
07 October 2022

Meconcelli, D., Bonechi, S., Dimitri, G.M. (2022). Deep Learning Approaches for mice glomeruli
segmentation. In ESANN 2022 (pp.333-338) [10.14428/esann/2022.ES2022-40].

Deep Learning Approaches for mice glomeruli segmentation

Published:

DOI:10.14428/esann/2022.ES2022-40

Terms of use:

Open Access

(Article begins on next page)

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. Works made available under a Creative Commons license can be used according to the terms and
conditions of said license.
For all terms of use and more information see the publisher's website.

Availability:

This version is availablehttp://hdl.handle.net/11365/1216715 since 2022-09-28T07:44:47Z

Original:

This is the peer reviewed version of the following article:



Deep learning approaches for mice glomeruli

segmentation

Duccio Meconcelli1, Simone Bonechi 2, Giovanna Maria Dimitri1

1- DIISM, Department of Information Engineering and Mathematics,
University of Siena, Siena, Italy

2- DISPOC, Department of Social, Political and Cognitive Sciences,
University of Siena, Siena, Italy

Abstract. Deep learning (DL) is widely applied in biomedical image
processing nowadays. In this paper, we propose the use of DL architectures
for glomerulus segmentation in histopathological images of mouse kidneys.
Indeed, in humans, the analysis of the glomeruli is fundamental to decide
on the transplantability of the organ. However, no datasets with human
samples are publicly available. Therefore, obtaining good segmentation
performance on the kidneys of mice could be the first step for a transfer
learning approach to humans. We compared the use of two well–known
architectures for image segmentation, namely MobileNet and DeepLab V2.
Both models showed very promising results.

1 Introduction and Background

Modern deep learning architectures are applied in many fields: from computer
vision to biomedicine, from data mining to time series analysis [1, 2, 3, 4, 5]. In
this scenario, the application of deep learning techniques to semantic segmen-
tation has seen a rapid increase [6, 7], with several applications in the context
of histopathological image analysis [8]. In the present study we propose the
application of deep learning techniques to segment glomeruli in mouse renal
histopathological images. Glomeruli are composed by a set of capillaries located
inside the kidneys. Specifically, glomeruli are the part of the kidney responsible
for filtering potentially harmful substances from the blood [9]. The identification
of the glomeruli in the histopathological tissue is, in fact, an essential task for
the correct diagnosis of numerous pathologies related to the kidneys. An exam-
ple of glomerulus–related disease is focal segmental glomerulosclerosis, which is
often due to drug abuse [10, 11, 12]. In presence of such condition, a biopsy is
performed on the patient to identify the percentage of sclerotic and non–sclerotic
glomeruli, which is related to the correct functioning of the kidneys. Identifying
and counting the number of glomeruli in an image is normally performed visu-
ally by a human expert. This procedure takes a long time and, unfortunately,
its slowness can drastically affect the possibility of kidney transplantation. This
is why the development of automated methods to segment and count healthy
glomeruli could be very helpful in speeding up renal tissue analysis. In recent
years, many deep learning approaches have been proposed for automatic seg-
mentation of human glomeruli [11, 12, 13, 14]. However, no publicly accessible



datasets are available that can be used to train deep learning architectures. In-
stead, a reference dataset was released by [19] for the segmentation of mouse
glomeruli, which has been used extensively in the literature [16, 17, 18]. In this
work we employed such dataset to train and compare the results of two segmen-
tation architectures, MobileNet [21] and DeepLab V2 [20]. Network training on
the mouse dataset could be the first pre–training step for a transfer learning ap-
proach to perform glomerulus segmentation on human samples, overcoming the
lack of available data. The results obtained are very promising and surprisingly
similar, opening up the use of MobileNet, designed to work on limited hardware,
on smartphones, tablets and electron microscopes. The paper is organized as fol-
lows: in Section 2 the dataset and the segmentation architecture are described,
while in Section 3 the experimental setup and the results are presented. Finally,
Section 3.3 draws the conclusion and shows some future perspectives.

2 Materials and Methods

The dataset of mouse glomeruli is introduced in Section 2.1 while Section 2.2
describes the deep learning architectures employed in our experiments. Finally,
the performance indicators used to evaluate the segmentation are described in
Section 2.3.

2.1 Dataset

The annotated dataset used in this work is available online 1. It contains Whole
Slide Images (WSIs) specifically designed by the curators with the aim of cre-
ating a benchmark for glomerulus segmentation. The dataset is composed by
88 images in tiff format (tiled, jpeg compression) that can be displayed through
histopathology software such as Orbit [19]. The histopathological images in
the dataset are collected from two species (mouse and rat) with different stain-
ing procedures (H and DAB, FastRed, PAS, and three variations of H and E).
The manually labelled annotations for each image were released in the SQLite
database format and can be opened with the Orbit software, producing a total
of 21037 annotated glomeruli. The original images were therefore divided into
512×512 patches to be fed into the deep learning architectures.

