known also as overview/review of (systematic) reviews, meta-review, and similar] is an 

emerging field of evidence-based medicine and is becoming increasingly common, given the 

growing number of systematic reviews on the same/similar topics (see Figure 1.2). The key 

feature of umbrella reviews is that they are focused on the highest possible level of evidence, 

i.e. SRs and/or MAs. Furthermore, umbrella reviews are seen as a ready means of enabling 

relevant stakeholders to gain a clear understanding of a broad topic area [Aromataris et al. 

2015]. Indeed, the host factors affecting IV-induced immunogenicity constitute a vast and 

heterogeneous group of modifiers. 

No ethical approval was deemed necessary, given the second-hand nature of this 

research. 

 
Search Strategy 

 
The search strategy was first calibrated by using a simplistic search string 

implemented in Google Scholar (www.scholar.google.com): [“influenza” AND “vaccine” 

AND (“immunogenicity” OR “immune response”) AND (“systematic review” OR “meta 

analysis”)]. We then examined the first 500 search results and selected potentially eligible 

papers. We selected only the first 500 results, given the low specificity of Google Scholar: the 

search produced more than 16,000 results. Google Scholar was chosen since, unlike well-

established scientific databases, it can work well with the so-called “gray literature” 

[Haddaway al. 2015]. A more detailed search strategy was then developed and tested on 

PubMed (www.ncbi.nlm.nih.gov/pubmed) in order to ensure that all records selected in 

Google Scholar appeared in the PubMed results output. The following PubMed script was 

then judged appropriate: (((((("influenza" OR "flu")) OR influenza, human[mh])) AND 

(((vaccin* OR immuni*)) OR vaccines[mh]))) AND ((review literature as topic[mh]) OR 

("systematic review" OR "meta analysis" OR "meta regression")). The above-described 

search algorithm was adapted to Embase (www.embase.com) and the search output was 

retrieved. We then searched the Cochrane Library (www.cochranelibrary.com); however, 

given that this focuses on SRs/SRMAs, the search was limited to the single keyword 
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“influenza”, in order to increase its sensitivity. The automatic search outputs from the three 

databases were pooled in a single spreadsheet, and duplicates were removed in a semi-

automatic modality. The last automatic search was performed on 2 July 2019 by Alexander 

Domnich. 

The automatic search was subsequently followed by a manual search. This included: 

(i) standard cross-reference checking of the manuscripts included; (ii) checking articles that 

cited the SR/SRMAs included (through Google Scholar in order to check for possible sources 

of the “gray literature”); (iii) seeking advice on additional SR/SRMAs from academic 

experts/industry. We also tried to search the principal RCT registries (www.clinicaltrials.gov 

and www.clinicaltrialsregister.eu) and “gray literature” databases (www.opengrey.eu), though 

this proved fruitless. 

We then updated (according to the last search time-period declared by the authors of 

the SRs/SRMAs included) the list of primary studies by applying the same search strategy and 

the same inclusion and exclusion criteria used in the SRs/SRMAs included. 

 
Eligibility Criteria and Inclusion Process 

 
All SRs or SRMAs concerning the host factors potentially affecting IV-induced 

immunogenicity were eligible. The inclusion criteria were formulated according to the PICO 

(population, intervention, control, outcome) framework. Specifically, no restrictions were 

placed on the population groups (e.g. age or health conditions) and settings. The intervention 

was IV of any type. Cases were defined as vaccinees with a given health condition that could 

modify the IV-induced immune response, while controls were vaccinees without that 

condition (usually healthy controls). The outcome of interest was the humoral immune 

response, as measured by HAI. This choice was based on the results of Study 1 and our 

previous experience; moreover, HAI is: (i) a relatively cheap, well standardized assay with a 

well-established threshold as a correlate of protection [Trombetta and Montomoli 2016] and 

(ii) is/was required by regulatory agencies in Europe [EMA 2016] and the US [FDA 2007]. 

The following statistical parameters associated with the HAI are commonly used 

and/or required: geometric mean titers (GMTs) following IV, seroconversion rate (SC), 

usually defined as proportion of vaccinees with at least a 4-fold increase from before to after 

IV, and seroprotection rate (SP), usually defined as the proportion of vaccinees with an HAI 

titer ≥ 1:40 [EMA 2016; FDA 2007]. All these parameters were planned a priori for inclusion 

in the meta-synthesis. 
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SRs/SRMAs of both experimental and observational studies could be included in the 

analysis. RCTs are a well-known means of comparing two or more experimental arms in a 

relatively unbiased way, which is why the SRMAs of RCTs were our primary choice. 

However, several host factors that may potentially alter IV-induced immunogenicity are 

relatively rare in the general population; observational studies may therefore be more 

convenient than RCTs. Moreover, some ethical issues may arise from not offering IV to 

people for whom it is recommended. For this reason, we also decided to include SRs/SRMAs 

of observational studies (both cohort and case-control). 

In the first step, we screened titles and/or abstracts of the combined duplicate-free 

search output for the following exclusion criteria: (i) animal or in vitro studies; (ii) no active 

immunization with IVs, (iii) no immunogenicity endpoints as correlates of protection (e.g. 

only efficacy, effectiveness, safety, acceptance and other irrelevant outcomes); (iii) non-

systematic  nature of the manuscript (e.g. narrative or expert-driven reviews), and (iv) 

conference abstracts/proceedings with little available information. However, the reference 

lists of any identified narrative reviews on the topic of interest were screened. 

All potentially eligible records and those whose eligibility was unclear from the 

title/abstract underwent full-text assessment. Full texts meeting all the inclusion criteria were 

included in the analysis unless they met the following exclusion criteria: (i) no predefined 

control group (e.g. the assessment of IV-induced immunogenicity in a given “ill” population, 

as in the case of cross-sectional study design); (ii) no separate information on IV-induced 

immunogenicity (i.e. an SR/SRMA dealing with vaccines against several diseases); (iii) 

control groups composed of unvaccinated individuals; (iv) SRs/SRMAs aimed at comparing 

different IV types; (v) MAs without a formal systematic search (in this case, however, the 

lists of primary studies included were assessed); (iv) SRs/SRMAs entirely focused on 

immunological assays other than HAI. 

The study selection process was made by two reviewers (Alexander Domnich and 

Ilaria Manini), each working independently. Any disagreement was solved by discussion. 

 
Data Extraction 

 
Data were extracted and imported into an ad hoc spreadsheet by two reviewers 

(Alexander Domnich and Ilaria Manini), each working independently. Any disagreement was 

solved by discussion. The following data were extracted: first author and year of publication; 

review design (SR or SRMA); host factor(s) evaluated; study designs included (RCTs, 
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observational or both); number of studies included (k); study population and setting; total 

number of cases and controls (see definitions above); statistical parameters of interest used to 

describe the immunogenicity endpoints; principal results of qualitative and quantitative 

syntheses; authors' conclusions; funding sources; other potentially relevant information. When 

possible, the immunogenicity endpoints were extracted separately for each virus (sub)type 

(e.g. A/H1N1, A/H3N2, B). 

 
Quality Appraisal 

 

The SRs/SRMAs included were assessed by means of the AMSTAR-2 instrument (a 

measurement tool for assessing systematic reviews, version 2) [Shea et al. 2017]. This is an 

updated version of AMSTAR that is able to assess SRs of both RCTs and non-randomized 

studies; it consists of 16 items (instead of the 11 available in the previous version) and has 

simpler voting rules. The response categories are: “Yes”, “Partial yes”, “No” and “0” [i.e. not 

applicable (NA), if, for example, no MA was performed]. Of note, this instrument is not 

designed to produce a single overall SR/SRMA rating [Shea et al. 2017]. 

Once sufficiently trained by consulting the available comprehensive user guide [Shea 

et al. 2017], two reviewers (Alexander Domnich and Giovanna Elisa Calabrò) provided 

independent votes on each paper included. Any disagreements were solved by involving a 

third author (Chiara de Waure). 

 

Data Analysis and Synthesis 

 
Once extracted, the data from single manuscripts were first tabulated and summarized 

qualitatively. Results of SRs without MAs were summarized narratively and separately from 

SRMAs. 

The papers included were then classified according to the host factor studied. If more 

than one SR/SRMA covered the same/similar host factor, we created citation matrices and 

quantified the corrected covered areas, as described by [Pieper et al. 2014]. Specifically, the 

corrected covered area allows the overlap of primary studies included in different SRs to be 

quantified; it is expressed as (N – r)/(rc – r), where N is the number of papers included in all 

available SRs, r is the number of original primary studies, and c is the number of SRs. This 

overlap was categorized as slight (0–5%), moderate (6–10%), high (11–15%), and very high 

(> 15%) [Pieper et al. 2014]. 
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The results of single MAs were expressed in terms of different ESs, and the models 

adopted used different estimators. Moreover, some important information was sometimes 

missing from the meta-analytical output and/or was inadequately reported. In addition, we 

were able to identify some novel primary research studies. Consequently, we re-applied MAs 

by extracting the data from single primary studies (also considering the citation matrices 

described above) in order to be able to visualize the effect of different host factors on the 

same scale. We decided a priori to use both the random-effects and fixed-effects models. If 

the pooled random- and fixed-effects estimates differed substantially (as usually occurs in the 

case of high heterogeneity), the random-effects estimate was retained in our conclusions. 

The pooled ESs for the binary outcomes of SC and SP were expressed as ORs with 

corresponding 95% CIs. For the continuous endpoint of post-immunization GMTs, Hedges’ g 

with 95% CIs was used. Given the skewed nature of GMTs, pooling was performed by means 

of loge-transformation, as recommended by the US Advisory Committee on Immunization 

Practices (2013). 

Heterogeneity was quantified by means of I2 and τ2. As per Cochrane’s Handbook 

[Cochrane Collaboration 2011], publication bias was assessed only for meta-analyses with k ≥ 

10. Publication bias was assessed by computing Rücker’s arcsine and Egger’s tests for 

dichotomous and continuous endpoints, respectively. We decided not to test the excess 

significance bias formally, as proposed by Ioannidis and Trikalinos (2007), since this test is 

not currently recommended by the Cochrane Collaboration (2011). Instead, we visually 

inspected the contour-enhanced funnel plots and noted substantial asymmetries. The 95% 

prediction intervals were also calculated in order to determine in which range the next data 

point would probably lie. 

Variability measures reported on different scales [e.g. 95% CIs, standard errors (SEs)] 

were converted to SDs, as recommended by the Cochrane Collaboration (2011). 

Missing values of the dispersion measures of GMTs were treated in a post-hoc 

modality. These values were inferred by averaging the available loge-transformed SDs from 

similar studies. We excluded studies in which the SDs had been inferred in sensitivity 

analyses in order to verify the robustness of the base case. 

SC, SP rates and GMTs for the three virus (sub)types were pooled separately. 

Having envisioned a sufficient number of meta-analyzed studies, we planned a priori 

to conduct a series of sensitivity analyses in order to determine the sources of the 

heterogeneity observed. For this purpose, we conducted subgroup and/or meta-regression 
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analyses. The independent variables to include were selected post hoc on the basis of k, data 

availability and/or model fitting. 

All statistical analyses were carried out by means of R (version 3.6.1) [R Core Team 

2020] and the stats packages “meta” [Schwarzer 2019] and “metafor” [Viechtbauer 2019]. 

 
Cumulative Evidence Synthesis (CES) 

 
Once all predefined summary ESs had been calculated, the following recommended 

rules [Fusar-Poli and Radua 2018] were applied in order to categorize the available evidence: 

• Convincing (class I): pooled number of cases (N) > 1,000, P < .000001, I 2 < 50%, 

95% prediction interval excluded the null, no small-study effect/publication bias; 

• Highly suggestive (class II): N > 1,000, P < .000001, largest study with a statistically 

significant effect (P < .05) and class I criteria not met; 

• Suggestive (class III): N > 1,000, P < .001 and class I–II criteria not met; 

• Weak (class IV): P < .05 and class I–III criteria not met; 

• Non-significant: P for the observed ES > .05. 

As highlighted in the previous section, differently from the recommendations made by 

[Fusar-Poli and Radua 2018], we did not formally test the excess significance bias. However, 

the absence of excess significance bias is required only for CES class I. In the present paper, 

only 6/97 (6%) “mappable” estimates fell within CES I, and visual inspection of the contour-

enhanced funnel plots did not suggest any excess of the “statistical significance” at α < .05. 

Evidence mapping was then performed in order to contextualize the available 

evidence, identify gaps in the systematic research and present the data of this study in a 

readily intelligible way [Wang et al. 2016]. To do this, we created bubble plots considering 

the variables (i.e. CES and health condition) of interest. 

 

Results 

 

Selection Process and Main Characteristics of the Systematic Reviews and/or Meta-

Analyses Included 

 

The whole selection process is depicted in Figure 3.1. Briefly, the automatic search of 

three databases produced 2,494 records, 542 of which were duplicates. The title/abstract 

screening procedure allowed us to eliminate a further 1,915 records as clearly ineligible. Of 
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37 full texts assessed, a total of 28 records [Baral et al. 2007; Pedersen et al. 2009; Beck et al. 

2011; Agarwal et al. 2012; Beck et al. 2012; Eckerle et al. 2013; Goossen et al. 2013; Hua et 

al. 2014; McMahan and Bingham 2014; Pascoe et al. 2014; Posteraro et al. 2014; Shehata and 

Karim 2014; Karbasi-Afshar et al. 2015; Nguyen et al. 2015; Huang et al. 2016; Liao et al. 

2016a; Pugès et al. 2016; Huang et al. 2017; Lei et al. 2017; Sousa et al. 2017; Vollaard et al. 

2017; Dos Santos et al. 2018; Lee et al. 2018; Subesinghe et al. 2018; Yeh et al. 2018; 

Zimmermann and Curtis 2018a; Zimmermann and Curtis 2018b; van den Berg et al. 2019] 

were retained in the present analysis. No eligible records were identified through manual 

search and expert/industry consultation. A list of the excluded studies, with reasons for 

exclusion, is provided in Annex B. 

 

Figure 3.1. Record selection process. 
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The main characteristics of the SRs/SRMAs included are reported in Table 3.1. Most 

(61%, 17/28) of the records included were SRMAs, while the remaining 39% were SRs 

without any quantitative synthesis. The following host factors were covered: intravenous drug 

use (N = 1), psychological stress (N = 1), acute exercise (i.e. a short bout of intensive physical 

activity) and chronic physical exercise (i.e. habitual physical activity, such as fitness training) 

(N = 1), genetic polymorphisms (N = 1), use of pre-/pro-/symbiotics (N = 3), BCG (Bacillus 

Calmette–Guérin) vaccination (N = 1), diabetes mellitus (N = 1), vitamin D 

supplementation/deficiency (N = 1), latent cytomegalovirus (CMV) infection (N = 1) and 

various forms of immunosuppression (N = 17). This last category included 

immunosuppressive conditions and/or drugs associated with rheumatic diseases, cancer, organ 

transplantation and inflammatory bowel disease (IBD), HIV, etc. (Table 3.1). However, we 

should point out that the classification adopted is a working one, since, for example, diabetes 

and intravenous drug use may also be seen as immunosuppressive conditions; we split these 

conditions into single categories on account of their particular public health burden. 

The number of the IV-related studies included in each SR/SRMA was highly skewed 

(range: 1–209) and presented a median of 15 (interquartile range: 9–18). With regard to the 

quality of reporting, no SR/SRMA met all 16 AMSTAR-2 criteria (Table 3.1). The most 

“problematic” AMSTAR-2 items were those regarding the explanation of the study designs 

for inclusion (item 3), an explicit list of the studies excluded (item 7) and consideration of the 

funding source of the primary studies included (item 10) (Figure 3.2). No correlation emerged 

between the number of “Yes” AMSTAR-2 votes and the year of SR publication (Spearman’s 

ρ = 0.07, P = .74). Detailed information on the AMSTAR-2 votes on the SRs included is 

provided in Annex C. 

 
Table 3.1. Main characteristics of the systematic reviews and/or meta-analyses included. 

 
First 

author 
Year Factor(s) assessed 

Type of 
study 

Age† k† 
Meta-

analysis 
AMSTAR-2‡ 

Baral 2007 
Intravenous drug 

use 
Obs Adults 2 No 2/2/8/4 

Pedersen 2009 Psychological stress Obs All 13 Yes 7/2/7/0 
Beck 2011 IS of any etiology RCT, obs All 209 Yes 12/0/4/0 

Agarwal 2012 IS drugs RCT, obs All 11 No 3/1/8/4 
Beck 2012 IS by etiology RCT, obs All 209 Yes 12/0/4/0 

Table 3.1 (continued). Main characteristics of the systematic reviews and/or meta-analyses 

included. 
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First 
author 

Year 
Factor(s) 
assessed 

Type of 
study 

Age† k† 
Meta-

analysis 
AMSTAR-2‡ 

Eckerle 2013 
Solid organ 
transplants 

RCT, obs All 36 Yes 6/1/9/0 

Goossen 2013 
Chemotherapy in 
cancer patients 

RCT, 
CCT 

Children 9 No 10/0/2/4 

Hua 2014 
Antirheumatic 
drugs in RA 

patients 
Obs Adults 7 Yes 5/2/9/0 

McMahan 2014 

Biological and 
non-biological 

drugs in 
rheumatic 
patients 

Unclear All 18 No 1/0/11/4 

Pascoe 2014 
Acute and 

chronic physical 
exercise 

RCT, obs All 15 No 5/1/6/4 

Posteraro 2014 
Genetic 

variations 
Obs Adults 1 Yes 7/1/8/0 

Shehata 2014 
Cancer patients 

on systemic 
treatment 

Unclear All 16 No 2/0/10/4 

Karbasi-
Afshar 

2015 
Transplant 
recipients 

Obs Unclear 15 Yes 1/0/15/0 

Nguyen 2015 
IS drugs in IBD 

patients 
Obs All 2 Yes 2/3/11/0 

Huang 2016 SLE Obs All 15 Yes 11/1/4/0 
Liao 2016a SLE Obs All 18 Yes 8/2/6/0 

Pugès 2016 SLE Obs Adults 17 Yes 10/1/5/0 
Huang 2017 RA Obs Adults 13 Yes 8/1/7/0 

Lei 2017 
Probiotics, 

prebiotics and 
symbiotics 

RCT Adults 20 Yes 9/1/6/0 

Sousa 2017 
Rheumatic 

diseases 
RCT, obs Children 11 No 3/0/9/4 

Vollaard 2017 
Solid tumor 
patients on 

chemotherapy 
Obs Adults 20 No 1/0/15/0 

Dos Santos 2018 Diabetes mellitus RCT, obs All 15 No 6/0/6/4 

Lee 2018 
Vitamin D 
deficiency 

RCT All 9 Yes 6/2/8/0 

Table 3.1 (continued). Main characteristics of the systematic reviews and/or meta-analyses 

included. 

