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Abstract. The security of machine learning classifiers has received in-
creasing attention in the last years. In forensic applications, guaranteeing
the security of the tools investigators rely on is crucial, since the gath-
ered evidence may be used to decide about the innocence or the guilt
of a suspect. Several adversarial attacks were proposed to assess such
security, with a few works focusing on transferring such attacks from the
digital to the physical domain. In this work, we focus on physical domain
attacks against source attribution of printed documents. We first show
how a simple reprinting attack may be sufficient to fool a model trained
on images that were printed and scanned only once. Then, we propose
a hardened version of the classifier trained on the reprinted attacked
images. Finally, we attack the hardened classifier with several attacks,
including a new attack based on the Expectation Over Transformation
approach, which finds the adversarial perturbations by simulating the
physical transformations occurring when the image attacked in the dig-
ital domain is printed again. The results we got demonstrate a good
capability of the hardened classifier to resist attacks carried out in the
physical domain.

Keywords: Digital Image Forensics · Printer Source Attribution · Ad-
versarial Attacks.

1 Introduction

Printed documents are everywhere. From printed advertisements and contracts
to packages and anti-counterfeiting labels, a printer is always involved. However,
the cheap access and high demand for new printing technologies raise many
concerns about their misuse. For example, documents that could be considered
a piece of evidence in a criminal investigation, such as illegal copies of docu-
ments, packaging of fake products, and terrorist plans, can be easily produced at
anybody’s home. Determining the provenance of printed documents, then, may
be particularly important in several applications, such as anti-counterfeiting,
forensics applications, and authentication of legal documents like statements,
contracts, checks, among others. Indeed, according to a forecast from the Inter-
national Chamber of Commerce, 3.7 trillion dollars and 5.4 million jobs will be
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lost by 2022 [12] due to piracy. As another example related to piracy, according
to the World Health Organization, almost 50% of the Malaria medications in
Africa could be fake [37].

Current works on printed document forensics focus on two main tasks: the
authentication of printed documents by pinpointing the ownership of a document
(source attribution), and the description of copy-proof patterns that are distorted
when an illegal copy of a printed authentication element is made (such as 2D
barcodes). For the first task, which is the task of interest in this work, several
papers have focused on identifying extrinsic artifacts such as noise, texture of
printed patterns, banding, among others, and are usually divided in solutions
focused on text documents [36, 34, 7, 18, 16, 17, 22], color documents [5, 38, 30, 20,
21, 10, 11] or both [8, 35, 3]. In all of these applications, methodologies based on
artificial intelligence through Convolutional Neural Networks (CNNs) showed
state-of-the-art performance [7, 18, 3, 10, 11].

Despite all these advancements, very little or no attention has been given to
the evaluation of printed document forensics in adversarial conditions. A smart
counterfeiter could, for example, use the ubiquitous existence of adversarial ex-
amples [23, 25, 24, 31, 2, 6, 32] to generate counterfeited labels that are judged as
authentic by a CNN. In the same way, a criminal could modify a printed doc-
ument to change the result of a source attribution procedure. For the specific
domain of interest of this paper, some works have evaluated the transferability
of adversarial attacks in the physical domain for computer vision applications.
For example, Kurakin et al. [23] showed that printed and recaptured images
could fool image classifiers by assuming that the images are presented in a given
position. Other works have proven that variations of points of view do not im-
pact the performance of attacks in the physical world [25, 24]. In [31], Sharif et
al. attacked a face recognition system by proposing the printing of adversarial
examples on a pair of eyeglass frames. Such an attack works by interactively
looking for a perturbation that can fool the classifier, identified by optimizing
a cross-entropy loss over a set of images that have already undergone geomet-
ric transformations typical of the recapture process. Athalye et al. [2] proposed
an attack done by simulating synthetic transformations that can happen in the
printing process of an image several times in the adversarial image construction.
This is usually done to minimize the loss of an adversarial or target class (tar-
geted attack) or maximize the loss of the real class (untargeted attack). Eykholt
et al. [6] proposed an interesting physical domain attack to mislead stop sign
classifiers. To reach their goal, they applied both synthetic and physical trans-
formations and extended their work later to a general object recognition system
[32]. Finally, the work by Zhang et al. [39] simulated the distortions a spoofed
image is subject to when it is displayed on a smartphone screen to an anti-spoof
authentication system. All the above-mentioned works have the same idea of
modeling the possible physical world distortions that the image may be subject
to during the attack optimization procedure. However, as will be discussed in the
rest of this paper, applying such adversarial attacks against source attribution
classifiers has some unique peculiarities that do not apply to other settings.
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In this paper, we report our findings in fooling and defending printed doc-
uments source attribution classifier in the physical domain. To perform such a
task, we first propose a simple black-box attack based on re-printing. Then we
present a hardened version of the classifier, obtained by fine-tuning the original
classifier using the attacked images obtained by reprinting. Finally, we evaluate
the effectiveness of the hardened classifier against several white-box attacks, in-
cluding a newly proposed method based on Expectation Over Transformation
[2]. In summary, the contributions of this paper are:

