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Abstract

The Major Atmospheric Gamma Imaging Cherenkov (MAGIC) telescopes are able
to detect gamma rays from the ground with energies beyond several tens of GeV
emitted by the most energetic known objects, including Pulsar Wind Nebulae,
Active Galactic Nuclei, and Gamma-Ray Bursts.

Gamma rays and cosmic rays are detected by imaging the Cherenkov light pro-
duced by the charged superluminal leptons in the extended air shower originated
when the primary particle interacts with the atmosphere. These Cherenkov flashes
brighten the night sky for short times in the nanosecond scale. From the image
topology and other observables, gamma rays can be separated from the unwanted
cosmic rays, and thereafter incoming direction and energy of the primary gamma
rays can be reconstructed.

The standard algorithm in MAGIC data analysis for the gamma/hadron sep-
aration is the so-called Random Forest, that works on a parametrization of the
stereo events based on the shower image parameters. Until a few years ago, these
algorithms were limited by the computational resources but modern devices, such
as GPUs, make it possible to work efficiently on the pixel maps information. Most
neural network applications in the field perform the training on Monte Carlo sim-
ulated data for the gamma-ray sample. This choice is prone to systematics arising
from discrepancies between observational data and simulations.

Instead, in this thesis I trained a known neural network scheme with observa-
tion data from a giant flare of the bright TeV blazar Mrk421 observed by MAGIC
in 2013. With this method for gamma/hadron separation, the preliminary results
compete with the standard MAGIC analysis based on Random Forest classifica-
tion, which also shows the potential of this approach for further improvement.

In this thesis first an introduction to the High-Energy Astrophysics and the
Astroparticle physics is given. The cosmic messengers are briefly reviewed, with a
focus on the photons, then astronomical sources of γ rays are described, followed
by a description of the detection techniques.

In the second chapter the MAGIC analysis pipeline starting from the low level
data acquisition to the high level data is described. The MAGIC Instrument
Response Functions are detailed. Finally, the most important astronomical sources

ii

DocuSign Envelope ID: DC132318-B829-4643-9C09-A0DCFD5ED20F



used in the standard MAGIC analysis are listed.
The third chapter is devoted to Deep Neural Network techniques, starting

from an historical Artificial Intelligence excursus followed by a Machine Learning
description. The basic principles behind an Artificial Neural Network and the
Convolutional Neural Network used for this work are explained.

Last chapter describes my original work, showing in detail the data selec-
tion/manipulation for training the Inception Resnet V2 Convolutional Neural Net-
work and the preliminary results obtained from four test sources.
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Chapter 1

High Energy Astrophysics and
Astroparticle Physics

1.1 Astroparticle physics and Cosmic Messen-

gers

The space is permeated by particles of different kind (protons, nuclei, photons,
neutrinos, ...) generated in astrophysical sources like stars, novae, supernovae,
nebulae, galaxies, pulsars, quasars, neutron star, black holes and their interactions
and mergers. Astrophysics and Astroparticle physics study astronomical events
and sources through the detection of particles and the electromagnetic waves gen-
erated by these events: in general High Energy Astrophysics considers the electro-
magnetic waves while Astroparticle physics studies the particles.

The particles that reach the Earth from the space can be summarized in three
types: (fig.1.1):

• Cosmic Rays

• Photons

• Neutrinos

These three messengers together with the recently detected gravitional waves,
are the cosmic messengers that the Astroparticle/Astrophysics consider to study
the phenomena (see e.g. Mészáros et al., 2019). These messengers will be intro-
duced in this chapter with a specific focus on photons, the most relevant messen-
gers for the thesis, that deals with an Imaging Atmospheric Cherenkov Telescope
(IACT) that is able to detect gamma rays (γ rays) the most energetic part of
electromagnetic spectrum.

1
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Figure 1.1: Cosmic messengers (credit: HAP/A. Chantelauze)

1.1.1 Cosmic Rays

Cosmic Rays (CR) are high energetic protons and nuclei (>99% of the total particle
budget), electrons and positrons (<1%) travelling at relativistic speed that arrive
on the Earth from the space. They are generated by the Sun, by other sources
within the Milky Way or by extra-galactic sources. Since CR are charged particles
they are influenced by the cosmic magnetic fields and for that reason they do not
travel along straight trajectories from the sources to the Earth. This makes the
task of connecting CR to their celestial accelerators a non trivial one even for CR
at the highest energies (see e.g. Pierre Auger Collaboration et al., 2017)).

CR can be divided into two main classes: primary CR, that are the particles
generated directly from the sources and secondary CR, that are particles generated
by an interaction of primary CR with the environment along the path, for example
the Earth atmosphere.

Cosmic Rays Discovery

CR were discovered by Victor Hess in 1912 (see e.g. Hess (2018) for a commented
modern edition). In early 1900 after the discovery of the natural radioactivity by
Henri Becquerel (1896) it was believed that CR originated from the rocks. With
this assumption moving away from the Earth surface would have implied the lower-
ing of the ionization level induced by this penetrating radiation. In 1909 Theodor

2

DocuSign Envelope ID: DC132318-B829-4643-9C09-A0DCFD5ED20F



Wulf measured the rate of ionization on the top of the Eiffel tower using a portable
electroscope, designed by him, and he found that the decrement with height was
less than expected. Afterwards Domenico Pacini (Pacini (1912)) performed in 1911
underwater measurements and he found a decrease of the radioactivity underwa-
ter. He concluded that the radiation should come from sources located outside the
Earth, so anticipating the result commonly attributed to V. Hess.
In 1911 Hess performed a balloon flight that reached an altitude of about 1100
m, and found no ”significant changes” in the amount of radiation with respect to
the measurements on the ground. Later, in 1912, Hess flew another balloon up to
5300 m during an almost total solar eclipse. Since he didn’t measure an effect of
the eclipse on the ionization of the atmosphere, he hypothesized that the radiation
did not come from the Sun. Therefore the origin of CR had to be located further
out in the space.

Figure 1.2: Increase of ionization with altitude as measured by Hess in 1912 (left
panel ) and by Kolhörster 1913-14 (right panel). From De Angelis (2012).

3
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Cosmic Rays Spectrum

The CR spectrum (plotted in Fig. 1.3) covers many decades in energy . It ex-
tends to energies beyond E = 1020 eV, with particles reaching energies that are
more than 108 times larger than those achievable in the most powerful terrestrial
accelerators such as CERN-LHC. The differential flux as a function of the energy
can be approximated with a power law:

Φ(E) ∝ E−α (1.1)

positive α means that the particle flux decreases significantly with increasing en-
ergy.

Some energy intervals related to changes in the slope can be noted, and this
feature points to the contribution of different components. In particular:

• 109eV ≲ E ≲ 1010 eV. In this region CR are mainly solar.

• 1010eV ≲ E ≲ 1015 eV. In this region the CR origin is generally attributed
to galactic sources. The slope of the spectrum in this region is α ∼ 2.7.

• 5× 1015eV ≲ E ≲ 5× 1018 eV. In this region the spectrum follows a steeper
slope (α ∼ 3.1). The transition region at E ∼ 3 − 5 × 1015 eV is called the
“knee”. The slope change is widely attributed to the galactic/extra-galactic
transition, meaning that in this region a component of CR generated by
extra-galactic sources starts to contribute significantly to the total flux.

• Above E ∼ 5 × 1018 eV the slope hardens again (α ∼ 2.6). This region
is widely known as the “ankle”. At E ∼ 5 × 1019 a cutoff appears that is
commonly interpreted as the GZK cutoff.

Cosmic ray Acceleration

Which are the mechanisms that can accelerate the particles at those energies?
Currently the most accredited acceleration mechanisms are called Fermi I and II
and will be mentioned in the two following subsections.

Fermi Second Order Acceleration (or Fermi II)

The Fermi II acceleration was the first, in chronological order (Fermi (1949)),
theoretical explanation proposed for the acceleration/formation of the CRs. Fermi
theorized the presence of magnetic clouds (modelled as magnetic mirrors) that
move randomly through the interstellar medium. During the motion the particles

4
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Figure 1.3: CR flux as a function of energy arriving on Earth (Swordy (2001))

and the mirror collide. When a particle hits the magnetic mirror that is moving
towards the particle, the particle gains energy in the reflection, vice versa the
particles that travel in the same direction of the clouds lose energy in the collision.
Fermi proposed that the collision probability favors energy gains over energy losses,
meaning that on the average the particles will be accelerated. The process name
(second order) is due to the dependence of the rate of energy gain on the squared
mirror speed:

∆E

∆t
= (

8U2
c

lvp
)E (1.2)

where Uc is the speed of the cloud, vp is the speed of the particle, l is the particle
mean free path and E is the energy before the collision. The limit of this model is
that the speed of the clouds in the galaxy is small (v/c ≤ 10−4 , Uc ≤ 3∗106 cm/s).
For this reason the Fermi II process is not considered capable to accelerate the
particles at the very high energies.

5
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Fermi First Order Acceleration (or Fermi I)

The Fermi first order (Fermi I) acceleration process is more efficient than Fermi II.
It is modelled taking into account two considerations: the first one (same as Fermi
II) is that the clouds collide with the particles and the second is that the clouds
approach each other. In that way the particles bounce back and forth from one
cloud to the other more and more energetically. This ”bouncing” phenomenon can
be produced in the shock waves (for example the waves produced in Supernova
Remnant (SNR)) where the particles can cross the shock front forward and back-
ward gaining energy in both directions. In this case the formula for the energy
gain will be:

∆E

∆t
≃ 4

Uc

l
E (1.3)

Again Uc is the speed of the clouds, l is the particle mean free path and E is the
energy before the collision. Comparing with Eq. 1.2 there is not the particle speed
vp at denominator, so the process is more energy efficient than Eq. 1.2. A problem
behind this model regards the injection of the particles, because only the particles
that have overcome the thermal energy are able to cross the shock front and start
the ”bouncing” acceleration. Today the mechanism that allows particles to reach
very high energies is not clear and remains under investigation.

The Larmor Radius

The Larmor radius it used to establish if the coming particle arrive from the
Milky Way or from an extra-galactic source. Starting from the Lorentz force for a
magnetic field B on a particle of charge q, mass m, speed v and Lorentz factor Γ
(Fig.1.4):

Γm
dv

dt
=

q

c
v ×B (1.4)

Considering that the acceleration is normal to both B and v. With B uniform
and static, the orbit is a circle around B (see the Fig. 1.4).

Integrating Eq. 1.4:

v = rL × qB

Γmc
(1.5)

ωl =
2π

TL

=
qB

Γmc
v = r × ωl

Where rL is the radius of the orbit, TL is the orbital period. ωL is the circular
frequency of motion and the Larmor radius for a particle with charge Ze (where e
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Figure 1.4: Trajectory of charged particle in an uniform magnetic field (B) oriented
along ẑ

is the electron charge and Z is the atomic number) is given by:

rL =
v

ωL

=
Γmvc

ZeB
=

pc

ZeB
≈ E

ZeB
(1.6)

The last substitution holds in the relativistic limit, suitable for the majority of
the CR.

Now consider that the galaxy is filled with an average magnetic field of intensity
B ∼ 4 µG and using Eq. 1.6 for particle with energy E:

rL = (E = 1012eV ) ∼= 1015cm = 3× 10−4 pc

rL = (E = 1015eV ) ∼= 1018cm = 0.3 pc

rL = (E = 1018eV ) ∼= 1021cm = 300 pc

If one compare the pc scale with the Galaxy dimension 1 it can be inferred that
all the particles with E ≤ 10 18 eV are confined in the Milky Way by its magnetic
field.

The GZK effect and the Energy Cutoff

The Greisen–Zatsepin–Kuzmin limit (GZK) limit is a proposed cutoff for the CR
(fig 1.3) energing at ≥ 5× 1019 for protons. This limit is due to the interaction of
protons with the cosmic microwave background (CMB) throught the Δ resonance:

p+ γCMB → ∆+ → p+ π0

p+ γCMB → ∆+ → n+ π+

1the Milky Way can be approximated as a cilinder with radius ∼ 150-200 pc and half height
∼ 15 pc

7
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Given the high density of CMB the mean free path for CR protons of the
highest energy is rather short. Therefore the maximum distances traveled by the
CR are constrained within about UHECR (defined in table 1.2) at 50 Mpc.

An experimental confirmation of the GZK effect is one of the main scientific
are being under investigation by HiRes and Auger collaborations (Bahcall and
Waxman (2003)).

1.1.2 Photons

Photons are the elementary particles of the electromagnetic radiation. They are
electrically neutral, therefore they can travel straight through the cosmic space
without interacting with magnetic fields. This property is very important because
differently from charged CR that are deflected by cosmic magnetic fields, one can
trace back photons to their sources once the incoming direction is determined.

Electromagnetic spectrum

The Electromagnetic (EM) spectrum represent all the light waves: from radio
waves to gamma-ray waves including the visible light and many other classes.
Fig. 1.5 shows the whole EM spectrum. It covers many decades in energy and
includes waves with very different properties. Here we will focus EM γ rays with
energies from ∼ 30 GeV up to several TeVs. This band is defined as the Very High
Energy (VHE) gamma-ray band and it is where Imaging Atmospheric Cherenkov
Telescopes (like MAGIC 2) operate.

Band Wavelength (λ) Frequency (ν) Energy (E)

[m] [Hz] [eV]
Radio ≥ 1m ≤ 300MHz ≤ 1.24 µeV

MicroWave 1m - 1mm 300MHz - 300GHz 1.24µeV - 1.24meV
Infrared 1mm - 750nm 300GHz - 400THz 1.24meV - 1.7eV
Visible 750nm - 400nm 400THz - 750THz 1.7eV - 3eV

UltraViolet 400nm - 10nm 750THz - 30PHz 3eV -124 eV
X-ray 10nm - 10pm 30PHz - 30EHz 124eV - 124KeV

Gamma-ray ≤ 10pm ≥30EHz ≥ 124KeV

Table 1.1: Classification of the electromagnetic spectrum in bands as function of
wavelength (λ), frequency (ν) and photon energy (E) from Lide (2004)

Detection techniques for photons depend on the energy for many reasons: for
instance the interaction process involved in the detection can be photoelectric pro-
cess, Compton or pair production depending on photon energy. Also the opacity

8
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of the Earth’s atmosphere is crucial: the atmosphere absorbs photons in most of
the EM spectrum (Fig. 1.5) and only the visible light, the near infrared (IR) and a
wide portion of the radio spectrum (described in sec: 1.1.2) are transparent. In all
the other bands energy regions detection must be either from a satellite outside the
atmosphere, or performed from the ground but by means of an indirect method.

In this work we will focus on this messenger, in particular we will treat photons
in the gamma-ray domain (see table: 1.2).

The energy range of the gamma-ray domain covers many decades; for this
reason is is commonly divided in narrower intervals. This further division is mainly
related to the different detection techniques that are most suitable in each band.
For instance space-borne Compton detectors are most effective in the LE band,
space-borne pair conversion detectors in the HE band, and different kinds of ground
detectors are the best instruments in the bands at higher energies (VHE, UHE and
EHE). In table 1.2 is reported the classification of the gamma-ray spectrum.

Band Abbreviation Energy range

Low Energy LE 100 keV - 30 MeV
High Energy HE 30 MeV - 30 GeV

Very-High Energy VHE 30 - GeV 30 TeV
Ultra-High Energy UHE 30 TeV - 30 PeV

Extremely-High Energy EHE ≥ 30 PeV

Table 1.2: gamma-ray electromagnetic spectrum description. This table can be
considered an extension of table 1.1. The spectrum is not contiguous with respect
table: 1.1 because the boundary between the X-ray band and gamma-ray band is
not defined sharply. The lower limit of gamma-ray band is taken from: Kanbach,
Schonfelder, and Zehnder (2010)

Production of gamma rays

The main processes that produce γ rays in astrophysical environments are in
general divided in two broader classes: leptonic processes and hadronic processes.
In leptonic processes photons are generated by leptons, most commonly electrons
or positrons. The following list summarizes these processes:

• Bremsstrahlung: when a charged particle moves through an electric field,
for example an electron interacting with an atomic nucleus, part of its kinetic
energy is converted into electromagnetic radiation.

• Electron synchrotron emission: An electron accelerated in a magnetic

9
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Figure 1.5: Electromagnetic spectrum diagram showing various properties: atmo-
sphere opacity, scale, radiation type, wavelength, frequency, temperature. Credit
by NASA

field generates photons.
e± + B⃗ → γ (1.7)

• Inverse Compton (IC) scattering: a process in which a photon gains
energy from the collision with a high energy electron. This mechanisms is
important in regions where relativistic electrons coexist with a population of
photons of adequate density.

e± + γ → e± + γ (1.8)

In particular there is a specific kind of IC process where the same high energy
electrons are responsible of both generating the photons (via synchrotron
emission) and of scattering them ahead. This is the so-called “Synchrotron
Self-Compton (SSC)” process and plays a mayor role in some contexts, for
instance in leptonic models of blazar emission.

• Electron positron annihilation: this collision can generate a couple of
photons (gamma photon).

The hadronic processes are those emission mechanisms processes where gamma-
ray photons are generated by hadrons.. The main hadronic processes are of three

10
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types. The first two are able to generate a neutral pion, which further decays into
two photons:

π0 → γγ (1.9)

• Photo-production: During propagation, protons can interact with photons
of the Cosmic Microwave Background (CMB). If the proton has enough
energy a resonant hadron ∆+ is produced only to decay immediately.

p+ γϵ → ∆+ (1.10)

The resonant ∆+ can decay in two branches:

∆+ → π0p (1.11)

The π0 is the particle that generates the photons.

∆+ → π+n (1.12)

This second branch for the ∆+ decay is important for the neutrinos emission
because:

π+ → µ+νµ µ+ → e+νeνµ (1.13)

• Proton-proton inelastic collision:

p+ p → π±, π0, K±, K0, p, n, ... (1.14)

As in the photo-production this effect can generate photons from π0 (Eq.
1.9). Furthermore it can be very important for generating astrophysical
neutrinos both for the π+ (Eq. 1.13) and for the π−:

π− → µ− νµ µ− → e− νeνµ (1.15)

• Proton synchrotron emission: Similar to electron synchrotron; due to
the heavier mass, syncrotron emission from protons requires more intense
magnetic fields to contribute significanly.

p+ B⃗ → γ (1.16)
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Figure 1.6: From Spurio (2015): sketch of a theoretical SED, Comparison of the
prediction of leptonic and hadronic model for the high energy component.

Leptonic and Hadronic models

In the previous Sec. 1.1.2 all the main processes that can generate high energy
photons are listed. These processes are used to infer the theoretical models for
astrophysical sources.

One of the most powerful methods for challenging these models consists of
merging the data from multi-wavelength observations obtained by different tele-
scopes (e.g. optical, X-ray and gamma-ray data) in a single broad-band Spectral
Energy Distribution (SED). Then in the framework of each model, the physical
parameters of the emission model that fit the experimental data can be determined.

The models are divided in leptonic if the considered processes are based on
leptons, hadronic if the processes are based on hadrons and lepto-hadronic if the
considered processes include a mixture of leptons and hadrons.

In Fig. 1.6 a comparison sketch of a prediction of two competing emission
models, one hadronig and one leptonic, is shown. While the low energy emission
can be generally attributed to the electron synchrotron models, in the gamma-ray
domain both hadronic models (e.g. π0 decays) and leptonic models (e.g. inverse
Compton scattering of relativistic electrons on low energy photons) can produce
an emission bump in the SED, although with discrepancies between the respective
spectral distributions. Accurate observations can in principle discriminate these
models.
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1.1.3 Neutrinos and Gravitational waves

Neutrino is a fundamental particle, with no electrical charge and very small mass
that is a very abundant. Neutrinos can interact through weak interaction and
gravity.

The neutrino interactions are very rare due to their very low cross section. A
neutrino can cross the Earth without interacting and continue its path through the
space, the mean free path is very long and this property makes it a good candidate
to study astrophysical phenomena because it can travel straight directly from very
far away (more than photons).