 

First author Year 
Factor(s) 
assessed 

Type of 
study 

Age† k† 
Meta-

analysis 
AMSTAR-2‡ 

Subesinghe 2018 
Antirheumatic 
drugs in RA 

patients 
Obs Adults 7 Yes 9/1/6/0 

Yeh 2018 
Probiotics, 

prebiotics and 
symbiotics 

RCT Adults 20 Yes 8/2/6/0 
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Zimmermann 2018a Probiotics RCT Adults 12 No 3/1/8/4 

Zimmermann 2018b 
BCG 

vaccination 
RCT, 
CCT 

Adults 3 No 3/1/8/4 

van den Berg 2019 
Latent CMV 

infection 
RCT, obs All 15 Yes 12/0/4/0 

†Considering only studies on influenza vaccines (if a systematic review also considered other vaccines); 
‡Results are reported as Yes/Partial yes/No/Not applicable; AMSTAR: measurement tool for assessing 
systematic reviews; BCG: Bacillus Calmette–Guérin; CCT: controlled clinical trial; CMV: cytomegalovirus; 
IBD: inflammatory bowel disease; IS: immunosuppression/immunosuppressive; RCT: randomized controlled 
trial; Obs: observational study; RA: rheumatoid arthritis; SLE: systemic lupus erythematosus 

 

Figure 3.2. AMSTAR-2 (measurement tool for assessing systematic reviews, version 2) 

ratings, by item. 

 

 
 
 
 
Use of Probiotics, Prebiotics or Symbiotics 

 
Three SRs [Lei et al. 2017; Yeh et al. 2018; Zimmermann and Curtis 2018a] evaluated 

the effect of using pro-/pre-/symbiotics on IV-induced immunogenicity. All three papers 

included only RCTs with at least two intervention arms, i.e. (i) intervention group: use of pro-

/pre-/symbiotics and (ii) control group: placebo or other dietary supplements not containing 

pro-/pre-/symbiotics. 

The SRMA by Lei et al. (2017) pooled binary outcomes (SCs and SRs), while Yeh et 

al. (2018) pooled post-vaccination HAI titers that were deemed to be “mean titers” throughout 

the results. Zimmermann and Curtis (2018a) did not conduct any MA. Some concerns 
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regarding the pooling technique used by Yeh et al. (2018) emerged. Specifically: (i) no 

transformation (e.g. loge) of the skewed summary antibody titers was undertaken, as shown by 

forest plots; (ii) an enormous variation in SDs; (iii) arithmetic and geometric means were 

pooled together. 

A total of 23 meta-analytical estimates with at least 2 pooled primary RCTs were 

extracted from the two SRMAs [Lei et al. 2017; Yeh et al. 2018]; the number of pooled 

studies ranged from 2 to 12, and more than half were statistically significant (P < .05) (Table 

3.2). Briefly, Lei et al. (2017) reported a statistically significant advantage of taking pro-

/prebiotics in terms of immunogenicity with regard to all-age SC against type B and SP 

against A/H1N1 and A/H3N2. Yeh et al. (2018) reported better results in the treatment arms 

in terms of the magnitude of the HAI titer against all three (sub)types; however, heterogeneity 

was extremely high (I2 = 94–100%), casting doubt on the appropriateness of pooling single 

estimates. The narrative synthesis by Zimmermann and Curtis (2018a) concluded that the 

beneficial effect of probiotics on the IV-induced immune response was seen in 5 out of 12 

(42%) studies analyzed. As expected (since all three SRs were published in a one-year 

period), the corrected covered area was very high (57.9%). 

Given the above-described inconsistencies in ES estimates, we re-pooled the available 

primary studies according to our methodology. Briefly, the total number of RCTs included 

ranged from 8 to 13. Statistically significant ORs were seen with regard to SP against type A 

viruses: subjects taking any pro-/pre-/symbiotic were significantly more likely to be protected 

against A/H1N1 and A/H3N2 (by 68% and 93%, respectively). With regard to SCs and post-

vaccination HAI titers against all three (sub)types, there were no statistically significant 

differences between cases and controls. Table 3.3 reports the evidence synthesis of the effect 

of pro-/pre-/symbiotics on IV-induced immunogenicity. The level of evidence for the 

statistically significant estimates was, however, categorized as “class IV”.  

 

Table 3.2. Pooled estimates extracted from the available meta-analyses on the effect of 

probiotic, prebiotic or symbiotic use in order to enhance the influenza vaccine-induced 

immune response (all models are random-effects). 

 

First 
author 
(Year) 

Type Age Virus 
Parameter 

(ES) 
k ES 95% CI P I2, % 

Lei (2017) 

P
ro

/p
r

eb
io

ti
cs

 

Any A/H1N1 
SC (OR) 6 1.52 0.75–3.09 .25 51 

Lei (2017) SP (OR) 7 1.83 1.19–2.82 .006 0 
Yeh Δ mean titers 12 7.14 2.73–11.55 .002 96 
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(2018) (MD) 
Lei (2017) Adults SC (OR) 2 0.62 0.18–2.14 .45 0 
Lei (2017) Elderly SC (OR) 3 2.93 1.47–5.87 .002 3 
Lei (2017) 

Any 
A/H3N2 

SC (OR) 6 2.54 0.93–6.91 .07 83 
Lei (2017) SP (OR) 7 2.85 1.59–5.10 .0004 0 

Yeh 
(2018) 

Δ mean titers 
(MD) 

12 17.19 3.39–30.99 .01 100 

Lei (2017) Adults SC (OR) 2 3.46 1.22–9.83 .02 0 
Lei (2017) Elderly SC (OR) 3 3.68 1.11–12.25 .03 75 
Lei (2017) 

Any 

B 

SC (OR) 6 2.11 1.38–3.21 .0006 0 
Lei (2017) SP (OR) 7 0.99 0.65–1.52 .97 0 

Yeh 
(2018) 

Δ mean titers 
(MD) 

12 4.17 0.37–7.96 .03 94 

Lei (2017) 

P
ro

b
io

ti
cs

 

A/H1N1 
SC (OR) 4 1.91 0.68–5.38 .22 56 

Yeh 
(2018) 

Δ mean titers 
(MD) 

7 4.71 0.53–8.89 .03 97 

Lei (2017) 
A/H3N2 

SC (OR) 4 3.52 1.45–8.53 .005 63 
Yeh 

(2018) 
Δ mean titers 

(MD) 
7 16.86 0.87–32.85 .04 100 

Yeh 
(2018) 

B 
Δ mean titers 

(MD) 
7 3.04 -0.77–6.85 .12 96 

Table 3.2 (continued). Pooled estimates extracted from the available meta-analyses on the 

effect of probiotic, prebiotic or symbiotic use in order to enhance the influenza vaccine-

induced immune response (all models are random-effects). 

 

Lei (2017) 

P
re

bi
ot

ic
s 

Any 

A/H1N1 
SC (OR) 2 0.99 0.54–1.83 .98 0 

Yeh 
(2018) 

Δ mean titers 
(MD) 

5 35.15 0.31–70.00 .05 72 

Lei (2017) 
A/H3N2 

SC (OR) 2 1.31 0.22–7.98 .77 75 
Yeh 

(2018) 
Δ mean titers 

(MD) 
5 18.66 

-13.24–
50.56 

.25 69 

Yeh 
(2018) 

B 
Δ mean titers 

(MD) 
5 20.68 -9.07–50.42 .17 79 

CI: confidence interval; ES: effect size; MD: mean difference; OR: odds ratio; SC: seroconversion rate; SP: 

 
Table 3.3. Summary evidence of the effect of using probiotics, prebiotics or symbiotics to 

enhance the influenza vaccine-induced immune response, by immunogenicity parameter and 

viral (sub)type. 

 

Parameter A/H1N1 A/H3N2 B 
Seroconversion rate 

k 10 8 9 
N 277/274 235/229 266/250 

OR RE (95% CI) 1.55 (0.86–2.90) 1.34 (0.72–2.50) 1.14 (0.75–1.74) 
P RE .14 .35 .54 

95% PI 0.38–6.50 0.36–5.00 0.75–1.74 
OR FE (95% CI) 1.42 (0.96–2.09) 1.12 (0.75–1.66) 1.14 (0.75–1.74) 
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P FE .075 .58 .54 
I2, % 49.6 49.0 0 

τ2 0.42 0.35 0 
SSE, P .49 NA NA 

LS No No No 
CES ns ns ns 

Seroprotection rate 
k 13 11 11 
N 845/855 805/812 800/810 

OR RE (95% CI) 1.68 (1.02–2.75) 1.93 (1.08–3.44) 0.94 (0.73–1.23) 
P RE .040 .026 .66 

95% PI 0.47–5.98 0.64–3.13 0.73–1.23 
OR FE (95% CI) 1.25 (0.98–1.59) 1.94 (1.20–3.13) 0.94 (0.73–1.23) 

P FE .067 .006 .66 
I2, % 56.2 24.9 0 

τ2 0.36 0.23 0 
SSE, P .18 .58 .38 

Table 4.3 (continued). Summary evidence of the effect of using probiotics, prebiotics or 

symbiotics to enhance the influenza vaccine-induced immune response, by immunogenicity 

parameter and viral (sub)type. 

 

Parameter A/H1N1 A/H3N2 B 
Seroprotection rate (cont.) 

LS No No No 
CES IV IV ns 

Post-vaccination HAI titer 
k 11 10 10 
N 399/398 380/374 380/374 

g RE (95% CI) 0.05 (-0.09–0.19) 0.05 (-0.10–0.19) 0.00 (-0.15–0.14) 
P RE .49 .53 .96 

95% PI -0.09–0.19 -0.10–0.19 -0.15–0.14 
g FE (95% CI) 0.05 (-0.09–0.19) 0.05 (-0.10–0.19) 0.00 (-0.15–0.14) 

P FE .49 .53 .96 
I2, % 0 0 0 

τ2 0 0 0 
SSE, P .84 .78 .009 

LS No No No 
CES ns ns ns 

CES: cumulative evidence synthesis class; CI: confidence interval; FE: fixed-effects model; HAI: 
hemagglutination-inhibition; LS: the largest study has a statistically significant effect size; ns: non-significant; 
OR: odds ratio; PI: prediction interval; RE: random-effects model; SSE: small-study effect test. 

 

We then conducted a subgroup analysis according to the type of supplement used (i.e. 

pro-/pre- or symbiotic) (Tables 3.4–3.6). No definite conclusions could be drawn. 

Specifically, statistically significant ORs were seen in the following comparisons: (i) 

probiotic use and SC against A/H1N1 [2.89 (95% CI: 1.19–6.99)] (Table 3.4) and (ii) 
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prebiotic use and SP against A/H1N1 [2.72 (95% CI: 1.14–6.50)] (Table 3.5). In all meta-

analyses performed random- and fixed-effects models showed generally comparable results; 

indeed, the heterogeneity was usually low-to-moderate.  

Sub-analysis by age-class revealed two statistically significant comparisons: SC 

against A/H3N2 in working-age adults [OR 2.32 (95% CI: 1.07–5.03)] and SP against 

A/H1N1 in the elderly [OR 2.40 (95% CI: 1.25–4.60)] (Table 3.6). The paucity of the 

available RCTs did not allow us to perform a meta-regression analysis. 

 

 

 

 

Table 3.4. Subgroup analysis (by supplement type and age-class) of the summary evidence on 

the effect of probiotic, prebiotic or symbiotic use on seroconversion rates. 

 

Parameter A/H1N1 A/H3N2 B 

Probiotics 

k 3 2 3 
N 71/73 52/49 96/91 

OR RE (95% CI) 2.89 (1.19–6.99) 2.37 (0.41–13.78) 1.81 (0.90–3.65) 
OR FE (95% CI) 2.89 (1.19–6.99) 1.59 (0.71–3.58) 1.81 (0.90–3.65) 

I2 , % 0 50.2 0 

Prebiotics 

k 4 3 3 
N 132/125 109/104 96/83 

OR RE (95% CI) 2.21 (0.78–6.21) 1.42 (0.42–4.77) 1.16 (0.58–2.36) 
OR FE (95% CI) 1.58 (0.93–2.71) 0.95 (0.52–1.75) 1.16 (0.58–2.36) 

I2 , % 56.8 48.1 0 

Symbiotics 

k 3 3 3 
N 74/76 74/76 74/76 

OR RE (95% CI) 0.67 (0.24–1.85) 1.14 (0.33–3.92) 0.58 (0.24–1.41) 
OR FE (95% CI) 0.73 (0.36–1.50) 1.06 (0.53–2.10) 0.60 (0.27–1.34) 

I2 , % 45.9 68.9 14.3 

Adults 

k 4 3 3 
N 89/94 70/70 70/70 

OR RE (95% CI) 1.28 (0.61–2.72) 2.32 (1.07–5.03) 0.84 (0.39–1.79) 
OR FE (95% CI) 1.28 (0.61–2.72) 2.32 (1.07–5.03) 0.84 (0.39–1.79) 

I2 , % 0 0 0 

Elderly 

k 6 5 6 
N 188/180 165/159 196/180 

OR RE (95% CI) 1.86 (0.77–4.47) 0.92 (0.48–1.77) 1.31 (0.79–2.18) 
OR FE (95% CI) 1.47 (0.94–2.32) 0.86 (0.55–1.37) 1.31 (0.79–2.18) 

I2 , % 65.1 35.6 0 
Statistically significant estimates are evidenced in italics; CI: confidence interval; FE: fixed-effects model; OR: 
odds ratio; RE: random-effects model 
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Table 3.5. Subgroup analysis (by supplement type and age-class) of the summary evidence on 

the effect of probiotic, prebiotic or symbiotic use on seroprotection rates. 

 

Parameter A/H1N1 A/H3N2 B 

Probiotics 

k 5 4 4 
N 630/644 611/622 611/620 

OR RE (95% CI) 1.76 (0.92–3.37) 1.20 (0.49–2.94) 1.02 (0.75–1.40) 
OR FE (95% CI) 1.15 (0.86–1.53) 1.37 (0.71–2.66) 1.02 (0.75–1.40) 

I2 , % 51.8 34.8 0 

Prebiotics 

k 4 3 3 
N 132/125 109/104 104/103 

OR RE (95% CI) 2.72 (1.14–6.50) 3.86 (1.33–11.19) 0.88 (0.48–1.61) 
OR FE (95% CI) 2.36 (1.36–4.08) 3.86 (1.33–11.19) 0.88 (0.48–1.61) 

I2 , % 43.1 0 0 

Table 3.5 (continued). Subgroup analysis (by supplement type and age-class) of the summary 

evidence on the effect of probiotic, prebiotic or symbiotic use on seroprotection rates. 

 

Parameter A/H1N1 A/H3N2 B 

Symbiotics 

k 4 4 4 
N 83/86 85/86 85/87 

OR RE (95% CI) 0.69 (0.24–2.00) 2.38 (0.60–9.44) 0.60 (0.21–1.74) 
OR FE (95% CI) 0.64 (0.28–1.43) 2.27 (0.91–5.65) 0.66 (0.31–1.42) 

I2 , % 32.5 54.5 37.6 

Adults 

k 5 4 4 
N 620/636 601/612 601/612 

OR RE (95% CI) 0.92 (0.68–1.25) 1.97 (0.79–4.91) 0.96 (0.68–1.34) 
OR FE (95% CI) 0.92 (0.68–1.25) 1.85 (0.87–3.94) 0.96 (0.68–1.34) 

I2 , % 0 29.0 46.4 

Elderly 

k 8 7 7 
N 225/219 204/200 199/198 

OR RE (95% CI) 2.40 (1.25–4.60) 1.87 (0.78–4.49) 0.92 (0.61–1.40) 
OR FE (95% CI) 2.17 (1.45–3.26) 2.00 (1.08–3.71) 0.92 (0.61–1.40) 

I2 , % 52.7 38.8 0 
Statistically significant estimates are evidenced in italics; CI: confidence interval; FE: fixed-effects model; OR: 
odds ratio; RE: random-effects model 

 

On applying a post-hoc modality to each study included in the available SR/SRMAs, it 

emerged that most studies had been funded by dietary supplement producers, though this was 

not considered in the available SRMAs [Lei et al. 2017; Yeh et al. 2018; Zimmermann and 

Curtis 2018a]. We therefore conclude that the estimates provided may be prone to the so-

called “industry sponsorship” bias. 
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Table 3.6. Subgroup analysis (by supplement type and age-class) of the summary evidence on 

the effect of probiotic, prebiotic or symbiotic use on post-vaccination hemagglutination-

inhibition titers. 

 

Parameter A/H1N1 A/H3N2 B 

Probiotics 

k 6 5 5 
N 233/232 214/208 214/208 

g RE (95% CI) 0.08 (-0.10–0.27) 0.06 (-0.13–0.26) 0.00 (-0.19–0.19) 
g FE (95% CI) 0.08 (-0.10–0.27) 0.06 (-0.13–0.26) 0.00 (-0.19–0.19) 

I2 , % 0 0 0 

Prebiotics 

k 2 2 2 
N 92/90 92/90 92/90 

g RE (95% CI) 0.07 (-0.23–0.36) 0.03 (-0.26–0.32) 0.04 (-0.25–0.33) 
g FE (95% CI) 0.07 (-0.23–0.36) 0.03 (-0.26–0.32) 0.04 (-0.25–0.33) 

I2 , % 0 0 0 

Table 3.6 (continued). Subgroup analysis (by supplement type and age-class) of the summary 

evidence on the effect of probiotic, prebiotic or symbiotic use on post-vaccination 

hemagglutination-inhibition titers. 