1. We propose two adversarial attacks in the printed domain against source
printer attribution classifiers: one of them is based on a simple, yet effective,
black-box attack based on reprinting. The other is based on the Expectation
Over Transformation strategy applied in a white-box setting.

2. We show how the simple black-box reprint attack can be enough to attack
the printer source attribution classifier.

3. We introduce a new version of the source attribution classifier trained on
examples attacked with the black-box attack, and demonstrate the effective-
ness of such a defense against several white-box attacks, including the newly
proposed method based on Expectation Over Transformation.

The rest of this paper is organized as follows: Section 2 discusses the threat
model and the source attribution system targeted by our attacks. Section 3
presents our white and black-box attacks. Section 4 reports the results we got
by attacking the original classifier with a simple rebroadcasting attack. In Section
5, we show the results of the experiments we run to validate the security of the
hardened classifier. Finally, Section 6 concludes our work.

2 Threat Model

In this paper, we adopt the taxonomy introduced by Biggio and Roli [4], and
already used in a previous work [39]. Before discussing the goal of the attack,
we briefly review the system used for the printer source attribution problem
targeted by our attacks.

The source attribution system, the attacks and defenses are based on the
analysis and the datasets presented in [10, 9]. According to such works, focusing
on an 8-class closed set scenario, the best source attribution is achieved by
training a RESNET-50 [14] architecture. To apply the RESNET-50 CNN in
the laser printer attribution task, the authors adopted classification over regions
of interest (with further majority voting for classification), inspired by a previous
work on rebroadcasting detection [1]. The source attribution is applied to high-
energy regions detected after Canny filtering. Such energy is calculated on the
Discrete Wavelet Transform domain and the top-10 highest energy 224×224×3
patches of the documents are used for training and testing a CNN classifier. For
the present work, we added to the dataset used in [10, 9] images taken from four
new printers (already used in [11]). The images were also used to expand the
VIPPrint dataset [10, 9] from 8 to 12 printers.
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The threat model considered in this paper, which is illustrated in Figure 1,
has two goals: (i) attack the high energy patches in such a way that these attacks
remain in the print and scan domain; (ii) modify the patches in such a way to
fool the source attribution classifier even after the majority voting scheme. As
the classifier works on printed and scanned images, to perform the adversarial
attack we print the digital images first, scan the images next and then we apply
the adversarial attacks on them. After the attack, the attacked image is printed
again, and the classifier is applied after re-scanning.

Print + Scan Image

DIVISION INTO BLOCKS
TOP-N 

ENERGIZED 
BLOCKS

ADVERSARIAL
ATTACK

IMAGE  
RECONSTRUCTION

READY TO PRINT

Fig. 1. The threat model considered in our work. We aim at modifying the high-energy
patches using adversarial attacks to fool the source attribution system even after that
the attacked image is re-printed and re-scanned.

In this work, we assume that the attacker has full access to the attacked
system, representing a kind of worst-case assumption for the defender. This
means that the attacker has not only access to the weights of the network, but
he/she also knows which regions of interest will be used since the attacker also
has access to the algorithm used to select the high-energy patches and will try
to keep the same high energy patches after the attack. The adversarial replay
attack consists of the construction of a scanned image with adversarial high-
energy patches that could be scanned even with a scanner other than that used
to train the classifier. The goal of the attack is to take an image printed with a
certain printer P and modify it in such a way that the classifier does not recognize
anymore that the image had been printed by P. The challenge, here, is that the
attack should be effective even after the attacked image has been printed again
(by P) and re-scanned. The attack we aim at is a purely exploratory attack [4],
meaning that the attacker has no access to the training data used to train the
classifier. Moreover, the attack is thought to work against an unattended system
without human supervision. Finally, the printer P we focus our attack on is
the Kyocera-ecosysp5021cdn laser printer, which is class #12 of our multiclass
classification problem.
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3 Proposed Attacks

In this section, we introduce the two attacks used throughout the paper. The
first one is a black-box attack based on printing the document after it was
already printed and scanned, and will be used to attack and defend the original
model. The second attack is a white-box attack aimed at surviving the image
distortions occurring between the first and second print. The last attack will
be used to attack the hardened classifier fine-tuned with adversarial samples
generated by the first method.