On the other side these properties makes the neutrino detection very prob-
lematic. These are the general reason why experimental physics in the field of
neutrinos are less advanced compared to the gamma-rays. The neutrinos flux on
the surface of Earth is shown in Fig: 3.1.

The neutrino study is very important to completely understand all the CR
spectrum together with photons.

On September 14th 2015 the first gravitational wave was detected by Laser In-
terferometer Gravitational Wave Observatory (LIGO) (Abbott et al. (2016)). The
gravitational waves are perturbations of the space-time caused by an acceleration
of masses. This type of messenger is very different from the CR, photons and neu-
trinos. The GW open a very new way of studying the astrophysical events that
together with the other messengers can be very useful to deepen our knowledge of
the universe. For all these reasons these messengers are very important.

1.1.4 Multimessenger and Multiwavelength astronomy

The four messengers are used to study and understand the astrophysical events.
All of them are important but combining together the scientific information coming
from all of them is the most powerful tool to better understand and modeling the
physical phenomena that are generated in the astrophysical object. This is so
called multimessenger astronomy ( Abbott et al. (2017)).

Today with the modern telescopes is possible to observe the same source in
different ways, for example the same source can be observed with a radio telescope
and with an optical telescope, when this is done with a set of telescopes that
detect the same messenger the observation is called multiwavelength (fig: 1.8 credit
from eCUIP University of Chicago). Furthermore is possible to observe the same
object with two different messengers like for example TXS 0506+056 IceCube
Collaboration et al. (2018) case, where from the same source both a neutrino and
gamma ray was detected, in this case the observation is called multimessenger. The
multiwavelength astronomy is widely used today meanwhile the multimessenger
is at the beginning because observations of the neutrino and of the Gravitational
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Figure 1.7: Neutrino’s flux on the surface of Earth (Lipari (2006):): a are cosmo-
logical residual from Big Bang, b are the solar neutrinos, SN c and c’ are neutrinos
from supernova explosion, d are neutrinos generated from the Earth radioactive
materials, e are neutrinos generated from nuclear plant, f and f’ are the neutri-
nos generated by the interaction of CR with the atmosphere and g are generated
by Astrophysical Active Galactic Nuclei (AGN), Supernova Remnants (SNR) and
various other events

waves are still underdeveloped.

1.2 Astronomical Sources of gamma rays

The astrophysical sources of VHE gamma rays can be in general divided in Galactic
(the sources that are observed within the Milky Way) and Extra-Galactic. Table
1.3 taken from Spurio (2015) shows the TeV sources included in the TeVCat2 a
catalogue comprising all the sources able to emit gamma-ray photons in the VHE
band. In the following sections some of these sources will described in more detail.

2http://tevcat.uchicago. edu/
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Figure 1.8: Multiwavelength pictures of Whirlpool Galaxy (M51A)
(from https://ecuip.lib.uchicago.edu/multiwavelength-astronomy/

astrophysics/05.html): Each image shows a narrow band of wavelengths of
radiation across the electromagnetic spectrum. Low energy radiation comes from
cool regions of molecular gas, and high energy radiation comes from hot spots
where atoms are fully ionized. The combined information provides insight into the
structure, temperature, and chemical composition of the Whirlpool Galaxy. The
stars in the infrared image represent most of the mass of the galaxy, excluding
dark matter. The optical image represents a slightly smaller amount of mass and
the other three images represent only traces of mass in molecules (radio image)
massive hot stars, (ultraviolet image) and hot plasma (X-ray image).

1.2.1 Pulsars and Pulsar wind nebulae

A pulsar is a neutron star (see e.g. Lorimer and Kramer, 2004), a star composed
mainly of neutrons, with an enormous density ρ ≃ 1014 g/cm−3 and a high mag-
netic field (B ≃ 1015G), spinning very quickly (with period P ∼ 10−3 s in some
cases). The magnetic axis of the pulsar rotates together with the pulsar and in
case the magnetic axis is pointed towards the Earth during the rotation one can
observe the ”lighthouse” effect, an effect that appears like a pulsed flash of light
at extremely regular time intervals.

The Pulsar Wind Nebula (PWN) is a nebula where plasma is powered by a
pulsar embedded in a supernova remnant. These two components are not spatially
resolved by gamma-ray telescopes because of their arcmin-scale angular resolution.
The first detection of a Pulsar Wind Nebula class with a ground-based Cherenkov
telescope was obtained in 1989 by Whipple (Weekes et al., 1989), with the de-
tection of the Crab Nebula, also the first VHE gamma-ray source detected ever.
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Type Designator Objects Example

Galactic

Pulsar wind nebula PWN 34 Crab, Geminga
1SNR + shell Shell 16 RXJ1713, IC443

SNR + mol clouds SNR/Mol. Cloud 11 W28, W51
Binary systems Binary 11

Massive star clust. - 3

Globular clust. - 1
Extragalactic

HBL Blazar HBL 55 Mrk421, Mrk501
IBL Blazar IBL 10 BL-Lac , W Comae
9LBL Blazar LBL 2 -
FSRQ Blazar FSQR 3C279
FRI Blazar FRI 4 -

Table 1.3: The known sources of VHE gamma rays included in TeVCat
(http://tevcat.uchicago.edu/),divided by class. Adapted from Spurio (2015) and
updated to 2022.

Afterwards the telescopes MAGIC and VERITAS (Ansoldi et al. (2016), VERI-
TAS Collaboration et al. (2011)) have also detected the pulsed emission of VHE
gamma rays from the Crab Pulsar, by means of photon timing analysis.

Crab Nebula has a preminent role among VHE gamma-ray sources also because
it is used as the standard candle in the field; as a steady emitter, it is a good flux
and spectral calibrator. Until 10 years ago the Crab Nebula was considered a
good calibrator in X-ray and HE gamma-ray astronomy as well, but in the last
years mainly in the X-ray astronomy the Crab Nebula is not anymore used as
standard candle due to small-scale variations in the emitted flux (Wilson-Hodge et
al. (2011)), while in HE gamma-rays intense flares (with flux raising up to few times
the standard one) of debated origin have been detected by the AGILE and Fermi
satellites. No counterpart of these flares has been detected in the VHE gamma-ray
domain, therefore the Crab Nebula remains a reliable calibrator for IACTs. Other
famous gamma-ray PWN sources are Geminga (Acciari et al. (2020)) and Vela
(Abdo et al. (2009)). The mechanisms responsible of the gamma-ray emission in
pulsars are still under debate.
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1.2.2 Supernova Remnants

Supernova Remnants are another class of VHE gamma-ray emitters with peaked
emission in X rays. Remnants are what remains after a supernova explosion; these
objects are detected within our galaxy. The SNR are classified based on their
morphology (Vink (2011)):

• shell-type: the Supernova explosion causes a shock wave that during the
expansion through the space hits the interstellar medium warming and shak-
ing it. This cause the creation of a hot shell that appears like a ring structure
from the Earth.

• Plerion (Crab-like) remnants: this type of nebulae is powered by an in-
ternal pulsar that accelerate a flux of high-energy electrons. The magnetic
field bends the trajectory of the electrons that produce synchrotron radia-
tion and emit in the radio, visible and X-ray bands. Differently from the
ring-shape of shell-like remnants this type of SNR shows a less symmetric
morphology, like a ”blob”.

• Composite remnants:

The third type of remnants shows a mixed shape, intermediate between
a plerion and a shell-like remnant. The observed morphology depends on
the investigated wavelength too. In general these remnants can be further
divided in two subclasses:

– Thermal composites: at radio wavelengths, where synchrotron ra-
diation dominates, these SNR show a shell-type shape, while in the X
rays these SNR appear plerion-like but with a special feature: X-ray
emission lines that are a signature of the presence of hot gas.

– Plerionic composites: These type of SNR show plerion-like appear-
ance in radio and X-ray wavebands but they have a shell. Their X-ray
spectrum shows spectral lines close to the shell and no spectral lines in
the center.

For all these objects the emission mechanisms are under debate: leptonic models
seem prevailing but an hadronic component is not excluded, even if no compelling
evidence for it has been reported so far (see e.g. Gabici, Gaggero, and Zandanel
(2016)). Perhaps, the strongest claim for a hadronic component in SNRs so far has
been proposed by Morlino and Caprioli (2012) for the Tycho SNR. An example
where the leptonic model fits better the gamma-ray SED can be found in Abdo
et al. (2011) for the young SNR RXJ 1713.7-3946 (see Fig. 1.9).
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However, also hadronic models reproducing correctly the HE gamma ray points
have been proposed, and results of X-ray observations as well hint to CR accelera-
tion in this source. Thus it is expected that some additional evidence (e.g. arising
from the observation of astrophysical neutrinos coming from the direction of this
source) is needed to solve the riddle (Gabici and Aharonian (2016)).

Figure 1.9: From Abdo et al. (2011), the gamma-ray SED for the SNR RXJ 1713.7-
3946. While a leptonic model fits adaequately the HE gamma-ray SED (bottom
panel) hadronic ones fail to reproduce it.

18

DocuSign Envelope ID: DC132318-B829-4643-9C09-A0DCFD5ED20F



1.2.3 Active galactic nuclei

A good definition and description of Active Galactic Nuclei can be found in Dermer
and Giebels (2016). In the current picture every galaxy hosts a supermassive black
hole (SMBH) with mass ranging from 3 × 106M⊙ to 3 × 109M⊙. The mass is
correlated with the galaxy velocity dispersion, brightness and hence with the mass
of the host galaxy. The majority of known galaxies (99%) are not active and the
central SMBH is quiescent. The remaining 1% of galaxies show activity and are
called Active Galactic Nuclei (AGN), extragalactic sources that are among the
most powerful emitters in the sky, and the most powerful persistent ones, with
luminosities up to L ≃ 1048erg/s.

Figure 1.10: Observational classification of active galaxies from Biteau (2013)

AGN model

In this section the AGN unification model is described (see e.g. Antonucci (1993)
and Urry and Padovani (1995)). It is believed that the AGNs share a common
structure, with most of the observational variety (see Fig. 1.10) being induced by
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Figure 1.11: Observational classification of active galaxies from Dermer and
Giebels (2016)

differences in orientation. Following e.g. Ghisellini (2013) the structure of AGNs
(also sketched in Fig. 1.11) can be described as built up by these components:

• Central SMBH: in the center of every AGN there is a SMBH, of debated
origin, possibly deriving from merging of primordial BHs. The BH causes
the rotation of the surrounding matter; a fraction of this matter orbits and
condensates into a disk, while an infalling fraction feeds the SMBH.

• Accretion disk: a disk of matter in rotation close to the SMBH; the matter
is attracted towards the central body spiralling. A compression is caused by
friction and gravitational forces, the compression turn causes an increase in
the temperature of the matter that eventually produces EM emission, mainly
in the UV and X-ray bands. This is a major source of power that can reach
a luminosity L = 1044 − 1047 erg/s.

• X-ray corona: hot gas enveloping the accretion disk, either in a hot layer,
or in clumpy regions.

• Jet: a fraction of AGN jets are produced. These are a pair of collimated
flows of relativistic plasma, propagating from the central engine in opposite
directions. Jets are launched in the innermost region of the AGN and extend
up to several Mpcs. About 10% of AGNs are jetted.

• Torus: At few parsec from the BH there is an obscuring torus. A fraction
of the radiation emitted from the disk is intercepted and re-emitted by the
torus in the form of infrared radiation. The torus blocks the view of the
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central region for those AGNs that are observed perpendicularly (or almost
perpendicularly) to the axis of the torus.

• Broad line region (BLR): Near the center composed by many small clouds
in fast motion ( v ∼ 3000 km×s−1) close to the central singularity (at
distances (D ∼ 1017 - 1018 cm). This region re-emits as optical/UV emission
lines the 10% of the ionizing radiation received from the disk. These lines
are broadened due to the Doppler shift, for this reason the region is called
“broad line region”.

• Narrow line region (NLR): Further away with respect to BLR (D ∼ 100
pc) there is another region composed by clouds that move slower and are
less dense than BLR.

AGN classification

The AGN classification (see Fig.1.10 and Fig.1.11) is mainly based on the obser-
vation direction and on few other properties (see e.g. Dermer and Giebels (2016)
and Biteau (2013)). The main intrinsic separation is based on the power of the
radio emission component, relative to the optical. AGNs are thus divided into
“radio-loud” and “radio-quiet”. This separation is given in terms of the ratio of
the radio on optical bands (Eq.1.17).

R =
Fradio

FB

(1.17)

Where Fradio and FB are the fluxes in the radio and in the optical B band respec-
tively.

Radio-loud AGNs are ∼ 10% of the AGNs, and are those associated to jets.
They are divided according to the direction of observation; if the direction is
aligned with the jet the AGN are called “Blazars” (treated in more detail 1.2.3),
otherwise we have the misaligned AGN called “Radio Galaxies”. These are in turn
divided in “Fanaroff-Riley I and II” (FRI and FRII) based on the radio power,
with FRII being the most powerful ones.

In the radio-quiet branch (without the jet) the AGNs are divided in:

• Quasi-stellar object QSO that are in general very distant object and are
detected as point-like sources;

• Seyfert galaxies with the host galaxies clearly detectable, generally associ-
ated to spiral host galaxies. The Seyfert galaxies are in turn split in “Seyfert
I” where the broad lines dominate the narrow lines and “Seyfert II” where
the narrow lines are dominant.
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Blazar classification

The radio-loud AGNs observed along the axis of their jet are called blazars. These
objects are studied deeply as they are among the most energetic objects in the
universe; they emit in all the EM spectrum and they are easily observable also due
to relativistic beaming effects.

Historically different classifications for blazars have been introduced and co-
exist; they can depend, for instance, on the peak frequency of the synchrotron
component in the SED or can be related to the presence or absence of broad emis-
sion lines in the optical band. A commonly used diagnostic for splitting blazars in
flat spectrum radio quasars (FSRQ) and BL Lac objects is the equivalent width
of optical emission lines (EW) that is defined:

EW =

∫
Fλ − F0

F0

dλ (1.18)

where Fλ corresponds to the total flux (broad emission lines + continuum emission)
while F0 is the flux without the broad emission lines. Equivalent width is measured
in Angstrom (Å).

Blazars are thus-divided into:

• BL Lacertae (BL Lac objects): with EW < 5 Å these objects have weak
or no optical lines. These are further divided depending on the synchrotron
peak frequency (νs): from the low energy peaked BL Lac (LBL) with the
peak at lower energies with νs < 1014Hz, the intermediate energy peaked
BL Lac with 1014 < νs < 1015 until the high energy peaked BL Lac (HBL)
with νs > 1015.

• Flat Spectrum Radio Quasar (FSRQ): with EW > 5 Å these ob-
jects have intense emission lines and the synchrotron peak frequencies are
homogeneous to those of LBLs or even lower

An example of SED these objects taken from Spurio (2015) is shown in Fig: 1.12.
The blazars different sub-classes suggest a SED sequence: FSQR → LBL →

IBL → HBL that sometimes is called “blazar sequence”. The sequence shows
an increase of synchrotron peak Energy, with the decrease of source luminosity
(Ghisellini (2013)).

1.2.4 Gamma Ray Bursts

This kind of transient events is the most powerful phenomenon known nowadays
but the GRB progenitors are also the least known. GRB are very powerful ex-
plosions that radiate through the universe for billions of light year. These events
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Figure 1.12: From Spurio (2015) The SED of three AGNs at different distances (z
is the redshift) from different subclasses. The FSRQ 3C 279 (spectrum multiplied
for 103, the BLLac a LBL and the Mrk421 HBL with spectrum multiplied by a
factor of 10−3. The dashed lines represent the best fit for the data assuming a
leptonic model.

are rare, unpredictable and arrive at the Earth from outside the Milky Way. Fur-
thermore these events show a wide variety of behavior. These are the reasons that
make it difficult to identify the origin of these events.

The GRB most used model is called Fireball Model (Piran (1999)). Its as-
sumptions are the following:

• the energy produced from one GRB is 1051 − 1052 erg

• the flux of the GRB is very variable as confirmed by the observed GRB
and it should last for the time of the burst that can be of timescale of
seconds-minutes-hours. Furthermore the burst afterglow can continue at
lower energies for hours to days.
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• The events are very rare (once per millions years for galaxy) and the overall
GRB emission in γ-rays is about 1052erg/106years /galaxy

The model that should be able to consider all these assumption must be very
versatile. For these reasons the GRB classification is based on their time duration:

• Short gamma-ray burst: in this category there are ∼ 30% of the GRB
detected, the GRB that during 2 or less seconds are considered in this group.
This type of GRB are in general associated with regions with low or no star
formation, central regions of galaxy clusters or elliptical galaxies.

• Long gamma-ray burst: The majority of detected GRB (∼70%) are in
this group. In this category there are GRBs with duration greater than
2 seconds. These GRB are easier to study with respect to the short ones
because the afterglow is longer and brighter. For this reason the research
works of the long GRB are more widespread. It was supposed that the
observed long GRB arrive from star forming galaxies and are generated in
core-collapse supernovae of massive star. The first long GRB associated with
a supernova event (SN1998bw) is GRB980425 (Galama et al. (1998)). After
that various other supernova events have been associated with GRB. For
this reason it is supposed that the long GRB are connected with the death
of massive stars.

• Ultra-long gamma-ray burst: These events are more rare than the others
two groups, the duration for these events is more than 104 seconds (about 3
hours). This class of GRB was proposed after the detection of GRB11209A
in 2011 that lasted for more than 7 hours. The sources proposed for these
GRB are: collapse of blue supergiants, birth of magnetars (a pulsar with a
strong magnetic field) or in a tidal distruption events (star destroyed by a
SMBH).

1.3 Detectors for Gamma-ray Astronomy

In general the astrophysical experiments for detection of astroparticles are divided
in two main categories, the space-based and the ground-based detectors. Both
of these are very important for the γ rays detection but in general, due to the
flux of High energies particles, that is strongly decreasing with energy, the space
experiments (like the Agile or Fermi γ ray space telescopes) are able to detect
less energetic gamma rays than the ground experiments, because of their limited
collection area (order of 1m2 at most). This, as mentioned in the previous sections,
makes each experiment specialized for the detection of a specific region of the
spectrum.
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In general, ground-based experiments can be classified in two categories: the
high altitude experiment array like HAWC, ARGO, LHAASO shower detector ar-
rays (briefly described in Sec.1.3.4) and IACTs like MAGIC, HESS, VERITAS (de-
scribed in Sec. 1.3.5). Combining the results of the space and ground telescopes
one can have a deeper knowledge of the electromagnetic spectrum (Multiwave-
length observation). In table: 1.2 is shown that the gamma-ray band comprehend
many decades in energy, therefore no single detector can measure precisely all the
gamma-ray band alone. A good summary of the sensitivity of gamma-ray experi-
ments as a function of energy can be found in Fig. 1.13 (From Knödlseder (2016)).
In the following are described in simple the space and ground based experiments

Figure 1.13: From Knödlseder (2016) the sensitivity as a function of Energy for
different gamma ray detectors. The energies go from 105 eV to about 1016 eV.. The
lower energies are covered by space telescopes experiments while going towards the
high energies ground detectors dominate.

with a focus for the imaging atmospheric Cherenkov technique.

1.3.1 Direct Detection from Space Satellites

The satellite experiments cover energies from 100 keV to few hundreds of GeV. This
is due to the flux of cosmic rays: more the energies increases more the energetic
particles are rare.

The satellite telescope in general use calorimeters that must stop the arriving
particle to detect its properties. The ”stopping power” is proportional to the
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weight of the telescope and the weight of a space telescope is strictly connected to
the price of the telescope.

Figure 1.14: From DiSciascio (2019) Sketch of a telescope which converts γ to e±

(pair-conversion telescope), reproducing the features of the EGRET experiment.

