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A B S T R A C T

This work analyzes nitrogen dioxide (NO2) pollution over a set of cities in the Po Valley in northern Italy, using
satellite and in situ observations. The cities include Milan, Bergamo, and Brescia, the first area of the COVID-19
outbreak and diffusion in Italy, with a higher mortality rate than in other parts of Italy and Europe. The analysis
was performed for three years, from May 2018 to April 2021, including the period of first-wave diffusion of
COVID-19 over the Po Valley, that is, January 2020–April 2020. The study aimed at giving a more general picture
of the NO2 temporal and spatial variation, possibly due to the lockdown adopted for the pandemic crisis
containment and other factors, such as the meteorological conditions and the seasonal cycle. We have mainly
investigated two effects: first, the correlation of NO2 pollution with atmospheric parameters such as air and dew
point temperature, and second the possible correlation between air quality and COVID-19 deaths, which could
explain the high mortality rate. We have found a good relationship between air quality and temperature. In light
of this relationship, we can conclude that the air quality improvement in March 2020 was primarily because of the
lockdown adopted to prevent and limit virus diffusion. We also report a good correlation between NO2 pollution
and COVID-19 deaths, which is not seen when considering a reference city in the South of Italy. The critical factor
in explaining the difference is the persistence of air pollution in the Po Valley in wintertime. We found that NO2

pollution shows a seasonal cycle, yielding a non-causal correlation with the COVID-19 deaths. However, causality
comes in once we read the correlation in the context of current and recent epidemiological evidence and leads us
to conclude that air pollution may have acted as a significant risk factor in boosting COVID-19 fatalities.
1. Introduction

The Corona Virus Disease 2019 (COVID-19) is a severe acute respi-
ratory syndrome coronavirus 2(SARS-CoV-2), which was first detected in
Wuhan, China, in December 2019, and successively qualified as a global
health emergency on Mar 11, 2020, by the World Health Organization
(WHO), given the fatality rate and the rapid diffusion outside China
(Ghebreyesus, 2020). With its first COVID-19 disease case on Feb 21,
2020, Italy was, after China, the country most affected by the pandemic,
counting a large number of deaths (Migliaccio et al., 2021). Therefore, to
contain the spread of the virus, the Italian Government imposed an
extended period (Mar 9, 2020–May 3, 2020) of restriction on human
activities, indicated with lockdown, characterized by curfews, quaran-
tines, travel restrictions, smart working, closure of restaurants and
non-essential shops and activities.

Following these measures, the relationship between air pollution
mitigation and COVID-19 has attracted the attention of different
o).
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researchers. In particular, the focus was on the concentration of nitrogen
dioxide (NO2), which, together with nitrogen oxide (NO), is one of the
major pollutants in Earth's atmosphere, present in both the stratosphere
and troposphere, emitted because of anthropogenic processes and ac-
tivities, such as vehicular traffic, biomass, and fuel combustion (van
Geffen et al., 2019). Furthermore, the tropospheric NO2 can severely
affect human health, causing, among others, severe respiratory diseases
(World Health Organization, 2003; Thurston et al., 2017; Khomenko
et al., 2021). Nitrogen dioxide is also a precursor of PM2.5, PM10 (e.g.see
https://cfpub.epa.gov/roe/indicator.cfm?i¼19). Nitrogen dioxide,
among many other environmental gases, contributes to the secondary
de-novo formation of PM2.5 and PM10 in the atmosphere. Some studies
show how a high concentration of NO2 is associated with a relevant load
of aerosol (e.g. (Veefkind et al., 2011),). In this respect, NO2 concentra-
tion can be considered a good air quality indicator.

The most recent literature has investigated different impacts of air
pollution on the COVID-19 spread both at the global (e.g., Sannigrahi
y 2022
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et al., 2021; Sarmadi et al., 2021; Cooper et al., 2022) and regional (e.g.,
Biswal et al., 2020; Dantas et al., 2020; Zangari et al., 2020; Lonati et al.,
2021) scales. More specifically (Zhu et al., 2020), investigated the as-
sociations of six air pollutants (PM2.5, PM10, SO2, CO, NO2, and O3) with
COVID-19 confirmed cases in China by applying a generalized additive
model. They observed significantly positive associations, the same as
found by (Fattorini and Regoli, 2020, Magazzino et al., 2020), which
provided further evidence that chronic exposure to atmospheric
contamination (NO2, O3, PM2.5, and PM10) represents a favorable context
for the virus spread. Similar analyses have also been made in (Zoran
et al., 2020) that assessed the relationship between levels of NO2 and O3,
measured by the ground station, and COVID-19 infections in Milan. In
particular, for the January–April 2020 period, time series of daily
average inhalable gaseous pollutants, such as O3 and NO2, were analyzed
together with climate variables. The results show a positive correlation of
daily averaged O3 with air temperature and inversely correlations with
relative humidity and precipitation rates.

Other studies have dealt with the link between air pollution or NO2
concentration and COVID-19-related deaths (e.g., Comunian et al., 2020;
Filippini et al., 2021). For example, in (Ogen, 2020), the relationship
between long-term exposure to NO2 and coronavirus fatality has been
analyzed, considering the number of death cases taken from 66 admin-
istrative regions in Italy, Spain, France, and Germany. Results show that
78% of the fatality cases were in areas with the highest NO concentra-
tions combined with downwards airflow, preventing efficient air pollu-
tion dispersion. In (Travaglio et al., 2021), it was demonstrated that a
slight increase in air pollution leads to a significant increase in mortality
from COVID-19 in Great Britain. In (Conticini et al., 2020) and (Sasid-
haran et al., 2020), the correlation between air pollution and virus
lethality has been explored in Northern Italy and London, respectively. In
(Pansini and Fornacca, 2020) also, the authors found a significant cor-
relation between levels of air pollution measured by satellite and
COVID-19 mortality and spread. In particular, they observed more viral
infections in the areas affected by high NO2 and PM 2.5 values. Similar
results were also found in (Coker et al., 2020), who analyzed the rela-
tionship between COVID-19 mortality and PM2.5 concentration.

On the other hand, different studies are based on the lockdown effects
on pollution. For example (Donzelli et al., 2020), is a study based on the
Italian spring lockdown impact on emissions in three cities in Tuscany
that discovered a significant decrease in NO2 concentrations. In (Sasid-
haran et al., 2020), it was shown that the severe limitation of the lock-
down period determined a substantial reduction in pollutants
concentration mainly due to vehicular traffic (PM10, PM2.5, BC, ben-
zene, CO, and NOx). In (Wang and Li, 2021) also, the authors investigate
the nonlinear impact of COVID-19 lockdown on four pollutants, such as
NO2, PM10, O3, and SO2, in eight selected cities using the Spearman
correlation function model. They noticed that only NO2 and particles
have decreased due to the lockdown, but not O3.