3.1 Double Rebroadcast Attack

The first adversarial attack we are considering relies on the experimental obser-
vation that a second print and scan process often fools the source attribution
classifier with a significant margin. This observation contrasts with some related
works, dealing with the effect of rebroadcasting in forensic applications. Zhang
et al. [39], for example, applies Expectation Over Transformation to add a per-
turbation p that could fool a spoofing detection method once a spoofed image is
displayed on a smartphone screen. The authors state that, without such a per-
turbation, the second rebroadcasted image could be easily detected as a spoof
image by the anti-spoofing CNN. In our case, an image that has been printed and
scanned twice can not be classified correctly, and thus a rebroadcasted document
can be an adversarial attack against source printer attribution classifiers.

To support our claim, we show in Figures 2 and 3 some examples of images
that are printed and scanned once and twice. We also show, in Figure 4, how the
printing artifacts change in the second print by plotting the HH Discrete Wavelet
Transform sub-bands of the first and second print. Such sub-bands were used by
the work of Choi et al. [19] for printer attribution. Figure 4 shows that traces of
the printer used for the second print are present when the image is printed twice
(second and fourth columns of Figure 4), mixing artifacts and thus causing a
classification error.

(a) Printed once (b) Re-printed

Fig. 2. First print (a) and second print (b) of the same image by considering a Kyocera
Printer (printer #12) for first and second prints.
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(a) Printed (b) Re-printed

Fig. 3. First print (a) with Samsung printer (printer #4) and (b) a reprinting of the
first print using a Kyocera Printer (printer #12) for the second print.

Fig. 4. Discrete Wavelet Transform HH subbands artifacts for images printed twice.

3.2 Expectation Over Transformation Attack

In this section, we present a white-box adversarial attack thought to be used
against the hardened classifier fine-tuned on the reprinted images obtained by
the black-box attack described in the previous subsection.

We start by formalizing the process whereby adversarial examples are gener-
ated. We may distinguish between targeted and untargeted attacks first. In the
targeted case, given an input image I, we denote the target label of the adver-
sarial example by ladv ̸= ltrue, where ltrue is the true label of the sample. We
indicate with So the soft output of the neural network under attack. A targeted
adversarial white-box attack aims at finding a minimal adversarial perturbation
image Iδ solving the following optimization problem [39]:
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argmin
Iδ∈I

L(So(I + Iδ), ladv) + λ||Iδ||p, (1)

where I indicates the set of all possible perturbation images, L is the loss function
of the neural network, || · ||p denotes the p-norm, and λ controls the strength of
the distance penalty term ||Iδ||p.

In the untargeted case, which is what we focus on in this paper, the opti-
mization is rewritten as follows:

argmax
Iδ∈I

L(So(I + Iδ), ltrue) + λ||Iδ||p, (2)

In the printed domain setting considered for our source attribution problem,
the CNN is not fed directly with the digital image, but with its printed and
scanned version. As the CNN works after the printing and scan operation, the
attack is applied after the first print and scan process, then the adversarial image
is re-printed and re-scanned. As will be discussed later, such an operation makes
the source attribution attack scenario unique in terms of attack and defense
strategies.

In order to better attack a printer source attribution system, the transfor-
mations the image suffers between the first and second print must be modeled
during the attack. By denoting with T the set of distortions/transformations the
attack must be robust to, the perturbation Iδ is found by optimizing the average
loss over T as follows:

argmax
Iδ∈I

Et∼T [L(So(t(I + Iδ)), ltrue)] + λ||Iδ||p, (3)

In other words, for an adversarial perturbation Iδ to be successful in the un-
targeted case, Equation (3) states that it must maximize the mean loss of a true
label after the application of several transformations to the adversarial image.
In this way, after the attack, a random class will be given to the attacked image
by the classifier (untargeted case). Such transformations are usually defined in
such a way to simulate the distortions occurring when the adversarial image
is rebroadcasted (in our case, re-printed and re-scanned). This formulation was
first introduced by Athalye et al. [2] in the context of object recognition and
later followed by Zhang et al. [39] to attack a face anti-spoofing classifier, and is
commonly known as the Expectation Over Transformation (EOT) attack.