In the following the basic principles of operation of a space γ-ray telescope
(EGRET Kanbach et al. (1989), CALET Torii, Marrocchesi, and Calet Collabo-
ration (2019) and FERMI Atwood et al. (2009)) are summarized. The purpose of
these telescopes are the recognition of the γ ray from the cosmic ray background
and the evaluation of the γ ray arrival direction, time and energy. In Fig. 1.14
the main telescope components are represented. The first component that incom-
ing particles cross is the anticoincidence system (AS); a sort of first discriminator
between the background and γ ray based on electrical charge. If the signal meets
the criteria of the AS the event is considered generated by a gamma ray.

After the AS, the γ ray interacts with one of the (pair) conversion foils and
produces an electron/positron pair. Interleaved with the pair conversion foils there
are tracker plates designed to detect the path of the electron and positrons, to
reconstruct the interaction vertex and to detect the γ ray arrival direction.

Furthermore, in the middle there are two scintillator devices used to measure
the time of flight of the particles in the detector and to confirm the directions.
After this the particles enter in the calorimeter; this device is designed in such
way that the hitting particles generate an electromagnetic shower, in this way the
particles lose their energy with every interaction until they stop. Measuring the
whole energy of the shower products allows the estimation of the energy of the
parent particle.

1.3.2 Air Showers

Before describing the ground-based experiments it is necessary to explain the be-
haviour of the energetic particles that arrive at the Earth from the space. When a
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particle hits the Earth atmosphere, the atmosphere acts as a calorimeter (1.3.1).
The impact makes the particle generates a shower of less energetic particles going
down to the ground in a cascade of further interactions. The cascade continues
until the final particles no longer bring enough energy to generate further sub-
showers. These air shower are called Extensive Air Showers (EAS). The maximum
number of particles that can be generated from a primary particle is called “shower
maximum (Nmax)”). The max height (Xmax) position in function of the energy
(E0) of the primary particle is called “elongation rate (∆)”:

∆ =
dXmax

d(Log10(E0))
(1.19)

∆ and Nmax are proportional to the energy of the primary particle, and are crucial
to calculate the primary particle properties and to design the experiments as well.
Ground-based experiments in fact are built at altitudes that are chosen based on
the energy of the primary particles for which the detector is designed for.

Shower front detectors reveal the particles in the shower, and from their spatial
and arrival time distributions infer the kind, the energy and the incoming direction
of the primary particle that generated the shower. The major weakness of shower
front detector is that these telescopes can detect only the last products of the
shower. For this reason the recognition of the primary particle is not easy and the
measure is indirect.

In general the estimation of the properties of the primary particles is performed
with the help of Monte Carlo (MC) simulations of showers to be compared with
the observed ones. There are various models used to create MC showers. They are
based on two categories of showers: the Electromagnetic shower that is composed
of photons, electrons and positrons, and hadronic showers composed mainly of
hadrons but also of γs electrons and positrons.

In the following a basic3 model of each type of shower is described in order to
show why the separation of the gammas from the hadrons can be non trivial.

EM shower Model

The Heitler model (Heitler (1954)) is the most simple model for an EM shower,
despite the simplicity this can be used to understand some of the properties of the
EM showers. The EM showers are generated by a γ or a e∓ that interacts with
the atmosphere. The involved decays are:

γ → e− + e+ (Pair production) (1.20)

e− → γ + e− (Brehmstrahlung) (1.21)

3the MC model are based on these but are much more complex
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e+ → γ + e+ (Brehmstrahlung) (1.22)

all of these decay are based on the simplified assumption that the energy of the
primary particle E0 is divided equally between the two products, furthermore the
energy loss of a particle in atmosphere can be approximated with:

− dE

dξ
=

E

λT

(1.23)

Integrating:

E(ξ) = E0e
− ξ

λT (1.24)

where ξ is the particle travel distance in the mean (air) and λT = 37 g
cm2 is the

radiation length of the air. The thickness of matter crossed by the particle before
it loses an half of energy is:

E(ϵ)

E0

=
1

2
= e

−( ξ
λT

)
(1.25)

ϵ = λT ln2 (1.26)

This means that an e∓ produces a γ and viceversa a γ produces an e∓ after travel-
ling a distance in air equal to d = λT ln2. In this last passage it has been used the
approximation that λT is the same for γ and e∓; with this the model overestimates
the number of electrons/positrons, for this reason in general is introduced the at-
tenuation constant g = 10 with Ne =

Nmax

g
. In every decay the energy is divided

in two equal parts between the two secondary particles. After this consideration
is easy to draw a picture of the decay. In figure 1.15 a sketch of the Heitler model
is shown.

Figure 1.15: From Matthews (2005) Schematic views of an electromagnetic cas-
cade.

Considering an air shower produced by a gamma ray of energy E0 the number
of particles after n half-life lengths d is 2n with an energy for each particle of E0

2n
.
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The length X after n lengths is:

X = nd = nλT ln2 (1.27)

Using the logarithm properties ln2 = log2(2)/log2(e) the number of particles can
be rewritten as:

N = 2n = 2X/λT ln2 = 2
X
λT

log2(e) = e
X
λT (1.28)

The number of particles at the maximum of the shower (Nmax), considering that
the particle generation ends at Ecrit defined as the energy level where the average
collisional energy losses begin to exceed radiative losses (1.15), is:{

Nmax = 2n

E0 = NmaxE
γ
crit

(1.29)

from which one can obtain:

n =
1

ln2
ln

E0

Eγ
crit

(1.30)

From this one can say two things:

• the number of particles at the maximum of the shower is Nmax ∝ E0

• the maximum shower depth is equal to Xmax = λT ln
E0

Eγ
crit

For the last value one can obtain the elongation rate that is defined in Eq:1.19:

∆ =
dXmax

dLogE0

(1.31)

and using the Xmax value with logarithm substitution Log10
E0

Eγ
= ln(E0/Eγ)

ln10
:

∆ =
dλT ln10Log(E0/E

γ
crit)

dLogE0

= 2.3λT ≈ 85
g

cm2
(1.32)

Where it is estimated the elongation rate of a an EM shower in air.

Hadron shower model

There are many model for the hadron showers, these models are much more com-
plex because a proton can decay in atmosphere in many different particles. A very
simple model (but already more complex than the Heitler) considers that a p+ can
generate equally only π+, π−, π0 particles (see Fig. 1.16). With this assumption
are generated in the shower 2/3 of charged pions and 1/3 of neutral pions, with
Nch charged pions and 1/2Nch neutral pions.
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The π0 has mean life time τπ0 ≈ 8 ·10−17s and decays 98% of the time in γ+γ.
From both γ will be generated an EM shower described in 1.3.2 4

The π± mean life time is τπ± ≈ 2.8 · 10−8,much more than the π0. For this
reason these particles can interact before decay generating other π0 and π± until
the energy of the charged pions is too low. In figure 1.16 is shown a model of
an hadronic shower. The major part of the shower sooner or later produces γ,

Figure 1.16: Sketch model of an hadronic shower with calculation of the Energy
of the EM and the hadronic components

this means that the EM energy contribution is high. To estimate the energy of
the primary particle one can fix the two values Nch and Eπ

crit (Ehad in Fig: 1.16),
considering that from the accelerator experiments it is known that the dependence
of Nch (the number of charged hadrons) from the energy is ∝ E

1
5 . Given that it

is possible to approximate Nch as a constant value. After n interactions (see Fig:
1.16) the numbers of charged pions are Nπ± = Nn

ch. After ncrit atmosphere layers
the energy of the charged pion becomes less than Eπ±

crit:

Eπ±

crit =
E0

(3/2Nch)ncrit
(1.33)

Therefore:

ncrit =
ln(E0/E

π±
crit)

ln(3/2Nch)
(1.34)

4This is very important for the ground-based gamma ray experiments because this type of
purely EM sub-showers can be easily misinterpreted as genuine gamma-like events.
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These two simple sketch-models show how evaluating and simulating an hadronic
shower can be complex. Furthermore, for this specific case muons were not consid-
ered. It is hence easy to understand why the computational resources required for
hadronic simulations are much higher than for the EM ones. The models shown
are the starting point to build the simulations model, to give an idea of the re-
sults after a gamma and hadron MC simulation is shown in Fig. 1.17 (from Häffner
(2010)) the resulting shower profile of one EM shower (left) and one hadron shower
(right).

Figure 1.17: From Häffner (2010): Simulations of γ-ray and hadron induced air
showers. A γ-ray initiated air shower consists only of an electromagnetic compo-
nent (illustrated in red), whereas the hadron-induced shower has apart from the
hadronic component (blue) a distinct muon component (green) and electromag-
netic sub showers (red).

31

DocuSign Envelope ID: DC132318-B829-4643-9C09-A0DCFD5ED20F



Monte Carlo shower Simulations

In ground experiments the observation of events is indirect. For this reason im-
portant properties like energy and arrival direction of the original particle have to
be reconstructed by properties of the secondary particles generated. To solve the
problems of estimating the energy the position, and separation of gamma from
hadron the ground experiments use a series of Monte Carlo algorithms to simulate
the showers. A famous algorithm is called COsmic Ray Simulations for KAscade
(CORSIKA). The detail about that algorithm can be found in Heck et al. (1998).
With this algorithm is possible to simulate the EM and hadron-like extensive air
showers shown in the previous chapters and in figure 1.17.

1.3.3 Detection of Air Showers from Ground

The Cherenkov radiation discovered by Pavel Cherenkov (Čerenkov (1937)) pro-
vides a very effective way for the ground experiments to detect and measure indi-
rectly the Extensive Air Showers (EAS) originated from a primary particle.

The Cherenkov radiation is a glow of light generated by a charged particles
moving in a dielectric medium faster than light. During the transit the charged
particle polarizes and accelerates the dielectric particles, which therefore radiate.
The Cherenkov effect is illustrated in Fig.1.18, when the speed of particle in the
medium v < cvac/nmean the wave fronts generated arrive to the observer separated
and intensity of light is too low to be detected even from a very sophisticated
electronic detector. Instead in the case where v > cvac/nmean the wavefronts cross
and the superimposition can be detected as a flash of light.

It can be noticed that the principle of the Cherenkov radiation is very similar
to the sonic boom in air when the sonic wave is generated by an object faster than
the sound speed. In this case, the wavefronts can arrive at the same time to the
listener(observer). The Cherenkov light can be seen with naked eye in the water
of a nuclear power plant. The Cherenkov light is generated also in atmosphere
by the astroparticles that hit the Earth, however in this case is impossible to see
the light with naked eyes but it can be detected with electronic detectors. Many
experiments that exploit the Cherenkov effect exist for different types of particles
and energies, in particular this work is focused on the gamma ray detection with
the MAGIC IACT described from Sec. 2.

1.3.4 High Altitude Water Cherenkov Experiments

The High Altitude Water Cherenkov experiments (HAWC, MILAGRO) belongs to
one of the two kinds of ground experiments, exploiting the Cherenkov effect, the
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Figure 1.18: From de Naurois and Mazin (2015) Left: Illustration of the polar-
ization of the medium induced by the crossing of a relativistic particle. Right:
Construction of Cherenkov wave-front. v is the speed of the charged particle in
the mean and c = cvac/nmean is the speed of light in the mean

”Water Cherenkov” experiments. These ”telescopes” can be used to detect CRs
and γ ray.

For instance in HAWC, the technique consists of detecting the particles using
many closed water tanks (Fig: 1.19) within which are placed some Photomultiplier
Tube (PMT) used to detect the particles of the shower. These experiments have
about 100% of duty cycle due to the closed tank that isolate the PMT from the
natural light and a wide field of view, much wider than the IACTs (Sec. 1.3.5).. A
weakness of these experiment is the low discrimination power for gamma/hadron
particles with respect to the IACTs. In Fig. 1.13 it can be noticed that these
(HAWC and LHAASO in particular) experiments are complementary to the IACTs
because the sensitivity curves cover two different ranges of energies, with the IACTs
extending down to few tens of GeVs.

In this thesis this technique is mentioned for completeness but will not be
treated in depth.

1.3.5 Imaging Atmospheric Cherenkov Telescopes

The other kind of ground telescopes based on the Cherenkov effect are the Imaging
Atmospheric Cherenkov Telescopes (IACT). Like HAWC (Smith (2015)) the tech-
nique is based on the detection of the Cherenkov radiation but instead of using the
water these telescopes use the air as dielectric transparent mean. Currently the
three most important telescopes using this technique are the Major Atmospheric
Gamma Imaging Cherenkov (MAGIC), High Energy Stereoscopic System (HESS)
and Very Energetic Radiation Imaging Telescope Array System (VERITAS). A
newer observatory Cherenkov Telescopes Array (CTA) based on an evolution of
the technologies of these three is under construction (Acharya et al. (2013)). These
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Figure 1.19: From Smith (2015) Left: internal sketch of HAWC water tank, Right:
HAWC bladder

telescopes use a mirror to convey, with a reflection, the low intensity light of the
Cherenkov radiation on a camera composed of photomultipliers tubes. The three
main characteristics of the primary particle measured with an IACT are:

• The generic probability (“likeliness”) of the particle to be a gamma is called
“gammaness (g)”. The opposite, the likeliness of the particle to be an hadron
is called “hadronness (h)” where g = 1− h.

• the arrival direction of the primary particle;

• the energy of the primary particle.

This works is focused on the MAGIC telescopes and for this reason it is described
in detail and used as a general example of IACT.

The imaging technique

The primary particle impinging on the atmosphere produces an EAS (Sec.1.3.2)
that can be detected by the Cherenkov telescope. The telescope detects the
Cherenkov light as shown in Fig. 1.20 and records an image built with the charge
generated in each PMT by the incoming light. After some calibration and clean-
ing steps, the shower image can be modelled as a sort of ellipse. In the standard
analysis the information contained in the image is condensed in parameters called
Hillas parameters (Hillas (1985)) shown in Fig.1.22. The Hillas parameters are
used to estimate the “hadronness” and to reconstruct the arrival direction and
the energy of the primary gamma rays. One of the main differences between the
hadron-like and gamma-like showers is the shape of the image produced: a good
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Figure 1.20: From de Naurois and Mazin (2015) The shower image is projected on
the camera focal plane.

example can be viewed in Fig. 1.21, where on left images are shown respectively
the hadron-like and gamma-like showers and on right images are shown the pro-
jection of these showers on the IACT camera plane. The gamma-like event on
top right has a more tight-elliptical shape than the hadron-like on bottom right.
The separation between gamma-like and hadron-like events is a crucial step, per-
formed in the MAGIC standard analysis by means of a Machine Learning (ML)
Random Forest (RF) algorithm that consider a set of the Hillas parameters plus
some stereoscopic parameters introduced in the next Sec. 1.3.5.

Impact of the zenithal distance of the observations

The zenith distance (Zd) is the angular distance of a celestial body from the zenith.
It influences a lot the detection of the air showers, in particular the Zd is related
to the energy threshold and the effective collection area. If Zd increases, the EAS
has to go through more atmosphere to get to the observer (Fig. 1.23). The path
length for an high Zd shower can be approximated as:

L′ ≃ L

cos(Zd)
(1.35)
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Figure 1.21: From:DiSciascio (2019) The two figures on the left are the scheme of
the lateral development of air showers induced by protons (left side) and photons
(right side). The hexagonal pictures on the right represent the projection of the
two air showers on the IACT camera. The gamma-like event (top-right) is more
compact and elliptical respect the hadron-like event (bottom-down)

Figure 1.22: From Naurois (2006) The geometrical definition of the Hillas pa-
rameters: shower image length L and width W , size total charge in the ellipse,
d nominal distance (angular distance between the centre of the camera and the
gravity centre of image), ϕ azimuthal angle of the images main axis, α orientation
angle

and the diameter of the light cone on the reflector, called “light pool radius”, can
be approximated in the same way:

l′ ≃ l

cos(Zd)
(1.36)
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Moreover considering that the amount of light arriving on the detector, that is the
photon density ρ, is proportional to the area of base surface of the cone (l2) one
can rewrite the equation 1.36 to find the Cherenkov light density at high zenith
angle:

ρ′ ∝ l′2 ∝ ρ

cos2(Zd)
(1.37)

This implies the reduction of the Cherenkov photon density at high zenith distances
and given that ρ is strictly connected to the energy causes an increment of the
energy threshold (see the plot in sec 2.3.1). This influences also the effective
collection area (see sec 2.12), that increases with the Zd of the observations.

Figure 1.23: From Lopez-Coto (2015) Difference in the shower development be-
tween low Zd (left telescope) and high Zd (right telescope) observations. We can
see that the distance from the camera to the point in the atmosphere where the
showers start is smaller for low Zd observation (L) than for high Zd observations
(L′). The diameter of the Cherenkov light pool also increases for high Zd obser-
vations (l′ ≃ l/cos(Zd)).

Stereoscopic parameters

In addition to the Hillas (see Sec. 1.3.5) parameters, the stereoscopic parameters
are used in the analysis when two or more telescopes belonging to an IACT acquire
an image of the same event. These parameters can improve a lot the telescope
performances, in particular they are used in γ-like/h-like separations algorithm
(Sec. 2.2.1). In Fig. 1.24 is shown how stereoscopic observations can improve
the performance. One of the most important observables is the primary particle
direction that, in first approximation, can be estimated as shown in the middle
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panel. In stereoscopic observations, all the telescopes point the same direction in
the sky, but each telescope images the same shower event with a different parallax;
the black lines represent the ellipse major axes. In each image, the source position
in the sky lies somewhere along the major axis, but this position is undetermined
and has to be estimated with a further analysis. With multiple images of the
same region of the sky, these can be superimposed, and the intersection of the 4
lines gives a good first approximation about arrival direction. The arrival direction
estimation can be improved with regression techniques (Sec. 2.2.1).

Figure 1.24: From de Naurois and Mazin (2015) Geometric reconstruction of source
direction and impact parameter in stereoscopic mode. Left panel: in the camera
frame, the main axis of the shower corresponds to a plane that contains the actual
shower track and the telescope. The primary particle direction corresponds to a
point on this main axis. Middle: The intersection of the main axis of the images
recorded by the different telescopes immediately provides the primary particle
direction. Right: Direct intersection of the planes containing the shower tracks
and the telescopes provides the shower impact point on the ground.

Sources of background events

The shower images that constitute the background for VHE γ-ray astronomy can
be classified depending on the primary particle originating the extended air shower
(hadrons, leptons, diffuse photons) more in detail (see also Fig. 1.25):

• Night sky background(NSB): this is due to the brightness of the night
sky and is generated by the stars, Moon and light pollution, airglow and other
effects. Given that the PMT receivers are very sensitive to the light they
can be triggered by photons originated by NSB. This noise can be reduced
using specific hardware trigger settings. An additional step to reduce this
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noise is in software, by means of suitable cleaning settings. Gamma/Hadron
separation algorithms do not consider this source of background, assuming
that all the surviving events after cleaning are actual images of extendend
air showers.

• Hadrons: this component is the most abundant given that hadrons are the
largely dominant component of the CR. In general the algorithms performing
the rejection of this background work considering the Hillas (Fig. 1.22)
and Stereoscopic (Fig. 1.24) parameters. Because hadronic and gamma-ray
showers are morphologically different, these parameters allow to discriminate
the two. In the last years many algorithms that exploit all the images instead
only the parameters have been proposed.

• Electons and positrons: These particle are generated both in hadron and
in EM (see 1.15) showers. Showers initiated by e± in the CR are purely
electromagnetic exactly as the gamma-ray initiated ones. Therefore there
are intrinsically difficult to distinguish from gamma-ray initiated events and
survive the classification based on Hillas parameters, as an isotropic back-
ground.

• Diffuse gamma: The sky is permeated with diffuse gamma rays mainly
produced by non resolved sources (Fornasa and Sánchez-Conde (2015)). As
in the case of electrons and positrons the showers are hardly indistinguishable
from those produced by gamma emitted from the celestial sources of interest
and again are istrotropic.