The paper wants to present more general aspects of the NO2 temporal
variation and its eventual connection with the COVID-19 pandemic. For
this reason, we will use TROPOMI (Copernicus Sentinel 5 Precursor
Tropospheric Control Systems) retrievals of NO2 tropospheric column
amounts.

Unlike previous studies, our analysis covers an extensive period of 36
months, ranging from May 2018 to April 2021, which also comprehends
the period January 2020–April 2020 of COVID-19 diffusion over cities in
the Po Valley hit by COVID-19, beginning March 2020. The cities include
Milan, Bergamo, and Brescia, the first area of the COVID-19 outbreak and
diffusion in Italy, with a higher mortality rate than in other parts of Italy
and Europe.

A re-gridding technique extensively discussed and explained in
(Cersosimo et al., 2020) was applied to the TROPOMI NO2 observations
to have monthly NO2 data with a regular spatial resolution of 1 km. The
higher spatial sampling NO2 dataset allowed us to compare the punctual
surface observations better. In this respect, the re-sampling tool allowed
us to perform an assessment of the correlation between Level 3 TROPOMI
2

NO2 and NO2 concentrations observed measured at nine air quality
monitoring stations.

Furthermore, the monthly time series of meteorological variables,
such as temperature and relative humidity, always measured by the same
ground stations, were investigated to study possible relationships with
the NO2 time series and identify a seasonal cycle followed by the different
variables. In this way, it was possible to consider a more complex sce-
nario concerning the variation of pollution from NO2, not only concen-
trated in the lockdown period adopted to the pandemic crisis
containment but also linked to other factors, such as the meteorological
conditions and the seasonal cycles. In addition, a further aspect analyzed
in this paper was the possible link between COVID-19-related deaths and
the distribution of tropospheric NO2 pollution, which can severely affect
the human respiratory system and thus make people more susceptible to
developing severe symptoms if the virus is contracted.

The paper is organized as follows: Section 2 describes the data and the
re-gridding methodology applied to TROPOMI NO2 observations. The re-
sampling of Level 2 TROPOMI NO2 retrievals and their comparison with
ground-based observations are shown in Section 3; the section is mainly
focused on the effects of the epidemic crisis on air pollution and the link
between NO2 pollution and COVID-19-related deaths. Conclusions are
drawn in Section 4.

2. Data and methodology

2.1. Data collection

Different freely available data sources are used in this work, such as
remote sensing observations, ground-station measurements, and Istituto
Nazionale di Statistica (ISTAT) data.

The Copernicus Sentinel 5 Precursor Tropospheric Monitoring In-
strument (S5P/TROPOMI) provided the satellite observations to get the
NO2 tropospheric column Level 2 products. These data descriptions have
already been detailed (Cersosimo et al., 2020). Therefore, here we limit
ourselves to summarizing the essential aspects.

TROPOMI is a single payload onboard the Copernicus S5P, a near-
polar sun-synchronous orbit satellite launched on Oct 13, 2017. The
satellite flies at an altitude of 817 km, with an ascending node equatorial
crossing at 13:30 h, Mean Local Solar time; the repeat cycle is 17 days.
The instrument works in a push-broom configuration; the swath across-
track is about 2600 km, and that along-track of 7 km improved to 5.6
km from Aug 6, 2019. The instrument achieves global coverage in a day.
The instrument is a four-spectrometer system, each electronically split
into two bands (2 in UV, 2 in VIS, 2 in NIR, and 2 in SWIR) (Babic et al.,
2019; Griffin et al., 2019). The satellite footprint at the ground is 7 km �
3.5 km.

In this work, the Level 2 NO2 satellite data, with a qa_valuve, a quality
assurance value greater than 0.75, have been used for May 2018–April
2021. According to (Griffin et al., 2019), qa_valuve � 0:75 have been
used as a pixel filter to remove cloudy observations over regions covered
by snow/ice, errors, and unreliable retrievals.

The Po Valley is the target area considered in this study. The site is
located in the North of Italy; for the present analysis, it is the region
extending in longitude from 7� E to 13� E and in latitude from 44� N to
46� N, as shown in Figure 1.

Level 2 NO2 TROPOMI data were re-gridded at a regular spatial grid
mesh of step 1 km to obtain Level 3 NO2 total tropospheric column. Then,
the data were accumulated and averaged monthly to filter out random
fluctuations and, eventually, to fill gaps because of clouds. The meth-
odology used to obtain the monthly maps of NO2 is extensively described
in (Cersosimo et al., 2020) and is here briefly outlined for the reader's
benefit.

(Cersosimo et al., 2020) has designed and implemented a re-sampling
algorithm, which uses the ordinary kriging method (Cressie 2015) to go
from Level 2 satellite data at a spatial resolution of 7 km � 3.5 km to
Level 3 data on a regular grid with a mesh of 1 km. Let us assume Y(s) be



Figure 1. Map of the Po Valley (yellow box) analyzed in this study. Ground stations whose observations are used for validation are shown with blue symbols.
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a spatial field whose single values are given a set of spatial points, say,
s ¼ fs1; ::::; sng, where sj is the spatial coordinate, e.g., in the case of the
2-D field, the (longitude, latitude) of every single data point. Let us as-
sume we need to estimate Y(s) at a location s0 62 s ¼ fs1; ::::; sng
where there are no data points. According to (Cressie 2015), the esti-
mated value bY ðs0Þ of Yðs0Þ is given by

bY ðs0Þ¼ βYðsÞ (1)

In Eq. (1), β is a weight-vector whose elements are real numbers and
YðsÞ is the field variable at spatial coordinates, s, where it is supposed to
be known.We consider the additional condition of weights normalized to
unity, i.e.,

Xn

i¼1

βi ¼ 1 (2)

to get an unbiased estimate. The weights in Eq. (2) are computed, which

minimizes the variance of the estimate bY ðs0Þ using a procedure that
exploits the correlation properties of the process YðsÞ. Again, according
to (Cressie 2015), these properties are described through the so-called
semivariogram,

γ
�
si; sj

�¼Var
�
YðsiÞ � Y

�
sj
��

2
(3)

where VarðΔÞ stands for variance. For the analysis at hand, Eq. (3) is the
variance of the variable Y at two different points of coordinates, si; sj;
respectively. Exploiting the given data, we can compute an empirical
semivariogram, say bγ : Towards this objective, we consider a fittingmodel
that extrapolates the observed points' spatial behavior to the area of in-
terest. We could use several theoretical semivariogram models with
known analytical properties and the physical meaning of parameters for
our objective. Our methodology uses a set of models: linear, exponential,
Gaussian, wave, circular and specular semivariograms (Cersosimo et al.,
2020). We use a Least Squares criterion procedure to select which best
fits the given data.