 
Parameter A/H1N1 A/H3N2 B 

Symbiotics 

k 3 3 3 
N 74/76 74/76 74/76 

g RE (95% CI) -0.08 (-0.40–0.24) 0.01 (-0.31–0.33) -0.06 (-0.38–0.26) 
g FE (95% CI) -0.08 (-0.40–0.24) 0.01 (-0.31–0.33) -0.06 (-0.38–0.26) 

I2 , % 0 0 0 

Adults 

k 3 2 2 
N 67/73 48/49 48/49 

g RE (95% CI) 0.15 (-0.19–0.49) 0.08 (-0.31–0.48) -0.02 (-0.42–0.37) 
g FE (95% CI) 0.15 (-0.19–0.48) 0.08 (-0.31–0.48) -0.02 (-0.42–0.37) 

I2 , % 3.6 0 0 

Elderly 

k 8 8 8 
N 332/325 332/325 332/325 

g RE (95% CI) 0.03 (-0.12–0.18) 0.04 (-0.11–0.19) 0.00 (-0.15–0.15) 
g FE (95% CI) 0.03 (-0.12–0.18) 0.08 (-0.11–0.19) 0.00 (-0.15–0.15) 

I2 , % 0 0 0 
CI: confidence interval; FE: fixed-effects model; RE: random-effects model 
 

 
BCG (Bacillus Calmette–Guérin) Vaccination 

 

One SR [Zimmermann and Curtis 2018b] investigated the effect of previous or 

concomitant BCG vaccination on the immunogenicity of various vaccines, including 

influenza. Three studies were included in the qualitative synthesis of this SR. The authors 

reported that these studies had found an enhanced effect of inactivated IVs on both the 

magnitude HAI antibodies and SC rates in recipients of a BCG vaccine. By contrast, no such 
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effect was seen in subjects who received live attenuated IVs. It was not feasible to pool the 

results from the three studies, owing to the paucity of the available evidence, different study 

designs (randomized and non-randomized), different IVs (live, inactivated or both) and 

different timing of IV administration (concomitantly or separately from BCG). 

 
Genetic Polymorphisms 

 

An SR by Posteraro et al. (2014) was the only one to investigate the potential role of 

genetic variations in the vaccine-induced immune response, including that induced by IVs. 

However, only one IV-related study was found and analyzed. Four statistically significant 

associations were reported. Positivity for HLA-DQB1*03:03 [OR 20.40 (95% CI: 1.10–

376.80)] and HLA-DRB1*07 [OR 4.00 (95% CI: 1.30–12.20)] were associated with a 

negative IV-induced response, while positivity for HLA-DRB3*0X [OR 0.36 (95% CI: 0.10–

0.88)] and HLA-DRB1*13 [OR 0.18 (95% CI: 0.05–0.69)] were associated with a positive 

response. No further studies were identified. 

 

Intravenous Drug Use 

 
Only one SR [Baral et al. 2007] evaluated the immunogenicity of different vaccines in 

intravenous drug users. Regarding influenza, only two primary studies were discussed. It is, 

however, difficult to draw any conclusion, as these two studies included former intravenous 

drug users who were all HIV-positive. HIV positivity as a host factor will be discussed below. 

 
Vitamin D Supplementation/Deficiency 

 
A recent SRMA by Lee et al. (2018) investigated the effect of vitamin D deficiency on 

the IV-induced immune response. On pooling the binary outcomes of SCs and SPs, the 

authors obtained inconclusive results. Specifically, vaccinated subjects with normal vitamin D 

serum levels had a lower probability of being seroprotected against A/H3N2 and B 

(sub)types; no other significant results emerged (Table 3.7). 

 

Table 3.7. Pooled estimates extracted from the available meta-analyses on the effect of 

vitamin D deficiency on the influenza vaccine-induced immune response (all models are 

random-effects). 
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Parameter A/H1N1 A/H3N2 B 

Seroconversion 
rate 

k 6 4 4 
N 383/1178 358/1079 358/1079 

OR (95% CI) 1.10 (0.79–1.54) 0.98 (0.76–1.25) 0.98 (0.75–1.27) 
I2 , % 25 0 0 

Seroprotection 
rate 

k 6 4 4 
N 373/1144 358/1079 358/1019 

OR (95% CI) 1.00 (0.52–1.92) 0.63 (0.43–0.91) 0.68 (0.50–0.93) 
I2 , % 75 36 1 

Statistically significant estimates are evidenced in italics; CI: confidence interval; OR: odds ratio 
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However, we did not retain the results obtained by Lee et al. (2018), since RCTs 

(vitamin D supplementation vs placebo or no treatment) and cohort studies based on the 

vitamin D serum concentration (deficient vs normal) were pooled together. 

Among the primary studies, four RCTs were identified; their sample sizes were, 

however, low. We did not find any significant (P > .27) association, regardless of the HAI 

measure used and the virus (sub)type (Table 3.8). Owing to the paucity of studies, no further 

analyses were conducted. 

 

Table 3.8. Summary evidence of the effect of vitamin D supplementation in order to enhance 

the influenza vaccine-induced immune response, by immunogenicity parameter and viral 

(sub)type. 

 

Parameter A/H1N1 A/H3N2 B 
Seroconversion rate 

k 3 3 3 
N 176/276 176/276 176/276 

OR RE (95% CI) 0.79 (0.52–1.20) 1.02 (0.69–1.51) 0.93 (0.57–1.52) 
P RE .27 .94 .77 

95% PI 0.52–1.20 0.69–1.51 0.57–1.52 
OR FE (95% CI) 0.79 (0.52–1.20) 1.02 (0.69–1.51) 0.93 (0.57–1.52) 

P FE .27 .94 .77 
I2, % 0 0 0 

τ2 0 0 0 
SSE, P NA NA NA 

LS No No No 
CES ns ns ns 

Seroprotection rate 
k 3 3 3 
N 176/276 176/276 176/276 

OR RE (95% CI) 0.85 (0.51–1.41) 0.98 (0.60–1.58) 0.75 (0.44–1.28) 
P RE .53 .92 .29 

95% PI 0.51–1.41 0.60–1.58 0.44–1.28 
OR FE (95% CI) 0.85 (0.51–1.41) 0.98 (0.60–1.58) 0.75 (0.44–1.28) 

P FE .53 .92 .29 
I2, % 0 0 0 

τ2 0 0 0 
SSE, P NA NA NA 

LS No No No 
CES ns ns ns 

Post-vaccination HAI titer 
k 3 3 3 
N 154/153 154/153 154/153 

g RE (95% CI) 0.07 (-0.17–0.30) -0.05 (-0.27–0.17) 0.02 (-0.2– 0.24) 
P RE .58 .66 .89 
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Table 3.8 (continued). Summary evidence of the effect of vitamin D supplementation in order 

to enhance the influenza vaccine-induced immune response, by immunogenicity parameter 

and viral (sub)type. 

 

Parameter A/H1N1 A/H3N2 B 
Post-vaccination HAI titer (cont.) 

95% PI -0.18–0.31 -0.27–0.17 -0.21–0.24 
g FE (95% CI) 0.06 (-0.16–0.29) -0.05 (-0.27–0.17) 0.02 (-0.21–0.24) 

P FE .57 .66 .89 
I2, % 4.2 0 0 

τ2 0 0 0 
SSE, P NA NA NA 

LS No No No 
CES ns ns ns 

CES: cumulative evidence synthesis class; CI: confidence interval; FE: fixed-effects model; HAI: 
hemagglutination-inhibition; LS: the largest study has a statistically significant effect size; NA; non available; 
ns: non-significant; OR: odds ratio; PI: prediction interval; RE: random-effects model; SSE: small-study effect 
test 

 

Observational studies on IV immunogenicity in vitamin D-deficient patients versus 

controls with normal concentrations did not usually reveal a significant difference. We 

decided against pooling since the available studies used different cut-offs to define vitamin D 

deficiency. 

 
Immunosuppressive Conditions 

 
The category of any immunosuppressive condition was the most populated: as 

mentioned above, a total of 17 SRs/SRMAs on this topic were included in the qualitative 

assessment. 

A total of 96 pooled estimates (immunosuppressed patients vs healthy controls) based 

on at least 2 studies were extracted from the nine SRMAs; the number of pooled studies 

ranged from 2 to 50, and 58% (N = 56) of the meta-analytical estimates reported a P < .05. Of 

these latter, all but one (N = 55) reported a negative effect of immunosuppression on the SC 

and/or SP against influenza (Table 3.9). 

From the included SRs without MAs, the following qualitative evidence synthesis was 

drawn. Agarwal et al. (2012) concluded that approximately 50% of the primary studies 

included had indicated a negative effect of IV in patients using immunosuppressive 

medications. Three SRs [Goossen et al. 2013; Shehata and Karim 2014; Vollaard et al. 2017] 

involving cancer patients (either pediatric or adult) advocated the use of IVs in such patients, 
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although uncertainty regarding the negative effect of the condition was substantial. Finally, 

the SR by Sousa et al. (2017) on the effect of rheumatic diseases on IV immunogenicity 

concluded that the biological therapy of rheumatic diseases could hamper the immune 

response, but that IV could be beneficial in such patients. 

 

Table 3.9. Pooled estimates extracted from the available meta-analyses on the effect of 

immunosuppressive conditions on the influenza vaccine-induced immune response. 

 

First 
author 
(Year) 

Condition Age Virus 
Parameter 

(ES) 
k Model ES 95% CI 

Beck 
(2011) 

Any IS 

A
n
y 

H1N1 
SC (OR) 

50 RE 0.55 0.43–0.71 
H3N2 47 RE 0.55 0.41–0.73 

B 44 RE 0.48 0.36–0.62 
H1N1 

SP (OR) 
37 RE 0.36 0.26–0.51 

H3N2 35 RE 0.39 0.26–0.59 
B 37 RE 0.37 0.25–0.53 

Beck 
(2012) 

HIV 

H1N1 
SC (OR) 

17 FE 0.51 0.40–0.66 
H3N2 15 RE 0.47 0.27–0.79 

B 15 FE 0.34 0.26–044 
H1N1 

SP (OR) 
7 RE 0.28 0.12–0.65 

H3N2 7 RE 0.28 0.09–0.80 
B 7 RE 0.24 0.09–0.60 

Cancer 

H1N1 
SC (OR) 

12 FE 0.31 0.22–0.43 
H3N2 12 RE 0.39 0.21–0.71 

B 8 RE 0.37 0.20–0.68 
H1N1 

SP (OR) 
10 RE 0.30 0.15–0.61 

H3N2 10 RE 0.30 0.14–0.63 
B 9 RE 0.30 0.14–0.67 

Transplantation 

H1N1 
SC (OR) 

10 RE 0.76 0.38–1.51 
H3N2 10 RE 0.38 0.23–0.62 

B 10 RE 0.48 0.27–0.86 
H1N1 

SP (OR) 
10 FE 0.28 0.16–0.47 

H3N2 7 RE 0.29 0.09–0.92 
B 9 RE 0.36 0.19–0.70 

Autoimmune 
diseases treated 

with ISs 

H1N1 
SC (OR) 

8 RE 0.90 0.45–1.80 
H3N2 7 FE 1.54 1.03–2.32 

B 7 RE 0.98 0.43–2.24 
H1N1 

SP (OR) 
7 FE 0.49 0.29–0.84 

H3N2 9 FE 0.71 0.43–1.17 
B 9 RE 0.48 0.22–1.05 

Respiratory 
diseases on ISs 

H1N1 
SC (OR) 

2 RE 0.96 0.33–2.79 
H3N2 2 RE 0.93 0.30–2.85 

B 2 FE 0.29 0.14–0.59 
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Table 3.9 (continued). Pooled estimates extracted from the available meta-analyses on the 

effect of immunosuppressive conditions on the influenza vaccine-induced immune response. 

 

First 
author 
(Year) 

Condition Age Virus 
Parameter 

(ES) 
k Model ES 95% CI 

Eckerle 
(2013) 

Solid organ 
transplantation 

(any) 
A

ny
 

H1N1 

Response 
rate (RD)† 

19 FE -0.12 -0.16–-0.08 
19 RE -0.16 -0.25–-0.06 

H3N2 
18 FE -0.15 -0.19–-0.11 
18 RE -0.15 -0.23–-0.07 

B 
19 FE -0.12 -0.16–-0.07 
19 RE -0.10 -0.19–-0.01 

Renal 
transplantation 

H1N1 
9 FE -0.12 -0.19–-0.06 
9 RE -0.15 -0.32–0.02 

H3N2 
9 FE -0.15 -0.22–-0.09 
9 RE -0.13 -0.22–-0.04 

B 
9 FE 0.03 -0.03–0.09 
9 RE 0.00 -0.09–0.09 

Liver 
transplantation 

H1N1 
5 FE -0.07 -0.14–0.01 
5 RE -0.07 -0.13–-0.01 

H3N2 
5 FE -0.06 -0.13–0.00 
5 RE -0.10 -0.25–0.06 

B 
5 FE -0.03 -0.10–0.04 
5 RE -0.04 -0.12–0.03 

Heart 
transplantation 

H1N1 
3 FE -0.06 -0.14–-0.01 
3 RE -0.19 -0.75–0.37 

H3N2 
2 FE -0.27 -0.37–-0.17 
2 RE -0.27 -0.37–-0.17 

B 
3 FE -0.46 -0.57–-0.35 
3 RE -0.41 -0.59–-0.23 

Hua (2014) 

RA patients on 
methotrexate 

A
du

lt
s 

H1N1 

ARR (OR) 

2 FE 1.36 0.69–2.68 
H3N2 2 FE 1.33 0.70–2.53 

B 2 FE 1.28 0.64–2.56 

RA patients on 
rituximab 

H1N1 2 FE 0.44 0.17–1.12 
H3N2 2 FE 0.11 0.04–0.31 

B 2 FE 0.29 0.10–0.81 

RA patients on 
αTNF 

H1N1 4 RE 0.93 0.36–2.37 
H3N2 4 RE 0.79 0.34–1.83 

B 4 RE 0.79 0.37–1.70 

Huang 
(2016) 

SLE 

A
ny

 

H1N1 
SC (RR) 

13 RE 0.71 0.62–0.81 
H3N2 7 RE 0.73 0.53–1.01 

B 4 RE 0.66 0.52–0.82 
H1N1 

SP (RR) 
12 RE 0.79 0.73–0.87 

H3N2 6 RE 0.84 0.68–1.03 
B 5 RE 0.75 0.65–0.87 
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Table 3.9 (continued). Pooled estimates extracted from the available meta-analyses on the 

effect of immunosuppressive conditions on the influenza vaccine-induced immune response. 

 

First 
author 
(Year) 

Condition Age Virus 
Parameter 

(ES) 
k Model ES 95% CI 

Liao 
(2016) 

SLE 

A
ny

 

H1N1 
SC (OR) 

15 RE 0.39 0.27–0.57 
H3N2 6 RE 0.62 0.21–1.79 

B 6 FE 0.47 0.29–0.76 
H1N1 

SP (OR) 
18 RE 0.36 0.27–0.50 

H3N2 8 RE 0.48 0.24–0.93 
B 6 RE 0.55 0.24–1.25 

Pugès 
(2016) 

A
du

lt
s 

H1N1 
SC (OR) 

12 RE 0.38 0.27–0.54 
H3N2 11 RE 0.66 0.36–1.23 

B 5 RE 0.51 0.20–1.28 
H1N1 

SP (OR) 
11 RE 0.36 0.28–0.47 

H3N2 6 FE 0.26 0.14–0.50 
B 5 RE 0.93 0.42–2.08 

Huang 
(2017) 

RA 

H1N1 
SC (RR) 

12 RE 0.78 0.68–0.90 
H3N2 8 RE 1.11 0.93–1.32 

B 9 RE 0.84 0.62–1.14 
H1N1 

SP (RR) 
9 RE 0.72 0.60–0.86 

H3N2 5 RE 0.96 0.82–1.13 
B 5 RE 0.95 0.84–1.08 

Subesinghe 
(2018) 

RA patients on 
methotrexate 

H1N1 
SP (RR) 

5 RE 0.88 0.69–1.11 
H3N2 2 RE 0.94 0.85–1.04 

B 2 RE 1.15 0.63–2.10 

RA patients on 
αTNF 

H1N1 
SP (RR) 

7 RE 0.86 0.72–1.04 
H3N2 4 RE 0.98 0.74–1.31 

B 4 RE 1.38 0.70–2.72 
†Seroconversion and seroprotection rates were probably pooled together; ARR: absolute risk reduction; CI: 
confidence interval; ES: effect size; FE: fixed-effects model; HIV: human immunodeficiency virus; IS: 
immunosuppression/immunosupressant; OR: odds ratio; RCT: randomized controlled trial; RA: rheumatoid 
arthritis; RE: random-effects model; RR: risk ratio; SC: seroconversion rate; SLE: systemic lupus 
erythematosus; SP: seroprotection rate; TNF: tumor necrosis factor 

 

Among the SRs/SRMAs that covered a similar topic, the observed corrected covered 

areas varied greatly. Indeed, the corrected covered area of three SRMAs on systemic lupus 

erythematosus [Huang et al. 2016; Liao et al. 2016a; Pugès et al. 2016] and another three 

SRMAs on rheumatoid arthritis [Hua et al. 2014; Huang et al. 2017; Subesinghe et al. 2018] 

showed very high corrected covered areas (73.7% and 21.1%, respectively), while three SRs 

on cancer patients [Goossen et al. 2013; Shehata and Karim 2014; Vollaard et al. 2017] and 

two SRMAs on transplant patients [Eckerle et al. 2013; Karbasi-Afshar et al. 2015] showed 
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substantially lower corrected covered areas, which were deemed “moderate” (6.6% and 8.9%, 

respectively). 

Table 3.10 summarizes the evidence synthesis on the effect of any immunosuppressive 

condition on IV-induced immunogenicity. The total number of studies included varied from 

69 to 116, and the corresponding number of cases ranged from 3,720 to 8,673. As expected, 

the highest number of studies involved A/H1N1, since several studies were conducted during 

the last H1N1pdm09 pandemic, when the MIV was used. Despite the large patient numbers 

and ESs, the CES assigned was generally of class II (exception: SP and post-vaccination HAI 

titer for type B, which were assigned to class III). This was primarily attributed to the 

relatively high heterogeneity observed and the consequent large 95% prediction intervals, 

which downgraded the CES (Table 3.10). 