Morphology of the shower event

The typical morphology of showers with different progenitors are shown in Fig.
1.26.

• Hadron shower: (left panel) are typical characterized by multiple islands,
the shower produce multiple sub-showers with respect γ-like. The main
island presents an irregular shape with respect γ-like events with typical
larger width. 1.22)

• Muon event(middle-panel) present the typical ring or arcs shape. These
events are easy to separate because the shape is totally different than the
gamma-like/hadron-like events.

• Gamma-like shower (right-panel) present a well defined elliptical shape,
as shown in 1.25 in this category are included the events produced by the
source of interest but also the diffuse gamma rays and the e±.
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Figure 1.25: From Brun (2012) A schematic representation of the different layers
of background for IACT telescope.

All of the previous showers are simulated, the images are easily recognizable. In
real data samples the fraction of events for which the classification is non trivial,
is large. In general, the background discrimination becomes easier with the energy
of the events, given that events of higher energy produce brighter images with a
better defined morphology.
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Figure 1.26: From Brun (2012) Simulated images of extended air shower events
induced from cosmic particles, as observed in the focal plane of a Imaging Atmo-
spheric Cherenkov telescope. From left to right: hadronic shower, muon, gamma-
ray shower
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Chapter 2

The MAGIC Telescopes

The Major Atmospheric Gamma Imaging Cherenkov telescope (MAGIC) is an
Imaging Atmospheric Cherenkov Telescope (IACT) system composed by two tele-
scopes operating in stereo modes (see fig: 2.1). The telescopes are situated at the
Roque de los Muchachos observatory on the La Palma Canary island at 2200m of
altitude and in first approximations they can be considered identical.

IACTs primary design goal is to reach the lowest possible energy threshold
(∼ 50 GeV), which means being able to detect the faintest showers light, this
is achieved through fine pixelated cameras, fast sampling electronics and a large
mirror area (Aleksić et al. (2016)).

In the case of MAGIC, the second design goal is a fast repositioning speed to
capture transient events that occur quickly, including gamma-ray bursts. This is
accomplished by using a lightweight (∼ 70 tons) telescope construction built of
reinforced carbon fiber tubes.

The main components of the MAGIC telescope are listed briefly in the follow-
ing:

• The Mirror surface: it has a 17 m diameter and is made square, all-
aluminum mirrors (964 panels 50 cm × 50 cm for MAGIC-I and 247 panels
1× 1 m for MAGIC-II), forming a parabola with a surface area of 236 m2

(Doro et al. (2008)). A honeycomb structure that provides rigidity, high
temperature conductivity, and low weight is sandwiched between two thin
aluminum layers to create each mirror. Each raw blank has its surface dia-
mond milled for excellent reflectivity and a slightly variable focal length to
meet the reflector’s overall parabolic form.

• The Camera: it is positioned in the reflector’s focus, about 17 meters above
the mirror dish. The MAGIC camera has a field of view (FoV) of 3.5◦ and
is outfitted with 1039 evenly sized 0.1◦ pixels organized into 169 cluster
modules. The trigger region includes 91 cluster modules covering a FoV of
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Figure 2.1: The MAGIC II (M2 left) and MAGIC I (M1 right) telescopes. Picture
Credits: Derek Strom, Giovanni Ceribella and the MAGIC Collaboration. On
MAGIC II the camera, the mirrors and the path of Cherenkov light are shown.
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2.5◦ diameter. Each cluster consists of seven hexagonally arranged pixels.
The camera can be controlled and maintained more easily because to the
modular design. In order to reduce light losses caused by the dead space
between the PMTs and to reject background light with a wide angle, the
PMTs are coupled to Winston cone-type light guides, hexagonal in shape for
a compact arrangement (Borla Tridon et al. (2009)).

• The Readout: it is situated in a designated counting house, where the
camera’s optical fiber-transmitted signals are received. The two primary
components of the readout electronics are the receiver boards and the digi-
tization electronics. Since Cherenkov flashes only a few ns, a fast sampling
speed is required to improve the signal to noise ratio and fully utilize the
arrival time information. The MAGIC readout has been originally designed
for sampling the signals at 2 GSamples/s. Aleksić et al. (2016)), in the last
years the sampling rate has been reduced to 1.64 GSamples/s.

• The Trigger: it is also located in the counting house, next to the readout
electronics, to which it provides the necessary signals to perform the readout
of the original signals from the PMTs and convert them to digital data.

The trigger system is divided in three levels whose main functions are:

– Level 0 (L0): it is a amplitude discriminator operating on each pixel
individually. If the analog signals exceeds a programmable threshold, a
digital signal of fixed length is generated.

– Level 1 (L1): it is arranged in 19 macrocells of 36 pixels each (see
Fig:2.3), with a partial overlap. A next-neighbor logic of 2, 3, 4 and 5
contiguous pixels is implemented in each macrocell (referred as 2NN,
3NN, 4NN and 5NN pattern logic). Only one logic pattern can be
selected at observation start. If any of the 19 microcells triggers the
programmed logic, a L1 trigger signal is generated and transmitted to
the next trigger level.

– Stereo trigger (L3): the two L1 trigger signals are stretched to 100 ns
and delayed according to the pointing direction of each telescope to take
into account the differences in the arrival times of the Cherenkov light
at the corresponding focal planes. A logical “AND” operation is made
between the two signals, and the resulting signal (L3 output) is sent
back to the individual telescope readout.
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Figure 2.2: From Aleksić et al. (2016) Schematic view of the readout and trigger
chain of the MAGIC telescopes.
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Figure 2.3: From Aleksić et al. (2016), Geometry of the MAGIC camera. Shown
are the 1039 pixels arranged in clusters of 7 pixels each. The L1 macrocells (36
pixels each) cover the inner part of the camera. Pixels can be shared by two
macrocells (green pixels) or three macrocells (red pixels).
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2.1 MAGIC Data processing

The MAGIC “standard” data analysis (Zanin et al. (2013)) is done with the MARS
software, a ROOT-based framework written to analyze the MAGIC data from low
to high level where the events with all their estimated properties are reconstructed.
A scheme of the analysis pipeline is shown in fig: 2.4.

In the following sections the most important blocks of the analysis pipeline are
described.

2.1.1 Raw data

The data directly acquired by the telescope are referred as “raw data”, that is the
un-treated information from the PMTs as they are recorded by the readout system
without any significant data manipulation besides some baseline subtraction and
correction procedures (cell-wise pedestals and time-lapse correction). (figure: 2.2).
For more information see Aleksić et al. (2016).

2.1.2 Calibrated data

The main quantities that must be extracted from the raw data are the charge and
arrival time of the signal. The first step is the estimation of the baseline from the
PMT waveform, in figure: 2.5 it is shown an example of the light pulse with the
associated baseline, taken from dedicated pedestal data runs.

The area below the pulse signal and above the baseline represent the PMT
charge. The main method to extract the baseline in MAGIC is by taking the
mean of the waveform interval that does not contain a pulse or spurious signal
(e.g. the ringing shape in figure).

The pulse area is obtained with technique called “sliding window”. This tech-
nique takes a window of k slices (out of n slices) and the window area is calculated
as the k slices are moving along the full waveform. The largest calculated value is
taken as the light pulse area.

Before being processed by the analysis chain, the raw data need to be cali-
brated. This process is performed by the sorcerer executable in fig:2.2. The
data from the PMTs are converted from digital counts to the equivalent number
of photoelectrons (Nphe) representing the real charge collected by the PMT. The
technique used to uniform the camera output is called “flat-fielding”, see Gaug
(2006) for more information.
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Figure 2.4: Scheme of the MAGIC analysis pipeline. On the left side, the anal-
ysis flow is shown, where data from the single telescopes are processed and later
merged for the final analysis. On the right side, it is shown the corresponding data
transformation, from raw data to high level information used in the analysis plots.
Details on each analysis step are provided in the text.
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Figure 2.5: From Carreto Fidalgo (2019) A typical PMT signal digitized by the
readout. The readout counts are plotted versus the readout slices, which corre-
spond to the switching capacitors. The so-called ringing after the light pulse is an
artifact of the readout. Besides light pulses, the readout can also be triggered by
the so-called afterpulses from the PMTs, which are large amplitude signals caused
by an ion accelerated back to the photocathode of the PMT.
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2.1.3 Image cleaning

After the calibration procedure, the pixels data have been converted to meaning-
ful information, charge and arrival time. In the following, we will refer to their
collection as charge and arrival time “maps”.

To extract information about the shower topology, the Hillas parameters (Hillas
(1985)) are usually calculated. However, at this stage of the analysis, still some
spurious signal is still present, due to the night sky or noisy pixels. It is therefore
mandatory to perform a “cleaning” of the camera information in order to remove
the pixels that are not associated with the shower light and may cause an incorrect
estimation of the image parameters.

The description of the cleaning algorithm is important for this thesis work be-
cause the CNN classification is strongly influenced by the type of applied cleaning.
A good cleaning algorithm should be a compromise between the simplicity and the
effectiveness, in the following the two main cleaning methods used for the MAGIC
data (Aliu et al. (2009)) are listed:

• Absolute image cleaning: This simple and robust algorithm has been
used in MAGIC until 2007. It exploits only the charge value and it is based
on two thresholds: Qcore and Qboundary (with Qcore > Qboundary). All 2NN
pixels with charge Nphe ≥ Qcore are marked as “core” pixels. The remaining
pixels contiguous to core pixels with Nphe ≥ Qboundary are also included as
“boundary” pixels. The rest of the pixels are discarded. Typical threshold
values are Qcore = 10 and Qboundary = 5.

• Time Absolute cleaning This cleaning considers both the charge maps
and the arrival time maps. It starts calculating the Qcore pixels from the
charge maps like the previous absolute cleaning. These pixels must respect
the Eq. 2.1 condition

tavg − tcore ≤ tarr ≤ tavg + tcore (2.1)

where tavg is the average arrival time, tcore is a time value arbitrary defined
and tarr is the arrival time of the signal.

The next step is to select the pixels that are contiguous to core pixels and
satisfy the Eq.: 2.2.

tarr−boundary − tboundary ≤ tarr−core ≤ tarr−boundary + tboundary (2.2)

where tarr−core is the arrival time of the core pixel, tarr−boundary is the arrival
time of the boundary pixel and tboundary is an arbitrary value with tboundary ≤
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tcore. The use of the arrival time maps allows to relax the charge threshold
parameters Qcore/boundary as well as to exploit the arrival time information.

Typical charge thresholds used in the standard analysis are Qcore = 6 and
Qboundaries = 3.5, while the time parameters values are tcore = 4.5 ns and
tboundary = 1.5 ns.

• Sum image cleaning: A new cleaning algorithm is being used, based on
the sum of the pixels charge in different neighbor configurations (2NN, 3NN
and 4NN). If the total charge exceeds a definite threshold and all the NN
arrival time differences are within a given interval (depending on the NN
combination) , the pixels are considered part of the shower image. This
technique, together with signal clipping on the summed signal, is effective to
reduce the effect of the PMT afterpulses and the night sky background effect
on the camera. This cleaning is currently used for the MAGIC L3 trigger
(stereo) observations.

At the end of the cleaning procedure, the Hillas parameters are calculated
to extract information about the image topology.

The cleaning and Hillas extraction operations are performed by the star

script, see fig:2.2.

2.2 Stereoscopic data merging

After the cleaning process, the data of the two telescopes are ready to be merged
in one joint dataset with the additions of the main stereoscopic parameters. We
review here the main variables that play a crucial role in the analysis, refer to fig:
2.6:

• Arrival direction: The arrival direction of the primary particle must be ob-
tained from the images collected by the two MAGIC telescope. If the two
images are plotted on the same plane (top portion of fig: 2.6), the arrival
direction can be found by projecting the major axes and looking for an in-
tersection, which is the shower incident angle or arrival direction.

• Impact point: next variable to calculate is the impact point, that is the
position at ground where the shower axis intercepts the telescopes ground
reference. By looking at Fig. 2.6, we see that, for each telescope, the image
major axis on the camera and the arrival direction define a plane. The
intersection of these two planes is the shower impact point at the ground
reference.
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• Shower maximum height:

Last variable of interest is the shower maximum height (Hmax) that is the
position where the shower development is maximum. In this case the proce-
dure is more complex since we are going to look for an altitude figure based
on partial and irregular sampling of the shower development. Since the im-
age centroid defines the average angle of incident photons, by extrapolating
back along the arrival direction line, the intersection should define the point
of maximum height. An exact application of this method seldom results in
a satisfying result, therefore the altitude of interest is defined as the point
that minimizes the distance between the extrapolated lines from MAGIC-I,
MAGIC-II and the reconstructed impact position. lines.

All of these parameters estimation can be improved if one knows the source
position. In this case, instead of taking the image major axis, the line connecting
the source position and the image centroid can be used.

Other variables of interest are the Cherenkov radius and the Cherenkov density.
These are estimated assuming a Cherenkov emission from a single electron with
energy equal to the critical energy (86 MeV) at the shower maximum height. The
reconstruction of all these parameters in MARS is done with the script called
superstar in Fig. 2.4.

2.2.1 Monte Carlo

The γ-ray shower events are typically overwhelmed by the hadron-like background,
therefore discriminating the γ-ray events from a real data sample is challenging.
Furthermore, even if one would successfully tag the γ ray event, some properties
would remain unknown (e.g. the energy of the primary particle) because of the
indirect nature of the Cherenkov technique that sample only the final development
of the shower.

In general the γ-ray properties are estimated through simulation by a Monte
Carlo (MC). Considering that all the MC properties are known, by associating
showers with the best matching MC events , the unknown properties of the real
events can be inferred from the similar MC.

For what concerns the hadron-like events, a good dataset can be obtained from
the real data since it is possible for IACTs to monitor a sky region where no
known γ-ray sources are present (so-called “dark patch”). The collected dataset
in this condition is usually called “OFF data” and it is not expected to show an
excess of gamma-like events. This solution is very effective since the simulation of
hadron showers is a very time-consuming procedure, both in terms of computer
elaboration time and resources.
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Figure 2.6: From Berti (2018) Example of the reconstruction of some stereo pa-
rameters.
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This can be understood comparing the two pictures of the shower models: the
EM shower (Fig:1.15) and the hadron shower model (Fig:1.16). The EM model is
less complex than the hadron model but for the EM model are already needed good
computing resources. MAGIC simulation uses the CORSIKA software (1.3.2) to
simulate showers using input parameters like the primary particle type, energy
and incident angle and several others parameters.

This part of analysis is performed by the coach script (Fig.2.4) and it runs
parallel to the main analysis branch. Coach uses two sets of data: the simulated
γ-ray shower events and, the dark patch shower events.

Gamma-hadron separation

Extensive air showers generated by hadrons are the majority of events and generate
images that are typically more disperse than the ones generated by gamma rays.
Especially at low energies, electrons produce showers that are very similar in shape
to gamma-like images, as well as fluctuations of the signal due to background light,
such as the night sky background, Moon light, or flashes from cars driving nearby
the telescopes. Moreover, muons with ultra-relativistic velocities hitting near the
telescope, generate rings or portion of rings that can mimic a low-energy shower.

Once the events have been calibrated and merged, they must be associated to
a probability of coming from a hadron via a variable called “hadronness”.

MAGIC uses a classification algorithm called Random Forest (RF) to separate
hadron-like from gamma-like event images. As it will be exaplained in Sec. 2.2.1,
the RF is a “supervised machine learning algorithm” that uses a model from a
sample with known properties (“training sample”) and applies it to a sample with
unknown properties (“test sample”) to predict the prabability that is a hadron-like
event.

To do so, the Hillas and the Stereo parameters (section 2.2) of the MC and the
dark patch described in Sec. 2.2.1 are used.

The Hillas and stereo parameters selected from the known samples are input in
the RF algorithm that creates many conditional parameters trees. Each event is
then input to a tree to obtain the classification result 0 if the event is gamma-like
and 1 if it’s hadron-like. This procedure is repeated for 100 trees to have a set of
100 events that result in a probability:

ph/γ =

∑100
i=1 pi
100

(2.3)

The sum of the results divided by the total number of trees gives the hadronness
probability for the unknown event.
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The RF training sample is selected by the analyzer, by choosing the correct
MC 1 and the correct dark γ-ray sources belonging to the same time period

and similar Zenith degree angle. After the data samples have been selected
the RF can be built. The calculation of the probability for the analysis sample is
performed in the next analysis step by the Melibea script (Sec:2.2.1).

A detail description of the RF algorithm can be found in Albert et al. (2008a).

Energy reconstruction

The energy of the primary particle is proportional to the number of Cherenkov
photons produced by the air shower, also proportional to the photoelectrons Nphe

charge measured by the telescope (the Hillas parameter size). This is the main
parameter to make a first estimation of the energy of the event. Others energy-
related parameters are, for example, the shower maximum height, the impact, the
source zenith and azimuth angles and several other variables.

Like for the gamma/hadron separation, the energy of the real events is unknown
because only the final part of the shower is detected. It is possible to use the MC
data and to associate an energy to each event by using a Look Up Table (LUT).

A multi dimensional table containing the mean energy of each MC events be-
longing to each parameter bin is built (< EMC > (Parbin)). The energy of the real
events is obtained by looking at the corresponding parameters MC bin from which
the < EMC > that will be the estimated energy of the real event is obtained.

Position reconstruction

The calculation of the arrival direction of the shower (Sec.2.2) can be improved
by using a method known as Distance between the Image centroid and the Source
Position (DISP). This method was first used for MAGIC single telescope obser-
vations, (Domingo-Santamaria et al. (2005)), but can be adapted for stereo data.
Actually MAGIC calculates the stereo DISP using an RF algorithm (Aleksić et al.
(2010)).

Hadronness

The analysis process shown in 2.4 converges in the melibea script that uses the
results of the MC coach stage described in the Sec. 2.2.1 together with the super-
star data of the analyzed source to calculates the hadronness, the energy and the
arrival position of the origin particle of the real events.

1the MC are rebuilt each times the state of the telescope changes, in particular are related
with the states of the cameras and the mirrors
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This part is strictly connected to the original work (Ch. 4) because the MARS
hadronness is used to slightly bias the training set.

After this block, the data events can be considered high-level data because these
events will contain the physical parameters from which their physical properties
can be directly calculated.

2.2.2 Significance

The next step in the analysis chain is to quantify the gamma-ray signal coming
from the source.

Before introducing the significance calculation, the observation techniques of
MAGIC must be described (Bretz et al. (2005)):

• ON-OFF mode: the telescope is pointed so that the source is located in
the camera center (ON position). After the data have been acquired, the
telescope is moved to a new position (OFF position) towards a dark patch
region in the sky and new data are recorded. Since both measurements are
not done with the same instrument at the same time and the data taking
conditions are different, scaling of the background measurement is necessary
to achieve an agreement of the background levels of the ON and OFF-source
observations. A drawback of this method is a low duty cycle because ON
and OFF data must be recorded separately.

• Wobble mode: the camera is moved off-axis and the source is located on the
side of the camera FoV (see fig: 2.7).

In this case, the OFF data are coming from a camera region far from the
source position and several OFF positions can be defined. Typically, in
MAGIC the ON and OFF positions are positioned at a distance of w = 0.4◦.

The wobble method is a clever technique because it maximizes the observation
time and limits the systematic due to cameras dis-uniformity as well as increasing
the duty cycle.

With these definitions, the statistical significance used in MAGIC is based on
the LiMa formula (Li and Ma (1983)) can be written as:

σLi&Ma =
√
2

{
Non · ln

[(
1 + τ

τ

)(
Non

Non +Noff

)]
+

Noff

τ
· ln

[
(1 + τ)

(
Non

τ ·Non +Noff

)]} 1
2

(2.4)
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Figure 2.7: From Palacio, Navarro-Girones, and Rico (2019) Schematic configura-
tion of the FoV during wobble mode observations. The telescope axis (black cross)
has an offset distance w with regards to the center of the source under study (yel-
low star). Signal (ON) region is defined as a circle around the center of the source,
with angular size θc. One background control region (circular region around OFF,
black star) is defined with same angular size, symmetrically with regard to the
signal region. The leakage effect is schematically shown where, for moderately
extended source (green area), signal events are also expected to be reconstructed
inside OFF.

where Non is the number of gamma-like events towards the source direction, Noff

is the number of gamma-like events towards the OFF direction and τ is a time
normalization value to balance the contribution of the ON and OFF events.