Figure 2 exemplifies the monthly spatial maps of Level 3 TROPOMI
NO2 over the Po Valley area for a winter month (December 2020).
3

In situ measurements of nitrogen dioxide were obtained on a network
of 9 monitoring stations distributed in the target region (blue symbols in
Figure 1). The stations belong to Agenzia Regionale per la Protezione
dell'Ambiente (ARPA) of Lombardia Region (ARPA Lombardia, 2022).
Ground-based observations also included a 2-m air temperature and
relative humidity, available at a time slot of 1 h. Therefore, hourly values
have been extracted. The daily/monthly averages have been calculated,
as well, for comparison with coherent satellite observations. In addition,
the proper functioning of the air quality equipment is checked regularly
and inspected over time to ensure that the data meet the quality
standards.

For the Po Valley orography favors, in wintertime, air subsidence,
with a poor atmospheric circulation, which prevents pollution from
diffusion, hence dispersion, in the free troposphere (Cersosimo et al.,
2020). To provide proper comparisons with an area that, although
polluted, is not subject to air subsidence in winter, we have also used the
data from the city of Naples in the South of Italy. In contrast, to the Po
Valley, Naples is influenced by a marine environment, where the air is
continuously moved because of atmospheric processes in the boundary
layer.

Finally, to analyze the possible link between COVID-19 related deaths
and the distribution of tropospheric NO2 polluting, it was necessary to
procure the number of deaths in correspondence with the cities shown in
Figure 1. The data consists of the monthly death number provided by
ISTAT (ISTAT, 2022).

As shown in Figure 2, the cities considered in the present analysis are
the bulk of the NO2 pollution. In particular, they include the cities of
Bergamo and Brescia, where the highest rate of COVID-19 mortality was
recorded during the first wave of virus diffusion in the winter of 2020
(Casti and Adobati, 2020a; 2020b).

3. Results

3.1. NO2 TROPOMI data vs. in situ measurements

To begin with, we will first compare ground-based measurements vs.
Level 3 TROPOMI NO2 data to show the capability of TROPOMI to sense
down to the surface and discriminate between low and high pollution

mailto:Image of Figure 1|tif


Figure 2. TROPOMI nitrogen dioxide tropospheric column (Level 3 data in units of Dobson) over the Po Valley for December 2020.
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loads. Next, the data were collocated adequately in space-time to
compare satellite and in situ observations. In situ observations have been
compared with the spatially closest level 3 satellite data. For temporal
colocation, each TROPOMI observation has the satellite overpass time;
therefore, we used the temporally closest in situ measurement.

The Pearson correlation coefficient, or simply correlation coefficient,
R2, between Level 3 NO2 TROPOMI and NO2 concentration at every
single station is summarized in Table 1. The Pearson correlation coeffi-
cient is defined according to

R2 ¼ covðx; yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðxÞvarðyÞp (4)

where cov and var stand for covariance and variance, respectively, and x;
y are two generic vector-valued parameters. In practice, R2 and its 95%
confidence interval is computed with the Matlab script corrcoef version
2020b.

The linear correlation coefficient, R2, computed according to Eq. (4),
and its 95% confidence interval are both shown in Table 1, which covers
the period May 2018 and April 2021 and considers monthly averages;
therefore, the number of couples (qT; qG) is N ¼ 36, where qT ; qG indi-
cate the monthly average of TROPOMI level 3 data (in Dobson) and in
situ measurements (in units of μg/m3), respectively. We also stress that
Table 1. Correlation coefficient (R2) between Level 3 NO2 TROPOMI and NO2

concentration at the stations shown in Figure 1. For comparison, we also show
the correlation between Naples (yellow), a marine city in South Italy. The last
column is the Confidence Interval at the level of 95% of estimatedR2.

Ground station Longitude Latitude R2 95% CI

Bergamo 9.64 45.69 0.86 [0.74, 0.93]

Brescia 10.22 45.54 0.81 [0.66, 0.90]

Como 9.08 45.80 0.80 [0.64, 0.89]

Cremona 10.02 45.13 0.87 [0.76, 0.93]

Lecco 9.39 45.85 0.71 [0.50, 0.74]

Lodi 9.50 45.31 0.82 [0.67, 0.90]

Mantova 10.79 45.16 0.82 [0.67, 0.90]

Milan 9.20 45.46 0.82 [0.67, 0.90]

Pavia 9.15 45.18 0.86 [0.74, 0.93]

Naples 14.32 40.89 0.58 [0.31, 0.76]

4

the correlation refers to the single station whose spatial coordinates are
shown in Table 1.

The analysis shown in Table 1 allows us to conclude that Level 3 NO2
TROPOMI data are representative of the air quality in the lower tropo-
sphere because they are well correlated with the surface, in situ, mea-
surements of NO2 concentration. Therefore, satellite data can give better
insights into understanding the evolution of spatial patterns. It is also
interesting to note that the correlation falls to 0.58 when we consider
Naples, a marine environment characterized by a crucial diurnal cycle in
the boundary layer, which helps the diffusion of pollution in the free
atmosphere. These processes introduce spatial and temporal variability
at scales that are not entirely captured from the satellite (Cersosimo et al.,
2020).

The Level 3 NO2 TROPOMI data at the Po Valley stations in Table 1
have been merged and correlated with the monthly air temperature, Ta

and dew point temperature, Td. The results are shown in Figure 3, and it
is seen that the correlation with the dew point temperature is not better
than that observed with air temperature. In other words, including in-
formation coming from humidity does not improve the correlation. For
this reason, hereafter in, this paper will consider air temperature alone to
represent the meteorological conditions.

The good correlation with air temperature is further evidenced when
considering the three-year time series of NO2 and temperature, as shown
in Figure 4. Again, it is seen that the NO2 and temperature have an
evident seasonal cycle, with peaks of NO2 pollution correlated with
troughs of temperature.

The example shown in Figure 4 corresponds to the Bergamo station;
however, similar results are obtained at the other stations analyzed in
this paper. The anti-correlation NO2 vs. temperature is mainly linked to
colder temperatures, typical of the winter months, leading to more
massive domestic and commercial heating and more extensive use of
private cars because of the winter school season.