In the setting considered in [2], the degradation due to rebroadcasting is
mainly due to geometric distortions, different color distributions, light reflec-
tions, and printing artifacts. Since in the printer attribution problem the scan-
ning conditions are controlled with a fixed flatbed scanner, geometric distortion
artifacts play a minor role. So, we focus on artifacts related to zoom, bright-
ness change, and, most importantly, printing noise. The set of transformations
used to implement our attack is listed in Table 1, together with the range of pa-
rameters we considered for each of them. For EOT, every t in Equation (3) is a
composite transformation consisting of all the transformations in Table 1 applied
randomly. The transformations in Table 1 were defined by visually inspecting
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the transformations associated with reprinting, since the EOT-based method is
expected to be applied in the physical domain, and hence the perturbation will
have to survive a second print and scan process. The average loss is then com-
puted over 100 versions of the to-be-attacked image, obtained by applying to it
the composite transformations. To solve the minimization problem in Equation
(3), we applied Stochastic Gradient Descent optimization (SGD).

Transformation Range
Zoom [-0.019,-0.029]

Brightness [0.1,0.4]
Gaussian Noise (standard deviation) [0.1,0.3]

Table 1. Transformations considered to simulate re-printing distortions for the Expec-
tation Over Transformation based adversarial attack. For zoom effect, the interpolation
used was bilinear and the values for brightness are the values that are randomly chosen
and added to the image pixels in the normalized domain.

Finally, it is worth mentioning that, in our specific attack, we aim at keeping
the position of the high energy patches unchanged after the attacked image is
printed and scanned for the second time. To accomplish such a goal, a parameter
called strength, or ϵ, is used to clip the values of the generated adversarial image.
This is done by constructing an interval of accepted pixel values, so the original
image is not degraded too much and thus the adversarial image will have an
acceptable visual aspect. We show an example of the high energy patches in
Figures 5 and 6 when considering a big and a small ϵ respectively. We found
that from 70% to 80% of the high energy patches are unchanged in the attacked
image when it is printed for the second time if a small ϵ is considered. In the
experiments reported in the rest of the paper, we let ϵ = 0.01.

(a) before attack (b) After attack (c) After printing

Fig. 5. Effect of a large strength value ϵ on the location of the high energy patches.
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(a) Before Attack (b) After attack (c) After printing

Fig. 6. Effect of a small strength value ϵ on the location of high energy patches.

4 Effectiveness of the black-box attack against the
original model

In this section, we report the results of the experiments we carried out to test
the security of the original source attribution model against the simple black-box
attack described in Section 3.1.

For the experiments described here and in the next section, we consider the
dataset described by Ferreira et al. in [11]. The dataset consists of 200 printed
faces, whose top-10 high-energy patches are used for printer attribution. Our
attack focuses on one specific printer to which we had full access during our
research: the Kyocera-ecosysp5021cdn, which we call printer #12. More specifi-
cally, we attack a model trained by considering 10 high-energy patches from 100
printed faces, printed by all 12 printers (10*100*12=12,000 images). For testing,
we consider 100 printed faces from printer #12 and their top-10 high-energy
patches to generate the adversarial examples.

To highlight the weakness of the original model against a simple reprint
attack (hereafter referred to as ReprintingAttack), we considered three versions
of the attack, varying the first and second printers as described below:

1. ReprintingAttackv1: we use the same printer (brand and model) for the
first and second print: a Kyocera-ecosysp5021cdn.

2. ReprintingAttackv2: we use two different printers with the same brand,
but with different models. We use a KyoceraTaskAlfa3551ci for the first
print and a Kyocera-ecosysp5021cdn for the second one.

3. ReprintingAttackv2: we use two different printers with different brands
and models. We use a Samsung-Multiexpress-X3280NR for the first print
and a Kyocera-ecosysp5021cdn for the second one.

Figure 7 summarizes the errors of the classifier after majority voting on the
top-10 high-energy patches.

The results reported in Figure 7 highlight the particularities of the printer
source attribution problem in an adversarial setting. Simple black-box attacks
like ReprintingAttackv1, ReprintingAttackv2 and ReprintingAttackv3 can
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Fig. 7. Effectiveness of ReprintingAttack on the original classifier (error probabili-
ties are reported as pecentages). The printer used for reprinting is always a Kyocera-
ecosysp5021cdn printer. The results are given after majority voting on the high energy
patches.

easily fool the original classifier, with error rates larger than 70%. Results at the
patch level, not reported in the figure, confirm the effectiveness of the attack.
In particular, ReprintingAttackv2 and ReprintingAttackv3, using different
printer sources for the first and second print, results in error rates around 50%
and above 90% respectively. The effectiveness of these attacks motivates the
development of a hardened classifier, trained on adversarial samples, as will be
discussed in the next section.