The excess of events can be plotted in the θ2 space, defined as the radius square
of a circle on the camera FoV. If we take a circle of radius (θ =

√
θ2) around the

ON position and a similar circle around the OFF direction(s) we can plot the DISP
(Sec. 2.2.1) in bins of θ2. An example of θ2 plot of a source is shown in Fig.2.8,
the top plot uses a cut θ2 ≤ 0.15, size1/2 > 60 and no hadronness cut, while the
bottom plot uses the same cuts for θ2, size1/2 and hadronness ≤ 0.28. In this
example, the ON part shows an excess of events with respect to the three other
background areas and, above θ2 ∼ 0.08 value the ON and OFF backgrounds are
similar.
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Name Had < cut θ2 < cut cut <size1&2 cut < Eest

cut-Low Energy (LE) 0.28 0.02 60 —
cut-Full Range (FR) 0.16 0.009 300 —
cut-High Energy (HE) 0.1 0.007 400 1000

Table 2.1: MAGIC standard cuts used for odie source evaluation

In the MAGIC analysis there are three standard settings that are used: the
Low energy (LE), High energy (HE) and Full Range energy (FR), listed in table:
2.1. These cuts are used both for ON and OFF data, each time changing the
center of the circle as shown in Fig.2.7. The ON data are centered on the source
and the OFF data are centered on the OFF circle(s).

The events in the ON circle (Non) and the mean of the events in the OFF
circles (< Noff >) are computed and the number of excess events (Nexc):

Nexc = Non− < Noff > (2.5)

The MAGIC script used to calculates the θ2 plot, the standard significance and
Li&Ma significance is called Odie (see fig. 2.4).

2.2.3 Spectral Energy Distribution

The last step of the standard analysis consists in calculating the spectral energy
distribution 2.2.3 and the light curve.

In the analysis block scheme (fig. 2.4) this operation is performed by the flute
script. This script will not be described in detail because is not the main topic of
this work.

The energy spectrum generated of the EM emission produced by an astrophys-
ical source and observed by different telescopes can cover various energy decades
for example from radio to gamma rays. An usefull and significant physical rep-
resentation of this emission as a function of the energy is called Spectral Energy
Distribution (SED). SED plot (an example is showed in fig:2.9). The SED function
can be expressed as:

J(Eγ) =

∫ E2

E1

Eγ ·
dNγ

dEγ

dEγ units: erg cm−2 s−1 (2.6)

Where Eγ is the energy of the arriving photon and the Nγ = nγ/(T · A) is the
number of photon on unit of time and area.
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Figure 2.8: Example of θ2 plot with Mrk421 cross-check sample (Sec.4.5). In the
plots are represented the ON (Blue) and 3 OFF (180 90 and 270 others three color)
positions using the¿ cut θ2 ≤ 0.15, nbins = 15, size1/2 < 60. Top no hadronness
cut, down hadronnes cut h ≤ 0.28.
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Figure 2.9: From Buckley et al. (1997) the experimental multiwavelength SED
points for Mrk421 blazar. On the y-axis is reported the energy on area and time
units, on the x-axis the specific flux density multiplied by the energy of the photon
emitted

Light Curve

The Light Curve (LC) is a plot of the light intensity as a function of time. The
LC is used to study the changes in astronomical sources over time. Together with
the SED, the LC is very useful to infer some physical properties of the sources:
for example in pulsars due to the rotation the LC is periodical (E.g. Abdo et al.
(2010)). An example of periodical LC of the CrabNebula pulsar is shown in Fig.
2.10.

2.3 MAGIC performances

In this section the current performances of MAGIC stereo system will be presented
( Aleksić et al. (2016)). The performances have been evaluated by the MAGIC
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Figure 2.10: From Abdo et al. (2010). Light curve obtained with photons above
100 MeV. The light curve profile is binned to 0.01 of pulsar phase. Insets show
the pulse shapes near the peaks, binned to 0.002 in phase. The radio light curve
(red line) is overlaid (arbitrary units). The main peak of the radio pulse seen at
1.4 GHz is at phase 0. Two cycles are shown.
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Figure 2.11: Energy threshold of the MAGIC telescopes as a function of the zenith
angle of the observations Aleksić et al. (2016) . Long dashed curve: threshold
at the trigger level. Solid line: only events with images that survived image
cleaning in each telescope with at least 50 phe. Dashed line: with additional cuts
of Hadronness < 0.5 and θ2 < 0.03◦2 applied

collaboration using Crab Nebula data samples taken at low and medium zenith
angles and MC simulations.

2.3.1 Energy Threshold

The energy threshold of an observation is defined in Aleksić et al. (2016) as the
peak of the energy distribution of simulated MC data for a source with a power
law spectrum with spectral index of 2.6. This parameter is very important because
allows to understand which will be the minimum energy that can be measured with
MAGIC. The energy threshold is different for each observation because depends
on the trigger and is influenced by the zenith angles of the obsrvation and by
the spectrum of the source. The energy threshold of the MAGIC telescope as a
function of the zenith observation is shown in figure 2.11. The Zd influence on the
energy threshold is due by the fact that the shower has to go through a thicker
layer of atmosphere than a shower that comes from a low zenith. This raises the
energy threshold of the high Zd observations.
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Figure 2.12: From Aleksić et al. (2016): Collection area of the MAGIC telescopes
after the upgrade at the trigger level (dashed lines) and after all cuts (solid lines).
Thick lines show the collection area for low zenith angle observations, while thin
lines correspond to medium zenith angle. For comparison, the corresponding pre-
upgrade collection areas are shown with gray lines

2.3.2 Effective collection area

The effective area is literally the instrument geometrical area where the gamma
rays can be detected by the instrument, for small array of telescopes, like MAGIC,
the collection area is mainly determined by the size of the Cherenkov light pool,
this depends on the Zd (Sec.1.3.5), at low Zd The typical Cherenkov light pool
size is ∼ 120m (Aleksić et al. (2016)). To calculate the effective area in MAGIC
one can apply the definition of the effective collection area:

Aeff =
N(E)

N0(E)
πr2max (2.7)

where rmax is a simulated value called maximum simulated shower impact. N0(E)
is the number of simulated events and N(E) is the number of events that surviving
the trigger condition or a given set of cuts. In Fig. 2.12 are shown the collection
area functions based on periods, Zd, trigger and before and after the cuts.

2.3.3 Sensitivity

Another important value used to evaluate the telescope performance is the sen-
sitivity, this parameter represent the minimum signal that can be detected in 50
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hours with 5σ. The significance σ using this time the Gaussian significance:

σ =
Nex√
(Noff )

(2.8)

where Nex is the number of excess Nex = Non − Noff . If one consider a Crab
Nebula observed for a time t the significance for a time t0 = 50h can be write:

σ(t0) =

√
t0
t

Nex√
Noff

(2.9)

And then the sensitivity with a minimum signal of 5σ in 50h is defined as:

Sensitivity =
5σ

σ(50h)
= 5σ

√
Noff

Nex

√
t

50h
(2.10)

Beside the performance calculations that is useful to compare the MAGIC telescope
with other instruments the sensitivity can be used to estimate the flux that one
can detect for a given observation time.

The MAGIC sensitivity curves (Aleksić et al. (2016)) are shown in Fig. 2.13:
on left is shown the integral sensitivity that is calculated searching the highest
sensitivity value that can be obtained applying a set of cuts (hadronnes,size, θ2,
etc...) for events that are above the energy threshold (2.3.1) of the telescope. On
right the is shown differential sensitivity that is the highest sensitivity in a energy
bin (or in a set of energy bins) applying a set of cuts.

2.4 Standard Analysis of MAGIC Sources

In the following sections are present the MARS Standard Analysis (SA) results for
some reference sources.

2.4.1 Monte Carlo and OFF data selection

The MC and OFF data were selected (González Muñoz (2015)) with the parame-
ters shown in tables: 2.2 and 2.3.

The source 1ES0927+500 in the table represents a little issue because the
standard analysis of this source has been performed with RF matrices obtained
using, as off data sample, a small part of the source data sample itself. In general
this is not a good practice because the analysis might be biased. However the
1ES0927+500 data sample used to train the RF is very small in comparison to the
overall off data sample.
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Figure 2.13: Top panel: integral sensitivity of the MAGIC telescopes as a function
of the energy and for different periods (colors). Bottom panel: differential sensi-
tivity of the MAGIC telescopes as a function of energy and for different periods
(colors). Grey and dark grey dots: Mono (single telescope) sensitivity. Black tri-
angles: stereo (both telescopes) with old MAGIC-I camera. Red and blue squares:
stereo sensitivity after upgrade of 2012-13 (Aleksić et al. (2012)) at zenith lower
than 30◦ and between 30◦ and 40◦ respectively.
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Name dates covered zenith type
ST.03.02 2013-01-18 to 2013-07-26 05-35 ringwobble
ST.03.02 2013-01-18 to 2013-07-26 35-50 ringwobble
ST.03.02 2013-01-18 to 2013-07-26 50-62 ringwobble

Table 2.2: MC data used for the standard data analysis

Source name Date
SegueA 2013-01-15

2013-01-16
2013-01-17
2013-01-18
2013-01-19
2013-01-20
2013-01-21

DarkPatch11 2013-02-08
DarkPatch28 2013-01-21
DarkPatch32 2013-02-11
DarkPatch33 2013-02-10

2013-02-15
Geminga 2013-02-12

GRB130504 2013-05-04
1ES0927+500 2013-04-02

Table 2.3: List of the off sources used as hadron sample for RF construction
(González Muñoz (2015))

2.4.2 Crab Nebula

The Crab Nebula (Hester (2008)) is a very famous supernova remnant with a pulsar
in the center. The Crab Nebula is the reference source for the γ ray astronomy and
is important because is very easily detectable at VHE. Its luminosity and SED are
of high intensity and nearly constant. Furthermore, observing the Crab Nebula
one can study an astrophysical system composed by four observable components:
the Pulsar, the Pulsar’s wind, the thermal filaments, the freely expanding ejecta.

The Crab Nebula is therefore used to test the goodness of other analyses pro-
vided that the examined periods are close and similar observing conditions. The
Crab SED is also used to verify for consistency.
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Crab Nebula cross-check analysis

For the Mrk421 cross-check analysis, the following days of Crab nebula observation
were selected: 2013-02-10, 2013-03-12, 2013-03-15.

The obtained SED is shown in Fig. 2.14 and the SED is in a good agreement
with the ones already published ( Aleksić et al. (2015), Aleksić et al. (2016), Albert
et al. (2008b) and Aharonian et al. (2006)).

The other part of check regards the sensitivity obtained after the Full-Range
cut (Tab. 2.1), this should be around 0.7% Crab Units (Aleksić et al. (2016)), in
Fig. 2.15 for low zenith (Zd= 0-50) the value is: 0.72± 0.03% CU .

2.4.3 Markarian 421

Markarian 421 (Mrk421) (Sec.1.2.3) is a High Frequency BL Lac (HBL) object.
The SED is shown in Fig. 1.12. Its SED has the typical blazar shape, composed
by the Synchrotron and the Inverse Compton bumps.

The Mrk421 is one of the closest Blazars to Earth (redshift=0.031) and one of
the brightest. All these reasons makes it one of the most observed sources after
the Crab Nebula because can be detected easily even during the non-flaring state
(Aleksić et al. (2015)).

In many papers the multiwavelength SED is studied as well as its variability
(see e.g. The MAGIC Collaboration et al. (2022)). This source is a very good
prototype to study the emission mechanisms of the Blazars class.

In the next sections, the standard analysis of two data samples of the Mrk421
will be shown. The first sample belongs to the extraordinary flare of April 10th −
16th, 2013 (González Muñoz (2015), Acciari et al. (2020)) while the second is
another flare of Mrk421 happened ten days before the first sample. They will be
later used in chapter 4 as main and cross-check samples.

Standard Analysis of Markarian 421 flare

Since this sample will be used later as main dataset, it is necessary to check that
the sample consists of “good” shower images. The quality of the dataset is done
by using the standard analysis, starting from superstar (fig. 2.4).

The April 10th − 16th, 2013 period has been selected, discarding the moon and
the twilight data (∼30%) and keeping only the dark sample. All of the available
Zd angles (5÷ 62) were kept to have high statistics and to increase the variability
range.

The standard analysis results can be seen in Fig. 2.16 where the comparison
using the Full Range cut (tab. 2.1) with González Muñoz (2015) is shown. In Fig.
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Figure 2.14: CrabNebula SEDs. Top panel: SED using Low Zenith data (Zd =
0÷ 50); Bottom panel: High Zenith data SED (Zd = 50÷ 62).
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Figure 2.15: θ2 plot for Crab nebula Full Range Energy (Table 2.1). The dotted
line near the y axis represents the θ2 cut. (Top) Low Zenith data (Zd = 0 ÷ 50)
with the sensitivity near 0.7% like in standard analysis (Aleksić et al. (2016)).
(Bottom) High Zenith data (Zd = 50÷ 62).
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Figure 2.16: Mrk421 April 10th − 16th, 2013 sample comparison. Top: Full Range
θ2 Standard Analysis (this work). Bottom: González Muñoz (2015) analysis.
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Figure 2.17: Mrk421 April sample (10th to 16th) θ2 plots. Top my Low Energy
cut θ2 plot (cut in Tab. 2.1). Bottom my High Energy cut θ2 plot (cut in Tab.
2.1)
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2.17 are shown the θ2 plots after LE an HE cuts (tab. 2.1) and in Fig. 2.18 is
shown the comparison of the LCs.

Markarian 421 Cross-Check analysis

Another useful Mrk421 dataset for independent cross-check can be obtained by
collecting the data of three days: March 30th, April 1st and April 2nd, 2013. The
same MC and dark patch sample used for the Mrk421 main dataset analysis and
the Crab cross-check (Sec. 2.4.2).

Fig. 2.19 and 2.20 show the Standard Analysis results for the LE,FR,HE cuts
(Table 2.1), that confirm a flux higher than the Crab one.

2.4.4 1ES0927+500

1ES0927+500 is a Bl Lac object confirmed by Fermi-LAT and Swift with redshift =
0.187. Considering synchrotron emission that peaks at exceptionally high energies
(νs ∼ 1017 Hz) in the medium and hard X-ray band, this BL Lac is classified in
the Extreme HBL Blazar class (Foffano et al. (2019)). This source was observed
a couple of times by MAGIC telescope but every time without a hint of a signal,
probably due to its distance.

This source is another interesting sample because it falls in the same period of
the Mrk421 extraordinary flare, and because it is an undetected VHE source.

As explained in Sec. 2.2.1, there is a little issue since one set of 1ES0927+500
data (2013-04-02), see Table 2.3) has been used to train the RF for the analysis of
the same source.

In Fig. 2.21 and Fig. 2.22 the 1ES0927+500 standard analysis results of the
day 2013-04-09 are shown.

2.4.5 BL Lacertae

During my period as flare advocate for the MAGIC collaboration, an exceptional
flare of BL Lacertae occurred, the preliminary results for LE cuts showed σLi&Ma >
100σ of significance.

This has been an exceptional occasion to join the flare analysis group in view
of an article publication. In the following section the results of the cross-check
analysis by myself will be presented. This source will also be used as a cross-check
sample in chapter 4.

The BL Lac (Acciari et al. (2019)) is a prototype of the BL Lac object, clas-
sified as Low Energy Blazar (LBL, sometimes IBL) due to the synchrotron peak
frequency and with a redshift z = 0.069. The BL Lac is a very variable object in a
wide range of energy, usually not detect above 5σ by MAGIC, but it is sometimes
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Figure 2.18: Mrk421 April 10th−16th, 2013 flare light curve comparison, this work
(top) and González Muñoz (2015) (bottom). The curve are very similar, the few
differences are maybe due to the conservative choice of discarding the moon days
in the data selection.
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Figure 2.19: Mrk421 cross-check sample θ2 plots. Low Energy cut (top) and Full
Range Energy cut (bottom). The cuts are described in Tab. 2.1
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Figure 2.20: Mrk421 cross-check sample sample θ2 plot and LC. Top:High Energy
cut θ2 plot (Tab. 2.1). Bottom: LC plot.
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Figure 2.21: 1ES0927+500 2013-04-09 sample θ2 plots. Top Low Energy cut θ2

plot. Bottom Full Range cut θ2 plot. The cuts are described in Tab. 2.1
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Figure 2.22: 1ES0927+500 2013-04-09 sample θ2 plot and Light Curve. Top High
Energy cut θ2 plot (Tab. (2.1). Bottom LC plot

observed in flares. One of these flares led to the discovery of BL Lac as gamma-ray
emitters in the VHE band by MAGIC (Albert et al. (2007)).

The flare of 20-09-2020 was very peculiar. A specific set of MC data was
necessary to allow the analysis because of ashes released by alarm forest fire in
August 2020 had altered the mirror performance. The sample of MC and of
OFF data used for the RF training are showed respectively in tables 2.4 and 2.5.
The OFF sample cover a wide range in Zd because of observations was extended
as much as possible in consequence of the exceptional state that was identified
almost real time by the observing crew thank to the MOLA (Tescaro et al. (2013))
analysis.

After the selection, three separate zenith angle sets were used to calculate the
hadronness probability, the DISP position of the shower and the energy for each
event with coach and melibea (see 2.2.1 and 2.2.1).
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Name dates covered zenith type
ST.03.15 2020-09-15 to 2020-10-18 05-35 ringwobble
ST.03.15 2020-09-15 to 2020-10-18 35-50 ringwobble
ST.03.15 2020-09-15 to 2020-10-18 50-62 ringwobble

Table 2.4: Sample of MC used to analyze the BL Lac 20-09-2020 data

Source name Zenith Date
87GB225250.5 05-35 20200917
NGC1275 05-35 20200917
IC-200926A 05-35 20200927

TXS0210+515 05-35 20201012
GRB201014 05-35 20201015
GRB201015 05-35 20201016

IC-200926A 35-50 20200927
20200929

Arp187 35-50 20200928
20201016

1ES1741+196 35-50 20201016
GRB201015 35-50 20201016
GRB201017A 35-50 20201018

1ES1959+650 50-62 20200922
B2-1811+31 50-62 20201009

20201010
20201015

1ES0229+200 50-62 20201014
1ES1741+196 50-62 20201016

Table 2.5: The sample used as hadron-like divided by Zenith angle used for the
analysis of BL Lac 20-09-2020

Crab cross-check for BL Lac

Analogously to the Mrk421 (see Ch.2.4.3), a Crab Nebula cross-check analysis is
needed to confirm that the analysis steps are correctly performed.

For the Crab Nebula check the dataset from the nights 2020-09-18,19,20,27
2020-10-11,12,13,14 was selected.