To have a quantitative assessment of the amplitude and phase of the
seasonal cycle, we have fitted to the time series the mathematical model,

YðtÞ¼ aþ b� t þ c� cos
�
2πt
T

þ d
�

(5)

which is made up of a linear trend and a seasonal component of 12
months. In Eq. (5) YðtÞ is the generic observation (qT; qG; Ta) at time (in
units of months), T is the basic period in the series (T ¼12 months), and
the coefficients a, b, c, d are fit parameters computed, e.g., through the
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Figure 3. Scatterplot of TROPOMI NO2 vs. ground-based measurements of temperature (a) and dew point temperature (b). The data correspond to May 2018–April
2021. All the data from the 9 Po Valley stations shown in Table 1 have been merged.
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Least Squares criterion. Figure 4 also compares the model and data
points. We see that most of the variability of the time series is expressed
by the seasonal cycle, as it is summarized in Table 2 to Table 4, where we
show the fit parameters a, b, c, d and the ratio of the variance of the cycle
to the total variance of the series. It is also seen that the trend coefficient,
b is zero within the error bars for most of the cases. Notably, the NO2
concentration does not show an evident seasonal cycle for the Naples
station and is characterized by a decreasing trend. However, focusing on
the in situ NO2 concentration, the bulk pollution (the coefficient a in Eq.
(5)) for Naples is even more extensive than in Milan. Naples has levels of
air pollution comparable with those of the Po Valley. The different
climate and meteorological conditions make the difference. The Naples
marine environment and its orography generate a turbulent boundary
layer capable of mixing air and dispersing pollution in the free tropo-
sphere (e.g., (Cersosimo et al., 2020)). The good correlation we observe
for the Po Valley among the various parameters, qT; qG; Ta exemplify the
presence of a poor dynamic in the boundary layer and the presence of
characteristic time scales much larger than the diurnal cycle. TROPOMI is
a polar satellite; hence, it cannot resolve the daily cycle and has 3–4 km
spatial scales. Therefore, the fact that the parameters, qT; qG are well
correlated for the Po Valley confirms that air pollution has a high
space-time persistence.

3.2. TROPOMI spatial patterns of NO2 pollution

Figure 5 shows the monthly maps of Level 3 TROPOMI NO2 over the
Po Valley area for the winter months, December to March, and from 2018
to 2021.

These maps help us better understand the evolution of nitrogen di-
oxide pollution over the Po Valley when COVID-19 spread, leading
Italian authorities to declare a lockdown period. To allow for the com-
parison of no COVID-19 with COVID-19 time, we show the monthly maps
of tropospheric nitrogen dioxide over the target area from December to
March for 2018–2019 (no COVID-19), 2019–2020, and 2020–2021. The
first feature that arises from comparing the corresponding maps for the
2018–19 (no COVID-19) and 2019–20 (the first wave COVID-19) winter
period is the sharp decrease in air pollution in 2020 compared to 2019.
However, successively, we can see a new increase if we compare the
maps corresponding to the 2020–21 winter period (the second wave of
COVID-19) to that of 2019–20.

The relatively lower pollution in winter 2019–2020 (December to
March) was most likely due to the warmer 2019–20 winter, limiting
heating power use for residential and commercial sectors (e.g., see https
://climate.copernicus.eu/boreal-winter-season-1920-was-far-warmest-
winter-season-ever-recorded-europe-0). From Figure 5, which refers to
5

the different winters, it is seen that only January 2019 and 2020 exhibits
comparable NO2 pollution. In contrast, February 2020 shows a dramatic
decrease in NO2 pollution over Po Valley, and it has been the month of
maximum virus spread in the Po valley. In March 2020, when the lock-
down was active, we saw a 50% decrease in NO2 pollution compared to
the same month of 2019.

To understand how atmospheric conditions drive the patterns shown
in Figure 5, Figure 6 exemplifies the monthly mean temperature for the
city of Milan in the three winters of interest. We see that for winter
2019–2020 (December to March), the air temperature has been higher or
comparable than in 2018–2019 and 2020–2021, but for March, we see an
average temperature lower than 5–6 �C in 2020. Because of the good
correlation between NO2 pollution and air temperature, the comparison
for March shows an anomaly because March 2020 has been harder than
the two in 2019 and 2021. In effect, in March 2020, the Italian Gov-
ernment issued a rigid and restrictive lockdown, which stopped many
industrial activities and limited the circulation of people.

Because of the good correlation NO2 vs. air temperature, we expected
March 2020 to be more polluted than March 2019 and 2021 or at least to
show comparable pollution. We see the reverse means that the lockdown
effectively reduced pollution. Also, the decrease in pollution is likely
because of the stop to vehicular traffic. Conversely, domestic heating
increased because people were confined at home, and March 2020 has
been colder. The lockdown experiment shows that vehicular traffic is the
primary source of NO2 pollution in the PO Valley. Figure 6 refers to
Milan; however, the same results as those shown in Figure 6 have been
found for the other Po Valley stations in Table 1. They are not shown for
the sake of brevity.

3.3. Effect of air pollution on deaths in the COVID-19 period

According to (Casti and Adobati, 2020a; 2020b), three factors have
mainly explained the Po valley fragility and, particularly, the Lombard
Region. These are.

(a) Persistence of pollution
(b) Health care system
(c) Rhizomatic commuting

We see that one of the main factors is environmental pollution, or
rather its persistence. As already mentioned, the particular local weather
conditions determine the pollution persistence in the Po Valley.
Wintertime weather conditions are primarily governed by air subsidence,
an effect of the Po valley orography, which prevents dispersal. Rhizo-
matic commuting refers to the intricate net of the transportation system

https://climate.copernicus.eu/boreal-winter-season-1920-was-far-warmest-winter-season-ever-recorded-europe-0
https://climate.copernicus.eu/boreal-winter-season-1920-was-far-warmest-winter-season-ever-recorded-europe-0
https://climate.copernicus.eu/boreal-winter-season-1920-was-far-warmest-winter-season-ever-recorded-europe-0
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Figure 4. Time series (top to bottom) of qT; qG; Ta for the station of Bergamo showing the trend-seasonal model fitted to the data.
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and the many people who use it to move around the area and get to work.
The welfare system in Northern Italy is considered the best in Italy,
although it has transformed from public to private in recent years. The
risk factor is linked to the cultural-social environment that isolates the
elderly in private nursing homesmore than in the hospital system. In fact,
with public hospitals closed due to Covid-19, such facilities have become
hotbeds of infection during the pandemic. However, risk factors b) and c)
6

while justifying a greater spread of disease do not explain the higher
incidence of deaths from COVID-19 compared to other regions. For
example, the mortality rate in Lombardy is 345 per 100,000 inhabitants,
while, e.g., Campania, which has a less efficient welfare system (e.g., see
https://careonline.it/2018/09/la-misura-della-performance-dei-servizi-
sanitari-regionali/) than the Lombard one, it is only 145, or less than half
(e.g., see https://lab24.ilsole24ore.com/coronavirus/). According to

https://careonline.it/2018/09/la-misura-della-performance-dei-servizi-sanitari-regionali/
https://careonline.it/2018/09/la-misura-della-performance-dei-servizi-sanitari-regionali/
https://lab24.ilsole24ore.com/coronavirus/
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Table 2. Fit parameters a, b, c, d, correlation coefficient (R2), and variance ratio of the cycle to the total variance of the Level 3 TROPOMI NO2 series for all reference
stations.

