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Simple Summary: The aim of the study was to investigate the role of three different light-color
temperatures of Light-Emitting Diodes (LEDs) (Neutral, Cool and Warm) on some attributes of breast
meat. Various changes were observed in the physical and chemical characteristics of breast meat
samples and the results obtained in fatty and volatile profiles indicate that the LEDs change the
characteristics of meat.

Abstract: The objective of our study was to investigate the role of three different light-color tempera-
tures of Light-Emitting Diodes (LEDs) [Neutral (K = 3300− 3700); Warm (K = 3000− 2500) and Cool
(K = 5500 − 6000)] on the qualitative attributes of breast meat obtained from male AZ Extra Heavy
Red chickens. The comparison was made with meat deriving from chickens reared in the presence of
classic neon lighting (Control). The meat was analyzed for the determination of both physical and
chemical properties (cooking loss, moisture, total lipids and fatty acid composition). Furthermore,
meat samples subjected to cooking were also analyzed for the identification of volatile compounds
produced during the process; such evaluation was performed both immediately after cooking (T0)
and after 7 days (T7) of cooked-meat storage at 4 ◦C. Cooking-loss values were higher for samples
from chickens raised with Neutral LED (p < 0.05) compared to the other groups. For the fatty acid
profiles of the meat, higher values were found for monounsaturated fatty acids (MUFAs) such as
C18:1, C9 and C16:1 in Cool LED compared to the Control. Regarding the volatile profile of cooked
meat, compounds belonging to the families of aldehydes, alcohols, ketones, and aromatic compounds
were identified. Compounds belonging to the aldehyde family, such as hexanal, increased in Cool
LED samples at T0 in comparison to the Control. On the other hand, the amounts of 1-Pentanol,
1-Octanol and 2-Octen-1-ol, which belong to the alcohol family, increased at T7 in Cool LED samples
compared to the Warm LED. In conclusion, LED lighting showed to be effective in inducing significant
variations on chicken breast meat ready to be introduced to the market, in particular regarding fatty
acid profiles and the accumulation of volatile compounds. However more in-depth evaluation is
needed for the identification of modifications regarding the sensorial sphere, which could have an
impact on the consumer acceptability of the product.

Keywords: light-emitting diodes; breast meat; fatty acid; volatile profile

1. Introduction

In recent years, consumption of low-fat, low-calorie, high-protein chicken meat has
increased significantly [1]. The quality of poultry meat depends on the production perfor-
mance of the poultry. In addition to animal genetics, the husbandry system heavily affects
the poultry production performance and derived meat quality. The use of new technologies
allows the farmer to increase production while reducing costs and the negative impact on
the environment. Light (intensity, photoperiod, and wavelength) is essential as it has a di-
rect influence on the behavior, physiology, immunity and consequently on the performance
of the poultry [2]; all this depends on the ability of the chickens to perceive a wide spectrum
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of colors. Light visible to birds has a wavelength of 380 nm to 740 nm, which is between
invisible infrared rays (longer wavelengths) and invisible ultraviolet light rays (shorter
wavelengths) [3]. The light source for poultry farms is artificial light. Recently, the use of
LEDs has gained increasing interest due to its good results in terms of energy consumption
and animal performance and welfare. The use of LEDs is becoming increasingly popular
on chicken farms. Energy saving, longer life and color variety are the main features of LED
lights [4].

Many studies have been conducted on the effects of LED lights on many chicken
parameters such as growth performance, welfare, meat quality and muscle tissue. The term
“meat quality” includes all the physical, chemical, morphological, biochemical, microbial,
sensory, technological, hygienic, nutritional and culinary characteristics [5].

Various studies have been carried out correlating the LED light with the quality of
the meat. Karakaya et al.(2009), found that the chest and thigh muscles obtained from
poultry reared with a mixed green–blue lighting group had a softer structure given the
higher penetrometric values (PV) [6]. Furthermore, from the results obtained from the
studies conducted by Kim et al (2013) they observed that the birds raised under the red
LED had a high fat content while the white LED had the lowest percentage of fat in the
breast meat, and the white light improves the content of essential and non-essential amino
acids of breast meat [7]. Due to its high nutrient content and relatively low calories, poultry
meat appears to increasingly meet the needs of consumers who are becoming more aware
of the nutritional value of the foods they eat [8]. In the literature, there is no inherent
information about the effect of LEDs on red chicken meat quality. In fact, the aim of this
study was to investigate the effect of LED lights with three different color temperatures,
Neutral (K = 3300 − 3700), Cool (K = 5500 − 6000) and Warm (K = 3000 − 2500), on the
quality red chicken meat.