The Crab cross-check summary is shown in figure 2.23, including all the three
zenith ranges.
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Figure 2.23: CrabNebula SED and Light curve plots. (Top) The SED for the data
with zenith angles 0÷62. (Bottom) The light curve divided by nights. The SED is
slightly lower than the reference value, this is not related to an analysis problem
but is due to the quality of the Crab Nebula data. This is confirmed by the LC
where the data have very lower flux than their reference value. Given that the MC
time windows are very tight, it is impossible to select better Crab Nebula data
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Figure 2.24: BL Lac of day 2020-09-20 preliminary analysis results. θ2 plot with
Low Energy cuts (Tab 2.1)

BL Lacertae cross-check results

The preliminary results for the BL Lac are summarized in Fig. 2.24 and Fig. 2.25
where the θ2 plot, the SED with a spectral index of 3.6 and the Light curve with
a run-wise time binning are shown. From the SED plot, it can be seen that the
source has a steep spectrum and it is in agreement with the LBL nature of the
source while, from the light curve, the high variability of the source flux can be
seen.
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Figure 2.25: Summary of the BL Lac of day 2020-09-20 preliminary analysis re-
sults. Top SED plot, bottom LC plot
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Chapter 3

Machine Learning techniques

In recent years, Machine Learning (ML) and Deep Learning (DL) algorithms have
been increasingly used in data science, from one side due to the massive amount of
data that scientists want to process and analyze, and from the other one, thanks
to the excellent computing power available at reasonable costs. The purpose of
Machine Learning (ML) and Deep Learning (DL) ”supervised” algorithms is that
of making predictions based on the analysis of a vast amount of well-known cases.
These algorithms generally require much-extended calculation time, but the con-
tinuous improvement in computer technologies and, particularly in parallel com-
puting, has significantly reduced overall execution times.

In this chapter, I will present a short summary of how the ML/DL algorithms
are implemented and used, with a specific focus on the Convolutional Neural Net-
work (CNN).

3.1 Machine Learning

Machine Learning algorithms are software programs that are capable of learning
from data and making predictions in new situations based on what they have
learned. The learning process is also called training, and the algorithms we are
interested in are labeled as supervised ones in the sense that they “learn” from well-
known cases. Non-supervised algorithms are not currently in scope; anyway, they
are used to partition data in classes not known initially in a totally autonomous
way. Such programs are generally defined as “autoencoders”.

3.1.1 Artificial Neural Network and Deep Learning

Artificial Neural Network (ANN) are programs that try to imitate the structure
of the human brain; they are based on so-called artificial neurons interconnected
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Figure 3.1: Example of multi-layers Artificial Neural Network (Abraham, 2005)

between themselves through nodes as natural neurons do and stacked in layers.
The answer of an artificial neuron to an external stimulus is ruled by a bias and a
weight that, together with the signal, are the input parameters of the activation
function.

The figure 3.1 shows an example of an ANN where the circles are the nodes,
the arrows are the weights, and the layers are represented by different shades of
greys. Three different layers are represented, from left to right: the input layer,
the hidden layer, and the output layer. An ANN with more than three layers is
called Deep Neural Network (DNN) precisely because of the presence of the deep
layers. The field that studies the DNN is called Deep Learning (DL). Summing up
AI > ANN ≥ DL.
From now on I will focus on DL that can be considered a specialized subset of ANN
and then on CNN that are an even more elaborated version of DL, namely the
Convolutional Neural Network (CNN). These supervised feed-forward networks
are becoming very popular in the last few years because they perform optimally
in analyzing a set of images. The CNN are inspired by biological processes such as
those of the brain’s visual cortex, whose neuron connection patterns are imitated
by CNN. These networks are usually composed of two parts: the convolutional
part (Conv) that extracts a feature map from the image through convolutional
and pooling layers, and the fully connected layers Fully Connected (FC). The con-
volutional layer executes the convolutional operations on each image’s pixels with
a kernel matrix, while the pooling one applies filters that reduce the images’ size.
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DL non-DL ML

Automatic features
extraction

Human-driven features
extraction

Greater quantity of
data needed

Smaller quantity of
data needed

High-end hardware required Medium-level hardware required

Can manage a problem
as a whole

Must subdivide the problem
into more minor tasks

Performance optimization
is tough

ML programming is near
straightforward

Longer train-time required Shorter train-time required

High accuracy obtained Low accuracy obtained

Table 3.1: some important differences between DL and ML summarized from
Dargan et al., 2020

Lastly, the convolutional block is connected to the Fully Connected (FC) section
through a layer that flattens the output of the first block in a single-size array. The
FC block is where the network ”learns” the features extracted from the last part.
The CNN are typically used in image classification, segmentation, and processing.
I want to use this network to classify events from our telescopes, using their im-
ages, as obtained by MARS pre-processing. In the first stage of our research, I
used a handmade CNN (4.8) and, subsequently, I did some experiments with the
well-known deep network model InceptionResNetV2 famous˙network˙mos. In
the next future, I have in plan to change it with the latest EfficientNetB7.

3.1.2 Differences between Machine Learning and Deep Learn-
ing

The differences between DL and ML are also the reason why the DL is becoming
very famous in the last few years. I listed the main differences in table 3.1 following.
Dargan et al., 2020

Automatic data processing and high accuracy results are the main reasons why
DL have become increasingly more prevalent. At the same time, the significant
advances in the available computing power, including the enormous development
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in GPUs, have mitigated the issues about the resource requirements for DL algo-
rithms.

3.2 Linear regression

The linear regression is the well-known technique used to express the linear rela-
tionship between a scalar and one or more variables of the problem. The ordinary
least squares method is the linear-regression technique used to approximate a so-
lution of a linearly-distributed data problem.

Figure 3.2: Ordinary Least Squares regression plot, where yi are the empirical data,
ŷi are the estimated data, di are the distance/differences between the empirical
and estimated data (ŷi − yi). The blue line is the estimated linear fit calculated
with the distances

Following the Figure: 3.2 I want to calculate the linear regression for a generic
linearly-distributed set of data. As well-known, we must find the minimum of the
sum of di squares, which can be calculated by setting the first derivative equal to
zero.
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N∑
i=1

(di)
2 =

N∑
i=1

(ŷi − yi)
2 (3.1)

I write ŷi in the form of a linear function:

ŷi = axi + b (3.2)

This function is called “linear regression function” and, in this case, it is repre-
sented by a straight line with a angular coefficient and b for the intercept.

N∑
i=1

(axi + b− yi)
2 = f(a, b) (3.3)

Finally, I obtained: 
a =

N
∑

xiyi −
∑

xi

∑
yi

N
∑

x2
i − (

∑
xi)2

b =

∑
yi
∑

x2
i −

∑
xi

∑
xiyi

N
∑

x2
i − (

∑
xi)2

(3.4)

This is the simplest case of the regression algorithm, but I have mentioned it
since it represents the starting point of the more elaborated ANN algorithms.

3.2.1 Artificial Neural Network

As I have already pointed out, the Artificial Neural Network (ANN) algorithms
have been conceived getting inspiration from the biological brain processes. neu-
rons (nodes) and synapses (connections) are represented by functions as those
shown in figure 3.3 and 3.4.

The general purpose of the ANN is to solve complex regression or classification
problems. Basing on what is represented in the fig 3.3 and fig 3.4 I are going to
describe in practice how a simple ANN algorithm works.

I start from linear regression to solve a problem described by points:

xi, yi ∈ R, i = 1, ..., N

where xi are the N independent input variables and yi are the N dependent output
variables. I want to find the ”best” function for estimating the yi values:

ŷi(xi) = axi + b
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Figure 3.3: example of simple neuron/node and synapses/connection.
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to do this one should use a function like that in eq: 3.1:

N∑
i=0

(ŷ(xi)− yi)
2

these types of functions in ANN are called “Loss (or Cost) function”1. They
represent the distance between the empirical/target output value and the esti-
mated/calculated output value for y. The goal is to minimize the loss function so
the actual values of ŷ(xi) will be very close to that of the points yi. I listed some
type of loss function with theirs common use in tab: 3.2.

The other pillar of ANN algorithms is the “activation function” (f in 3.3). This
function acts as a switch that turns ON or OFF the node depending on its input.
I will discuss in detail these type of functions in their dedicated section.

The input quantities are called “features” and consist of the characteristic
properties of the data2. The output quantities are called “labels”: making a com-
parison with the linear regression function eq 3.2, the angular coefficients become
the so-called “weights”, and the intercept terms are “biases”. Nodes can be com-
bined in complex structures and, consequentially, inputs data, weights, and biases
will be represented by tensors.

In general, I can say that the algorithm searches for the best set of weights that
minimize the loss function. The biases are not relevant to the performance of the
network, but they form a set of constant values used for increasing the network
generalization. When some inputs are sent to the network, the engaged nodes
react depending on their weights and the relative activation function so that the
last node array will present an output.

The output array must be compared with the array of expectation values,
and the Loss function is computed. The process of training consists of iterative
searching for the best set of weights that minimize the Loss function. Each iteration
is called epoch; for each epoch, a new set of weights is generated through a very
peculiar algorithm that starts from the output and goes backward, neuron by
neuron, adjusting the weights to obtain the “right answer”. Such an algorithm is
better known as the “back-propagation”, and it is the core of the training process.

In figure: 3.4 I show how a simple network schema can appear. The behavior
and the performance of the network strongly depends on a set of parameters that
are traditionaly called “hyperparameters”: tuning a ANN is an empirical procedure
by which the operator vary the hyperparameters searching for the best answer of
the network.

1In literature sometimes Loss and Cost functions are different: I will be using the two terms
as synonyms

2the name features derives from Machine Learning: here the features are human-chosen; in
ANN instead, they are extracted automatically by the AI network
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Figure 3.4: An example of DNN with a 2-features input layer, 2 hidden layers with
3 nodes, and 1 output layer with 3 labels

LOSS function

There are many types of loss functions, and each is used in different kinds of
problems; I listed some of the most used loss functions with their typical use in
the table: 3.2.

Activation functions

The activation functions are used to activate/deactivate the nodes and to introduce
non-linearity. The most straightforward function is the binary step function (fig:
3.5 left), but it is not the most used since its response is linear; the sigmoid function
is preferred.

Another activation function largely used by data scientists (fig: 3.5 right) is
the Rectified Linear Unit (ReLU), whose output, in the active part, is directly
proportional to the input.

There are plenty of activation functions, each with different benefits and draw-
backs for every situation and necessity. A good practice is to choose the function
type depending on the task and the type of network, and for implementation
reasons, it is generally the same for all the nodes of the same layer. For the out-
put layer, the function is chosen according to the typology of the problem (e.g.,
regression, binary or multiclass classification).
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loss function L(yi, ŷi) equation typical use

Mean squared
error

1

N

∑N
i=0(yi − ŷi)

2 Regression

Mean squared
logarithmic error

1

N
(log(yi + 1)− log(ŷi + 1))2 Regression

Mean absolute
error

1

N

∑N
i=0 |yi − ŷi| Regression

Binary
cross-entropy

− 1

N

∑N
i=1 yi · log(ŷi) + (1− yi) · log(1− ŷi)

Binary
classification

Squared Hinge
∑N

i=0(max(0, 1− yiŷi)
2)

Binary
classification

MultiClass
Cross Entropy

−
∑N

i=1 yi · log(ŷi)
Multiclass

classification

Table 3.2: Most common Loss functions and their general uses

As I have already said, for all the nodes in the hidden layers, the same activation
function should be used, and the most adopted is the ReLU.

I have listed the most used activation functions and their common use in table
3.3.

3.3 Convolutional Neural Networks

I want now to drill down on the structure of a Convolutional Neural Network
(CNN) that is the network topology I have selected to classify the event images
coming from our telescopes. The discussion will include sections that are common
to other types of ANN and parts that are unique to CNN. As I have already said,
the CNNs are supervised, feed-forward networks that perform very efficiently in
the image analysis. In general, the CNN scheme can be decomposed in two sub-
blocks (O’Shea and Nash, 2015): the convolutional layers that extract a features
map from the images, and the Fully Connected (FC) part, where the network
learns the features extracted in the Conv part so that it will be able to recognize
unknown images. In Fig. 3.6 is shown a basic model of CNN.

The Conv part comprises layers that perform a filtering operation on the images.
The two main filtering layers are Convolutional and Pooling.
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Activation
function

Equation Derivative Common use

Linear x 1
Regression
Output

Binary
step

{
0 for x < 0

1 for x ≥ 0

{
0 for x ̸= 0

undef. for x = 0

Binary
classification

Softmax si =
ezi∑K
l=1 e

zl
for z⃗

∂zi
∂zj

=

{
1 for i = j

0 other

Multiclass
classification

output

Sigmoid σ(x) =
1

1 + e−x
σ(x)(1− σ(x))

Binary/Multilabel
output

RNN hidden

Hyperbolic
Tangent

tanh(x) 1− tanh2(x)
Recurrent NN

Hidden

ReLU y =

{
0 for x ≤ 0

x for x > 0


0 for x < 0

1 for x > 0

undef. for x = 0

CNN
Multilayer Perceptron

Hidden

Table 3.3: List of the main Activation functions and their common use
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Figure 3.5: Left: Binary step function. Right: ReLU function

Convolutional

Convolutional layers execute a convolution operation between the data matrix
and an auxiliary matrix called the kernel. The kernel matrix slides over the data
matrix until it is entirely covered (Fig. 3.7). The kernel matrix element values
are randomly chosen between 0 and 1. The size and the number of convolutional
filters are set up in the network model. The set of matrixes obtained by applying
the convolutional filters is called a ”feature map”.

Pooling

Pooling layers apply a pooling filter on the data matrix. As in the convolutional
operation, the pooling is performed with a sliding window technique. This op-
eration is critical since it reduces the size of the input tensor, depending on the
pooling settings. The main types of pooling are:

• Max pooling: takes the maximum value from the sliding matrix and puts it
in the output matrix.

• Average pooling: takes the average value from the sliding matrix and puts
it in the output matrix.

A typical a CNN model is composed of many Convolutional layers alternating with
pooling layers (3.6).
At the end of the Conv part, a flattening layer transforms the processed image
tensors into a 1-size vector. This vector of features is sent as input for the FC
part. A FC part presents a DNN (see Fig.3.4) structure. The name of this block
indicates that all the nodes of a layer are fully connected to all the nodes of the
following one.
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Figure 3.6: graphical representation of the CNN VGG16 scheme (Simonyan and
Zisserman, 2014)

Figure 3.7: Example of the last two convolutional multiplication of data matrix
(in green color) with a 3x3 kernel (in the yellow windows). In pink, we can see
the resulting matrix where each number corresponds to a single convolutional
operation.
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At the end of the FC, there is a classification layer (in Fig. 3.6 the softmax layer)
that assigns the input image to a specific class with its relative probability.

3.4 Dataset Pre-processing, Training, Test and

Validation

The preparation of the dataset is the starting point in the process of building an
ANN project. I here remind that a dataset in ML is just a collection of data
represented in a tabular form of rows and columns, where the columns are the
properties of the instances and the rows represent a unique data instance.

Data scientists usually perform some standard operations on datasets, such as
anonymizing the data or making them consistently uniform. In the case that the
sample is not numerous as requested by the network topology, a data-augmentation
procedure can be applied to the dataset. Data augmentation techniques must be
carefully chosen, but they effectively allow for extending the data sample widely.

When the dataset is ready to be processed, it is randomly divided into two
subsets that will feed the training and validation phases. It is a good rule to
have a separate dataset to be used for the final test, and it is usually done by
extracting a portion of the original data sample before the splitting. The most
common percentages of splitting vary from 80% to 50% for the training subset
and, consequently, from 20% to 50% for the validation part. The test dataset will
be utterly unknown to the network, and it will be used to measure the actual
capability of the network to make correct predictions from unknown data. When
I say ”correct” predictions, I obviously mean accordingly to the accuracy of the
network.

3.4.1 Training

The training is an iterative process during which the network learns from data.
After each epoch training cycle, the Loss Function is calculated by applying the
network with its current weights to the validation dataset. The value of the Loss
Function is the metric to evaluate the ”goodness” of the model. To limit the use
of computational memory, within a single epoch, the training dataset can be sliced
into smaller chunks called “batches”. For each epoch, the number of batches is
the same, but from one epoch to another, the batches can be different since the
dataset can be shuffled. The final goal of the training cycle is to find the weight
set that minimizes the value of the Loss Function. During each cycle, the weights
are adjusted by the backpropagation algorithm. It is good practice to obtain
plots of the Loss Function and the Accuracy vs. the training epoch: checking the
training curves is very useful to understand if the network is working correctly.
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Figure 3.8: Example of Underfitting (left), balanced fit (center) and overfitting
(right) from Amazon Machine Learning developer guide.

In particular, we can detect abnormal network behaviors such as the so-called
“underfitting” or “overfitting”.

3.4.2 Overfitting and Underfitting

Overfitting and underfitting phenomena are two of the most common issues in ML.

• Overfitting is when the estimated data reproduce too ”perfectly” the train-
ing data sample, with a loss of generality: the network has not been able
to extract and learn the right characterizing features but has learned from
specific details. So, the performances on unknown test data are typically
abysmal.

• Underfitting is the opposite of overfitting: the training process can be
improved, and the loss function can be minimized further. Even in this case,
the network will perform poorly on unknown data. I have shown an example
of that in fig: 3.8.

3.4.3 Validation

Validation is the way to evaluate the current weight set with the goal of finding the
optimal configuration for the network: the configuration is the combination of the
network model with a proper set of hyper-parameters and the weight collection.
The validation is the calculation of the Loss Function through the application of
the current network configuration in making a prediction on the validation subset.
It is performed for each epoch of the training. In DL most adopted libraries (such
as Tensorflow or Pytorch), special functions are available that record the best
results obtained or break the training cycle as soon as the Loss Function goes
below a predetermined threshold or the Accuracy goes beyond an expected value.
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Table 3.4: Example of Confusion Matrix for binary classification

3.4.4 Test

When an optimal configuration has been found during the training phase, the
network must be tested on unknown data. As I said before, the test dataset can
be extracted from the original datasets. Sometimes public datasets can be used to
benchmark the trained network’s performance. As an example, if I would design a
network to classify the numbers from 0 to 9, I could download images from MNIST
famous dataset.

3.4.5 Back Propagation

Back Propagation (BP) is a core technique of an ANN since it is used to adjust all
the weights to obtain the correct response of the network. It is called Back Propa-
gation (BP) just because weights, starting from the final output, are consequently
varied from the final layers back to the input ones.

As already said, the final goal is to obtain the best weight set possible and
minimize the Loss Function with respect to those weights themselves for every
single input-output sample.

3.4.6 Metrics

As I already pointed out, the general goal of training is to reduce the Loss Function
on each epoch, trying to minimize it overall. Other functions have been introduced
to help data scientists evaluate the results and give a network’s performance more
significance. I will now introduce a handy tool, the so-called “confusion matrix”,
starting from a binary case. In a supervised binary classification problem, network
performance is tested with an input dataset for which classification labels are well-
known. The network will produce a set of predicted labels that can be compared
with the so-called ground-true: so it is possible to create the confusion matrix
(Tab.3.4).

The acronyms of the confusion matrix are explained in the following:

• True Positive(TP) are the elements belonging to class ”positive” that the
model predict as belonging to class ”positive”.
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Metrics name Metrics definition

Accuracy TP+TN
TP+TN+FP+FN

Precision / Positive Predicted Value (PPV) TP
TP+FP

Recall / Sensitivity / True Positive Rate (TPR) TP
TP+FN

Specifity or True Negative Rate (TNR) TN
TN+FP

Table 3.5: Most used Metrics definitions (Davis and Goadrich, 2006 and Zhu,
Zeng, Wang, et al., 2010)

• False Positive (FP) are the elements belonging to class ”negative” that
the model predict as belonging to class ”positive”.

• False Negative (FN) are the elements belonging to class ”positive” that
the model predict as belonging to class ”negative”.

• True Negative(TN) are the elements belonging to class ”negative” that
the model predict as belonging to class ”negative”.

From these four elements, it is possible to define some metrics. Some of the most
common metrics are listed in Tab.3.5.

In addition to Loss Function, current DL libraries allow the operator to specify
one o more of the metrics above, making the final results much more understand-
able to researchers.

3.4.7 Regularization

I want to conclude our panoramic view of CNN with some hints on regulararization
techniques. The regularizations are techniques used to improve the performance
of an ann. They are typically used to stabilize the training process or to lower
overfitting. Among the most commonly used regularization techniques, we can
find:

• L1 and L2 regularization: These techniques consist in adding a terms to
the Loss function (described in sec: 3.2.1)for example:

LossL1 = Error(y, ŷ) + λ
N∑
i=1

|wi| (3.5)

LossL2 = Error(y, ŷ) + λ
N∑
i=1

|wi|2 (3.6)
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With the addition of the term (λ) the Loss derivative changes and intuitively
is shifted to prevent the ”perfect” fitting of the real problem and avoid over-
fitting. A good explanation of this technique can be found in Ng, 2004.