5 Hardened source attribution model

We used the adversarial images obtained with the ReprintingAttack to harden
the source attribution classifier. To train the new classifier, we fine-tune the
original classifier by loading the original weights (previously found for the original
printer source attribution). The fine-tuned classifier is trained on the original
data plus the reprinting data (200 training images reprinted, being 100 of them
with the same printer in the first and second prints, and the other 100 with
different printers for the first and second prints, being the second printer always
the Kyocera-ecosysp5021cdn). We establish as the source (or label) of reprinted
data the printer that performed the second print. The architecture used to train
the hardened model is the same RESNET-50 CNN as the original model, fine-
tuned with SGD optimizer under 300 epochs and with a batch size of 32. An
initial learning rate of 0.01 is defined and is reduced by a factor of

√
0.1 if there is

a plateau in the validation accuracy curve for every 10 epochs. There is an early
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stopping criterion that stops training if the validation accuracy does not change
for 20 epochs. Finally, the best model considering such validation accuracy is
saved.

In Table 2, we show the confusion matrix obtained by testing the hardened
classifier in the absence of attacks. Not only the fine-tuned RESNET-50 model
retains the good performance of the original model, but it also improves the
original model’s accuracy from 95,83% to 97,08%.

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12
#1 100,00%
#2 82,00% 16,00% 2,00%
#3 14,00% 85,00% 1,00%
#4 100,00%
#5 100,00%
#6 98,00% 2,00%
#7 100,00%
#8 100,00%
#9 100,00%
#10 100,00%
#11 100,00%
#12 100,00%

Table 2. Confusion Matrix of a multiclass RESNET-50 source attribution model fine-
tuned on reprinted images. The printer that we will focus on for our attack is highlighted
in yellow in yellow last row and column.

5.1 Experimental analysis of the accuracy of the hardened classifier

To show the effectiveness of the hardened classifier against adversarial examples,
we start evaluating its performance against adversarial attacks carried out in the
digital domain. To do so, we benchmark a number of baseline white-box attacks
against the hardened model in terms of performance metrics, selecting the best
approaches to be applied in the physical domain. In particular, we focused on
adversarial examples that remain effective even when they are converted from the
normalized (floating point in the [0,1] range) domain back to the integer domain.
Inspired by [33], we rely on the following metrics in both the normalized and
integer domains:

1. Error: the inverse of accuracy, or the probability that a document is mis-
classified.

2. L1 norm: the mean of absolute pixel-wise differences between the original
and the attacked images. Such a value is reported in percentage (0% means
no variation, 100% means a variation from 0 to 255 in the pixel values).

3. Linf norm: the average maximum pixel-wise difference between the original
and the attacked images (this is also given in percentage).

4. PSNR: the mean Peak Signal-to-Noise Ratio between the original and at-
tacked images.

5. %mod: the average percentage of modified pixels when comparing the orig-
inal and attacked images.
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For the digital domain attacks, we considered the following attacks imple-
mented in the Foolbox 2.0 library [28, 29]:

– the white box attack L2FastGradientAttack, also called the Fast Gradient
Method (FGM) [13];

– the white box LinfFastGradientAttack, also called the Fast Gradient Sign
Method (FGSM) [13];

– the white box DeepfoolAttack attack [27];
– LinfPGDAttack, which is the Projected Gradient Attack [26] using infinity

norm;
– the LinfBasicIterativeAttack, which is the L-infinity norm Basic Iterative

Method [23] and is built to work in the physical domain.

Tables 3 and 4 show results of the baseline white-box attacks in both nor-
malized and integer domains before printing the adversarial attacks.

Approach Normalized Domain
%Error Norm L1 (%) Norm Linf (%) PSNR %mod

L2FastGradientAttack 7.29 0.15 4.09 53.22 98.83
LinfFastGradientAttack 33.59 48.79 96.22 5.10 98.07

LinfDeepFoolAttack 33.9 10.21 10.60 22.09 96.98
LinfPGDAttack 100 5.41 11.03 24.54 99.26

LinfBasicIterativeAttack 100 1.82 3.64 34.67 99.27
Table 3. Results obtained by baseline white-box attacks against the hardened classifier
in the digital normalized domain. Best results are highlighted in yellow and metrics
are calculated patch-wise (before majority voting).