2. Materials and Methods
2.1. Experimental Design and Samples Collection

The study was carried out on chicken meat ready to be introduced on the market.
Meat was obtained from a farm located in the Abruzzo region (Italy) that adopted the LED
lighting in some of the sheds dedicated to the breeding of AZ Extra Heavy Red chicken.
In particular, the company introduced three different shades of LED lighting (Neutral
(K = 3300 − 3700); Warm (K = 3000 − 2500) and Cool (K = 5500 − 6000)) and this led to
the need to understand if this aspect could have a direct effect on the quality parameters
of chicken meat. For this purpose, the company supplied a total of 120 chicken breasts
divided into 4 groups of 30 samples each: 30 samples (chicken breasts) from animals reared
with classic neon lighting (Control group) and 30 for each of the 3 different types of LED
lighting (experimental groups: Neutral, Cool and Warm). The chicken breasts supplied by
the company were, in effect, cuts of meat ready for their introduction on the market and,
for that reason, were supplied individually packaged in polystyrene trays covered with a
plastic film. The study therefore aimed to make a comparison between the Control group
and the experimental groups. Specifically, the meat was analyzed for the determination of
both physical and chemical properties (cooking loss, moisture, total lipids and fatty acid
composition) and samples not immediately used were packed under vacuum and stored
at −20 ◦C for subsequent evaluation. Meat samples were also subjected to cooking and
analyzed for the identification of the volatile compound produced during the process; such
evaluation was performed both immediately after cooking (T0) and after 7 days (T7) of
cooked-meat storage at 4 ◦C.

2.2. Cooking Loss and Chemical Composition of Breast Meat

Cooking loss was used for characterizing the ability of meat to retain water during
cooking. Meat samples were weighed and cooked in a water bath until the core temperature
was 70 ◦C. The temperature was monitored through the probe. The samples were then
cooled to room temperature for two hours and weighed. Cooking loss was expressed as
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a percentage of the weight of the raw initial sample. Meat moisture and fat content were
evaluated according to the methods of AOAC (2000) [9].

2.3. Fatty Acid Profile of Breast Meat

Five g of raw meat, stored at 20 ◦C, was homogenized, in accordance with Folch’s
method (1957) [10], using Ultra-turrax-T25 with 45 mL of Folch’s solution (chloroform:
methanol, 2:1). The homogenized samples were then transferred to a flat-bottomed flask
and shaken for 7 hours at room temperature in the dark. All samples were transferred
to a separatory funnel with the addition of 15 mL of 1% NaCl and left overnight. Using
a rotary evaporator set at 40 ◦C, the chloroform phase was brought to dryness to obtain
the total fat of the sample. 60 mg of each fat sample was mixed with 1 mL of hexane and
500 µL of sodium methoxide to obtain fatty acid methyl ester (FAME). FAME Detection was
performed using a gas chromatograph (Focus GC; Thermo Scientific, Waltham, MA, USA)
equipped with a capillary column (Restek Rt-2560 Column fused silica 100 m × 0.25 mm
high polar phase; Restek Corporation, Bellefonte, PA, USA) and a flame ionization detector
(FID). Hydrogen was used as the carrier gas. The thermal program was performed as
previously described by Bennato et al. [11]. Quantification of peak areas was performed
using ChromeCard software (Thermo Fisher Scientific, Milan, Italy) and the relative value
of each FA was expressed as a percentage of the total FAME. Once the value of each FA was
obtained, it was used to calculate the sum of saturated fatty acids (SFA), monounsaturated
fatty acids (MUFA), and polyunsaturated fatty acids (PUFA).

2.4. Determination of Volatile Components of Cooked Breast Meat

Five grams of minced meat were previously weighed and mixed with 10 mL of a
saturated aqueous NaCl solution (360 g/L) and 10 µL of internal standard solution (3-
methyl-2-heptanone; 10 µg/L in ethanol) was added. A solid-phase microextraction fiber
(divinylbenzene-carboxylic polydimethylsiloxane; length: 1 cm; film thickness: 50/30 m;
Sigma-Aldrich, Milan, Italy) was used to perform headspace extraction of volatile com-
pounds (VOC) with an exposure time of 60 minutes at 60 ◦C. The extracted VOCs were
then thermally desorbed in a Clarus 580 gas chromatograph (Perkin Elmer, Waltham, MA,
USA) equipped with an Elite 5MS column (inner diameter length: 30 × 0.25 mm; film
thickness: 0.25 µm; Perkin Elmer, Waltham, MA, USA) and coupled to a mass spectrometer
(SQ8S; Perkin Elmer, Waltham, MA, USA). Heating program and identification of VOCs
were made as described above [12].