• Dropout The dropout definition can be found in Srivastava et al., 2014.
This technique consists in randomly dropping some nodes and their related
connections from the neural network during the training. This operation is
re-iterated for each epoch. This technique is used most in the FC block.

• Batch normalization layers They are described in Ioffe and Szegedy, 2015
and consider that the distribution of each layer’s input changes during the
training process since the previous layers change too. For this reason, careful
parameter initialization and lower learning rates are required, slowing down
the training time. In the article, the author defines a value called “covari-
ant shift” used for normalizing the layer inputs. The Batch normalization
permits to increase in the learning rates and allows being less careful in the
parameter initialization. In general, this technique is used in the Conv part
of the CNN.

3.4.8 Fine tuning and Transfer Learning

These are two techniques used to re-train each model partially with a new set of
training data in order to reduce the time calculation and to reduce the quantity
of data requested for this operation. The two techniques are described in detail in
Tajbakhsh et al., 2016 are:

• Transfer Learning: consists in locking the weights of all the layers of the
neural network obtained with the dataset and adding a top classification
layer that is trained to classify a similar dataset.

• Fine Tuning: Fine Tuning is a technique by which a network is first trained
massively with public datasets or datasets different from the problem of
interest. In this case, weights and layers are not locked, so it is possible to
complete the training with the dataset in scope, on top of what has been
previously done.

3.4.9 Data Augmentation

As I have already anticipated, this technique is used to improve data generalization
by increasing the quantity of the data. It consists in applying some transformations
to the original sample images to obtain much more samples. Among the most
common operations for data augmentation, we find:

98

DocuSign Envelope ID: DC132318-B829-4643-9C09-A0DCFD5ED20F



• Rotation and flipping

• Translation

• Re-scaling

• Brightness modification

• Others

These operations can be applied in the pre-processing stage, before or during
the training stage. The advantage of the first technique is that the new images
are saved on the storage, and they are added permanently to the data sample.
The second technique permits saving storage space, but the generated samples
are not persistent. Nevertheless, a new set is generated on each epoch so that the
obtained generalization is more effective than in the first case. For a more in-depth
explanation of these techniques, see:Shorten and Khoshgoftaar, 2019.
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Chapter 4

Convolutional Neural Networks
on MAGIC data

The information that an IACT system, like MAGIC, exploits for each event in-
cludes the charge and the arrival time distributions acquired by the cameras. In
the standard MAGIC analysis, the shower information is described in a set geo-
metrical parameters known as “Hillas parameters” (Hillas (1985), see Fig. 1.22).
This set of variables was popular at the beginning of the IACT era when the
hardware resources were limited. Current computer technology, and especially the
parallel computing capability of GPUs, allows the processing of a large quantity of
data. The original idea of this work is to exploit modern techniques, such as CNN
algorithms, to improve the performance of analysis with respect to the MAGIC
standard analysis.

This chapter focuses on the development of an original CNN algorithm that is
capable of performing an efficient gamma/hadron separation based on “real” data
sample only, in particular, the dataset for the Mrk421 flare observed by MAGIC
in April 2013 will be used.

Initially, I trained the CNN using the charge distributions only, in a second
phase, I added the time information, too. Finally, I will describe the steps to
create a general model, and I will make a comparison of the results obtained by
this model with some control data samples.

4.1 Training with Monte Carlo Data

CNNs (Sec. 3.3) are specifically designed for image analysis, they belong to the
class of supervised neural networks (Sec. 3.1) and need as input a set of well-known
data. Simulated (MC) data (Sec. 2.2.1) have well-known and defined properties.
With simulations software like CORSIKA (Sec. 1.3.2), sets of gamma-like and
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hadron-like events can be easily produced and used for training a supervised neu-
ral network. The generation of a hadron-like sample is more demanding in terms of
computational resources than for a set of gamma-like events of comparable statis-
tics; for this reason, obtaining a well-diversified hadron-like ensemble of events is
not a light task.

In the majority of the literature regarding IACT and CNN, it is common to
use MC data to train a CNN and then apply the obtained model to a MC and/or
to a real test dataset. A common CNN scheme used for gamma/hadron separation
can be found in Shilon et al. (2019). In Fig. 4.1 one can recognize the input layer
whose size is the number of image pixels (64) × the number of images (64) for a
single event × number of telescopes (4), this CNN is used to predict the arrival
direction of the shower.

Furthermore, as described in Sec. 3.3, the CNN topology can be divided in
two sub-schemes: the Conv layers and the FC ones. The first set extracts the
features from the images, and the second set classifies them. Moreover, in the
network are present few Dropout layers that are used to regularize the CNN (Sec.
3.4.7). Another example of CNN trained with simulated MC dataset is proposed
in Juryšek, Lyard, and Walter (2021).

In general, it is known that these methods give good results when they are
applied to a test MC dataset, but they can still fail when tested on an observed
dataset. This is due to the discrepancies between the simulated and the observed
events. For instance, the observed events can be affected by the level of NSB,
weather conditions, and the hardware status, and not all these effects can be
taken into account in a simulation.

To overcome these problems, some solutions have been proposed. For example,
Parsons and Ohm (2020) connects an extra ANN scheme that includes Hillas and
stereo parameters on the CNN. This sub-scheme is merged with the CNN scheme
using a flatten layer before the fully connected layers scheme. Another approach is
to simulate the effect of NSB by adding Poissonian noise in the images (Jacquemont
et al. (2021)). These solutions are very different: the former acts directly on the
network topology while the latter is performed later, in the image preparation
phase.

In synthesis, the research for a solution to overcome the CNN classification
issue caused by simulated/observation differences leads to adding some features in
the network or the images. Training a CNN using observation data is a genuinely
unexplored path.
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Figure 4.1: CNN architecture used for regression (Shilon et al. (2019)). This
network is used to predict the shower arrival direction.

4.2 Application to MAGIC Data

The purpose of the new approach is to avoid the systematics potentially introduced
by discrepancies between simulated and telescope data in the standard CNN clas-
sification algorithms.

In order to achieve this goal, we will make use of datasets from telescope obser-
vation to train the CNN. This solution has not been fully explored yet, probably
because the supervised CNN requires a clearly classified dataset and using a “real”
dataset: it is challenging to find a well-formed gamma-like sample while, in the MC
data, each event type can be undoubtedly identified as a gamma-like or hadron-like
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event since the particle type is specified in the MC configuration. On the other
hand, the primary advantage of using real data is the reduction of the differences
between results from the training and the test datasets.

A similar task was treated in Escolano (2019), and the results obtained with the
observation data were similar to the results obtained with MC RF. Our working
hypothesis is that, since both CNN and RF are supervised types of ANN, and
provided that the CNN can exploit more information than the RF, using a CNN
could lead to an improvement in the gamma-like/hadron-like separation.

4.3 The Markarian 421 Flare Dataset

Flares are phenomena consisting of a sudden increase in the luminosity flux of
astrophysical sources, usually associated with a physical event that happens in the
source itself.

Given that the flare produces a very large quantity of gamma rays that over-
whelms the hadron-like background along the source direction, these events can
be very useful to properly train a CNN . In addition to the flare data, it is neces-
sary that during its observation, good atmospheric conditions have occurred, and
also, no bright star is in the camera FOV to prevent the CNN from learning any
unwanted details.

A promising source candidate is the Mrk421 (Sec. 2.4.3) and its extraordinary
April 10th − 16th, 2013 flare. The Mrk421 flare has been extensively studied, for
example in Acciari et al. (2020) and González Muñoz (2015). We will use the
latter as a reference for the Standard Analysis. The shower-arrival direction and
the “hadronness” obtained from the Standard Analysis (Sec. 2.4.3) can be a good
training set.

4.3.1 Dataset creation

To prepare the dataset for training, we first have to apply the cleaning, which will
avoid poor learning by the neural network.

Images Transformation

The dataset from which I started is shown in Table 4.1 where I describe all the
dataset properties. This dataset was obtained by merging two Standard Analysis
stages (Sec. 2.4), calibration (Low-level stage), and Melibea (High-level stage).
I did not discard data in this process, with a few exceptions when going from
calibrated (sec:2.1.2) to star level (2.1.3 data). During this phase, the raw charge
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Description MAGIC-1 MAGIC-2

Charges [q1, q2, q3, . . . ] [q1, q2, q3, . . . ]

Arrival Times [t1, t2, t3, . . . ] [t1, t2, t3, . . . ]

Total charge size1 size2

Description Variable(s)

Event Hadronness hadronness

Source Position x pos y pos

Shower DISP disp stereo x disp stereo y

LUT Energy energy stereo

Run Identifier run number

Event Stereo Identifier stereo id

Table 4.1: Example of a simplified dataset used for CNN γ/h separations.

and arrival time information is discarded to reduce the data volume and to lower
the processing time 1.

We keep the charges and the arrival time maps from calibrated/star (low-level
data), and the hadronness and the arrival direction from Melibea (high-level data).
In this way, we could keep the raw charge and time maps associated with the high-
level parameters.

The merging and storing operation can be summarized with the following steps:

• from calibrated files, the event type is checked for both the telescopes, and
if it is not a data event (e.g. it could be a so-called pedestal event, used to
evaluate the cleaning efficiency) is discarded

• all the remaining calibrated data of one run, from both telescopes, are loaded
in memory; this operation is due to the calibrated stored logic (2.1.2)

• the calibrated events of one run for both telescopes are then merged

• from Melibea files, the event type is checked for both the telescopes, and if
it is not a stereo event, it is discarded

• the selected Calibrated and Melibea events are finally merged using a common-
event index (stereo id in 4.1).

1Star has an option to maintain the charges and arrival time maps so that one can use the
data after this option or use directly the calibrated, both ways are correct
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• before dumping on disk the final dataset, all the events with size1 or size2
less than 50 are discarded like in standard analysis.

The shown method is definitely the most memory-expensive, and it could be
non-workable depending on the RAM quantity available on the hardware used for
the analysis. A good alternative could be to load in memory only events with the
same stereo id from the M1 and the M2 subruns. In this way, we could have only
two subruns, one for each telescope, loaded in memory simultaneously.

For our analysis, we used a high-performance computer with a large RAM
capacity2 so we did not have to manage memory issues and we could load all the
dataset events at once.

Charge and Arrival Time Distributions

At this stage, we can start working with the real data, more precisely with the
two kinds of “images” provided by each telescope, namely the charges and arrival
times.

Fig. 4.2 shows an example of these images. The top pictures show the pixels
charge in both telescopes, while the bottom images show the corresponding arrival
times map. In the same area where the charge maps show a shower image, a
localized group of pixels with consistent arrival times is evident. In the rest of both
cameras, the arrival times are scattered incoherently since they are not associated
with light coming from the same shower. The time maps, therefore, can be helpful
to discern the arrival direction of the shower since they strengthen the charge
information.

Image cleaning

In the MAGIC standard analysis, the charge and time pixels maps are cleaned with
different techniques described (Sec. 2.1.3). The maps are summarized with the
Hillas (Hillas (1985)) parameters of the images. Then all the maps are discarded.

Several tests of cleaning were done by changing configurations on charge maps
and time maps. Some examples of cleaning both for charges and arrival times are
shown in Fig. 4.3. In order to be more efficient, once the charge maps were cleaned,
the same selection mask was applied to select the pixels for the time cleaning.

The right choice of cleaning level is very important because it has significant
effects on the CNN performance, a non-optimal choice could take to a wrong
selection of ON and OFF events, thereby tainting the signal.

An example of raw versus cleaned image is shown in Fig.4.4. In this case, we
used the 6-3.5 absolute cleaning, which turned out to be an effective choice. The

2IBM Power System AC922 (512 GB RAM)
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Figure 4.2: Example of raw charges distribution and arrival times distributions.
On the left (right) column the MAGIC 1 (MAGIC 2) cameras are shown. The top
(bottom) images show the charge (arrival time) distributions on the cameras.

images cleaning is performed with the help of the mars cleaning 1st pass script
of the ctapipe package (Kosack et al. (2022)).

The cleaning must be performed before the next step of hexagonal to square
interpolation, otherwise the charges and arrival time parameters after the square
interpolation should be recalculated.

Hexagonal-to-Square transformation

In general, an image is represented by a three-index tensor which can be figured out
as a superposition of three matrices, each corresponding to one of the three colors
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Figure 4.3: Square grid maps after 6-3.5 cleaning applied on charge and arrival
time distributions. On the left(right), the MAGIC-1(MAGIC-2) camera is shown;
on the top(bottom), the charge(arrival time) distributions on the camera.

(Red, Green, Blue). Usually, the first two indices of each matrix are respectively
the Cartesian axes x and y, and the third index, called channel, specifies which
color. Our samples are composed of black and white images, so we will have one
channel only.

To build our CNN we use Tensorflow, a public-domain A.I. package by Google
(Abadi et al. (2016)). Tensorflow is designed to process square images. In the case
of MAGIC, the camera images are displayed in hexagonal fashion and they must
be converted with an interpolation technique.

To convert the images we use the custom python package DL1-DATA-HANDLER
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Figure 4.4: Charge maps (hexagonal grid) for raw data (top) and after 6-3.5
cleaning. (bottom) for MAGIC-1 (left) and MAGIC-2 (right).

(Kim et al. (2022)). This is a useful tool, written by the MAGIC collaboration
group, to convert images from the hexagonal to square ones. The data-handler
allows various types of interpolation: we used the bilinear interpolation one. An
example of a hexagonal image and the corresponding square image is shown in
Fig. 4.5. It must be noted that the data-handler applies a fixed rotation to all
images, since the rotation is the same for all images and cameras are round in first
approximation CNN should not be affected by this rotation.
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Figure 4.5: Effect of 6-3.5 cleaning for MAGIC 1 (left) and MAGIC 2 (right) for
hexagonal (top) and square (bottom) images. It can be noticed from the images
that the DL1-Data-handler pads the images.

Selection cuts

Gamma-like events can be filtered in the sample by selecting the events coming
from the source direction.

The selection on the arrival direction can be done using the variable θ2 (Sec.
2.2.2). For the θ2 calculation the Disp parameter was used (Sec: 2.2.1). The
process is the same for both telescopes and is shown in Tab. 4.2 for MAGIC 1.

A cut θ2 ≤ 0.02 is typically used to select the ON circle and 3 symmetric OFF
circles.

Fig.4.6 shows the hadronness distributions obtained with two different values

109

DocuSign Envelope ID: DC132318-B829-4643-9C09-A0DCFD5ED20F



Name Description

dispx1
shower incoming direction

x coordinate

dispy1
shower incoming direction

y coordinate
srcposx1 =

srcposx1mm ∗mm to deg
source position on the camera

x coordinate
srcposy1 =

srcposy1mm ∗mm to deg
source position on the camera

y coordinate

Direction θ2 equation

ON (0◦) θ20 = (dispx1 − srcposx1)
2 + (dispy1 − srcposy1)

2

OFF (180◦) θ2180 = (dispx1 + srcposx1)
2 + (dispy1 + srcposy1)

2

OFF (90◦) θ290 = (dispx1 − srcposx1)
2 + (dispy1 + srcposy1)

2

OFF (270◦) θ2270 = (dispx1 + srcposx1)
2 + (dispy1 − srcposy1)

2

Table 4.2: Position of the incoming direction of the shower (disp) on the sky
respect the four θ2 positions (ON and 3 OFF) calculated in degree

of θ2. The top plot, obtained with θ2 ≤ 0.4, shows that both the ON and OFF
samples are still contaminated. The bottom plot, for a θ2 ≤ 0.02 cut, shows that
the ON and OFF distributions have distinct peaks, with a clear departure for
hadronness ∼ 0.08. This indicates an excess of gamma-like events towards the
source direction.

Although not optimal, this cleaning can be used as an initial training sample
for the CNN, the ON data as a gamma-like sample, and the OFF data as hadron-
like sample. However, the attempted tests have shown that a hadronness cut is
necessary although it might induce a bias of the CNN by data coming from the
RF of the Standard Analysis 4.3.1.

Hadronness cut

Training a supervised CNN with these samples can bring to wrong results because
the model could mix the gamma-like and hadron-like events. Several attempts have
been made in this work to reduce the RF bias, from different hadronness cuts for
the gamma-like and hadron-like samples (≤ 0.3 and ≥ 0.7 respectively), as well as
harder cuts. The best value has been found in a symmetrical cut, hadronness ≥
0.5 for gamma-like and hadronness ≥ 0.5 for the hadron-like sample.
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Figure 4.6: Standard analysis hadronness distributions for training set, with θ2 ≤
0.4 (top) and with θ2 ≤ 0.02 (bottom)

Data augmentation

Data augmentation (Sec. 3.4.9) technique was implemented with the ImageData-
Generator from the Tensorflow keras package (Abadi et al. (2016)). The random
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rotation of (180 deg) and the random flipping horizontal/vertical of the images
have been chosen, in this way only one dataset can generate many different images
configuration (ON and OFF samples) that are isotropically distributed on a ring
(given that θ2 ≤ 0.02) in the MAGIC FoV.

The images are augmented during the training phase, the original training set
is augmented in different ways for every epoch and the same rotation/flipping is
applied to both image sets. The image’s brightness is not modified otherwise the
total energy in the images could be affected. Furthermore, the images are not
translated to avoid border and padding effects (Fig. 4.7).

Figure 4.7: Example of roto-translational augmentation applied to a pair of raw
images (originals in upper row, augmented images in lower row) for MAGIC-1
(left) and MAGIC-2 (right). The red rectangles show that, without proper image
cleaning, the edges do not smoothly connect with the background of the original
image. The yellow circles show that there can be a crop effect when the shower is
near the camera edges.
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4.4 The Convolutional Neural Network model

.

Figure 4.8: The custom CNN used to classify gamma-like/ hadron-like events.
This CNN has been built to manage charge information only. To consider the
arrival time maps too, the dimensions of the channel have to be doubled (yellow
sign on the top input block: 2 to 4)

In the initial phase of this work, we built a custom CNN model (Sec. 4.8),
on the basis of that described in Piccardo et al. (2021). In a second phase, the
Inception Resnet V2 (Szegedy et al. (2016) ) network schema was implemented.

The Inception Resnet V2 is a very deep CNN, its convolutional part can be
used with its pre-trained weights to extract the features. Finally, a dense network
classifies the extracted features.

We used the pure schema only, without the pre-trained weights. The input
structure of the ResnetV2 was adapted to our data and, as for the output, dense
layers for classification were attached to it. The Resnet V2 model requires a 3-
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channel matrix as input, one for each color for each object of the sample. We
used 2 of the 3 channels, one for each telescope camera. The structure of the
input dataset has resulted: idimg, Xaxis(78), Yaxis(78), telescope(1 or 2). In this
structure, at this time, I am considering the charges only, and I am not lever-
aging the arrival time information. Subsequently, to include the arrival time in-
formation, I modified the structure setting 4 channels in the following sequence:
idimg, Xaxis(78), Yaxis(78), telescopes(1 and 2)charges, telescopes(1 and 2)arrival−
time.

4.4.1 Training and Validation

To training sample for the network has been selected from the whole dataset
obtained with these cuts:

θ2 ≤ 0.02
size1&2 ≥ 50
Start date 10-04-2013
End date 16-04-2013

We used the train test split function from sklearn package (Pedregosa et al.
(2011)) that allows to randomly split the dataset in two sub-sets of data. We chose
to split in training 0.8 (80%) and test 0.2 (20%). The validation dataset instead
is extracted directly during the training, and it consists of a 20% of the training
dataset, in this case too.