Level 3 TROPOMI NO2

Station Fit coefficients R2 Variance Ratio

a (Dobson) [95% CI] b (Dobson/month) [95% CI] c (Dobson)c [95% CI] d (radians) [95% CI]

Bergamo 0.33 [0.26, 0.39] -0.00055 [-0.00372, 0.00261] -0.23 (-0.27, -0.18) -1.28 [-1.48, -1.08] 0.76 0.75

Brescia 0.33 [0.28, 0.37] -0.00169 [-0.00375, 0.00037] 0.21 [0.18, 0.24] 1.78 [1.64, 1.92] 0.87 0.88

Como 0.27 [0.21, 0.33] -0.0012 [-0.0041, 0.0017] 0.17 [0.13, 0.21] 1.75 (1.50, 1.99] 0.68 0.69

Cremona 0.28 [0.24, 0.33] -0.0021 [-0.004, 0.00004] 0.20 [0.17, 0.23] -4.46 (-4.61, -4.3] 0.84 0.86

Lecco 0.21 [0.16, 0.26] 0.00018 [-0.00240, 0.00274] -0.15 (-0.19, -0.11] 4.95 (4.71, 5.20] 0.69 0.67

Lodi 0.30 [0.24, 0.37] -0.0013 [-0.0043, 0.0017] 0.23 [0.19, 0.28] -10.72 (-10.90, -10.53] 0.78 0.79

Mantova 0.27 [0.23, 0.31] -0.0023 [-0.0043, -0.0003] 0.18 [0.15, 0.21] 1.72 [1.56, 1.88] 0.83 0.85

Milano 0.41 [0.34, 0.48] -0.0016 [-0.0050, 0.0016] 0.28 [0.23, 0.33] 1.84 [1.67, 2.01] 0.82 0.82

Pavia 0.29 [0.23, 0.35 -0.0017 [-0.0045, 0.0009] 0.21 [0.19, 0.25] -4.47 [-4.67, -4.28] 0.78 0.79

Naples 0.17 [0.15, 0.19] -0.0037 [-0.0048, -0.0027] -0.031 [-0.046, -0.016] -0.5388 [-1.05, -0.032] 0.68 0.17

Figure 5. NO2 TROPOMI monthly maps (in units of Dobson) over the Po Valley area between December 2018 and March 2021. Same months appear on the same line.
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Osservatorio Nazionale sulla Salute nelle Regioni Italiane (osservator-
iosullasalute.it) Covid-19 does not cause the same mortality everywhere
but manifests itself with extreme variability in the Italian Regions,
ranging from amaximum of 5.4% of positives in Lombardy to a minimum
of 1.3% in Campania, with an average of 3.5% at the national level.
Focusing on the period October–December (2020), in particular on the
data from Oct 12 to Dec 6 (2020), it should be noted that the mortality
levels for Covid-19 in the Italian regions vary significantly, with the same
7

prevalence of new infections and regardless of the age structure of the
resident population.

While risk factors s b) and c) can have increased the diffusion of
the virus, air pollution is a direct cause of mortality (e.g. (Thurston
et al., 2017),), and according to current statistics (Khomenko et al.,
2021), the cities in Europe with the most significant risk of premature
deaths from pollution are Bergamo and Brescia while Milan is still in
eleventh place.
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Figure 6. Air temperature for the Milan station and the three winters
2018–2019, 2019–2020, 2020–2021.

Table 3. Fit parameters a, b, c, d, correlation coefficient (R2), and variance ratio
of the cycle to the total variance of the in situ NO2 concentration series for all
reference stations.

In situ NO2 concentration

Station Fit coefficients R2 Variance
Ratio

a (μg/
m3)
[95% CI]

b (μg/m3-
month)
[95% CI]

c (μg/m3)
[95% CI]

d (radians)
[95% CI]

Bergamo 29.75
[25.52,
33.98]

-0.29
[-0.49,
-0.09]

14.81
[11.87,
17.75]

7.99 [7.80,
8.18]

0.77 0.79

Brescia 34.39
[30.19,
38.59]

-0.12
[-0.32,
0.08]

-9.03
[-11.93,
-6.12]

-1.24 [-1.56,
-0.93]

0.56 0.57
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With this in mind, we analyzed for 2020 year the number of fatalities
affecting the ten municipalities listed in Table 1, and we have correlated
it with the corresponding in situ NO2 concentration. We obtained the
monthly number of deaths per municipality thanks to the data made
available by ISTAT. From the same source, we also have themonthly ends
for cities averaged over the period 2015–2019, before the COVID-19
event. These background records can filter out the number of total
deaths in 2020 to have the excess mortality because of COVID-19.

The background deaths say Dbg, are shown for Milan and Naples for
comparison in Figure 7. They have a clear seasonal cycle, with more
deaths occurring in the wintertime as expected. In effect, Dbg is well
correlated with the climatology air temperature, YTa which shows the
same seasonality. For both stations YTa was computed according to the
model of Eq. (5) corresponding to Milan and Naples, respectively. In
other words, YTa for January to December was obtained by considering
Yðt1 : t2Þ as defined in Eq. (5), corresponding to the air temperature
variable andwith ðt1 : t2Þ ranging from January to December. To consider
only the cycle, we set b ¼ 0. For Milan city, the correlation is -0.67,
whereas for Naples is -0.70. However, if we consider a delay between air
temperature and deaths of one month, that is, we correlate Y (t) and
Dbgðt þ τÞ, with τ ¼ 1 month, the correlation rise to -0.79 and -0.82 for
Milan and Naples, respectively. A delay between air temperature and
death is expected because people first get hospitalized and eventually die
because of the disease.