2.5. Statistical Analysis

All the assessments described were performed on 15 samples of meat (randomly
selected) per group, with analyses performed in triplicate on the single sample. Results
were expressed as means with corresponding standard deviations (SD). Data were tested
for normal distribution and analyzed using the Sigma-Plot12.0 software (Systat software
Inc., San Jose, CA, USA). The Anova model was used for statistical analysis, using the
effect of LED light as a factor of variation. Significant differences among treatments
were performed through post-hoc Tukey test; p-values (p ≤ 0.05) were considered to be
statistically significant.

3. Results
3.1. Physical and Chemical Characterization of Chicken Breast Meat

As reported in Table 1, cooking-loss values of Neutral (p < 0.05) LED samples were
higher than Warm LEDs, Cool LEDs and the Control samples. Dry matter and total lipid
content were not different among the groups.
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Table 1. Physical and chemical characterization of breast meat samples obtained from red chickens to
different light treatments.

Chemical
Physical
Composition (%)

Control Neutral LED Cool LED Warm LED

Cooking loss 11.11 a ± 1.43 12.79 b ± 1.68 12.02 a ± 1.38 11.36 a ± 1.08
Moisture 74.10 ± 2.69 71.67 ± 3.78 75.07 ± 3.48 74.01 ± 1.47

Dry matter 25.90 ± 2.69 28.33 ± 3.78 24.93 ± 3.48 25.99 ± 1.47
Total lipid ** 5.58 ± 3.03 4.53 ± 1.29 8.00 ± 2.89 8.13 ± 4.47

Data are reported as mean ± standard deviation (SD); a,b Different letters in the same row indicate significant
differences (p < 0.05); ** Data are reported on a dry-matter basis.

3.2. Fatty Acid Profile

Table 2 shows the fatty acid profile of the breast meat samples. The use of LEDs did
not lead to significant changes in the total SFA content. In fact, it was observed that the
concentration of stearic acid (C18 : 0) and behenic acid (C22 : 0) were lower or similar
to the Control. Significant variations were observed for (C18 : 0) between the Control
and Cool LED and for (C22 : 0) between the Neutral and Cool LED. In contrast, in Cool
LED samples, an increase in MUFA (p < 0.05) was observed compared to the Control.
A significant increase (p < 0.05) was observed in palmitoleic acid (C16 : 1) and oleic acid
(C18 : 1, cis9) in the Cool LED meat samples compared to the Control. Finally, the use of
Warm LEDs decreased the content of PUFA (p < 0.05) compared to all the other groups,
but a significant increase was observed in linolenic acid (C18 : 3) in Cool LEDs compared
to the Warm LEDs and a significant decrease of arachidonic acid (C20 : 4) was observed in
the Cool LEDs compared to the Control and Neutral LEDs.

Table 2. Fatty acid profiles (%) of breast meat samples from red chickens exposed to different
light treatments.

Fatty Acids Control Neutral LED Cool LED Warm LED

C14:0 0.64 ± 0.50 0.42 ± 0.13 0.47 ± 0.08 0.45 ± 0.08
C15:0 0.05 ± 0.04 0.03 ± 0.01 0.03 ± 0.02 0.04 ± 0.01
C16:0 22.96 ± 2.09 22.27 ± 0.76 22.26 ± 1.80 22.86 ± 1.98
C17:0 0.14 ± 0.04 0.13 ± 0.02 0.12 ± 0.02 0.12 ± 0.02
C18:0 9.17 ± 1.74 a 9.10 ± 1.55 a,b 7.59 ± 1.26 b 9.14 ± 2.23 a,b

C20:0 0.07 ± 0.02 0.07 ± 0.01 0.07 ± 0.01 0.07 ± 0.02
C22:0 0.14 ± 0.07 a,b 0.16 ± 0.06 a 0.09 ± 0.04 b 0.13 ± 0.08 a,b

C14:1 0.03 ± 0.02 0.03 ± 0.02 0.05 ± 0.03 0.03 ± 0.02
C16:1 2.07 ± 0.86 a 2.15 ± 0.73 a,b 2.86 ± 1.03 b 2.18 ± 0.87 a,b