Approach Integer Domain
%Error Norm L1 (%) Norm Linf (%) PSNR %mod

L2FastGradientAttack 6.89 0.12 4.08 53.53 26.73
LinfFastGradientAttack 33.4 48.79 96.22 5.10 98.07

LinfDeepFoolAttack 33.19 10.10 10.47 22.87 94.84
LinfPGDAttack 100 5.41 10.90 24.54 97.50

LinfBasicIterativeAttack 100 1.81 3.57 34.65 92.95
Table 4. Results obtained by baseline white-box attacks against the hardened classifier.
Results are given after integer truncation and rounding of the normalized values. Best
results are highlighted in yellow and metrics are calculated patch-wise (before majority
voting).

According to Tables 3 and 4, LinfPGD and LinfBasicIterative are the most
effective attacks, reducing the accuracy for printer #12 from 100% to 0%. Both
of them generated adversarial samples by considering a small perturbation, high-
lighted by a small Norm L1 and Norm Linf. For LinfBasicIterativeAttack,
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the mean difference between the adversarial and original images in Table 4
is close to minimum (1.81%), and the maximum difference between them is
also very small (3.57%), which means the adversarial perturbations are very
small (and weak) in the digital domain. From Table 3 to 4, it can be seen that
LinfPGDAttack and LinfBasicIterativeAttack do not suffer too much when
passing from the normalized domain to the integer domain. The only obvious
effect is a significant drop in the mean percentage of modified pixels (%mod
metric), also affected by the truncation and rounding operations. As these ap-
proaches were successful in both the normalized and integer digital domains,
we decide to also verify their effectiveness when applied in the physical domain
(which means, printing the attacked printed images and converting them back
in the digital format again).

Now we evaluate the effectiveness of such attacks against the hardened model,
and in the presence of a further print and scan process (necessary to implement
the attack in the physical domain). To do that, we selected as baseline adversar-
ial attacks the best approaches found in the previous experiments (LinfPGD and
LinfBasicIterative) and we also consider our proposed Expectation of Trans-
formation based adversarial attack. In the sequel, we call our proposed attack
as the EOTReprintingAttack.

Figure 8 shows the effectiveness of the adversarial attacks against the hard-
ened detector, in the challenging setting imposed by physical domain attacks.

Fig. 8. Success rate of adversarial attacks against the hardened classifier when attack-
ing the top-10 high energy patches. Results are averaged over 100 testing images. After
the attack, the images are printed again with a Kyocera-ecosysp5021cdn printer. The
results are given after majority voting.
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To start with, the results in Figure 8 highlight the effectiveness of the hard-
ened classifier against the simple rebroadcast attacks. For the baseline attacks,
their effect drops dramatically due to reprinting and also the adversarial train-
ing of the to-be-attacked classifier, with an error rate below 10%. The proposed
attack EOTReprintingAttack, being explicitly designed to cope with reprinting,
exhibits a larger success rate equals to 39%. Still, the hardened classifier retains
a good accuracy also in the presence of this powerful attack. We believe that
the problem of EOTReprintingAttack not surviving the print and scan process
is mainly due to the difficulty of simulating the artifact introduced by such a
reprinting process,.

6 Conclusion

The security of any machine learning classifier, especially those interfacing di-
rectly to the physical domain, has gained importance as they have a substantial
impact in several applications such as the reliability of self-driving cars, anti-
spoofing systems, physical documents forensics, among many others. In spite of
this interest, the security of image forensic tools operating on printed images
source attribution has not been sufficiently studied. In this paper, we present
some first steps towards this goal. We evaluated the security of a multiclass
printer source classifier when it faces adversarial samples in both black box sce-
narios and white-box scenarios.

As an important finding of the research reported in this paper, we discovered
that simple black-box attacks based on reprinting are often enough to attack an
original source attribution classifier and thus can be used to harden it through
adversarial training. We also proposed an attack based on Expectation Over
Transformation to simulate reprinting artifacts in order to attack the hardened
classifier. Despite these efforts, when facing the fine-tuned, hardened classifier,
the performance of the attacks, including some baselines methods, is not satis-
factory.

As future work, we aim to explore better ways to approximate the reprint and
re-scan process when using Expectation Over Transformation attacks against
protected models. One way that is under investigation is to rely on GANs like
pix2pix networks [15] acting together with Expectation Over Transformation
for the simulation of second print transformations, thus possibly improving the
adversarial performance against adversarially-trained models.
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