 

Table 3.10. Summary evidence of the effect of immunosuppressive conditions on the 

influenza vaccine-induced immune response, by immunogenicity parameter and viral 

(sub)type. 

 

Parameter A/H1N1 A/H3N2 B 
Seroconversion rate 

k 116 94 85 
N 8673/4638 4193/3023 3888/2944 

OR RE (95% CI) 0.50 (0.42–0.59) 0.51 (0.41–0.63) 0.53 (0.44–0.64) 
P RE 2∙10-15 2∙10-10 4∙10-11 

95% PI 0.13–1.99 0.11–2.37 0.16–1.75 
OR FE (95% CI) 0.53 (0.49–0.59) 0.56 (0.50–0.62) 0.54 (0.48–0.61) 

P FE < 1∙10-14 < 1∙10-14 < 1∙10-14 
I2, % 65.7 65.8 53.9 

τ2 0.49 0.60 0.36 
SSE, P .30 .30 .75 

LS Yes Yes Yes 
CES II II II 

Seroprotection rate 
k 102 76 75 
N 8452/4272 3780/2605 3759/2505 

OR RE (95% CI) 0.42 (0.35–0.51) 0.35 (0.27–0.45) 0.53 (0.41–0.69) 
P RE < 1∙10-15 1∙10-15 3∙10-6 

95% PI 0.12–1.54 0.08–1.46 0.10–2.76 
OR FE (95% CI) 0.44 (0.39–0.49) 0.38 (0.32–0.45) 0.51 (0.44–0.60) 

P FE < 1∙10-15 < 1∙10-15 < 1∙10-15 
I2, % 54.5 45.7 59.9 

τ2 0.43 0.52 0.69 
SSE, P > .99 .78 .12 
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Table 3.10 (continued). Summary evidence of the effect of immunosuppressive conditions on 

the influenza vaccine-induced immune response, by immunogenicity parameter and viral 

(sub)type. 

Seroprotection rate (cont.) 
LS Yes Yes Yes 

CES II II III 
Post-vaccination HAI titer 

k 99 77 69 
N 7909/4438 3889/2922 3720/2751 

g RE (95% CI) -0.36 (-0.45–-0.28) -0.44 (-0.55–-0.34) -0.34 (-0.43–-0.24) 
P RE < 1∙10-15 2∙10-15 2∙10-12 

95% PI -1.05–0.32 -1.25–0.36 -0.94–0.26 
g FE (95% CI) -0.33 (-0.37–-0.29) -0.43 (-0.49–-0.38) -0.32 (-0.38–-0.27) 

P FE < 1∙10-15 < 1∙10-15 < 1∙10-15 
I2, % 73.8 75.0 63.6 

τ2 0.12 0.17 0.09 
SSE, P .17 .64 .42 

LS Yes Yes No 
CES II II III 

CES: cumulative evidence synthesis class; CI: confidence interval; FE: fixed-effects model; HAI: 
hemagglutination-inhibition; LS: the largest study has a statistically significant effect size; OR: odds ratio; PI: 
prediction interval; RE: random-effects model; SSE: small-study effect test 

 

With regard to post-vaccination HAI GMT titers, we conducted a sensitivity analysis 

after excluding studies with imputed SDs. Although k dropped significantly, the Hedges’ gs 

observed were in line with the main analysis (Table 3.10) and no substantial changes 

occurred; the CES grouping did not change (Table 3.11). 

In order to explain the observed heterogeneity reported in Table 3.10, we conducted a 

series of meta-regression analyses (Tables 3.12–3.14). The following variables were explored: 

year of publication (< 2000 vs ≥ 2000), total study sample (< 100 vs ≥ 100), population age 

(children vs adults), a categorical variable of the virus (sub)type (A/H1N1, A/H3N2 and B, 

where A/H1N1 is the reference category) and a categorical variable of immunosuppressive 

condition. This last category was classified post-hoc in order to ensure a significant number of 

observations for each category. The classification was: transplant patients (reference 

category), cancer, HIV, rheumatic diseases and other/mixed conditions. In the fully adjusted 

models, only patients with rheumatic diseases generally showed a better response than 

transplant recipients, although the regression coefficients reached an α < .05 only with regard 

to the post-vaccination HAI titer (Tables 3.12–3.14). 
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Table 3.11. Sensitivity analysis (by excluding studies with the imputed standard deviations) 

on the effect of any immunosuppressive condition on post-vaccination hemagglutination-

inhibition titers. 

 

Parameter A/H1N1 A/H3N2 B 
k 52 35 35 
N 5616/2425 2116/1174 2198/1234 

g RE (95% CI) -0.34 (-0.45–-0.23) -0.53 (-0.68–-0.39) -0.36 (-0.50–-0.21) 
P RE 9∙10-10 3∙10-13 1∙10-6 

95% PI -0.98–0.30 -1.23–0.16 -1.05–0.34 
g FE (95% CI) -0.29 (-0.34–-0.24) -0.51 (-0.58–-0.43) -0.30 (-0.38–-0.23) 

P FE < 1∙10-15 < 1∙10-15 3∙10-15 
I2 , % 73.9 68.6 69.7 

τ2 0.10 0.12 0.12 
SSE, P .11 .25 .062 

LS Yes Yes No 
CES II II III 

CES: cumulative evidence synthesis class; CI: confidence interval; FE: fixed-effects model; LS: the largest study 
has a statistically significant effect size;  PI: prediction interval; RE: random-effects model; SSE: small study 
effect’s test 

 

Table 3.12. Multivariable meta-regression analysis in order to predict the observed pooled 

estimates on seroconversion rates. 

 

Parameter Variable 
Univariable model Full model 
b (SE) P b (SE) P 

Publication in year 
<2000 Ref – Ref – 
≥2000 0.06 (0.13) .64 0.03 (0.13) .84 

Total sample size 
<100 Ref – Ref – 
≥100 0.14 (0.11) .21 0.14 (0.12) .25 

Age 
Children Ref – Ref – 
Adults -0.02 (0.14) .86 -0.11 (0.14) .44 

Virus 
A/H1N1 Ref – Ref – 
A/H3N2 0.03 (0.13) .82 0.08 (0.13) .56 

B 0.07 (0.14) .62 0.11 (0.14) .42 

Immunosuppression 
category 

Transplantation Ref – Ref – 
Cancer -0.27 (0.17) .12 -0.26 (0.18) .14 

HIV -0.05 (0.17) .79 -0.07 (0.18) .69 
RDs 0.28 (0.15) .070 0.27 (0.16) .091 

Other/Mixed -0.11 (0.19) .57 -0.17 (0.20) .41 
HIV: human immunodeficiency virus; RD: rheumatic disease; SE: standard error 

 

 

 

Table 3.13. Multivariable meta-regression analysis in order to predict the observed pooled 

estimates on seroprotection rates. 



55 
 

 

Parameter Variable 
Univariable model Full model 

b (SE) P b (SE) P 

Publication in year 
< 2000 Ref – Ref – 
≥ 2000 0.32 (0.18) .076 0.13 (0.20) .50 

Total sample size 
< 100 Ref – Ref – 
≥ 100 -0.02 (0.14) .88 0.03 (0.15) .85 

Age 
Children Ref – Ref – 
Adults -0.17 (0.18) .35 -0.18 (0.18) .32 

Virus 
A/H1N1 Ref – Ref – 
A/H3N2 -0.19 (0.17) .26 -0.14 (0.17) .39 

B 0.23 (0.16) .16 0.26 (0.16) .11 

Immunosuppression 
category 

Transplantation Ref – Ref – 
Cancer 0.27 (0.23) .23 0.24 (0.24) .31 

HIV -0.11 (0.25) .66 -0.13 (0.25) .62 
RDs 0.42 (0.19) .026 0.39 (0.20) .051 

Other/Mixed 0.35 (0.24) .14 0.26 (0.26) .31 
HIV: human immunodeficiency virus; RD: rheumatic disease; SE: standard error 

 

Table 3.14. Multivariable meta-regression analysis in order to predict the observed pooled 

estimates on post-vaccination hemagglutination-inhibition titers. 

 

Parameter Variable 
Univariable model Full model 

b (SE) P b (SE) P 

Publication in year 
< 2000 Ref – Ref – 
≥ 2000 0.16 (0.07) .016 0.06 (0.07) .38 

Total sample size 
< 100 Ref – Ref – 
≥ 100 0.05 (0.06) .42 0.04 (0.06) .51 

Age 
Children Ref – Ref – 
Adults 0.01 (0.07) .85 0.00 (0.07) .99 

Virus 
A/H1N1 Ref – Ref – 
A/H3N2 -0.08 (0.07) .80 -0.05 (0.06) .39 

B 0.02 (0.07) .80 0.05 (0.07) .45 

Immunosuppression 
category 

Transplantation Ref – Ref – 
Cancer 0.14 (0.10) .13 0.14 (0.10) .18 

HIV 0.01 (0.10) .89 0.01 (0.10) .92 
RDs 0.41 (0.08) <.0001 0.40 (0.09) <.0001 

Other/Mixed 0.22 (0.10) .32 0.20 (0.10) .060 
HIV: human immunodeficiency virus; RD: rheumatic disease; SE: standard error 

 

We then conducted several subgroup analyses according to the type of 

immunosuppression. As summarized in Table 3.15, most pooled estimates were statistically 

significant. However, although the ESs were usually large, the overall CES was often of class 

IV, as it was driven by the total sample size. Indeed, a class-I CES was assigned only to some 

pooled estimates that regarded the subtype A/H1N1. In any case, these subgroup analyses 
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allowed us to reduce heterogeneity in several instances. A full description of the subgroup 

analyses conducted is reported in Tables 3.16–3.22. 

 

Table 3.15. Summary evidence of the effect of single immunosuppressive conditions on the 

influenza vaccine-induced immune response, by immunogenicity parameter and viral 

(sub)type. 

 

Virus Parameter 
Any 
RD 

RA SLE IBD HIV Cancer Transplant 

A/H1N1 

SC 
OR 0.57 0.64 0.35 0.54 0.51 0.49 0.49 
CES III IV II ns IV III IV 

SP 
OR 0.47 0.39 0.38 0.80 0.35 0.28 0.28 
CES II II I ns IV I I 

HAI 
titer 

g -0.21 -0.37 -0.42 -0.30 -0.51 -0.61 -0.61 
CES III I III IV IV III III 

A/H3N2 

SC 
OR 0.78 0.97 0.55 NA 0.46 0.44 0.35 
CES ns ns ns NA IV IV IV 

SP 
OR 0.40 0.37 0.39 0.74 0.21 0.37 0.26 
CES II IV IV ns IV IV IV 

HAI 
titer 

g -0.26 -0.26 -0.23 NA -0.77 -0.54 -0.89 
CES III IV ns NA IV IV IV 

B 

SC 
OR 0.75 0.72 0.57 NA 0.37 0.41 0.54 
CES IV ns IV NA IV IV IV 

SP 
OR 0.76 0.84 0.60 1.12 0.33 0.46 0.40 
CES ns ns IV ns IV IV IV 

HAI 
titer 

g -0.05 -0.11 NA NA -0.54 -0.54 -0.49 
CES ns ns NA NA IV IV IV 

CES: cumulative evidence synthesis class; HAI: hemagglutination-inhibition; HIV: human immunodeficiency 
virus; IBD: inflammatory bowel disease; NA; non available; ns: non-significant; OR: odds ratio; RA: rheumatoid 
arthritis; RD: rheumatic disease; SC: seroconversion rate; SLE: systemic lupus erythematosus; SP: 
seroprotection rate 

 
Table 3.16. Summary evidence on the effect of rheumatic diseases on the influenza vaccine-

induced immune response, by immunogenicity parameter and viral (sub)type. 

 

Parameter A/H1N1 A/H3N2 B 
Seroconversion rate 

k 38 26 21 
N 4676/1825 1245/657 1091/568 

OR RE (95% CI) 0.57 (0.43–0.76) 0.78 (0.56–1.10) 0.76 (0.54–1.06) 
P RE .0001 .16 .11 

Table 3.16 (continued). Summary evidence on the effect of rheumatic diseases on the 

influenza vaccine-induced immune response, by immunogenicity parameter and viral 

(sub)type. 
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Parameter A/H1N1 A/H3N2 B 
Seroconversion rate (cont.) 

95% PI 0.15–2.22 0.22–2.81 0.26–2.18 
OR FE (95% CI) 0.57 (0.49–0.65) 0.83 (0.67–1.03) 0.75 (0.59–0.95) 

P FE < 1∙10-15 .090 .016 
I2 , % 69.8 54.6 45.5 

τ2 0.46 0.39 0.26 
SSE, P .75 .83 .46 

LS Yes No Yes 
CES III ns IV 

Seroprotection rate 
k 42 28 27 
N 5108/1971 1618/770 1563/707 

OR RE (95% CI) 0.47 (0.36–0.60) 0.41 (0.28–0.61) 0.76 (0.47–1.25) 
P RE 3∙10-9 .00001 .28 

95% PI 0.19–1.16 0.13–1.31 0.11–5.52 
OR FE (95% CI) 0.47 (0.40–0.56) 0.40 (0.30–0.55) 0.84 (0.64–1.11) 

P FE < 1∙10-15 8∙10-9 .22 
I2 , % 38.7 30.3 64.1 

τ2 0.20 0.31 0.96 
SSE, P .96 .17 .31 

LS Yes Yes Yes 
CES II II ns 

Post-vaccination hemagglutination-inhibition titer 
k 38 27 22 
N 4479/1810 1591/833 1415/668 

g RE (95% CI) -0.21 (-0.30–-0.11) -0.26 (-0.39–-0.12) -0.05 (-0.21–0.10) 
P RE .00002 .0003 .50 

95% PI -0.63–0.21 -0.80–0.29 -0.61–0.51 
g FE (95% CI) -0.23 (-0.29–-0.17) -0.28 (-0.37–-0.19) -0.05 (-0.15–0.05) 

P FE 6∙10-15 6∙10-10 .31 
I2 , % 55.5 57.0 58.5 

τ2 0.04 0.07 0.08 
SSE, P .29 .26 .85 

LS Yes No Yes 
CES III III ns 

CES: cumulative evidence synthesis class; CI: confidence interval; FE: fixed-effects model; LS: the largest study 
has a statistically significant effect size;  ns: non-significant OR: odds ratio; PI: prediction interval; RE: random-
effects model; SSE: small study effect’s test 

 

 
 
 
 
Table 3.17. Summary evidence of the effect of rheumatoid arthritis on the influenza vaccine-

induced immune response, by immunogenicity parameter and viral (sub)type. 

 
 

Parameter A/H1N1 A/H3N2 B 
Seroconversion rate 

k 16 12 11 
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N 1030/719 517/303 502/273 
OR RE (95% CI) 0.64 (0.45–0.91) 0.93 (0.62–1.40) 0.75 (0.45–1.26) 

P RE .014 .73 .27 
95% PI 0.23–1.80 0.39–2.25 0.22–2.55 

OR FE (95% CI) 0.55 (0.45–0.68) 0.97 (0.71–1.32) 0.72 (0.51–1.01) 
P FE 8∙10-8 .84 .060 
I2, % 53.8 33.7 47.0 

τ2 0.24 0.16 0.32 
SSE, P .13 .49 .63 

LS Yes No Yes 
CES IV ns ns 

Seroprotection rate 
k 19 15 15 
N 1330/827 816/412 815/403 

OR RE (95% CI) 0.37 (0.23–0.53) 0.36 (0.20–0.63) 0.84 (0.40–1.79) 
P RE .00001 .0004 .65 

95% PI 0.11–1.26 0.09–1.48 0.08–8.96 
OR FE (95% CI) 0.39 (0.20–0.51) 0.37 (0.25–0.55) 0.95 (0.64–1.41) 

P FE 9∙10-13 9.96∙10-7 .81 
I2, % 47.0 39.8 67.7 

τ2 0.35 0.44 1.31 
SSE, P .74 .60 .53 

LS Yes Yes Yes 
CES II IV ns 

Post-vaccination hemagglutination-inhibition titer 
k 15 13 12 
N 1283/832 769/417 753/378 

g RE (95% CI) -0.34 (-0.47–-0.21) -0.27 (-0.42–-0.11) -0.11 (-0.32–0.10) 
P RE 3∙10-7 .0009 .31 

95% PI -0.37–-0.04 -0.60–0.07 -0.69–0.47 
g FE (95% CI) -0.37 (-0.47–-0.27) -0.26 (-0.38–-0.13) -0.10 (-0.23–0.03) 

P FE 1∙10-13 .00008 .14 
I2, % 30.8 29.3 58.1 

τ2 0.02 0.02 0.08 
SSE, P .22 .62 .71 

LS Yes No No 
CES I IV ns 

CES: cumulative evidence synthesis class; CI: confidence interval; FE: fixed-effects model; LS: the largest study 
has a statistically significant effect size;  ns: non-significant OR: odds ratio; PI: prediction interval; RE: random-
effects model; SSE: small-study effect test 

 

Table 3.18. Summary evidence of the effect of systemic lupus erythematosus on the influenza 

vaccine-induced immune response, by immunogenicity parameter and viral (sub)type. 