C18:1, c9 24.02 ± 3.01 a 24.79 ± 2.16 a,b 26.95 ± 2.73 b 24.41 ± 4.11 a,b

C18:1, c11 1.82 ± 0.33 1.84 ± 0.31 1.59 ± 0.43 1.88 ± 0.37
C22:1 0.11 ± 0.05 a 0.12 ± 0.03 a 0.07 ± 0.04 b 0.11 ± 0.05 a,b

C18:2 29.30 ± 2.52 29.18 ± 1.62 30.31 ± 2.25 28.97 ± 1.67
C18:3 2.29 ± 0.60 a,b 2.26 ± 0.45 a,b 2.72 ± 0.50 a 2.05 ± 0.65 b

C20:4 4.94 ± 2.14 a 5.20 ± 1.87 a 2.94 ± 0.69 b 5.12 ± 2.63 a,b

Others 2.24 ± 0.44 a 2.25 ± 0.27 a 1.89 ± 0.33 b 2.43 ± 0.64 a

SFA 33.17 ± 3.79 32.18 ± 2.30 30.63 ± 2.65 32.81 ± 3.29
PUFA 36.54 ± 2.35 a 36.64 ± 0.84 a 35.97 ± 2.48 a 31.02 ± 2.23 b

MUFA 28.05 ± 3.64 a 28.92 ± 2.52 a,b 31.52 ± 3.41 b 33.73 ± 2.49 a,b

Data reported as mean ± standard deviation SD; a,b Different letters in the same row indicate significant differences
(p < 0.05); SFA: saturated fatty acids; MUFA: monounsaturated fatty acids; PUFA: polyunsaturated fatty acids.

3.3. Volatile Profile of Cooked Meat

Twenty-one compounds belonging to the family of aldehydes, alcohols, ketones,
aromatic compounds and esters were found in the cooked chicken meat (T0 and T7) as
shown in Table 3. At T0, the concentration of hexanal (p < 0.05) increased significantly in
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Cool LEDs compared to the Control, but the concentrations of octanal decreased in Neutral
LEDs compared to the Control (p < 0.05). At T7, pentanal, 2-heptanal, heptanal (p < 0.05)
increased in the Cool LED samples compared to the Control, decanal (p < 0.01) increased
in the Cool LEDs compared to Neutral LEDs; nonanal (p < 0.05) decreased in the Neutral
LEDs compared to the Control. The situation was different for the family of alcohols; here,
significant decreases of 1-Octen-3-ol (p < 0.05) in Warm LEDs with respect to the Control,
1-Octyn-3-ol and 1-Pentanol (p < 0.01) in Warm LED respect to the Neutral LEDs were
observed in T0 samples; a completely opposite situation was observed at T7, where there
was a remarkable increase in 1-Pentanol, 1-Octanol and 2-Octen-1-ol (p < 0.05) in Cool LED
treatments compared to the Warm LED ones. Regarding ketones, there was a significant
increase in the Neutral and Cool LED groups compared to the Control at both T0 and T7;
specifically, 2-methyl-3-octanone (p < 0.05) at T0 and 2-heptanone (p < 0.01) at T7.

Table 3. Volatile profile of cooked breast meat samples obtained from red chickens exposed to
different light treatments.

T0 T7

VOC Control Neutral LED Cool LED Warm LED Control Neutral LED Cool LED Warm LED

Aldehyde
Pentanal 2.87 ± 0.22 3.57 ± 0.80 2.67 ± 1.26 2.44 ± 1.51 1.20 ± 0.33 a 1.66± 0.30 a,b 1.80 ± 0.09 b 1.87± 0.44 a,b

Hexanal 44.65 ± 0.96 a 58.82 ±
7.80 a,b 64.54± 6.87 b 63.17 ±

9.51 a,b 40.12 ± 2.91 49.61 ± 7.83 43.51 ± 5.42 51.33 ± 4.82

Heptanal 3.39 ± 1.68 2.97 ± 1.34 1.96 ± 1.63 3.16 ± 1.85 1.17 ± 0.42 a 2.22± 0.54 a,b 2.67 ± 0.30 b 2.14± 0.55 a,b

2-Heptanal 1.41 ± 0.88 0.92 ± 0.04 0.54 ± 0.20 0.38 ± 0.35 0.29 ± 0.08 a 0.35± 0.16 a,b 0.46 ± 0.03 b 0.48± 0.26 a,b