The negative correlation says that the lower the temperature, the
higher the ends, which is well understood because lower temperatures
correspond to wintertime when, e.g., the elderly population is exposed to
flu viruses and pathologies linked to respiratory diseases. Outside
Figure 7. Background mortality (average 2015–2019) for the cities of Milan (Po
Valley) and Naples (South of Italy)'.
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COVID-19 times, there is no important difference between Milan in the
Po Valley and Naples in the South regarding the annual cycle of mor-
tality. However, based on the population of Naples (~1 M inhabitants)
and that of Milan (~1.35 inhabitants), the yearly mortality rate of the
two cities is 10.52 ends per 1000 inhabitants for Naples and 12.09 for
Milan. The larger rate for Milan is thought to be because of bad air quality
and related mortality increases (Khomenko et al., 2021; Thurston et al.,
2017).

The effect of air quality can be analyzed by considering the correla-
tion of Dbg with the seasonal cycle, say YNO2 , of NO2 pollution, estimated
according to Eq. (1), the same we did for YTa . For Milan, we have R2 ¼
0.74, whereas for Napoli R2 ¼ 0.05. Once again, for Milan, if we consider
a delay between air pollution and deaths of one month, that is, we
correlate YNO2 (t) and Dbgðt þ τÞ, with τ ¼ 1 month, the correlation rises
to 0.76. The analysis shows us to conclude that for Milan, the persistence
of air pollution is a risk factor independent of the COVID-19 pandemic. In
effect, Naples is polluted the same as Milan, if even worse, as evidenced
in section 3.1 by comparing the background coefficient, a in Table 3 for
Milan and Naples. Yet, for Naples, we have R2 ¼ 0.05, as far as the
correlation between air pollution and Dbg is concerned. The result for
Naples shows that the correlation is not universal but depends on local
effects, which for the case at hand, is likely driven by weather conditions,
which favors the persistence of poor air quality.

With this in mind, we try to establish if there is any correlation be-
tween air pollution and excess mortality, defined according to ΔD ¼ D�
Dbg ; whereD represents the actual total deaths. The analysis is performed
by using the in situ observations Ta and qG because they are taken
simultaneously and have the same time-spatial scales. As before, we
Como 41.85
[38.65,
45.04]

-0.31
[-0.45,
-0.15]

8.12
[5.90,
10.34]

1.67 [1.41,
1.94]

0.66 0.62

Cremona 25.58
[21.71,
29.46]

-0.13
[-0.31,
0.06]

14.37
[11.68,
17.07]

7.93 [7.75,
8.12]

0.79 0.81

Lecco 18.23
[14.26,
22.19]

0.23
[0.038,
0.41]

10.5
[7.75,
13.24]

8.10 [7.84,
8.34]

0.71 0.56

Lodi 31.46
[28.16,
34.76]

-0.21
[-0.37,
-0.06]

11.72
[9.44,
14.01]

-35.92
[-36.11,
-35.73]

0.77 0.79

Mantova 20.19
[16.58,
23.79]

0.09
[-0.08,
0.26]

10.71
[8.21,
13.20]

1.85 [1.62,
2.08]

0.73 0.66

Milano 50.08
[42.9,
57.26]

-0.40
[-0.74,
-0.06]

19.55
[14.56,
24.54]

7.97 [7.72,
8.21]

0.67 0.69

Pavia 28.93
[25.92,
31.94]

-0.18
[-0.32,
-0.03]

-13.90
[-15.99,
-11.81]

11.13
[10.99,
11.28]

0.85 0.88

Naples 61.71
[53.21,
70.22]

-0.5784
[-0.98,
-0.17]

2.27
[-3.59,
8.12]

-2.54 [-5.10,
0.03]

0.25 0.015
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Table 4. Fit parameters a, b, c, d, correlation coefficient (R2), and cycle variance-ratio to the Air Temperature series total variance for all reference stations.

Air Temperature

Station Fit coefficients R2 Variance Ratio

a (�C) [95% CI] b (�C/month) [95% CI] c (�C) [95% CI] d (radians) [95% CI]

Bergamo 14.19 (12.01, 16.37) -0.010 (-0.11, 0.09) 10.40 (8.89, 11.91) -7.59 (-7.73, -7.44) 0.87 0.84

Brescia 16.08 (13.77, 18.39) 0.004 (-0.106, 0.114) 11.73 (10.13, 13.33) -7.59 (-7.72, -7.45) 0.88 0.86

Como 14.97 (12.81, 17.13) -0.003 (-0.105, 0.099) 10.37 (8.88, 11.87) -13.87 (-14.01, -13.73) 0.87 0.84

Cremona 15.13 (13.03, 17.22) -0.0018 (-0.1016, 0.0978) -12.01 (-13.46, -10.56) -4.44 (-4.56, -4.32) 0.90 0.88

Lecco 14.86 (12.79, 16.92) 0.003 (-0.095, 0.102) 11.57 (10.14, 13) -13.86 (-13.98, -13.73) 0.90 0.88

Lodi 14.00 (12.01, 15.99) 0.0099 (-0.0846, 0.1046) 12.05 (10.68, 13.43) -13.87 (-13.98, -13.75) 0.91 0.89

Mantova 14.86 (12.79, 16.92) 0.0033 (-0.0950, 0.1016) -11.57 (-13, -10.14) -4.43 (-4.55, -4.31) 0.90 0.88

Milano 14.6 (12.52, 16.69) 0.04 (-0.05, 0.14) 11.55 (10.11, 13) -7.60 (-7.73, -7.48) 0.89 0.89

Pavia 14.86 (12.79, 16.92) 0.0032 (-0.0950, 0.1016) 11.57 (10.14, 13) -7.57 (-7.69, -7.45) 0.90 0.88

Naples 17.77 [16.61, 18.93] 0.041 [-0.014, 0.096] 8.09 [7.28, 8.90] -8.12 [-8.21, -8.02] 0.93 0.93

Figure 8. Milan and Naples station. The correlation coefficient between ΔD vs qG and ΔD vs Ta as a function of the delay, τ. The two magenta lines give the 95%
Confidence Interval for zero correlation; therefore, only R2 outside the CI range are statistically and significantly different from zero.
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consider monthly averages alone. The analysis will be performed by
distinguishing noCOVID-19 from COVID-19 times.