 

Parameter A/H1N1 A/H3N2 B 
Seroconversion rate 

k 17 10 5 
N 1767/924 344/251 231/129 

OR RE (95% CI) 0.35 (0.23–0.53) 0.55 (0.27–1.12) 0.57 (0.35–0.93) 
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P RE 9∙10-7 .10 .025 
95% PI 0.10–1.29 0.08–3.67 0.35–0.93 

OR FE (95% CI) 0.38 (0.31–0.46) 0.50 (0.34–0.75) 0.57 (0.35–0.93) 
P FE < 1∙10-15 .0008 .025 
I2, % 68.8 65.2 0 

τ2 0.40 0.80 0 
SSE, P .79 .14 NA 

LS Yes Yes No 
CES II ns IV 

Seroprotection rate 
k 16 7 6 
N 1784/945 303/201 249/147 

OR RE (95% CI) 0.38 (0.27–0.54) 0.40 (0.21–0.76) 0.52 (0.25–1.09) 
P RE 2∙10-8 .0054 .083 

95% PI 0.17–0.85 0.14–1.12 0.12–2.21 
OR FE (95% CI) 0.38 (0.30–0.47) 0.39 (0.23–0.68) 0.60 (0.36–0.99) 

P FE < 1∙10-15 .0008 .045 
I2, % 36.3 22.8 49.3 

τ2 0.14 0.17 0.40 
SSE, P .75 NA NA 

LS Yes Yes Yes 
CES I IV IV 

Post-vaccination hemagglutination-inhibition titer 
k 13 9 NA 
N 1181/758 323/258 NA 

g RE (95% CI) -0.42 (-0.59–0.25) -0.23 (-0.48–0.03) NA 
P RE 1∙10-6 .082 NA 

95% PI -0.88–0.04 -0.82–0.37 NA 
g FE (95% CI) -0.47 (-0.56–-0.37) -0.26 (-0.43–-0.09) NA 

P FE < 1∙10-15 .0026 NA 
I2, % 56.7 52.0 NA 

τ2 0.05 0.08 NA 
SSE, P .87 NA NA 

LS Yes Yes NA 
CES III ns NA 

CES: cumulative evidence synthesis class; CI: confidence interval; FE: fixed-effects model; LS: the largest study 
has a statistically significant effect size;  NA; non available; ns: non-significant; OR: odds ratio; PI: prediction 
interval; RE: random-effects model; SSE: small-study effect test 

 
 
Table 3.19. Summary evidence of the effect of inflammatory bowel disease on the influenza 

vaccine-induced immune response, by immunogenicity parameter and viral (sub)type. 

 

Parameter A/H1N1 A/H3N2 B 
Seroconversion rate 

k 2 NA NA 
N 154/65 NA NA 

OR RE (95% CI) 0.54 (0.15–1.96) NA NA 
P RE .35 NA NA 

95% PI 0.07–4.08 NA NA 
OR FE (95% CI) 0.50 (0.26–0.98) NA NA 

P FE .043 NA NA 
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I2, % 73.0 NA NA 
τ2 0.63 NA NA 

SSE, P NA NA NA 
LS Yes NA NA 

CES ns NA NA 
Seroprotection rate 

k 5 3 3 
N 309/104 108/45 108/45 

OR RE (95% CI) 0.80 (0.35–1.86) 0.74 (0.23–2.39) 1.12 (0.07–17.76) 
P RE .61 .61 0.94 

95% PI 0.18–3.46 0.23–2.39 0.01–120.4 
OR FE (95% CI) 0.80 (0.45–1.41) 0.74 (0.23–2.39) 0.28 (0.10–0.78) 

P FE .44 .61 0.015 
I2, % 43.7 0 61.5 

τ2 0.37 0 3.7 
SSE, P NA NA NA 

LS No No Yes 
CES ns ns ns 

Post-vaccination hemagglutination-inhibition titer 
k 2 NA NA 
N 201/59 NA NA 

g RE (95% CI) -0.30 (-0.59–0.00) NA NA 
P RE .043 NA NA 

95% PI -0.59–0.00 NA NA 
g FE (95% CI) -0.30 (-0.59–0.00) NA NA 

P FE .043 NA NA 
I2, % 0 NA NA 

τ2 0 NA NA 
SSE, P NA NA NA 

LS No NA NA 
CES IV NA NA 

CES: cumulative evidence synthesis class; CI: confidence interval; FE: fixed-effects model; LS: the largest study 
has a statistically significant effect size;  NA; non available; ns: non-significant; OR: odds ratio; PI: prediction 
interval; RE: random-effects model; SSE: small-study effect test 

 

Table 3.20. Summary evidence of the effect of human immunodeficiency virus (HIV) 

infection on the influenza vaccine-induced immune response, by immunogenicity parameter 

and viral (sub)type. 

 

Parameter A/H1N1 A/H3N2 B 
Seroconversion rate 

k 20 17 15 
N 828/1059 594/803 558/742 

OR RE (95% CI) 0.51 (0.35–0.74) 0.46 (0.26–0.82) 0.40 (0.29–0.57) 
P RE .0005 .0082 2∙10-7 

95% PI 0.14–1.81 0.06–3.41 0.18–0.88 
OR FE (95% CI) 0.54 (0.43–0.67) 0.50 (0.38–0.64) 0.37 (0.29–0.49) 

P FE 4∙10-8 1∙10-7 2∙10-13 
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I2, % 59.4 75.2 30.4 
τ2 0.38 0.95 0.13 

SSE, P .47 .93 .22 
LS Yes Yes Yes 

CES IV IV IV 
Seroprotection rate 

k 14 11 9 
N 601/936 367/680 331/619 

OR RE (95% CI) 0.35 (0.19–0.64) 0.21 (0.13–0.34) 0.33 (0.15–0.72) 
P RE .0006 2∙10-10 .0059 

95% PI 0.06–1.91 0.13–0.34 0.05–2.12 
OR FE (95% CI) 0.29 (0.21–0.39) 0.21 (0.13–0.34) 0.25 (0.16–0.39) 

P FE < 1∙10-15 2∙10-10 6∙10-10 
I2, % 64.5 0 59.3 

τ2 0.65 0 0.74 
SSE, P .70 .60 NA 

LS Yes Yes Yes 
CES IV IV IV 

Post-vaccination hemagglutination-inhibition titer 
k 17 15 12 
N 788/1100 554/844 518/783 

g RE (95% CI) -0.51 (-0.75–-0.27) -0.77 (-1.11–-0.42) -0.54 (-0.76–-0.32) 
P RE .00003 .00001 2∙10-6 

95% PI -1.38–0.36 -2.03–0.49 -1.13–0.05 
g FE (95% CI) -0.43 (-0.53–-0.32) -0.67 (-0.79–-0.55) -0.51 (-0.64–-0.38) 

P FE < 1∙10-15 < 1∙10-15 2∙10-14 
I2, % 78.9 86.5 57.9 

τ2 0.18 0.38 0.08 
SSE, P .26 .43 .48 

LS Yes Yes Yes 
CES IV IV IV 

CES: cumulative evidence synthesis class; CI: confidence interval; FE: fixed-effects model; LS: the largest study 
has a statistically significant effect size;  OR: odds ratio; PI: prediction interval; RE: random-effects model; SSE: 
small-study effect test 

 
Table 3.21. Summary evidence of the effect of transplantation on the influenza vaccine-

induced immune response, by immunogenicity parameter and viral (sub)type. 

 
Parameter A/H1N1 A/H3N2 B 

Seroconversion rate 
k 31 26 25 
N 1326/1008 955/888 910/820 

OR RE (95% CI) 0.49 (0.32–0.75) 0.35 (0.23–0.54) 0.54 (0.36–0.82) 
P RE .0010 1∙10-6 .0040 

95% PI 0.07–3.58 0.07–1.87 0.11–2.71 
OR FE (95% CI) 0.53 (0.43–0.65) 0.41 (0.33–0.51) 0.59 (0.47–0.73) 

P FE 1∙10-9 < 1∙10-15 3∙10-6 
I2, % 74.0 67.3 65.5 

τ2 0.99 0.68 0.63 
SSE, P .80 .37 .56 

LS Yes Yes No 
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CES IV IV IV 
Seroprotection rate 

k 23 16 17 
N 1110/803 693/607 709/606 

OR RE (95% CI) 0.28 (0.19–0.42) 0.26 (0.14–0.47) 0.46 (0.29–0.74) 
P RE 6∙10-10 8∙10-6 .0013 

95% PI 0.08–0.95 0.05–1.45 0.12–1.73 
OR FE (95% CI) 0.28 (0.21–0.37) 0.30 (0.21–0.43) 0.40 (0.30–0.54) 

P FE < 1∙10-15 2∙10-10 4∙10-9 
I2, % 40.6 53.9 47.9 

τ2 0.32 0.69 0.40 
SSE, P .11 > 0.99 .12 

LS Yes Yes Yes 
CES I IV IV 

Post-vaccination hemagglutination-inhibition titer 
k 17 12 12 
N 1063/780 642/607 616/652 

g RE (95% CI) -0.61 (-0.86–-0.35) -0.89 (-1.15–-0.64) -0.52 (-0.69–-0.36) 
P RE 3∙10-6 4∙10-12 4∙10-10 

95% PI -1.57–0.35 -1.64–-0.14 -0.88–-0.16 
g FE (95% CI) -0.50 (-0.61–-0.40) -0.81 (-0.93–-0.69) -0.49 (-0.61–-0.37) 

P FE < 1∙10-15 < 1∙10-15 3∙10-15 
I2, % 82.3 72.8 35.5 

τ2 0.22 0.13 0.03 
SSE, P .12 .15 .27 

LS No Yes No 
CES III IV IV 

CES: cumulative evidence synthesis class; CI: confidence interval; FE: fixed-effects model; LS: the largest study 
has a statistically significant effect size;  OR: odds ratio; PI: prediction interval; RE: random-effects model; SSE: 
small-study effect test 

 
 

Table 3.22. Summary evidence of the effect of cancer on the influenza vaccine-induced 

immune response, by immunogenicity parameter and viral (sub)type. 

 
Parameter A/H1N1 A/H3N2 B 

Seroconversion rate 
k 31 21 17 
N 1326/1008 910/577 663/480 

OR RE (95% CI) 0.49 (0.32–0.75) 0.44 (0.29–0.66) 0.41 (0.30–0.57) 
P RE .0010 .00007 6∙10-8 

95% PI 0.07–3.58 0.10–1.86 0.26–0.67 
OR FE (95% CI) 0.53 (0.43–0.65) 0.50 (0.39–0.64) 0.41 (0.31–0.56) 

P FE 1∙10-9 4∙10-8 1∙10-8 
I2, % 74.0 59.6 7.5 

τ2 0.99 0.51 0.03 
SSE, P .80 .48 .19 

LS Yes Yes Yes 
CES III IV IV 

Seroprotection rate 
k 23 14  
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N 1110/803 565/375 565/375 
OR RE (95% CI) 0.28 (0.19–0.42) 0.37 (0.19–0.73) 0.46 (0.26–0.79) 

P RE 6∙10-10 .0038 .0052 
95% PI 0.08–0.95 0.05–2.84 0.10–2.08 

OR FE (95% CI) 0.28 (0.21–0.37) 0.52 (0.37–0.75) 0.52 (0.36–0.74) 
P FE < 1∙10-15 .00042 .00024 
I2, % 40.6 65.8 52.7 

τ2 0.34 0.95 0.52 
SSE, P .11 .42 .83 

LS Yes Yes Yes 
CES I IV IV 

Post-vaccination hemagglutination-inhibition titer 
k 17 16 13 
N 1063/780 565/506 480/401 

g RE (95% CI) -0.61 (-0.86–-0.35) -0.54 (-0.77–-0.31) -0.54 (-0.75–-0.36) 
P RE 3∙10-6 6∙10-6 3∙10-7 

95% PI -1.57–0.35 -1.33–0.26 -1.11–0.03 
g FE (95% CI) -0.50 (-0.61–-0.40) -0.47 (-0.60–-0.35) -0.52 (-0.66–-0.38) 

P FE < 1∙10-15 2∙10-13 3∙10-13 
I2, % 82.3 69.0 52.5 

τ2 0.22 0.15 0.07 
SSE, P .12 .082 .49 

LS No No Yes 
CES III IV IV 

CES: cumulative evidence synthesis class; CI: confidence interval; FE: fixed-effects model; LS: the largest study 
has a statistically significant effect size;  OR: odds ratio; PI: prediction interval; RE: random-effects model; SSE: 
small-study effect test 
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Latent Cytomegalovirus (CMV) Infection 

 
A recent SRMA by van den Berg et al. (2019) revealed an unclear relationship 

between CMV seropositivity and IV-induced response in both adults and the elderly. In the 

MA, the OR of SC against any virus (sub)type did not reach an α < .05 [OR = 0.65 (95%: 

0.40–1.08); P = .11]; heterogeneity was moderate (I2 = 33.2%). A subgroup analysis by age 

(adults < 60 years and older adults ≥ 60 years) showed similar results [adults: OR = 0.41 

(95% CI: 0.11–1.45); older adults: OR = 0.57 (95% CI: 0.26–1.25)]. 

In keeping with our aims, we re-performed the meta-analysis by single virus (sub)type. 

No significant association was found in either the main (Table 3.23) or subgroup analysis by 

age (Table 3.24), independently from the virus (sub)type and age-class. 

Again, these results shod be seen cautiously, considering the between-study 

methodological differences and their paucity. 

 
Table 3.23. Summary evidence of the effect of latent cytomegalovirus (CMV) infection on 

the influenza vaccine-induced immune response, by immunogenicity parameter and viral 

(sub)type. 

 
Parameter A/H1N1 A/H3N2 B 

Seroconversion rate 
k 6 7 9 
N 192/83 670/203 99/43 

OR RE (95% CI) 0.46 (0.14–1.56) 1.05 (0.74–1.49) 0.64 (0.27–1.56) 
P RE .21 .79 .33 

95% PI 0.03–6.65 0.74–1.49 0.27–1.56 
OR FE (95% CI) 0.58 (0.29–1.16) 1.05 (0.74–1.49) 0.64 (0.27–1.56) 

P FE .12 .79 .33 
I2, % 65.7 0 0 

τ2 1.47 0 0 
SSE, P NA NA NA 

LS Yes No No 
CES ns ns ns 

Seroprotection rate 
k NA 5 NA 
N NA 616/191 NA 

OR RE (95% CI) NA 1.08 (0.76–1.54) NA 
P RE NA .42 NA 

95% PI NA 0.76–1.54 NA 
OR FE (95% CI) NA 1.08 (0.76–1.54) NA 

P FE NA .42 NA 
I2, % NA 0 NA 

τ2 NA 0 NA 
SSE, P NA NA NA 
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Table 3.23 (continued). Summary evidence of the effect of latent cytomegalovirus (CMV) 

infection on the influenza vaccine-induced immune response, by immunogenicity parameter 

and viral (sub)type. 

 
Parameter A/H1N1 A/H3N2 B 

Seroprotection rate (cont.) 
LS NA No NA 

CES NA ns NA 
Post-vaccination HAI titer 

k 7 7 NA 
N 371/221 716/260 NA 

g RE (95% CI) -0.25 (-0.58–0.08) -0.06 (-0.22–0.11) NA 
P RE .14 .50 NA 

95% PI -0.99–0.50 -0.31–0.20 NA 
g FE (95% CI) -0.13 (-0.31–0.04) -0.06 (-0.20–0.09) NA 

P FE .13 .45 NA 
CES: cumulative evidence synthesis class; CI: confidence interval; FE: fixed-effects model; LS: the largest study 
has a statistically significant effect size; NA; non available; ns: non-significant; OR: odds ratio; PI: prediction 
interval; RE: random-effects model; SSE: small-study effect test 
 

 
Table 3.24. Subgroup analysis (by age-class) of the summary evidence of the effect of latent 

cytomegalovirus (CMV) infection on the influenza vaccine-induced immune response. 

 
Parameter A/H1N1 A/H3N2 B 

Seroconversion rate 

Adults 

k 3 NA NA 
N 85/46 NA NA 

OR RE (95% CI) 0.33 (0.04–2.70) NA NA 
OR FE (95% CI) 0.35 (0.12–0.99) NA NA 

I2 , % 71.5 NA NA 

Elderly 

k 3 6 2 
N 107/37 662/187 91/27 

OR RE (95% CI) 0.63 (0.13–3.04) 1.04 (0.73–1.49) 0.56 (0.19–1.70) 
OR FE (95% CI) 0.86 (0.35–2.11) 1.04 (0.73–1.49) 0.58 (0.21–1.55) 

I2, % 63.9 0 18.8 
Seroprotection rate 

Adults 

k NA NA NA 
N NA NA NA 

OR RE (95% CI) NA NA NA 
OR FE (95% CI) NA NA NA 

I2, % NA NA NA 

Elderly 

k NA 4 NA 
N NA 571/160 NA 

OR RE (95% CI) NA 1.08 (0.74–1.56) NA 
OR FE (95% CI) NA 1.08 (0.74–1.56) NA 

I2, % NA 0 NA 
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Table 3.24 (continued). Subgroup analysis (by age-class) of the summary evidence of the 

effect of latent cytomegalovirus (CMV) infection on the influenza vaccine-induced immune 

response. 

 
Parameter A/H1N1 A/H3N2 B 

Post-vaccination hemagglutination-inhibition titer 

Adults 

k 5 NA NA 
N 299/168 NA NA 

OR RE (95% CI) -0.28 (-0.78–0.20) NA NA 
OR FE (95% CI) -0.12 (-0.32–0.07) NA NA 

I2, % 77.2 NA NA 

Elderly 

k 2 6 NA 
N 72/53 671/229 NA 

OR RE (95% CI) -0.17 (-0.52–0.19) -0.08 (-0.26–0.11) NA 
OR FE (95% CI) -0.17 (-0.52–0.19) -0.07 (-0.22–0.08) NA 

I2, % 0 29.9 NA 
Statistically significant estimates are evidenced in italics; CI: confidence interval; FE: fixed-effects model; NA; 
non available; OR: odds ratio; RE: random-effects model 

 
Psychological Stress 

 
An SRMA by Pedersen et al. (2009) investigated the potential role of psychological 

stress on IV-induced immunogenicity. Stressful conditions were found to be associated with a 

statistically lower immune response. However, a few observations should be made on the 

pooled estimates by Pedersen et al. (2009). First, different serological assays (HAI and 

ELISA) were pooled together. Second, no distinction was made among the three vaccine 

components. Third, the ES used was the so-called ES correlation coefficient, the 

interpretation of which is similar to Pearson’s r. For instance, a statistically significant 

negative ES correlation coefficient indicates that a given stress condition is associated with 

lower antibody concentrations. The authors found that chronic stress (P = .001), life events (P 

= .0001) and perceived stress (P = .02) were all associated with a lower immune response; the 

ES was, however low, with a correlation coefficient of -0.18 for all three groups of stress 

condition. Similar results were obtained in the analysis by age-group. The meta-analytical 

estimates extracted are reported in Table 3.25. 