Octanal 5.19 ± 0.32 a 3.70 ± 0.26 b 4.27± 1.50 a,b 4.01± 1.18 a,b 4.45 ± 1.41 4.81 ± 1.22 5.15 ± 0.24 5.13 ± 0.61
2-Octenal 2.53 ± 1.44 2.05 ± 0.17 1.75 ± 0.37 1.30 ± 0.60 0.40 ± 0.12 0.62 ± 0.10 0.97 ± 0.73 0.73 ± 0.28
Nonanal 6.06 ± 0.91 5.24 ± 1.23 6.39 ± 1.19 6.97 ± 1.36 9.53 ± 0.74 a 6.92 ± 0.91 b 8.43± 0.44 a,b 8.32± 0.98 a,b

Decanal 2.63 ± 1.76 0.51 ± 0.13 0.62 ± 0.19 0.44 ± 0.11 0.43± 0.14 a,b 0.44 ± 0.01 a 0.60 ± 0.04 b 0.81± 0.63 a,b

Alcohol
1-Pentanol 2.01± 0.22 a,b 2.62 ± 0.33 a 1.26± 0.99 a,b 1.54 ± 0.47 b 2.47± 0.64 a,b 3.21± 0.80 a,b 4.01 ± 0.81 a 2.25 ± 0.49 b

1-Heptanol 0.72 ± 0.01 2.24 ± 3.27 0.56 ± 0.25 0.60 ± 0.22 1.39 ± 0.38 1.94 ± 0.73 2.04 ± 0.51 1.16 ± 0.39
1-Octanol n.d. n.d. n.d. n.d. 0.47± 0.13 a,b 0.96± 0.75 a,b 1.16 ± 0.36 a 0.24 ± 0.17 b

1-Octen-3-ol 21.30 ± 2.05 a 9.26± 5.14 a,b 9.01± 4.98 a,b 9.68 ± 4.58 b 25.45 ± 11.68 12.11 ± 1.69 14.54 ± 1.98 10.77 ± 1.90
2-Octen-1-ol 0.43 ± 0.38 0.33 ± 0.14 0.21 ± 0.21 0.09 ± 0.11 0.44± 0.12 a,b 1.26± 0.85 a,b 1.49 ± 0.53 a 0.41 ± 0.23 b

1-Octyn-3-ol 0.44± 0.30 a,b 0.38 ± 0.03 a 0.28± 0.06 a,b 0.25 ± 0.01 b 0.14 ± 0.05 0.14 ± 0.05 0.16 ± 0.07 0.23 ± 0.05

Ketones
2-Heptanone 0.04 ± 0.01 0.02 ± 0.01 0.03 ± 0.03 0.03 ± 0.03 0.26 ± 0.07 a 0.59± 0.36 a,b 0.57 ± 0.03 b 0.17 ± 0.14 a

2-Methyl
3-Octanone

3.14 ± 0.26 a 4.73 ± 0.59 b 3.25± 0.91 a,b 2.63± 1.25 a,b 5.55 ± 3.73 6.83 ± 1.57 6.25 ± 0.88 5.06 ± 2.02

Aromatic
compounds
Ethylbenzene 1.14 ± 0.39 1.00 ± 0.45 1.22 ± 0.41 1.41 ± 0.56 0.80 ± 0.25 0.39 ± 0.19 0.51 ± 0.10 1.41 ± 0.66

p-Xylene 1.45 ± 0.67 1.40 ± 0.31 1.18 ± 0.34 1.27 ± 0.21 1.09 ± 0.31 1.43 ± 0.57 1.72 ± 0.24 1.56 ± 0.07
Benzaldehyde 0.58 ± 0.38 0.23 ± 0.07 0.27 ± 0.17 0.63 ± 0.36 0.30 ± 0.14 0.42 ± 0.14 0.41 ± 0.16 0.79 ± 0.31

Ester
Butanoic acid
buthyl ester n.d. n.d. n.d. n.d. 1.61 ± 0.52 1.68 ± 0.60 1.57 ± 0.52 2.14 ± 0.99

Propionic acid
buthyl ester n.d. n.d. n.d. n.d. 2.44 ± 0.69 2.40 ± 1.57 1.98 ± 1.10 2.99 ± 1.06

Data are reported as mean percentages of each volatile compound (VOC) ± standard deviation (SD); a,b Different
letters in the same row indicate significant differences (p < 0.05); T0 = after cooking T7 = after 7 days of cooking;
n.d. = not detected.