2.2 DeepLab V2 and MobileNet

DeepLab V2 is one of the most used segmentation networks, proven effective
in many applications [20]. Overall, the network is based on a typical encoder–
decoder architecture. In DeepLab, the atrous convolutions, which allow to en-
large the receptive field without using pooling operations, have replaced the
standard convolutions. This prevents the loss of spatial information due to
pooling operations. Instead, MobileNet is a common architecture for semantic
segmentation, specifically designed to reduce the number of network parameters

1https://datadryad.org/stash/dataset/doi:10.5061/dryad.fqz612jpc



depthwise separable convolutions [21]. Therefore, MobileNet represents a lighter
semantic segmentation architecture that can be used on limited hardware.

2.3 Model Evaluation

The Jaccard and Dice indices are two common metrics used to evaluate perfor-
mance in semantic segmentation. Given two sets A and B, the Jaccard and Dice
indices are defined as:

Jaccard =
|A ∩B|

|A ∪B|

Dice =
2|A ∩B|

|A|+ |B|

Both the Jaccard score and the Dice index are used in statistics for assessing the
similarity of two sets [23, 24].

Also, as the main focus of this document is to correctly count the number of
glomeruli, we decided to evaluate the performance of the segmentation network
using an additional metric. To count the number of glomeruli found by the
network we used the OpenCV [22] function cv2, able to detect the number of
connected components in an image. Then, we considered the difference between
the number of predicted glomeruli and the number of glomeruli present in the
ground–truth mask. In particular, the ∆Glomeruli indicator can be defined as:

∆Glomeruli = |numglomeruliGroundTruthMask − numglomeruliPredictedMask|

3 Experiments and Results

Experiments were performed using the Google Colab platform. In the rest of
this section, we will describe the pre–processing steps implemented, together
with the results of the application of DeepLab V2 and MobileNet.

3.1 Network Training

Both the architectures were trained with the same procedure. The WSIs were
first divided in tiles of dimension 512×512, obtaining a dataset of 10329 image
tiles with the corresponding masks, that can be used to train the network models.
A data augmentation procedure (i.e. rotation of 90°) has been employed to
increase the number of tiles to 20658. The networks were trained with a batch
size of 2, using the Adam optimizer with a learning rate of 2.5e-4, momentum of
0.9 and weight decay of 0.0005. Moreover, a 5–fold cross validation strategy was
employed over ten epochs, using 4/5 of the augmented tiles (∼ 16525 images)
for the training set, and the rest (∼ 4131 images) for the test set.

3.2 Experimental Results

In Table 1, we present the results obtained with the 5–fold cross validation
approach with the DeepLab V2 and MobileNet architectures. As we can observe,



on average, the two models achieve a similar Jaccard score even if a lower Dice
index is obtained with the MobileNet. However, it is important to note that
the number of glomeruli that are found inside each image is calculated more
accurately with the MobileNet (difference of only 0.18). This demonstrates that,
even if the precision of the segmentation is lower compared to the DeepLab,
nonetheless it is possible to use the MobileNet to count the number of glomeruli
inside an image in a precise way.

Fold Dice Jaccard Mean ∆Glomeruli

0 0.90 ± 0.16 0.81 ± 0.34 0.35 ± 1.46
1 0.91 ± 0.14 0.79 ± 0.35 0.31 ± 1.55
2 0.92 ± 0.15 0.80 ± 0.34 0.14 ± 1.22
3 0.90 ± 0.15 0.78 ± 0.36 0.46 ± 1.6
4 0.93 ± 0.14 0.86 ± 0.28 0.22 ± 1.17

Folds Average 0.91 ± 0.01 0.80 ± 0.03 0.29 ±0.12

(a) DeepLab

Fold Dice Jaccard Mean ∆Glomeruli

0 0.83 ± 0.33 0.81 ± 0.34 0.19 ± 1.06
1 0.78 ± 0.38 0.77 ± 0.38 0.02 ± 1.02
2 0.83 ± 0.33 0.82 ± 0.33 0.34 ± 1.40
3 0.79 ± 0.36 0.77 ± 0.37 0.24 ± 1.10
4 0.85 ± 0.31 0.83 ± 0.33 0.13 ± 1.26

Folds Average 0.81 ± 0.02 0.80 ± 0.02 0.18 ± 0.11

(b) MobileNet

Table 1: Results for the DeepLab V2 (a) and MobileNet (b) architectures for each validation fold.

Furthermore, in Figure 1, the comparison of the results obtained with both
the DeepLab V2 and MobileNet, across the 5 folds, are shown, using boxplots.
Instead, in Figure 2, we show the comparison between the ∆Glomeruli index
for the DeepLab and MobileNet experiments while, in Figure 3, we present an
example of the segmentation obtained with the two networks.

3.3 Conclusions

In this work, we presented the application of two DL architectures, DeepLab
V2 and MobileNet, to the segmentation of the renal glomeruli of mice. The re-
sults obtained open the use of such architectures for the segmentation of human
glomeruli. In addition, employing lightweight networks, such as MobileNet, of-
fers the opportunity to develop DL tools for mobile or embedded environments,
such as electron microscopes. This could fundamentally help clinicians in the
correct identification of glomerular structures, for a timely and accurate diagno-
sis of kidney health.
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can see the distribution of the two performance indicators across the 5–folds.
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