We decided not to re-perform a meta-analysis for several reasons. First, several studies 

reported the outcome of SC and/or SP for more than one (and sometimes all) of the vaccine 

strains together (and not separately by strain). Second, only a few studies reported raw data of 

interest; most used alternative measures and/or ESs (e.g. correlation and regression 

coefficients, η2, etc). Third, it was difficult to categorize stressors. In any case, even if the 
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meta-analysis had been re-performed, the overall CES would have been of class IV at the 

most, given the small sample sizes. 

 
Table 3.25. Pooled estimates extracted from the available meta-analyses of the effect of 

psychological stress on the influenza vaccine-induced immune response. 

 

Stressor Age k N Model ESR (95% CI) P 
Chronic stress Any 6 493 FE -0.18 (-0.28–-0.08) .001 

Life events Any 6 514 RE -0.18 (-0.27–-0.09) .0001 
Perceived stress Any 3 151 RE -0.18 (-0.33–-0.02) .02 

Any Younger 6 466 FE -0.17 (-0.27–-0.07) .001 
Any Older 6 568 FE -0.25 (-0.34–-0.15) .0001 

CI: confidence interval; ESR: effect size correlation coefficient; FE: fixed-effects model; RE: random-effects 
model 

 
Evidence Mapping 

 
A total of 97 meta-analytical estimates obtained were mapped in a single bubble plot 

(Figure 3.3). While constructing the bubble plot, we realized that the overall CES might not 

correspond exactly to the magnitude of the observed ES. This non-correspondence was 

primarily driven by the total sample size. For instance, although the ESs regarding HIV were 

large, the overall CES was only of class IV, given N < 1,000. In order to contextualize this, 

we first transformed the binary outcomes of SC/SP to the standardized mean difference (also 

known as Cohen’s d), by using the following formula [Borenstein et al. 2009]: d = 

loge(OR)∙∛/π, where π is a constant approximately equal to 3.14. This transformation was 

necessary in order to display binary (SCs and SPs) and continuous outcomes (difference in the 

post-vaccination HAI titers) on the same graph. 

As shown in Figure 3.3, most host factors studied exerted a negative effect on IV-

induced immunogenicity. Only four pooled estimates were associated with an enhancing 

effect: this was the case of SPs against A/H1N1 and A/H3N2 among the users of 

pre/pro/symbiotics and the physically active elderly. These estimates, however, were assigned 

a CES of only IV.  

The distribution of single CESs and average modules of ESs is reported in Table 3.26. 

As expected (since many studies were conducted during the last 2009 pandemic, when the 

monovalent A/H1N1pdm09 vaccine was used), most CES I pooled estimates were recorded 

only for A/H1N1. The omnibus analysis of variance (ANOVA) test did not show any 

difference between the observed |d| and virus (sub)type (F2,94 = 0.59, P = .56). By contrast, 
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there was some difference between the ES observed and the CES assigned (F4,92 = 5.18, P = 

.0008). 

 

Figure 3.3. Bubble plot of the cumulative evidence synthesis (CES), by class, direction, 

(sub)type, serological parameter. 

 

 

 

Table 3.26. Distribution of cumulative evidence synthesis classes and mean Cohen’s ds, by 

viral (sub)type. 

 

Parameter A/H1N1 (k = 34) A/H3N2 (k = 33) B (k = 30) 

CES I, N (%) 4 (12) 0 (0) 0 (0) 

CES II, N (%) 6 (18) 4 (12) 1 (3) 

CES III, N (%) 6 (18) 1 (3) 2 (7) 

CES IV, N (%) 8  (24) 14 (42) 12 (40) 

CES ns, N (%) 10 (29) 14 (42) 15 (50) 

Mean |d| (SD) 0.17 (0.17) 0.16 (0.21) 0.12 (0.16) 
CES: cumulative evidence synthesis class; SD: standard deviation 

 

Discussion 

 

In this study, we examined the available systematic evidence on the relationship 

between several host-related factors (both modifiable and unmodifiable) and IV-induced 
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immunogenicity; the analysis was made from both the qualitative and quantitative points of 

view. The increasing number of SRs/SRMAs on the same/similar topics and performed by 

different research groups using different systematic approaches may confound the decision-

making of the principal stakeholders, including, for example, clinicians, reimbursement 

agencies and the pharmaceuticals industry. To overcome this problem, the emerging field of 

umbrella reviews [Aromataris et al. 2015] aims to synthetize the available systematic 

evidence. In addition to providing a standard representation of pooled estimates, the present 

research tried to classify this evidence in terms of CESs, and to map the output of interest in a 

single figure (see Figure 3.3). The diversified categorization strategy used to map the 

evidence, together with the tabulated data presented, also allowed us to identify some 

evidence gaps. 

Regarding external validity, our pooled estimates were generally in line with those 

previously published. The main exception concerned the use of pre-/pro-/symbiotics, in that 

our estimates were more conservative and usually non-significant. The most probable 

explanation for this is that different extraction modalities and statistical approaches were 

used. Moreover, as noted above, even the four significant estimates regarding the use of pre-

/pro-/symbiotics established in this paper may be prone to the so-called “industry 

sponsorship” bias; these data should therefore be interpreted with caution. 

The present study found that several (but not all) immunosuppressive conditions were 

associated with a significantly lower immune response to IV. Several parameters analyzed 

that regarded some immunosuppressive conditions, such as HIV, transplantation and cancer, 

were assigned only class-IV CESs, despite their moderate-to-high ESs; this was primarily the 

case of A/H3N2 and B viruses. The most obvious reason for this is that the total number of 

cases in which these parameters were investigated was often < 1,000; indeed, CES classes I–

III require a total sample size of at least 1,000 cases [Fusar-Poli and Radua 2018]. The 

parameters regarding the subtype A/H1N1 were less affected by this limitation, since many 

primary studies investigated the immunogenicity of monovalent pandemic H1N1pdm09 

vaccines. Indeed, further larger-scale studies on several immunosuppressive diseases are 

needed in order to upgrade the CESs observed. Moreover, the residual heterogeneity observed 

(after performing subgroup/meta-regression analyses) could be due to different treatment 

regimens in the same category of disease. Indeed, we included papers on the same 

immunosuppressive category published in the range 1970s–2010s; in these 40 years, the 

standard of care has changed radically [Selmi et al. 2014; Arruebo et al. 2011]. In the future, 

more detailed analyses (e.g. by medicine type) will be needed. 
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The levels of available evidence regarding intravenous drug use, genetic 

polymorphisms, diabetes mellitus, acute physical activity, psychological stress and previous 

BCG vaccination were not included in the overall evidence synthesis reported in Figure 3.3, 

owing to the paucity of primary studies available and/or overlapping between the categories 

included. These factors need to be (re)-examined in the future, given their enormous public 

health burden. 

Our results may have several public health implications. According to the latest report 

on seasonal IVs, issued by the ECDC (2017), all Member States recommend vaccination for 

subjects suffering from immunosuppression due to disease or treatment and 

hematologic/metabolic disorders. On the one hand, these populations are at increased risk of 

developing severe and life-threatening disease [WHO 2012]; on the other, the immune 

response to IV may be highly compromised (Figure 3.3). There is some evidence [Iorio et al. 

2003; Baldo et al. 2007; McKittrick et al. 2013; GiaQuinta et al. 2015] that alternative (so-

called “enhanced”) IVs, including adjuvanted and high-dose (quadruple antigen content) 

formulations, produce a more robust immune response than conventional IVs in 

immunosuppressed individuals. However, these vaccines are currently indicated for people 

aged 65 years or more [CDC 2019a]. Alternatively, a two-dose regimen could be considered. 

However, the effect of a booster dose on IV-induced immunogenicity is controversial. For 

instance, an SRMA by Liao et al. (2016b) found that a booster did not have any beneficial 

effect on the immune response in patients on hemodialysis or peritoneal dialysis or in renal 

transplant recipients. Moreover, the novel egg-independent technologies with several 

potential advantages are becoming increasingly common [Manini et al. 2017; Trombetta et al. 

2019] and should be further investigated also from the immunogenicity point of view. 

While the IV formulation and dose regimen in immunocompromised individuals are 

still to be clarified, the public health strategy aimed at protecting this vulnerable population 

indirectly is to be pursued. Indeed, vaccinating household contacts and caregivers (including 

healthcare workers) is highly recommended [ECDC 2020]. 

Regarding the so-called “natural adjuvants”, including the concomitant use of pre-

/pro-/symbiotics, vitamin D supplements or moderate physical exercise, we found almost no 

effect on the IV-induced immune response. The few statistically significant pooled estimates 

had low ESs (all CESs IV) and were therefore of doubtful practical/public health significance. 

Together with its strengths, several limitations of the present study must be 

acknowledged. Given the umbrella review approach, three major categories of systematic 
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error could occur, namely: (i) bias regarding our own methodology; (ii) bias regarding the 

SR/SRMAs included and (iii) bias regarding primary studies. 

Considering the first point, we tried to create a more sensitive (and therefore less 

specific) search script, in order to identify as many as possible of the publicly available SRs. 

The script created for the automatic search strategy was, in our opinion, sufficient to discover 

most publicly available SRs/SRMAs; indeed, the manual search did not produce any further 

results. However, we acknowledge that some SRs that were not dubbed as such by their 

authors might have been missed by our search strategy. 

The second limitation, in our view, is the most challenging, since the reporting quality 

of the SRs/SRMAs included was generally moderate-to-low, as per the AMSTAR-2 checklist. 

One explanation may lie in the fact that several SRs/SRMAs were published before the 

publication of AMSTAR-2 [Shea et al. 2017]. Indeed, if we estimate a two-year lag (as the 

time needed for the authors to acquaint themselves with the new “quality” scale for their 

SRs/SRMAs protocols and for peer-review and proof correction) between the publication year 

of the SRs/SRMAs included and the paper by Shea et al. published in 2017 [Shea et al. 2017], 

we can see that only 1/28 of the SRs/SRMAs included was published in 2019. Notably, this 

paper [van den Berg et al. 2019] had a relatively high AMSTAR-2 rating (75% of “Yes” 

ratings). However, as mentioned in the Methods section, the original AMSTAR scale, which 

was published in 2007 [Shea et al. 2007], included most of the items contained in the newer 

version. Therefore, the novelty of AMSTAR-2 is unlikely to have been the main driver of the 

suboptimal reporting quality of the SRs/SRMAs included. 

Again with regard to the second limitation, we must acknowledge that most primary 

research studies were included on the basis of existing SRs/SRMAs (which is essential in an 

umbrella review). We strove to mitigate this limitation by performing an updated search by 

means of the same search strategy and study inclusion criteria as the original SR/SRMAs. We 

did not, however, test the sensitivity/specificity parameters of the single search strategies, 

since this was beyond the scope of our study. 

Third, we did not investigate any risk of bias among single primary research studies 

included in the present analysis. Again, this went well beyond our aims. Indeed, as 

demonstrated by the AMSTAR-2 checklist, only 16 of 28 (57%) SR/SRMAs used a 

satisfactory technique to assess the risk of bias.  

We have some suggestions for future research. First of all, authors of papers on IV-

induced immunogenicity should be aware of the currently used terminology, i.e. 

immunogenicity, efficacy and effectiveness. For instance, we found several studies (even 
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those conducted in the past few years) dealing with CoPs that were entitled “efficacy” studies, 

without the surrogate nature of the outcome of protection being mentioned in the abstract/title. 

This fact may have altered the search output of the SRs/SRMAs included, as well as slowing 

down the selection/abstracting process. We therefore invite researchers outside IV-related 

topics to adopt a single terminology, such as, for example, that proposed by the US CDC 

(2019b). 

In conclusion, the present research mapped the available evidence on several modifiers 

of the IV-induced vaccine response. While the inhibiting effect of several immunosuppressive 

host factors was evident, the enhancing effect of pro/pre/symbiotics and chronic physical 

exercise was doubtful and virus type-specific (A but not B); the overall CES was only IV. In 

other words, the included SR/SRMAs on host factors with potentially enhancing effect on the 

IV-induced immunogenicity suffered from several limitations (e.g. a low number of included 

primary studies with a few participants with well-known effects on statistical power in the 

pooled estimates; possibility of the “industry sponsorship” bias since the funding source of 

the primary trials was not investigated; etc.). This is why future well designed RCTs or 

observational studies on the effect of this “natural adjuvants” are needed. On the other hand, 

we discovered that the pooled ESs observed may not exactly correspond to the CES assigned. 

This means that further studies are needed in order to upgrade the overall CES grading 

system. 

Furthermore, nowadays the field of vaccinology is still empirical in several aspects 

[Poland et al. 2018]. The current limited knowledge into qualitative and quantitative 

paradigms of the immune response generated by vaccines is a serious barrier to understanding 

poor vaccine immunogenicity in a plethora of physiological and pathological conditions. 

Today, emerging scientific lines propose a personalized approach to the practice of 

vaccinology, as it happens for other healthcare fields [Poland et al. 2018; Poland et al. 2011]. 

Studying the host-related correlates of IV-induced immune response could contribute to the 

production of new personalized vaccines and to the development of new patient-oriented 

vaccination strategies in a value-based public health perspective. 
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CHAPTER 4. OVERALL SYNTHESIS AND CONCLUDING 

REMARKS 

 
IV research is a continuously evolving field; as we showed in Chapter 2, several IV 

candidates are in various stages of clinical development and some of them will likely be 

commercialized in the next few years (e.g. a dossier on a plant-based quadrivalent virus-like 

particle recombinant IV has recently been submitted to the Canadian regulatory agency for 

scientific review [Medicago 2019]). Given the particular epidemiological features of both 

influenza virus and influenza-related health outcomes, the so-called “hard clinical endpoints” 

are often unfeasible for various reasons and cannot always reflect the real value of IVs. 

According to the recent WHO (2017a) framework, the real protection induced by IVs may be 

quantified by measuring either efficacy or effectiveness parameters. Vaccine efficacy is 

defined as a reduction of disease among vaccinees resulting from immunization in ideal 

conditions, as estimated from RCTs, while vaccine effectiveness is the same reduction but 

derived from real-life conditions, as estimated from observational studies (case-control, 

cohort and their modifications). In both efficacy and effectiveness studies, several influenza-

related clinical outcomes may be considered; these differ in terms of specificity and 

sensitivity. The “gold standard” is laboratory-confirmed influenza diagnosed by reverse 

transcription-polymerase chain reaction (RT-PCR), though other laboratory methods may also 

be used (e.g. culture or rapid tests). However, the use of laboratory confirmation may pose 

various challenges, and it is often more convenient to use less specific influenza-related 

outcomes (so-called “proxy” measures). These may include: influenza-like illness (ILI), 

severe acute respiratory infection (SARI), all-cause pneumonia requiring hospitalization, and 

all-cause mortality (this last, however, is not recommended) [WHO 2017a]. Theoretically, IV-

induced immunogenicity should correlate with both efficacy and effectiveness, but this often 

does not happen (see below). 

As mentioned earlier in the thesis (see Chapter 2), most IV-related RCTs have 

immunogenicity parameters as primary endpoints, and the use of these parameters seems to be 

increasing. We verified the above statement by conducting a simple bibliometric analysis in 

PubMed by using the following script: ("immunogenicity" OR (immun* AND "response")) 

AND (influenza[MeSH Terms]) (Figure 4.1). The increasing trend is evident in both time 

series, peaking between 2011 and 2013. Indeed, the Mann-Kendall test rejected the null 
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hypothesis that there was no monotonic upward trend in either “all studies” (z = 9.73, P < 

.001) or “RCTs only” (z = 8.77, P < .001) time series. 

 

Figure 4.1. Number of records on influenza-related immunogenicity parameters available in 

PubMed from 1945 to 2019. 

 

 

 

Current immunization practices mostly assume that the same vaccine is universally 

suitable for everybody in the target population (unless a contraindication exists). These 

practices are based on several assumptions. First of all, this approach assumes that every 

single individual is at approximately the same risk of contracting a vaccine-preventable 

disease such as influenza. Second, the vaccine formulation and the number of doses needed in 

order to achieve protection are the same across the target population. Third, it is believed that 

essentially all vaccinees will respond to the vaccine stimulus (and from the point of view of 

both humoral and CMI immune responses) [Poland et al. 2008]. 

Regarding seasonal IV, the above-mentioned “dogmatic” statements can be 

contradicted, at least partially. Natural (i.e. among unvaccinated individuals) influenza attack 

rates are usually higher in children than in adults. For instance, an SRMA by Somes et al. 

(2018) of 32 RCTs showed pooled estimates of natural attack rates of 12.7% (95% CI: 8.5–

18.6%), 4.4% (95% CI: 3.0–6.3%) and 7.2% (95% CI: 4.3–12.0%) in children < 18 years, 

adults of working age and the elderly, respectively. Moreover, there may be some interaction 

between age and virus type. Indeed, an SRMA by Jayasundara et al. (2014) established that 
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the natural attack rate in children was 12.27% (95% CI: 8.56–15.97%) and 5.50% (95% CI: 

3.49–7.51%) for virus types A and B, respectively. In the adult population, the corresponding 

rates were 2.32% (95% CI: 1.47–3.17%) and 0.59% (95% CI: 0.28–0.91%), respectively 

[Jayasundara et al. 2014]. 

Secondly, the IV formulation and/or the number of doses required may depend highly 

on several characteristics of the vaccinee; therefore, the so-called “one-size-fits-all” approach 

may be judged unsuitable. For instance, traditional egg-based standard-dose unadjuvanted IVs 

may be poorly immunogenic in both young children and older adults, owing to the immature 

immune system [Moriarty and Omer 2014] of the former and the immunosenescence of the 

latter [Sambhara and McElhaney 2009]. In this regard, alternative IV formulations have been 

developed and have proved to be more immunogenic and protective [Chen et al. 2020]. 

Moreover, these target-specific features of novel IV formulations have recently been 

incorporated into public health practices. For example, aTIV and hdTIV have been 

preferentially recommended in the United Kingdom (UK) [Nation Healthcare Service of 

England 2020] and Australia [Australian Technical Advisory Group on Immunisation 2020]. 