4. Discussion

In our study, particular attention was paid to the characterization of the chemical
composition, fatty acids and volatiles profiles, important properties of meat that influence
the quality of chicken meat, and consequently the choice of the product by the consumer.
In fact, the purpose of the study concerned an investigation on products intended for
trade and not on the zootechnical side. In Neutral LED samples the results of cooking loss
were higher. The ability to retain water in meat is influenced by a series of factors such as
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pH, length of the sarcomere, ionic strength and osmotic pressure, which act by altering
the cellular and extracellular components and causing a reduction in the space between
the myofibrils with a consequent decrease in capacity to retain water [13]. The molecular
mechanism underlying the increase in cooking-loss values has not been investigated in our
samples; however, as observed by Cao et al. [14], the cross-sectional area and density of my-
ofibers in broiler chickens could change depending on the light in which they were reared.
Indeed, the area of myofibers of broilers exposed to blue light was larger, suggesting that
light may affect the growth of myofibers in the skeletal muscle of broilers and consequently
the ability to retain water. In other species, as reported by a study (Zuo et al.) [15], on the
longissimus thoracis of the yak, high levels of cooking loss were found to be correlated
with high levels of expression of some genes such as desmin, troponin-T and lactate dehy-
drogenase. In fact, in yaks with a high cooking-loss score, it increased the level of LDHA,
an enzyme that catalyzes the conversion of lactate to pyruvate. This enzyme is found in
muscle and its activity tends to increase after slaughter, correlating with a decrease in pH
due to an accumulation of lactate in the tissues. This reduces the ability of the meat to
retain water. Preoteomic and bioinformatic studies [15] have shown that this gene tends to
form networks with structural proteins such as desmin, because they are able to promote
the shrinkage of myofibrils and displace water from them [16].

Among the fatty acid composition results of our research, Warm light samples had a
reduction in total PUFA compared to the other LED light groups and the Control. In studies
by Pinchasov on broilers, it was demonstrated that an increase in PUFA can affect the
suppression of the synthesis of MUFA by inhibiting the action of the 9-desaturase enzyme,
which is the main enzyme responsible for the conversion of SFA to MUFA [17]. This claim
is consistent with our results, because the total amount of MUFA in Neutral and Cool LEDs
was lower than in Warm LEDs. These results might suppose that LED light changed the
expression of some desaturase. Cool LED samples had a significant increase of C18 : 1,
cis9. In chickens, SCD (Stearoyl-CoA-dasaturase) catalyzes the desaturation of palmitic and
stearic acids in palmitoleic acid (C16 : 1), and oleic acid (C18 :1), respectively, via the initial
desaturation of saturated fatty acids to monounsaturated fatty acids [18]. The data obtained
show how the amount of the substrates of the enzyme, stearic acid, is lower in the Cool light
than in the other LED light and in the Control, and consequently the high amount of oleic
acid in the Cool group can be confirmed. This particular situation was observed for the
results obtained for alfa-linolenic acid (C18 : 3) and arachidonic acid (C20 : 4) in Cool LEDs.
These fatty acids (C18 : 3, C20 : 4) can be synthesized from C18 : 1 through the ELOV5
isoform elongation enzyme [19]. In our study, the amount of C18 : 3 is higher for the Cool
LED group, but it was not for C20:4 because that was lower than other groups. In a study
conducted by Nuemberg et al. [20] on pigs, an increase in n-3 PUFA, especially alfa-linoleic
acid in the muscle, may cause a substantial decrease in arachidonic acid because of the
action of delta-6/5-desturase enzymes in the elongation and desaturation metabolism.

The production of flavors and aromas in cooked chicken meat comes from thermal
lipid degradation processes along with the Maillard reaction. Obviously, the taste of
cooked meat is influenced by several pre- and post-slaughter factors, including breed, diet,
post-mortem ageing, and cooking method [21]. In this study 21 VOC were detected in
cooked-meat samples obtained from chickens reared under all experimental conditions.
Chicken meat contains a higher proportion of unsaturated fatty acids than red meat. This
characteristic makes the meat more susceptible to quality deterioration due to the oxidation
of lipids, which leads to the formation of products such as aldehydes, ketones, alcohols,
aliphatic hydrocarbons, acids, and esters, which are responsible for the development of
aromatic substances in meat [22,23]. After cooking and after 7 d of storage of the cooked
product, the most represented compounds belong to the aldehyde family; this result is
related to the degradation of PUFAs during cooking, which give rise to the VOCs through
the activity of lipolysis [24].