To begin with, we analyze the correlation in 2019, that is, before the
pandemic crisis. Because we expect a delay between mortality and the
Figure 9. As Figure

9

seasonal cycle of Ta and qG we analyzed the correlation as a function of
the delay, τ. The results are shown in Figure 8 for the two stations of
Milan and Naples. We have explored the range, τ ¼ [0,3] months,
because larger delays are physically unrealistic and also because the
8, but for 2020.
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Table 5. Correlation index R2 between NO2 pollution and ΔD; as a station
function and delay τ ¼ 2 months. The CI is related directly to the observed value
of R2; shown in the second column. If CI includes a zero value, the correlation is
not statistically significant.

Station R2 95% Confidence Interval for R2

Bergamo 0.92 [0.69, 0.98]

Brescia 0.86 [0.50, 0.97]

Como 0.89 [0.59, 097]

Cremona 0.89 [0.59, 0.97]

Lecco 0.62 [-0.02, 0.90]

Lodi 0.92 [0.69, 0.98]

Mantova 0.84 [0.45, 0.96]

Milan 0.85 [0.47, 0.96]

Pavia 0.83 [0.42, 0.96]

Naples 0.46 [-0.24, 0.85]

Table 6. Summary of the higher correlation index R2 as a function of the station
and delay τ for the cases and couples examined in this study, the delay τ is units
of months. Green boxes show the matter for which the correlation is statistically
significant; yellow boxes refer to borderline cases (the 95% confidence interval).
White boxes refer to values that are not statistically significant.

Analysis of the monthly series of background values

Dbg vs YTa Dbg vs YNO2

Milan Naples Milan Naples

R2 ¼ -0.79, τ ¼ 1 R2 ¼ -0.82, τ ¼ 1 R2 ¼ -0.74, τ ¼ 1 R2 ¼ 0.05, τ ¼ 0

Analysis for the 2019 monthly series (noCOVID)

ΔD vs Ta ΔD vs qG

Milan Naples Milan Naples

R2 ¼ -0.40, τ ¼ 0 R2 ¼ -0.55, τ ¼ 3 R2 ¼ 0.01, τ ¼ 2 R2 ¼ 0.54, τ ¼ 0

Analysis for the 2020 monthly series (COVID)

ΔD vs Ta ΔD vs qG

Milan Naples Milan Naples

R2 ¼ -0.58, τ ¼ 1 R2 ¼ 0.70, τ ¼ 3 R2 ¼ 0.85, τ ¼ 2 R2 ¼ 0.47, τ ¼ 2
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degrees of freedom scale linearly according to N� τ, with N ¼ 12
months.

Figure 8 shows that in noCOVID-19 time, there is no statistically
significant correlation between ΔD vs qG and ΔD vs Ta. For Naples, for
the case ΔD vs qG, we observe R2 ¼ 0.54 with τ ¼ 0. This result repre-
sents a borderline case because it falls close to the 95% CI upper bound
for zero correlation. In conclusion, the low values of R2 observed for both
Milan and Naples lead us to conclude that there is no evidence of sta-
tistically significant correlation once the deaths have been deseasonal-
ized according to the background Dbg .

Conversely, when we consider the same correlation analysis for 2020
(see Figure 9), we have for Milan the values R2 ¼ 0.85, if we consider a
delay, τ ¼ 2, in the case ofΔD vs q. Therefore, the excess of mortalityΔD,
concerning the background, is correlated with air pollution. For tem-
perature, we observe a peak R2 ¼ � 0.58, which is not statistically sig-
nificant at a confidence level of 95%. For Naples, the correlation is not
statistically significant for the case ΔD vs qG. However, although
borderline, we observe a positive, counterintuitive correlation with air
temperature. We have R2 ¼ 0.70, with τ ¼ 3 months. The second wave of
COVID-19 occurred in the autumn of 2020, following the summer holi-
days when most of the lockdown measures were removed.

The result for Milan yields a significant correlation between ΔD vs
qG. The finding is also substantiated by the analysis of the remaining
Figure 10. Normalized time series for detected infection (blue), deaths (black), hosp
1, 2020, and Jun 30, 2021.
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eight stations in the Po Valley. The results are shown in Table 5 for the
case τ ¼ 2 months, and we see that the correlation is significantly diverse
from zero for all Po Valley stations, but Lecco is borderline. To complete
the analysis, Table 5 also shows the result for Naples, which offers a not
statistically significant correlation (note that for Naples, the CI crosses
the zero line, which is not the case for the Po Valley stations, but Lecco as
already said).

It is noteworthy that R2 reaches its maximum for the Bergamo station.
In effect, the Bergamo municipality has been that with the highest
mortality rate in the Po Valley.

Finally, we stress that a delay between severe air pollution conditions
and deaths is expected. COVID-19 is not killing people instantaneously.
Instead, people get hospitalized, eventually succumbing to the disease
later. Figure 10 shows the normalized series of infection, hospitalization,
intensive care, and deaths in Italy from Jul 1, 2020, to Jun 30, 2021. The
time lag between detected illness and hospitalization and death is esti-
mated at 17 and 27 days. These have to be understood as the lower bound
of the delay because it does not include the delay between the time
infection developed and the time it was detected. Also, the data shown in
Figure 10 refers to the period between summer 2020 and summer 2021,
when the COVID-19 monitoring system was active and working, which
italization (yellow), and intensive care (green) in Italy in the period between Jul

mailto:Image of Figure 10|tif


Figure 11. Milan station. The figure compares the background and its 95% confidence interval to the number of deaths in 2020. The 95% Confidence Interval is
shown with error bars whose magnitude is two times the monthly sample standard deviation.
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was not the case in winter 2020. Therefore, Figure 10 boosts the presence
of a delay τ ¼ 2 months we have revealed with our analysis because it is
consistent with the present information about the spread, infections, and
deaths of COVID-19.

4. Discussion and conclusions

We have analyzed nitrogen dioxide (NO2) pollution over the Po
Valley in Northern Italy. The analysis was performed for three years,
from May 2018 to April 2021, covering January 2020–April 2020 of the
first COVID-19 diffusion over the Po Valley. The study was twofold: first,
we wanted to analyze the effect of the lockdown on air pollution, and
second, the possible correlation between pollution and the excess of
COVID-19 deaths observed on the first wave of the pandemic spread in
the Po Valley compared to the other densely populated part of Italy but
with climate and orography which favor a dynamic, turbulent, boundary
layer. Therefore, we chose the city of Naples.

The decrease of air pollution during COVID-19 has been variously
claimed. However, the concomitance of weather effects has made it very
difficult to assess the lockdown impact. Therefore, in this study, we have
performed an in-depth analysis using satellite and in situ observations of
NO2 spanning from noCOVID-19 to COVID-19 times and air temperature
records.