LAIV is preferentially recommended for children in the UK [Nation Healthcare Service of 

England 2020]. In Italy, aTIV was preferentially recommended in subjects aged 75 years and 

above in the 2018/19 [Italian Ministry of Health 2018] and 2019/20 seasons [Italian Ministry 

of Health 2019]. 

Thirdly, another particular feature of IV is that secondary exposure (i.e. previous 

exposure to either the circulating virus or IV antigen) may have a differential effect on 

humoral and cellular immunity. Indeed, Rosendahl Huber et al. (2019) demonstrated that a 

single dose of the 2009 pandemic MIV induced both sufficient humoral and T cell responses, 

while a second dose of the same vaccine further increased only antibody responses, but not 

cellular responses. On the other hand, both humoral and cellular immune responses were 

boosted by the next seasonal TIV [Rosendahl Huber et al. 2019]. 

The preferential recommendations of one IV type over another may be seen as crucial, 

and is among the first steps towards the personalization of preventive healthcare in general 

and IV in particular. Indeed, recent advances in personalized medicine are now being applied 

to vaccinology. In this regard, a mathematical model conceptualized in order to predict some 

non-random events that lead to a pre-defined vaccine-induced immune response has been 

proposed [Poland et al. 2013]; this can be expressed by equation (1): 
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where 

 

y is the vaccine-induced immunogenicity parameter; 

β0 is the intercept; 

βi is the regression coefficient for the ith independent variable; 

Xi is an independent variable indicating the amount of change in y for a one-unit change in Xi; 

ε is the random error. 

 

On providing a significant correlation between IV efficacy/effectiveness and the IV-

induced immune response, the above equation may be customized to the theoretical 

framework by Belongia and McLean (2019), in that IV-induced protection is a function of the 

features of the vaccinee, influenza virus and IV. The modified equation (2) would therefore 

be: 
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where 

 

βi is the regression coefficient for the ith host-related (H) independent variable; 

βj is the regression coefficient for the jth virus-related (V) independent variable; 

βk is the regression coefficient for the kth IV-related independent variable. 

 

As we demonstrated in Study 1, there is wide variation in the adoption of single 

immunological assays, HAI being the absolute “leader” (see Table 2.1 and Figure 2.1). 

However, apart from its technical and economic convenience, HAI may present some 

important limitations, which must be taken into account. Table 4.1 summarizes the most 

frequently used immunological assays able to detect/quantify the humoral immune response 

induced by IVs and compares them from the point of view of advantages and disadvantages. 

In this regard, and from the results of our Study 1, assays measuring neutralizing and anti-NA 
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antibodies seem to be undervalued, despite their clear advantages over the more “traditional” 

HAI. In a body of previous research, the VN assay has shown a high correlation (r < .50) with 

the corresponding HAI titers in various populations, including: (i) the general population of 

all ages [Truelove et al. 2016]; (ii) children [Kim et al. 2012]; (iii) adults [Grund et al. 2011; 

Trombetta et al. 2018; Sicca et al. 2020]; (iv) the elderly [Ansaldi et al. 2006] and (v) HIV-

positive pregnant women [Nunes et al. 2018]. However, as underlined by Sicca et al. (2020), 

although the correlation coefficient between HAI and VN titers is nominally high, the 

agreement is poor; these authors therefore urged the adoption of the internationally 

recognized and standardized protocols for the VN assay [Sicca et al. 2020]. Indeed, some 

important and clinically significant observations may emerge from using the VN assay. 

Moreover, in our Study 1 , we established that industry (co)-sponsored trials had, on average, 

40% lower odds of quantifying neutralizing antibodies. Considering that most [61.9% (95% 

CI: 59.0–64.7%)] research reported in Study 1 was industry (co)-sponsored, we believe that 

IV producers should consider the VN assay more frequently. 

 

Table 4.1. Comparison of the principal immunological assays used to measure influenza 

vaccine-induced humoral immune response [adapted from Haaheim and Katz 2011 and 

Trombetta and Montomoli 2016]. 

 

Assay Advantages Disadvantages 

Hemagglutination 
inhibition (HAI) 

 Wide use 
 Technically simple 
 Inexpensive 
 Detects both IgM and IgG 
 Known titer that correlates with 

protection 
 Good correlation with other 

assays like SRH, ELISA or VN 

 Lack of sensitivity in 
detecting antibodies against 
some influenza viruses 

 Inter‐laboratory variability 

Single radial 
hemolysis (SRH) 

 Technically simple 
 Inexpensive 
 Reliable and unbiased 
 Known titer that correlates with 

protection 
 Good correlation with other 

assays like HAI, ELISA or VN 

 Use limited to some European 
laboratories 

 Detects mainly IgG 

 

Table 4.1 (continued). Comparison of the principal immunological assays used to measure 

influenza vaccine-induced humoral immune response [adapted from Haaheim and Katz 2011 

and Trombetta and Montomoli 2016]. 
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Assay Advantages Disadvantages 

Virus 
neutralization (VN) 

 Ability to detect a broader range 
of functional antibodies 

 Enhanced sensitivity in detecting 
antibodies against some viruses 

 Good correlation with other 
assays like HAI, SRH or ELISA 

 Requires live virus 

 Expensive 
 Less specific than HAI 
 No known titer that correlates 

with protection 

 High inter‐ and intra-
laboratory variability 

Enzyme-linked 
immunosorbent 
assay (ELISA) 

 Able to detect both serum and 
nasal wash IgA, IgM and IgG 

 Unbiased automated process for 
high-throughput testing 

 No pretreatment of sera or 
erythrocytes 

 Good correlation with other 
assays like HAI, SRH or VN 

 Lack of specificity for virus 
types A and B 

 No known titer that correlates 
with protection 

 

Enzyme-linked 
lectin assay 

(ELLA) 

 Able to detect specific anti-
neuraminidase antibodies 

 High sensitivity 

 No known titer that correlates 
with protection 

 Relatively low use 
 

Analogously, despite the advantage of quantifying anti-NA antibodies, these 

antibodies are still greatly underused in any research, whether sponsored or publicly-funded. 

This fact is particularly disappointing, given that IVs containing optimal amounts of NA may 

be particularly useful in addressing the phenomena of antigenic drift and shift, as NA is an 

antigen that may offer broader protection [Eichelberger and Monto 2019]. 

In sum, we conclude that the outcome variable y in Equation 2 must be different for 

each immunological assay. 

We will now proceed to discuss the three domains of independent variables described 

in the right-hand part of Equation 2. The total number of host characteristics (Hs) is probably 

infinite. In our current work (Study 2) we were able to identify up to ten systematically 

derived health conditions able to modify (usually inhibit) the IV-induced immune response. It 

now seems useful to provide a policy-oriented synthesis from the Italian perspective. For this 

purpose, the evidence-based bubble plot provided in Chapter 3 (see Figure 3.3) was 

conceptualized and tabulated against the most recent recommendations provided by the Italian 

Ministry of Health (2020). However, we extracted only those host-related categories that may 

impact IV-induced immunogenicity. Other risk categories (e.g. higher risk of professional 

exposure or transmission) were excluded, as they were outside the scope of this study. As 

shown in Table 4.2, several evidence gaps still have to be addressed from the systematic point 
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of view. Of note, although we were not able to formally evaluate the effect of older age on 

IV-induced immunogenicity, we did not consider this category as an evidence gap for the 

following reasons. First, the phenomenon of immunosenescence and its detrimental effect on 

the immune response is well recognized [Sambhara and McElhaney 2009]. Second, seasonal 

IV is recommended for older adults in most high-income countries [ECDC 2018; Grohskopf 

et al. 2018]. Third, the available pooled quantitative analyses [Seidman et al. 2012] (these 

were excluded from Study 2 owing to the indirect comparisons made) have suggested a 

significantly poorer immune response in the elderly than in working-age adults. 

 

Table 4.2. Italian Ministry of Health (2020) recommendations for influenza vaccination in the 

2020/21 season, as compared with the results of Study 2. 

 

Population group Analyzed 
CES† Systematic 

evidence gap A/H1N1 A/H3N2 B 
Subjects aged ≥ 65 years – NA NA NA – 

Chronic respiratory diseases – NA NA NA + 
Cardiovascular diseases – NA NA NA + 

Diabetes mellitus and other 
metabolic diseases, including 

obesity 
+ NA NA NA + 

Chronic renal failure – NA NA NA + 
Adrenal insufficiency – NA NA NA + 

Hemoglobinopathies and other 
hematopoietic disorders 

– NA NA NA + 

Tumors + III/I/III III/III/III III/III/III – 
Congenital or acquired conditions 

associated with insufficient 
antibody production 

+/– II/II/II II/II/II II/III/III +/– 

Iatrogenic immunosuppression +/– II/II/II II/II/II II/III/III – 
HIV/AIDS + IV/IV/IV IV/IV/IV IV/IV/IV – 

Chronic inflammatory diseases +/– III/II/III ns/II/III IV/ns/ns +/– 
Malabsorption syndromes +/– ns/ns/IV NA/NA/ns NA/NA/ns +/– 

Pathologies for which major 
surgery is planned 

+/– I/III/III IV/IV/IV IV/IV/IV – 

Pathologies associated with high 
risk of pulmonary aspiration 

– NA NA NA + 

Chronic hepatopathies +/– NA NA NA + 
 

Table 4.2 (continued). Italian Ministry of Health (2020) recommendations for influenza 

vaccination in the 2020/21 season, as compared with the results of Study 2. 

 

Population group Analyzed CES† Systematic 
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A/H1N1 A/H3N2 B evidence gap 
Chronic hepatopathies +/– NA NA NA + 

Children on chronic therapy with 
acetylsalicylic acid 

– NA NA NA + 

Children at risk of developing 
Reye’s syndrome following 

influenza 
– NA NA NA + 

†
Results are reported as seroconversion rate/seroprotection rate/post-vaccination hemagglutination-inhibition 

titer; NA: non-available; ns: non-significant. 

 

Another point of interest here is that the reported CESs may be upgraded in the future 

when new studies become available. Indeed, despite a large ES, some clearly 

immunosuppressive conditions, such as HIV/AIDS and organ transplantation, were penalized 

from the point of view of CES, owing to the relatively small pooled number of subjects. 

Moreover, it should be borne in mind that the categories analyzed in the present Study 2 may 

still be composed of highly differentiated populations. For example, IBD has three major 

forms, namely Crohn’s disease, ulcerative colitis and indeterminate colitis [Satsangi et al. 

2006]. Moreover, patients with any of these three nosological forms may be on different 

treatment regimens, including either immunosuppressive or non-immunosuppressive 

therapies. Although most IBD patients take immunosuppressive medicines, a significant 

proportion of them are on monotherapy with 5‐aminosalicylic acid (mesalazine/mesalamine), 

which is considered a non-immunosuppressive therapy and is clinically well accepted in 

treating mild-to-moderate ulcerative colitis [Andrews et al. 2009]. This may explain the 

reason for the non-significance of the majority of CESs observed. The same rule can be 

applied to other categories investigated, such as the different forms of rheumatic diseases. 

The characteristics of influenza viruses (Vs), and the circulating virus population in 

particular, constitute, in our opinion, the most “tricky” set of variables, since they are difficult 

to predict. First of all, the relative distribution of the virus (sub)types varies by year and it is 

almost unpredictable. Figure 4.2 reports the relative distribution of the virus (sub)types 

observed in the post-pandemic period (from the 2010/11 to 2019/20 seasons) in Italy [Italian 

Superior Institute of Health 2020]. In the last ten seasons, virus type B clearly predominated 

only in three seasons (2012/13, 2015/16 and 2017/18), while the subtype H3N2 was usually 

more prevalent than H1N1pdm09 (Figure 4.2). 

 

Figure 4.2. Relative distribution of influenza virus (sub)types observed in Italy from 2010/11 

to 2019/20 [adapted from Italian Superior Institute of Health (2020)]. 
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Second, different influenza virus (sub)types may infect different age-groups in a 

different manner. Indeed, in their meta-regression analysis, Panatto et al. (2018) showed that 

the detection rate of influenza virus B was generally lower in the elderly than in younger 

populations, especially children and adolescents. A subsequent paper by Caini et al. (2018) 

documented almost the same trend, but reported a more detailed primary analysis of 358,796 

influenza cases observed in a representative set of 29 countries between 1999 and 2014. The 

final outcome was expressed as a summary relative illness ratio (sRIR), defined as “the 

percentage of cases in an age-group in relation to the percentage of the country's population 

in the same age-group”. In other words, the sRIR is the highest estimate inside a given age-

class, and indicates the highest relative prevalence of a given influenza virus (sub)type. As 

shown in Table 4.3, the highest sRIRs for pre-2009 seasonal A/H1N1, A/H1N1pdm09, 

A/H3N2 and B were observed among young children, older children, working-age adults and 

the elderly, respectively [Caini et al. 2018]. 

Third, the continuous antigenic drift of the influenza virus population, which is largely 

unforeseeable, gives rise to annual epidemics, and the mutation rate of virus types A and B is 

different, with type A displaying a higher mutation rate [Nobusawa and Sato 2006; Shao et al. 

2017]. 

 

Table 4.3. Summary relative illness ratios of influenza virus vaccine (sub)types, by age-group 

[adapted from Caini et al. 2018]. 
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Age-class, 
years 

A/H1N1 pre-2009 A/H1N1pdm09 A/H3N2 B 
sRIR 95% CI sRIR 95% CI sRIR 95% CI sRIR 95% CI 

0–4 3.57 3.00–4.14 2.28 2.10–2.46 3.30 2.95–3.64 2.93 2.68–3.19 
5–17 1.36 1.19–1.54 1.23 1.02–1.45 1.04 0.93–1.14 1.69 1.53–1.85 
18–39 0.84 0.72–0.96 0.94 0.87–1.01 0.73 0.68–0.78 0.65 0.59–0.71 
40–64 0.49 0.41–0.57 0.62 0.55–0.69 0.59 0.55–0.63 0.41 0.37–0.45 
≥ 65 0.16 0.12–0.20 0.27 0.24–0.31 0.74 0.66–0.83 0.38 0.33–0.43 

The highest summary relative illness ratio (sRIR) in each age-class is shown in italics. 
 

Finally, the IV-induced immune response against some virus (sub)types, as measured 

by means of the HAI assay, may be inefficient. Specifically, HAI lacks the sensitivity to 

detect antibodies against A/H5, A/H7 and even some B strains [Haaheim and Katz 2011; 

Trombetta and Montomoli 2016]. 

The characteristics of IVs may, however, be expressed by a set of dummy-coded 

variables that represent a variety of characteristics, including for example: valence, 

inactivation-related issues (inactivated vs live attenuated), antigen characteristics, mode of 

administration, production platform, presence of adjuvants, antigen quantity, etc [Grohskopf 

et al. 2018; ECDC 2019]. Regarding IV valence, the currently available seasonal IVs may be 

either TIVs or QIVs. The former formulation is composed of two A subtypes (A/H1N1 

pdm09 and A/H3N2) and one strain belonging to either B lineage (B/Victoria or 

B/Yamagata), while the latter contains both B lineages. The aim of including the second B 

strain in the QIV formulation is to reduce the negative effects of B lineage mismatch, which is 

relatively frequent [Tisa et al. 2016]. Indeed, over 13 consecutive influenza seasons in Italy, 

50.6% of B detections were of the lineage not included in the TIV formulation [Puzelli et al. 

2019]. On the other hand, the impact of B lineage mismatch on both IV-induced 

immunogenicity and vaccine effectiveness may depend on the age of the vaccinee. In their 

large-scale meta-regression analysis, Beyer et al. (2017) found that the impact of B lineage 

mismatch on IV effectiveness depended on the level of pre-seasonal antibodies, which is 

highly correlated with age. Specifically, infants and young children, who presumably have 

low pre-existing antibody titers, are subject to a significant negative impact, while in older 

adults, whose pre-existing immunity is high, this impact is negligible [Beyer et al. 2017]. 

The currently available IVs may be either killed/inactivated or LAIVs. The latter are, 

however, commercialized in a small number of countries. The currently marketed LAIVs are 

administered intranasally and are based on temperature-sensitive strains that are still able to 

replicate in the upper respiratory tract (while replication in the lower respiratory tract is 

limited). LAIVs seems to be particularly suitable for pediatric populations, since (i) children 
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are important spreaders of the wild-type viruses and (ii) intranasal administration may 

increase parental compliance. By contrast, there are some concerns about the use of LAIVs in 

the elderly, as frequent previous contacts with viruses may exert pressure on the immune 

system and facilitate reversion of the vaccine strain to the wild strain [Gasparini et al. 2011]. 

Indeed, the most widely used quadrivalent LAIV is indicated for subjects aged from 2 to 49 

years [FDA 2019]. 

On the basis of their antigen characteristics, the inactivated IVs can be further divided 

into whole-virion, split and subunit formulations, though most available IVs are split or 

subunit. The whole-virion IVs contain the entire virus, while in the split IVs the virus is 

fragmented by means of detergents. Subunit IVs are further purified and contain only the 

main viral glycoproteins of HA and/or NA [Grohskopf et al. 2018; ECDC 2019]. The aim of 

this further purification is to reduce reactogenicity. However, it seems plausible that that these 

highly purified formulations may also be less immunogenic, owing to the removal of viral 

antigens other than HA and NA that are still immunogenic. On the other hand, an MA by 

Beyer et al. (1998) did not find a clinically significant difference in the sero-response induced 

by the three formulations, while (as expected) the subunit IVs elicited lower rates of local and 

systemic adverse events [Beyer et al. 1998]. 

There are three main routes of IV administration, namely intramuscular/subcutaneous, 

intradermal and intranasal (this last is mostly used for LAIVs; see previous paragraph) 

[Grohskopf et al. 2018; ECDC 2019]; most IVs are administered intramuscularly. The 

intradermal route may present some advantages, since it exploits the unique immune 

“microclimate” of the skin, which is rich in specialized dendritic cells (e.g. Langerhans cells 

and macrophages) that are highly efficient in the process of antigen presentation [Icardi et al. 

2012]. Another advantage of the intradermal formulations is related to compliance, in that 

they may be more suitable for people who are afraid of needles [Durando et al. 2012]. 