As we have discussed in Sec. 4.3.1 about Data Augmentation, we chose to use
the ImageDataGenerator function available in the Tensorflow package. During the
training cycle, for each “epoch”, augmented images are generated from the original
ones. In this way, the images are always different for each epoch, which helps in
avoiding overfitting issues. We also used the shuffle = True option to randomize
the order of images within our dataset on each epoch and the “class weight” option
to balance the number of events of the classes. This is particularly critical when
the events in the classes are dramatically imbalanced, as in our case. The weight
of each class is obtained by dividing by the number of elements in that class and
multiplying by half of the total population.

4.4.2 Test results

We initially tested the network with the split part of the main dataset Mrk421
(10-16 April Mrk421), obtained as described in the previous section. Then, to
obtain a more general result, we applied the trained model to different runs. We
chose another Mrk421 sample, acquired ten days before the main dataset. During
this run, an Mrk421 flare was observed (Sec. 4.5). In addition to that, we also
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used events from the 1ES0927+500 run (Sec. 4.5.3) regarding the Crab Nebula
(Sec. 4.5.2) and BL Lac (Sec. 4.5.4).

The results obtained from all the tests we executed and shown in Tab. 4.3 lead
to affirm that the best combinations of cuts and cleaning for the training sample
is:

• θ2 ≤ 0.02

• hadroness ≤ 0.5 (gamma-like/ON)

• hadroness ≥ 0.5 (hadron-like/OFF)

• charge cleaning 6-3.5 plus arrival times

For evaluating the CNN performance, a useful variable is Excess = ON−OFF
which should show a monotonous rising trend as a function of the number of
OFF events since its value cannot be < 0, apart from small fluctuations. If the
monotonous behavior is not observed, it means that an overestimation of ON
events is probably happening.

During the training with the Mrk421 dataset, we observed that the presence of
noise in the images could have an impact on the CNN performance. For example,
we obtained good results with raw images on the flare dataset, but when compared
to other datasets, it was clear that the more effective configuration seemed the
cleaning level 6-3.5. In this condition, the ROC curve still reaches an excellent
value of 98% and a very low rate of False Negative/True Positive events (Fig. 4.9).

In Tab.4.3 we show a summary of all tests.

4.5 Cross-Check on Control Datasets

After the Mrk421 test, we selected other datasets for cross-check testing: samples
coming from observation of the Crab Nebula, which is the reference source for
gamma-rays experiments (2.4.2), from the 1ES0927+500, a source not detected by
MAGIC and used as a dark source, and from the BLLac source.

The test on 1ES0927+500 is particularly interesting to verify if the network is
influenced by the arrival direction of the events. As we discussed in the previous
sections, for the training, we chose to consider the events toward the source as
gamma-like events and all the others as hadron-like events. This way of building
the dataset is based exclusively on the arrival direction, and for this reason, it
could introduce a bias in the network. By randomly rotating the arrival direction
in data augmentation, we successfully managed to avoid this kind of bias.

During the test procedures, we followed a specific workflow to consider dif-
ferent aspects. First, we checked the θ2 plot of Standard Analysis and the CNN
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Id γ-like h-like cut Time Cleaning LOSS Accuracy
1 No No No raw 0.416 0.825
2 No No No 8-4-0 0.472 0.785
3 ≤0.5 ≥0.5 No raw 0.086 0.979
4 ≤0.5 ≥0.5 No 8-4-0 0.173 0.943
5 ≤0.5 ≥0.5 No 6-3.5-0 0.159 0.963
6 ≤0.5 ≥0.5 Yes raw 0.079 0.978
7 ≤0.5 ≥0.5 Yes 8-4-0 0.191 0.948
8 ≤0.5 ≥0.5 Yes 6-3.5-0 0.133 0.956
9 ≤0.5 ≥ 0.5 Yes 4-2-0 0.0937 0.9763
10 ≤0.5 ≥ 0.5 No 4-2-0 0.1142 0.9736

Table 4.3: Training results of the Inception Resnet V2 with training data cut at
θ2 ≤ 0.02 as a function of γ/h-like cuts and levels of absolute cleaning, and with
or without the arrival-time maps. Although the best result seems to be the 6 “raw
(no-cleaning)”, when we tested the model on several data samples, we concluded
that the optimal configuration is 8 “6-3.5-0”.

Figure 4.9: Typical ROC curve of the Mrk421 test dataset, obtained using the
Inception Resnet V2, 6-3.5 absolute cleaning, charge maps, and arrival-time maps
data.
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6-3.5 cleaning + arrival time raw + arrival time
Total test events 48410 48410
True Negative 19460 20272
True Positive 26370 26968
False Negative 1193 595
False Positive 1387 575

Classification error 0.0533 0.0242
Sensitivity 0.957 0.978

False Positive Rate 0.066 0.0276
Precision 0.950 0.979

Table 4.4: Mrk421 test results obtained with the model based on Inception Resnet
V2 and the sample acquired between April 10th and April 16th. As from the
classification error values, the results for 6-3.5 absolute cleaning + arrival time
maps (left column) are less performant than those obtained from raw images +
time (right column).

to evaluate the γ-ray excess in the direction of the source. We calculated the
Excess(OFF ) to check if the plot is monotonously growing or not (apart from
small fluctuations). If this does not happen, it means that the number of OFF is
steadily increasing more than the number of ON, and this is against the hypothe-
sis of pointing in the source direction. In fact, the number of OFF should always
be lesser or equal to the number of ON, due to the isotropic distribution of the
background events. In figure 4.10 an example of “good” Excess(OFF ) and “bad”
Excess(OFF ) plot is shown.

The plot of Excess
OFF 1/2 vs OFF is used as the method sensitivity and to compare

it with the Standard Analysis. Finally, LiMa(OFF ) and the LiMa(hadronness)
plots show the significance. Also, the CNN vs Standard Analysis confusion ma-
trix is plotted in (Fig. 4.11) to compare the classification performed by the two
methods. All these results are obtained for LE cuts (Tab.2.1).

4.5.1 Markarian 421

The θ2 plots are compared in figure 4.12, LE Standard Analysis (top) versus this
work (bottom).

We used the Standard Analysis options Odie.nWobbleOff=3 and Odie.skipNormalization=TRUE,
we can notice that the statistics is very similar.

We remind that, before this test, we had executed the Mrk421 cross-check, i.e.
that the Excess (Sec.4.5) was actually steadily growing as expected.

Figure 4.13) summarizes the cross check on Mrk421. We want to point out that
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Figure 4.10: Cross-check on Mrk421 using the training sample with 6-3.5 charge
and time cleanings (left plot). Same plot but using 4-2 charge cleaning plus arrival
times cleaning (right plot).

Figure 4.11: Differences between CNN (x) and Standard Analysis (y) algorithms
for the Mrk421 cross check sample. The 6-3.5 cleaning plus arrival time maps has
been used both for the test and the training datasets (left) versus the “no cleaning”
case (right).
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Figure 4.12: Mrk421 cross-check sample, θ2 plots comparison after LE cuts. Stan-
dard Analysis plot (top) versus this work (bottom). Standard Analysis options:
Odie.nWobbleOff=3 and Odie.skipNormalization=TRUE

the CNN analysis shows a significant improvement with respect to the Standard
Analysis. The efficiency comparison shows also that, using the cleaning previously
discussed and the arrival time maps, the efficiency is slightly higher than the
counterpart.

4.5.2 Crab Nebula

The results of the Crab Nebula Cross Check are shown in Fig. 4.14 and 4.15.
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Figure 4.13: Mrk421 cross-check results. The plots show the performance of
the CNN versus Standard Analysis as a function of selected variables. Plots (1)
through (4) are obtained with Inception Resnet V2 row id=8 (6-3.5 absolute clean-
ing including the arrival time maps) 4.3. Plots (a) and (b) are obtained using
charge maps cleaning only.In this case, the Excess/SQRT (OFF ) shows for the
CNN a better performance then the SA

An unexpected outcome of the Crab Nebula cross-check has been that the CNN
was performing worse than the Standard Analysis with arrival times cleaning (Fig.
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Figure 4.14: Crab Nebula cross-check sample, θ2 plots comparison after LE cuts.
Standard Analysis plot (top) versus this work (bottom). Standard Analysis op-
tions: Odie.nWobbleOff=3, Odie.skipNormalization=TRUE

4.15.(2)) compared when it was not applied (Fig. 4.15.(b)).
This effect can be caused by the ZTauri star presence in the Crab Nebula FoV

that could influence the image classification, a bit enhanced when time cleaning is
applied. Another cause of the discrepancy is that the Crab is much closer to the
galactic plane than the training source (Mrk421), and its nature is very different
since it is a Pulsar Wind Nebula. This is a case of extreme interest because
it enhances the features of training and image classification and is worth future
studies.
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Figure 4.15: Performance of the CNN versus Standard Analysis as a function of
selected variables on the Crab Nebula cross-check dataset with Inception Resnet
V2 row id=8 (left, 6-3.5 absolute cleaning including the arrival time maps) versus
Inception Resnet V2 row id=5 (right, no arrival time maps) 4.3.

4.5.3 1ES0927+500 Dark Patch

A useful test to check the good functioning of the CNN consists in considering
one dark VHE source, like 1ES0927+500 (described in Sec. 2.4.4). ”Dark source”
means that during the MAGIC observation, it did not produce gamma-like flux.
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Consequently, the CNN θ2 plots must show a trend of the ON data that equals
the trend of OFFs ones. This was actually verified, and it is shown in Fig. 4.16.

Figure 4.16: θ2 obtained with CNN id=8 (table: 4.3) applied to 1ES0927+500
dark patch sample (same cleaning+time map), the plots show a similar trend for
the ON and the 3 OFF samples (180, 90, 270 degrees).

The second check regards the hadronness histogram of the CNN. It should
be concentrated in the right zone because the major part of the events of the
1ES0927+500 are hadron-like. Both the hadronnes distribution of the CNN and
the Standard Analysis (which is always performed to compare the CNN results
with) showed a correct distribution of the hadronness (Fig.4.17).

Figure 4.17: Normalized hadronness distributions for 1ES0927+500 dark patch.
Standard Analysis (left) versus CNN (right) for ON data (blue) and OFF data
(red).
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4.5.4 BL Lac

The results of two CNN networks are summarized in Fig. 4.18 where the results
regarding the CNN id=8 are shown in plots (1) to (4), while the results of CNN
id=5 on pots (a) and (b) (Tab. 4.3). The two CNN show similar behaviour with
a slight better performance for CNN id=8 and an overall better performance with
respect to the Standard Analysis. Considering that the BL Lac dataset and the
training samples are from different periods, the results are very positive.
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Figure 4.18: BL Lac cross check. Plots (1) through (4) are obtained when the
CNN has been trained with charge maps and arrival time maps. For the bottom
plots (a) and (b) the CNN has been trained with charge maps only. In this case,
the Excess/SQRTOFF shows for the CNN a performance similar to the SA.
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4.6 Conclusions and future work

In this thesis a new method to perform the gamma/hadron separation on the data
of the MAGIC telescopes was explored, based on CNN trained on real gamma-ray
events. Several similar methods exist but generally rely on MC simulated data to
train the CNN. This introduces potential systematics due to discrepancies between
observed and simulated gamma-ray events.

Training a CNN with a sample of observed events is not an easy task. First,
because CNNs are supervised algorithms that require well-known data during the
training. Moreover, there are other issues to consider such as the amount of
observed events. During a standard observation the telescopes acquisition rate
amounts to ∼ 250Hz, implying that ∼ 9 · 105 total events are collected in a single
hour of observation, mostly generated by a primary hadron. As a consequence,
selecting a sample of gamma-like events suitable for training from an observed
sample requires both a large storage system and a huge memory, in addition to
high-end performing GPUs to process the data.

In this thesis, I have shown that CNNs provide a valid alternative to the stan-
dard method for classifying events in MAGIC. Unlike other approaches, I have
studied in particular the possibility of applying CNN on the images before any
parametrization is applied, thus exploiting the whole information embedded in
the charge distribution recorded on the focal plane of the IACT. In addition to
this, I have successfully started to involve in the analysis also the information
carried by the distribution of arrival times.

Provided that, the method certainly has room for various further improve-
ments. The competitive performance reached so far indicates promisingly that
new analysis methods, significantly more efficient than the current MAGIC Stan-
dard Analysis, could become available in the next future. All these topics move
beyond the scope of this thesis and will be the subject of further work in the future.

There are several potential further improvements to be investigated. The most
used and developed DL techniques are the supervised ones and the unsupervised
networks have greater room for improvement.

So, the first area to explore is the implementation of an unsupervised NN, to
classify the observed event sample before the CNN training and avoid RF. This
would be the starting point towards the implementation of an autoencoder. This
would allow the separation of the observed events in classes in an unsupervised
way and, potentially, also the recognition of other classes of events, like events
initiated by e± versus γ-initiated ones, or even finding anomalous, or rare, events.

A very intriguing topic worth to investigate is a full event reconstruction with
the measurement of two more quantities: the energy of the primary particle and
its arrival direction. The task of energy estimation has relevant similarities with
the task of event classification I tackled in my PhD work: for instance, existing
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algorithms use MC simulated data, for which the true energy of the primary par-
ticle is given. Instead, the energy estimated from the observations derives from
an indirect measurement, mainly related to the size that is the charge contained
in the event image. Evaluating the event energy could be performed by an unsu-
pervised NN via regression, analogous considerations hold for the determination
of the arrival direction of the events.

Another relevant topic deals with the kind of network adopted and the algo-
rithms that are implemented. For instance, a network exploiting not only the
event images but also the image parameters can further improve the identification
of the gamma-like events. In addition to this, my research was based on the Incep-
tion Res Net V2 network and without using the pre-trained weights, which could
improve the network performance.

Moreover, the transfer learning and fine tuning techniques that reduce the
amount of data and the time required to train other networks, could be studied.
The transfer learning makes this algorithm very portable and, with small modifi-
cations, it would be possible to apply this algorithm to other situations and even
to other topics. For example, the weights of the Mrk421 network can be stored
and a new classifier layer can be added to classify the Crab Nebula or a BL Lac
object. Eventually, the Inception Resnet V2 can be replaced with another CNN
model with even better performances.

In conclusion, there are many things that can still be done to improve this
work. Most of these look very promising and capable of improving significantly
the analysis performance; for this reason I am willing to pursue this research path
in future works.
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1.18 From de Naurois and Mazin (2015) Left: Illustration of the polariza-
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on the camera focal plane. . . . . . . . . . . . . . . . . . . . . . . . 35

1.21 From:DiSciascio (2019) The two figures on the left are the scheme
of the lateral development of air showers induced by protons (left
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The gamma-like event (top-right) is more compact and elliptical
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1.22 From Naurois (2006) The geometrical definition of the Hillas pa-
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of the images main axis, α orientation angle . . . . . . . . . . . . . 36
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(l′ ≃ l/cos(Zd)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.24 From de Naurois and Mazin (2015) Geometric reconstruction of
source direction and impact parameter in stereoscopic mode. Left
panel: in the camera frame, the main axis of the shower corre-
sponds to a plane that contains the actual shower track and the
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impact point on the ground. . . . . . . . . . . . . . . . . . . . . . . 38
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1.26 From Brun (2012) Simulated images of extended air shower events
induced from cosmic particles, as observed in the focal plane of
a Imaging Atmospheric Cherenkov telescope. From left to right:
hadronic shower, muon, gamma-ray shower . . . . . . . . . . . . . . 41

2.1 The MAGIC II (M2 left) and MAGIC I (M1 right) telescopes. Pic-
ture Credits: Derek Strom, Giovanni Ceribella and the MAGIC
Collaboration. On MAGIC II the camera, the mirrors and the path
of Cherenkov light are shown. . . . . . . . . . . . . . . . . . . . . . 43

2.2 From Aleksić et al. (2016) Schematic view of the readout and trigger
chain of the MAGIC telescopes. . . . . . . . . . . . . . . . . . . . . 45

2.3 From Aleksić et al. (2016), Geometry of the MAGIC camera. Shown
are the 1039 pixels arranged in clusters of 7 pixels each. The L1
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(red pixels). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.4 Scheme of the MAGIC analysis pipeline. On the left side, the analy-
sis flow is shown, where data from the single telescopes are processed
and later merged for the final analysis. On the right side, it is shown
the corresponding data transformation, from raw data to high level
information used in the analysis plots. Details on each analysis step
are provided in the text. . . . . . . . . . . . . . . . . . . . . . . . . 48

2.5 From Carreto Fidalgo (2019) A typical PMT signal digitized by the
readout. The readout counts are plotted versus the readout slices,
which correspond to the switching capacitors. The so-called ringing
after the light pulse is an artifact of the readout. Besides light
pulses, the readout can also be triggered by the so-called afterpulses
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2.6 From Berti (2018) Example of the reconstruction of some stereo
parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.7 From Palacio, Navarro-Girones, and Rico (2019) Schematic config-
uration of the FoV during wobble mode observations. The telescope
axis (black cross) has an offset distance w with regards to the center
of the source under study (yellow star). Signal (ON) region is de-
fined as a circle around the center of the source, with angular size θc.
One background control region (circular region around OFF, black
star) is defined with same angular size, symmetrically with regard to
the signal region. The leakage effect is schematically shown where,
for moderately extended source (green area), signal events are also
expected to be reconstructed inside OFF. . . . . . . . . . . . . . . . 57
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2.8 Example of θ2 plot with Mrk421 cross-check sample (Sec.4.5). In
the plots are represented the ON (Blue) and 3 OFF (180 90 and 270
others three color) positions using the¿ cut θ2 ≤ 0.15, nbins = 15,
size1/2 < 60. Top no hadronness cut, down hadronnes cut h ≤ 0.28. 59

2.9 From Buckley et al. (1997) the experimental multiwavelength SED
points for Mrk421 blazar. On the y-axis is reported the energy on
area and time units, on the x-axis the specific flux density multiplied
by the energy of the photon emitted . . . . . . . . . . . . . . . . . . 60

2.10 From Abdo et al. (2010). Light curve obtained with photons above
100 MeV. The light curve profile is binned to 0.01 of pulsar phase.
Insets show the pulse shapes near the peaks, binned to 0.002 in
phase. The radio light curve (red line) is overlaid (arbitrary units).
The main peak of the radio pulse seen at 1.4 GHz is at phase 0.
Two cycles are shown. . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.11 Energy threshold of the MAGIC telescopes as a function of the
zenith angle of the observations Aleksić et al. (2016) . Long dashed
curve: threshold at the trigger level. Solid line: only events with
images that survived image cleaning in each telescope with at least
50 phe. Dashed line: with additional cuts of Hadronness < 0.5
and θ2 < 0.03◦2 applied . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.12 From Aleksić et al. (2016): Collection area of the MAGIC telescopes
after the upgrade at the trigger level (dashed lines) and after all cuts
(solid lines). Thick lines show the collection area for low zenith angle
observations, while thin lines correspond to medium zenith angle.
For comparison, the corresponding pre-upgrade collection areas are
shown with gray lines . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.13 Top panel: integral sensitivity of the MAGIC telescopes as a func-
tion of the energy and for different periods (colors). Bottom panel:
differential sensitivity of the MAGIC telescopes as a function of en-
ergy and for different periods (colors). Grey and dark grey dots:
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telescopes) with old MAGIC-I camera. Red and blue squares: stereo
sensitivity after upgrade of 2012-13 (Aleksić et al. (2012)) at zenith
lower than 30◦ and between 30◦ and 40◦ respectively. . . . . . . . . 65

2.14 CrabNebula SEDs. Top panel: SED using Low Zenith data (Zd =
0÷ 50); Bottom panel: High Zenith data SED (Zd = 50÷ 62). . . . 68

2.15 θ2 plot for Crab nebula Full Range Energy (Table 2.1). The dotted
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2.16 Mrk421 April 10th−16th, 2013 sample comparison. Top: Full Range
θ2 Standard Analysis (this work). Bottom: González Muñoz (2015)
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