For the Po Valley, we have shown a good correlation between satellite
and in situ observations of NO2. The good correlation gives us confidence
in using satellite data to analyze spatial patterns. The analysis of these
spatial patterns has revealed that the bulk of NO2 pollution extends to
Milan, Bergamo, and Brescia, which COVID-19 severely hit in terms of
mortality.

Another significant result is the good, negative correlation of NO2
concentration with air temperature. According to ECMWF, winter 2020
has been the warmest on record. However, March 2020 has been colder
over the Po Valley than, e.g., those in 2019 and 2021. Yet, the air
pollution in March 2020 has been some 50% lower than that observed in
March 2019. The only possible explanation is the lockdown issued in
March 2020. The lockdown was an experiment that stopped traffic and
many industrial activities.

On the other hand, domestic heating was seemingly at its peak
because of the colder temperature in March 2020. As a result, the lock-
down experiment has shown that NO2 pollution's primary source is traffic
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and non-electric transportation. This fact supports the current EU policies
for the green deal (https://ec.europa.eu/info/strategy/priorities-201
9-2024/european-green-deal_it) is a helpful tool to improve air quality
and reduce CO2 emissions simultaneously.

Table 6 summarizes the different cases we have examined to establish
a correlation between pollution and deaths. Regarding Table 6, it is seen
that irrespectively to COVID-19, there is a good background correlation
between mortality and air temperature, which share the same seasonal
cycle. Furthermore, heavily polluted cities such as Milan correlate mor-
tality and air pollution. However, this correlation seems peculiar to the
Po Valley and primarily due to air subsidence during winter. In effect,
heavily polluted cities, such as Naples, in a more favorable environment,
such as a marine setting, do not show any critical correlation between air
quality and mortality.

When we consider noCOVID-19 times, the deseasonalized deaths do
not correlate with temperature and NO2 pollution. In other words, the
correlation is an effect of the seasonal cycle alone.

COVID-19 has imposed an additional cycle (e.g., see Figure 10),
which boosts the correlation, especially with air pollution, which is a new
fact. For the Po Valley, the COVID-19 deaths correlate better with air
quality than the air temperature. However, we know that correlation does
not (necessarily) imply causation. To check if the correlation underlies a
mere statistical effect alone, we have also used a reference city outside the
Po Valley, Naples, polluted than Milan. The comparison helped us
establish that the critical element that introduces correlation is persis-
tence, peculiar to the Po Valley. The persistence introduces a seasonal
component to the NO2 pollution, which is not seen in Naples.

COVID-19 diffusion and NO2 pollution are primarily driven by
weather, although the sustaining mechanisms are different. NO2 load is
sustained by a temperature inversion in the boundary layer, likely to
occur in wintertime. The mechanism traps polluting agents close to the
surface. On the other hand, COVID-19 diffusion is sustained by indoor
living because of adverse weather conditions. The expected weather
forcing makes the two events develop a similar seasonal cycle: the larger
the COVID-19 diffusion, the larger the NO2 pollution. The correlation we
see is just an effect of the seasonal process, and as such, it could be a
simple mathematical consequence with no physical causation. However,
although independent, the two cycles can interact through an epidemio-
logical mode, which boosts the COVID-19 fatalities. In fact, according to
(Khomenko et al., 2021), the relationship between respiratory diseases

https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_it
https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_it
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and air pollution is no more a statistical correlation but a piece of
epidemiological evidence. People have been exposed to the most prom-
inent air pollution in the Po Valley during the most extensive diffusion of
COVID-19, which can explain why the disease has been more lethal in
Milan than in Naples. A mere non-causal effect would not justify the
difference in mortality rate because of the pandemic.

Epidemiology could reasonably explain a causal effect between
COVID-19 mortality excess and NO2 pollution. Air pollution leaves
people more exposed to a respiratory virus, such as COVID-19, because
poor air quality is a concomitant agent, increasing the risk of premature
deaths (Khomenko et al., 2021; Thurston et al., 2017). It is also note-
worthy that the same conclusion does not hold for Naples. Again, a key
risk factor seems to be the persistent exposure to a high concentration of
pollutants during the most intense virus spreading. This condition is
missing for Naples, which shows a poor correlation between NO2
pollution and COVID-19 deaths. It could be argued that air quality is
assessed in terms of PM2.5 and PM10, rather than NO2. However, we stress
that NO2 is a good indicator of air quality because it is a precursor of
PM2.5 and PM10 (Veefkind et al., 2011).

The causal relationship between COVID-19 mortality and air pollu-
tion has also been addressed by (Magazzino et al., 2021), who demon-
strated, in line with our causal findings, that there exists a unidirectional
causal effect from PM2.5 to Deaths, NO2 to Deaths, and economic growth
to both PM2.5 and NO2. The analysis has been performed for the New
York state and is limited to the first COVID-19 wave. In contrast, our
study includes the second wave and elucidates the interrelationship with
meteorological conditions.

Our analysis has been shown using the excess of mortality ΔD, which,
based on its definition, is the difference between the total deaths and the
background. The excess of mortality ΔD has also been used by (Coker
et al., 2020), who analyzed the correlation between COVID-19 mortality
and PM2.5. An analysis for Italy based directly on the COVID-19 deaths or
case fatality rate (CFR) has been performed by (Timelli et al., 2021). The
excess of mortality as defined in this study has been proposed and used by
ISTAT and ISS (the National Department of Health) to address the impact
of the COVID-19 pandemic on the total fatality rate in Italy (e.g., https
://www.istat.it/it/files//2021/06/Report_ISS_Istat_2021_10_giugno.pdf
). In the same report, they show that ΔD and CFR exhibit the same time
behaviour, which demonstrates that the excess of mortality is dominated
by COVID-19 deaths. This is also exemplified with the help of Figure 11,
which compares for the city of Milan, the background, and its 95% con-
fidence interval to the number of deaths in 2020. We remember that the
backgroundwas the average number of total ends in 2015–2019. It is seen
that outside the COVID-19 outbreaks, the background and 2020 deaths
agreewithin the error bars. Conversely, during COVID-19 diffusion peaks,
the number of deaths tends to double concerning the background and is
outside the natural statistical variability of the background itself.

In conclusion, we have demonstrated that in Po Valley, the weather
conditions develop a seasonal cycle of NO2 load, which correlates with
the COVID-19 diffusion. Combining this result with the evidence that
poor air quality increases the risk of premature deaths (Khomenko et al.,
2021; Thurston et al., 2017), we conclude that NO2 pollution may be
considered a significant risk factor. Therefore, it demands actions to
mitigate its effects and new approaches to sustainable mobility policies,
as suggested, e.g., in (Migliaccio et al., 2021).
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