Our results show that at T0, the amount of hexanal was high in all LED light samples.
On the other hand, at time T7, an increase in the amount of pentanal, heptanal and
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decenal was observed in all three LED light groups. Pentanal and hexanal prompted beta-
oxidation of fatty acid, mainly alfa-linolenic acid [25], and are also indicators of meat flavor
deterioration [26]. Moreover, as shown by Guerrero-Lagarreta, some aldehydes (hexanal,
pentanal, heptanal, octanal, and nonanal) are responsible for unpleasant odors. This
suggests that at time T7, chicken meat was more susceptible to the production of unpleasant
odors than T0. A significant decrease in all experimental groups was represented by 1-
octen-3-ol belonging to the alcohol family that provided fishy, fatty, mushroom, and grassy
odors. It showed a lower amount in both T0 and T7 in all LED light samples than in the
Control. This compound derived from an enzymatic reaction similar to lypoxygenases
and hydroperoxidase lyases. Del Pulgar et al. [24] argue that a lower number of these
compounds in cooked meat could depend on a lower amount of PUFA in meat, which is
consistent with the results obtained, since the amount of PUFA in the experimental groups
is lower than in the Control. Since at T7 for 1-pentanol, 1-octanol, 2-octen-1-ol , a higher
concentration was shown for the Neutral and Cool group compared to the Control, but not
for Warm LED, in agreement with the study carried out by Bennato et al. [11], Warm LED
is the best condition for limiting oxidative processing, the main process in which these
compounds are formed.

This study highlighted the differences between the amount of two-compounds (2-
Hepatanone, 2-methyl-octanone) belonging to ketones family. Under exposure to Warm
light, it is noted that at T7, 2-Heptanone tends to decrease compared to the other LED lights
and the Control. Ketones are considered the responsibility of the onset of off-flavors and
off-odors. This can originate from Maillard compounds [27] and from lipolytic activity and
β-oxidation [28]. The very likely absence of oxidative processes can easily explain the lack
of variation in ketone compounds in Warm light samples compared to the Control and
other LED group.

5. Conclusions

The study showed the ability of LED lights to modify the fatty acids and volatile
profile of the breast meat of red chickens. In the Cool LED group a significant increase
of MUFA, particularly of oleic acid, was observed. The MUFA appears to be very good
for human health. On the other hand, based on the cooked-meat volatile profile, the high
amount of hexanal at T0 and the increase of aldehyde compounds, such as pentanal,
heptanal, 2-heptanal, decanal, in T7 Cool LED samples, suggests a lower resistance to the
oxidative processes. On the contrary, the lower presence of PUFA in the Warm LED group
was associated with a better resistance to oxidation as highlighted by a lower content of
compounds belonging to the family of alcohols. Nevertheless, it would be necessary to
carry out a sensory analysis to better define whether the observed changes in the volatile
profile can cause variations in the aroma and flavor of the meat. The use of LED light is
a good solution for poultry breeding due to the low environmental impact and energy
consumption. However, the results of the present study suggest that different spectral
ranges can have different effects on the chemical–nutritional characteristics of poultry meat.

Author Contributions: Conceptualization, G.M.; methodology, A.I.; software, F.B.; formal analysis,
F.B.; M.C.; investigation, A.I.; resources, G.M.; data curation, M.C.; F.B.; writing—original draft
preparation, M.C.; writing—review and editing, A.I.; F.B.; visualization, M.C.; supervision, G.M. All
authors have read and agreed to the published version of the manuscript.

Funding: This research is part of the project “Sostegno ai progetti pilota e allo sviluppo di nuovi
prodotti, pratiche processi e tecnologie-FILAVICOLABRUZZO”, supported by a grant from Rural
Development Plan 2014–2020, MISURA 16.2, Regione Abruzzo (Italy).

Institutional Review Board Statement: not applicable.

Informed Consent Statement: not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.



Foods 2022, 11, 370 8 of 9

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lee, J.S.; Han, J.W.; Jung, M.; Lee, K.W.; Chung, M.S. Effects of thawing and frying methods on the formation of acrylamide and

polycyclic aromatic hydrocarbons in chicken meat. Foods 2020, 9, 573. [CrossRef] [PubMed]
2. Sultana, S.; Hassan, M.R.; Choe, H.S.; Ryu, K.S. The effect of monochromatic and mixed LED light colour on the behaviour and

fear responses of broiler chicken. Avian Biol. Res. 2013, 6, 207–214. [CrossRef]
3. Parvin, R.; Mushtaq, M.; Kim, M.; Choi, H. Light emitting diode (LED) as a source of monochromatic light: A novel lighting

approach for behaviour, physiology and welfare of poultry. World’s Poult. Sci. J. 2014, 70, 543–556. [CrossRef]
4. Molino, A.; Garcia, E.; Santos, G.; Vieira Filho, J.; Baldo, G.; Paz, I.A. Photostimulation of Japanese quail. Poult. Sci. 2015,