Although an SRMA by Marra et al. (2013) did not establish that intradermal TIVs induced a 

significantly greater humoral immune response than intramuscularly administered TIVs in the 

overall population, it did provide evidence of greater immunogenicity in older adults when the 

antigen content was higher (e.g. 15 μg vs 7.5 μg) [Marra et al. 2013]. However, the 

commercially available intradermal IVs have recently been withdrawn from the market [EMA 

2018]. 

To date, most (> 90%) IVs available worldwide are still produced in eggs. While this 

traditional egg-based platform is well standardized and has proved efficient over decades, it 

has some important intrinsic limitations. First of all, as it relies on the supply of fertilized hen 
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eggs, the potential risk of a shortage of eggs is inherently present (e.g. in the event of 

outbreaks of avian influenza in poultry). Second, the egg-based platform may still be 

susceptible to microbial contamination, given that it is a relatively “open” process. This is 

why antibiotics are needed during egg-based (but not cell culture-based) IV manufacturing. 

Third, some recent studies have suggested that not all wild virus strains can be recovered from 

eggs; indeed, more than 90% of A/H3N2 human isolates cannot grow in eggs. For this reason, 

reassortment with a donor A type virus (which is able to replicate in eggs) is needed during 

the egg-based manufacturing process. Finally (and this shortcoming is strictly linked to the 

previous one) and probably most importantly from the public health point of view, 

propagation of the candidate vaccine virus seeds in eggs may generate so-called “egg-

adaptive” mutations that may interfere with the IV match and hence vaccine effectiveness 

[Manini et al. 2015; Barr et al. 2018]. In particular, A/H3N2 strains grown in eggs usually 

presents an egg-adaptive T160K retro-mutation that introduces a new putative N-

glycosylation site in the dominant epitope B; indeed, isolates presenting the K160T mutation 

grow poorly in eggs [Zost et al. 2017]. Similarly, the L194P mutation that emerges during 

propagation in eggs is able to modify the 3-dimensional conformation of HA, and therefore its 

antigenic properties [Wu et al. 2017]. A recent Italian study [Galli et al. 2020] seems to 

confirm the above observations; moreover, the authors concluded that, according to the p-

epitope model, these substitutions may have lowered the effectiveness of egg-derived IVs (in 

comparison with a cell-derived IV) by 50% in the 2016/17 influenza season. Similarly, a more 

extensive worldwide 16-year retrospective study showed that A/H3N2 and B/Victoria strains 

were more prone to egg-adaptive mutations, and that the cell-propagated A/H3N2 and 

B/Victoria proposed by the WHO as reference viruses were more antigenically similar to the 

circulating virus population than their egg-derived counterparts [Rajaram et al. 2020]. 

Interestingly, Barrett et al. (2011) claimed that an HAI titer of ≥ 1:15 provided a reliable CoP 

for a cell-based IV, while no additional advantage in predicting protection was seen at HAI 

titers of ≥ 1:30. 

Several egg-independent technologies for IV production are already in place or in 

various stages of clinical development [Manini et al. 2017; Barr et al. 2018]. One of the first 

egg-alternative IVs was produced in the Madin-Darby canine kidney (MDCK) cell line 

[Manini et al. 2017] and its QIV version has recently become available in both the US and 

Europe [Lamb 2019]. Some preliminary real-world data have suggested that the cell-based 

QIV may be more effective than the standard egg-based QIV against several influenza-related 
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proxies, such as ILI [Boikos et al. 2020] or influenza-related hospitalizations [Izurieta et al. 

2019]. 

Another egg-independent option is to use recombinant technology; one recombinant 

QIV is currently authorized for human use in the US [Grohskopf et al. 2018]. This vaccine is 

composed of 45 μg of HA, the sequences of which exactly correspond to the reference strains 

recommended by the WHO. HAs are produced in a proprietary continuous cell line 

(expresSF+® insect cells); the recombinant HAs are expressed in this cell line by means of a 

baculovirus vector [Cox et al. 2008]. In an RCT [Dunkle et al. 2017] conducted among 

subjects aged 50 years or more, the recombinant QIV proved to be 30% (95% CI: 10–47%) 

more efficacious than the egg-derived QIV against any laboratory-confirmed influenza. 

Adjuvanted IVs may represent another important milestone in the development of 

improved vaccine formulations. Some particularly attractive features of the use of adjuvants 

in IVs include: (i) enhancement of impaired immune response; (ii) boosting of 

immunogenicity; (iii) more rapid immune response; (iv) longer-lasting immune response; (v) 

dose sparing and (vi) immunomodulation. Several IV-related adjuvants are currently licensed 

(e.g. the squalene-based adjuvants MF59®, AS03®, AF03®; virosomes; etc.) [Tregoning et al. 

2018]. Among these, the adjuvant MF59® was the first IV adjuvant to be licensed worldwide 

(in 1997 in Italy) [O'Hagan et al. 2013] and is still in use. A QIV formulation with MF59® has 

just been authorized for use in subjects aged 65 years or more in Australia [Therapeutics 

Good Administration 2019], the US [FDA 2020] and Europe [EMA 2020]. Compared with 

unadjuvanted TIVs, aTIV has consistently been shown to induce a more robust immune 

response versus both homologous [Banzhoff et al. 2003; Nicolay et al. 2019] and 

heterologous strains [Ansaldi et al. 2010; Nicolay et al. 2019]. It has also been shown [Frey et 

al. 2014] that, in subjects vaccinated with aTIV, antibodies are more persistent. Both the 

absolute and relative effectiveness of aTIV has also been systematically demonstrated 

[Domnich et al. 2017]. 

Finally, the quantity of antigen in a single IV dose may have an important role. Most 

currently commercialized IVs contain 15 μg of HA of three or four strains. However, IV 

formulations with higher antigen contents are also on the market. For instance, a QIV 

containing 60 μg of antigen has recently been licensed in Italy for the active immunization of 

subjects aged ≥ 65 years [Italian Ministry of Health 2020]. A trivalent formulation of this 

vaccine induces a higher immune response in the elderly [Samson et al. 2019], and its relative 

effectiveness may be higher than that of the standard-dose TIVs [Lee et al. 2018]. 
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Apart from the type of IV, the subject's vaccination history must be taken into account. 

Today, there is an ongoing debate on the effects of vaccination in previous seasons on both 

the immunogenicity and efficacy/effectiveness observed in the current season. This is of 

particular importance to public health, given that annual administration of IV is currently 

recommended. Ng et al. (2013) suggested that, in children, previous IV administration was 

associated with a lower antibody response against type-A strains, while the response against 

type-B strains was higher among individuals primed in preceding years with strains belonging 

to the same lineage [Ng et al. 2013]. In this regard, the immunological hypothesis of “original 

antigenic sin” postulates that exposure to a novel influenza strain induces antibodies primarily 

to older viral strains at the expense of an immune response to novel antigens [Kim et al. 

2009]. Observations from the 2009 A/H1N1 pandemic seem to be in line with this concept. 

Indeed, the 2009 virus affected older adults to a lesser extent. Owing to the fact that the 

A/H1N1 subtype of swine origin (which caused the so-called Spanish flu) circulated 

continuously between 1918 and 1957, most people born before 1957 were exposed to this 

virus, and could therefore be partially protected against the novel variant of A/H1N1pdm09 

[Adalja and Henderson 2010]. Other explanations of the effect of repeated IV administration 

have also been described [Lewnard and Cobey 2018]. The so-called “ceiling effect” assumes 

that individuals with initially high antibody titers have smaller boosts. On the other hand, 

many non-responders start with low-to-moderate titers; one of the reasons for this may be that 

these individuals do respond but the responses are still unmeasured by an appropriate assay 

(e.g. in case most antibodies target NA but the HAI assay was used [Lewnard and Cobey 

2018]. Indeed, as we demonstrated in Study 1, assays other than HAI are relatively underused. 

This fact is also of interest, since in the above-described non-responders, in whom HAI is 

traditionally used, the HAI-based CoP may not work in several individuals, and the effect of 

IV-induced immunogenicity may be a poor predictor of vaccine effectiveness. An SRMA by 

Belongia et al. (2017), which covered the post-2009 pandemic period (from the 2010/11 to 

2014/15 seasons), concluded that there was marked heterogeneity in the effects of repeated IV 

administration, both within and between seasons and subtypes. When negative effects were 

observed, these were mostly ascribable to the A/H3N2 subtype, especially during the season 

2014/15, when the vaccine component remained unchanged from the previous season but was 

antigenically distinct from the predominantly circulating A/H3N2 strain [Belongia et al. 

2017]. A more recent SRMA [Ramsay et al. 2019] estimated that, in comparison with IV 

administration in the previous season only, administration in both seasons elicited greater 

protection against A/H1N1pdm09 [25% (95% CI: 14%–35%)] and B [18% (95% CI: 3–
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33%)], but not A/H3N2 [7% (95% CI: -7–21%)]. By contrast, no difference in vaccine 

effectiveness against A/H1N1pdm emerged between IV administration in both seasons and 

administration in the current season only [3% (95% CI: -8–13%)], but significantly lower 

protection against H3N2 [- 20% (95% CI: -36–-4%)] and B [-11% (95% CI: -20–-2%) was 

achieved by vaccine administration in both seasons [Ramsay et al. 2019]. 

In the form reported, equation 2 summarizes the so-called “main” effects of the 

infinity of independent variables on the immunogenicity parameter of interest. However, the 

observed effect on y may change through more sophisticated mechanisms, such as effect 

interaction or mediation [Corraini et al. 2017]. Interaction occurs when there is a joint effect 

of two or more predictors on the outcome of interest; the effect may be either synergistic (i.e. 

when the joint effect is higher than that obtained from the sum of the individual effects) or 

antagonistic otherwise [Corraini et al. 2017]. Interaction effects are always worth checking, as 

they may reveal clinically important features [Cleophas et al. 2006]. In the case of IVs, many 

potential interaction terms may be meaningful. For example, there may be a significant 

interaction between age and pre-vaccination HAI titers: vaccinees with no previous antibodies 

may show a higher response as age increases, while a lower HAI IV-induced response may be 

observed with increasing age among vaccinees with a determinable antibody titer [Hirota et 

al. 1996]. We believe that several other modifiers of the IV-induced immune response may 

display some significant interaction patterns and should therefore be analyzed in future 

research.  

Statistical mediation, by contrast, focuses on random pathways: here, a mediator is a 

step on the pathway between exposure and the outcome of interest. In the case of a significant 

mediation paradigm, the intermediate variable may partially or entirely determine the final 

outcome [Corraini et al. 2017]. Mediation analysis in IV research is uncommon. Indeed, the 

only study that we identified was conducted by Voigt et al. (2019); they analyzed a cohort of 

159 adults aged 50–74 years (62% females) and found a sex-dependent expression in T and 

natural killer (NK) cell genes that could be partially attributed to higher CD4+ and lower NK 

cell fractions in women. 

We understand that the personalized IV-induced immunogenicity model 

conceptualized in equation 2 is hard to populate and would require large and sophisticated 

datasets. Moreover, IV is a public health intervention that is performed annually, in a 

relatively short period of time, and involves millions of people. This is why a “precision 

vaccinology” approach could be more convenient. Personalized medicine is not completely 

synonymous with precise medicine, although these two terms are often used interchangeably 
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[Ho et al. 2020]. Indeed, precision medicine “refers to tailoring medical treatment to 

individual characteristics of each patient. It does not literally mean the creation of drugs ... 

unique to a patient, but rather the ability to classify individuals into subpopulations that differ 

in their ... response to a specific treatment.” Precision vaccines therefore: (i) consider the 

different target populations; (ii) are produced in order to activate the immune system in a 

targeted way by selecting anatomic sites, cells and/or molecular pathways that induce an 

appropriate and protective immune response; (iii) contain adjuvants able to act optimally in 

the given target population [Levi 2018]. Therefore, we believe that in the future it may be 

useful to perform a cluster analysis in order to identify similar traits in terms of IV-induced 

immunogenicity. Such a procedure may reduce technical complexity and be more convenient 

from the point of view of public health. As we demonstrated in Study 1, most IV 

immunogenicity studies are industry (co)-sponsored; however, industry is more prone to 

utilizing those immunological assays that are required for regulatory purposes. Private-public 

partnership would therefore be beneficial. 

To conclude, a universal IV is the holy grail of current IV research, and much progress 

has been made in the last few years. Several vaccine candidates that use novel platforms are in 

various stages of clinical development. For these novel IVs, traditional CoPs may be 

unsuitable. Indeed, rather than focusing on the induction of high HAI titers, new more 

exhaustive approaches are needed, since cross-protective, durable IV-induced protection may 

be achieved by activating several compartments of the immune system [Ward et al. 2018]. A 

down-to-earth appraisal of the characteristics of host, virus and vaccine will undoubtedly 

improve our ability to measure IV-induced immunogenicity in a more functional way and 

establish more efficient CoPs. 
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ANNEXES 

Annex A. List of clinical studies included in Study 1 (N = 1,164). 
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Annex B. List of excluded studies (Study 2), with reasons. 

 

First author, year* Reason for exclusion 
Seidman, 2012 No predefined control group 

Beck, 2013 Commentary on two published systematic reviews (both were included) 
Hua, 2013 Conference abstract without sufficient details 

Ramos, 2015 Non-systematic nature of the review 
La Torre, 2016 No predefined control group 

Liao, 2016 No predefined control group 
Bekkat-Berkani, 2017 No predefined control group 

Chong, 2018 Comparison of different influenza vaccine types 
Zhang, 2018 Comparison of different influenza vaccine types; no predefined control group 

 

*Excluded studies: 

 
Seidman JC, Richard SA, Viboud C, Miller MA (2012). Quantitative review of 

antibody response to inactivated seasonal influenza vaccines. Influenza Other Respir Viruses 

6:52–62. 

Beck CR, McKenzie BC, Hashim AB, Harris RC, Zanuzdana A, Agboado G, Orton E, 

Béchard-Evans L, Morgan G, Stevenson C, et al (2013). Influenza vaccination for 

immunocompromised patients: summary of a systematic review and meta-analysis. Influenza 

Other Respir Viruses 7 Suppl 2:72–75. 

Hua C, Barnetche T, Combe B, Morel J (2013). Influence of methotrexate, anti-TNF 

and rituximab on the immune response to influenza and pneumococcal vaccines in patients 

with rheumatoid arthritis: a systematic literature review and meta-analysis. Ann Rheum Dis 

72:A408. 

Ramos I, Fernandez-Sesma A (2015). Modulating the innate immune response to 

influenza A virus: Potential therapeutic use of anti-inflammatory drugs. Front Immunol 6:361. 

La Torre G, Mannocci A, Colamesta V, D'Egidio V, Sestili C, Spadea A (2016). 

Influenza and pneumococcal vaccination in hematological malignancies: a systematic review 

of efficacy, effectiveness, and safety. Mediterr J Hematol Infect Dis 8:e2016044. 

Liao Z, Xu X, Liang Y, Xiong Y, Chen R, Ni J (2016). Effect of a booster dose of 

influenza vaccine in patients with hemodialysis, peritoneal dialysis and renal transplant 

recipients: A systematic literature review and meta-analysis. Hum Vaccin Immunother 

12:2909–2915. 

Bekkat-Berkani R, Wilkinson T, Buchy P, Dos Santos G, Stefanidis D, Devaster JM, 

Meyer N (2017). Seasonal influenza vaccination in patients with COPD: a systematic 

literature review. BMC Pulm Med 17:79. 

Chong PP, Handler L, Weber DJ (2018). A systematic review of safety and 

immunogenicity of influenza vaccination strategies in solid organ transplant recipients. Clin 

Infect Dis 66:1802–1811. 

Zhang W, Sun H, Atiquzzaman M, Sou J, Anis AH, Cooper C (2018). Influenza 

vaccination for HIV-positive people: Systematic review and network meta-analysis. Vaccine 

36:4077–4086. 
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Annex C. AMSTAR-2 (measurement tool for assessing systematic reviews, version 2) 

ratings, by paper and item (Study 2). 

 

First author, year 
Item 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
Baral, 2007 – – – +/- – + – +/- – – 0 0 – 0 0 + 

Pedersen, 2009 + – – +/- – + + + +/- – + – – + + – 
Beck, 2011 + – + + + + – + + – + – – + + + 

Agarwal, 2012 + – – +/- + – – – – – 0 0 – 0 0 + 
Beck, 2012 + – + + + + – + + – + – – + + + 

Eckerle, 2013 + – – +/- + – – + – – + – – + – + 
Goossen, 2013 + + – + + + + + + – 0 0 + 0 0 + 

Hua, 2014 + +/- – +/- – + – – + – + – – + – – 
McMahan, 2014 – – – – – – – – + – 0 0 – 0 0 + 

Pascoe, 2014 + – – +/- + + – + – – 0 0 – 0 0 + 
Posteraro, 2014 + – – +/- + + – + + – + – – – – + 
Shehata, 2014 – – – – – + – – – – 0 0 – 0 0 + 

Karbasi-Afshar, 2015 – – – – – – – – + – – – – – – + 
Nguyen, 2015 – – – +/- – – – +/- +/- – – – – + – + 
Huang, 2016 + – – +/- + + – + + – + + + + + + 
Liao, 2016a + – – +/- – + – +/- + – + + + – + + 
Pugès, 2016 + – – +/- + + – + + – + + + + – + 
Huang, 2017 + – – +/- + + – + + – + – – – + + 

Lei, 2017 + – – +/- + + – + + – + – – + + + 
Sousa, 2017 + – – – + – – + + – 0 – – 0 0 – 

Vollaard, 2017 – – – – – – – – + – 0 0 – 0 0 + 
Dos Santos, 2018 + – – + + – – + + – 0 0 + 0 0 – 

Lee, 2018 – +/- – +/- + + – + + – + – – – – – 
Subesinghe, 2018 + – – +/- + + – + + – + + + – – – 

Yeh, 2018 + +/- – +/- + + – + + – – – – + + + 
Zimmermann, 2018a + – – +/- – – – + – – 0 0 – 0 0 + 
Zimmermann, 2018b + – – +/- – – – + – – 0 0 – 0 0 + 
van den Berg, 2019 + – – + + + – + + – + + + + + + 

The ratings are reported as: Yes (+); Partial yes (+/-); No (–) and Not applicable (0) 
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