94, 156–161. [CrossRef]
5. Ingr, I. Meat quality. Defining the term from the modern angle. Fleischwirtschaft (Germany FR) 1989, 69, 1268–1277.
6. Karakaya, M.; Parlat, S.; Yilmaz, M.; Yildirim, I.; Ozalp, B. Growth performance and quality properties of meat from broiler

chickens reared under different monochromatic light sources. Br. Poult. Sci. 2009, 50, 76–82. [CrossRef] [PubMed]
7. Kim, M.; Parvin, R.; Mushtaq, M.; Hwangbo, J.; Kim, J.; Na, J.; Kim, D.; Kang, H.; Kim, C.; Cho, K.; et al. Influence of

monochromatic light on quality traits, nutritional, fatty acid, and amino acid profiles of broiler chicken meat. Poult. Sci. 2013,
92, 2844–2852. [CrossRef]

8. John, K.A.; Maalouf, J.; B Barsness, C.; Yuan, K.; Cogswell, M.E.; Gunn, J.P. Do lower calorie or lower fat foods have more sodium
than their regular counterparts? Nutrients 2016, 8, 511. [CrossRef]

9. Horwitz, W. Official Methods of Analysis of AOAC International. Volume I, Agricultural Chemicals, Contaminants, Drugs/Edited by
William Horwitz; AOAC International: Gaithersburg, ML, USA, 1997; Volume 2010.

10. Floch, J. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509.
[CrossRef]

11. Bennato, F.; Ianni, A.; Martino, C.; Grotta, L.; Martino, G. Evaluation of Chemical Composition and Meat Quality of Breast Muscle
in Broilers Reared under Light-Emitting Diode. Animals 2021, 11, 1505. [CrossRef]

12. Ianni, A.; Innosa, D.; Martino, C.; Grotta, L.; Bennato, F.; Martino, G. Zinc supplementation of Friesian cows: Effect on
chemical-nutritional composition and aromatic profile of dairy products. J. Dairy Sci. 2019, 102, 2918–2927. [CrossRef] [PubMed]

13. Mir, N.A.; Rafiq, A.; Kumar, F.; Singh, V.; Shukla, V. Determinants of broiler chicken meat quality and factors affecting them: A
review. J. Food Sci. Technol. 2017, 54, 2997–3009. [CrossRef] [PubMed]

14. Cao, J.; Liu, W.; Wang, Z.; Xie, D.; Jia, L.; Chen, Y. Green and blue monochromatic lights promote growth and development of
broilers via stimulating testosterone secretion and myofiber growth. J. Appl. Poult. Res. 2008, 17, 211–218. [CrossRef]

15. Zuo, H.; Han, L.; Yu, Q.; Guo, Z.; Ma, J.; Li, M.; La, H.; Han, G. Proteomic and bioinformatic analysis of proteins on cooking loss
in yak longissimus thoracis. Eur. Food Res. Technol. 2018, 244, 1211–1223. [CrossRef]

16. Offer, G. Modelling of the formation of pale, soft and exudative meat: Effects of chilling regime and rate and extent of glycolysis.
Meat Sci. 1991, 30, 157–184. [CrossRef]

17. Pinchasov, Y.; Nir, I. Effect of dietary polyunsaturated fatty acid concentration on performance, fat deposition, and carcass fatty
acid composition in broiler chickens. Poult. Sci. 1992, 71, 1504–1512. [CrossRef]

18. Cui, H.; Zheng, M.; Zhao, G.; Liu, R.; Wen, J. Identification of differentially expressed genes and pathways for intramuscular fat
metabolism between breast and thigh tissues of chickens. BMC Genom. 2018, 19, 1–9. [CrossRef]

19. Fu, S.; Zhao, Y.; Li, Y.; Li, G.; Chen, Y.; Li, Z.; Sun, G.; Li, H.; Kang, X.; Yan, F. Characterization of miRNA transcriptome profiles
related to breast muscle development and intramuscular fat deposition in chickens. J. Cell. Biochem. 2018, 119, 7063–7079.
[CrossRef]

20. Nuernberg, K.; Kuechenmeister, U.; Kuhn, G.; Nuernberg, G.; Winnefeld, K.; Ender, K.; Cogan, U.; Mokady, S. Influence of dietary
vitamin E and selenium on muscle fatty acid composition in pigs. Food Res. Int. 2002, 35, 505–510. [CrossRef]

21. Jayasena, D.D.; Ahn, D.U.; Nam, K.C.; Jo, C. Factors affecting cooked chicken meat flavour: A review. World’s Poult. Sci. J. 2013,
69, 515–526. [CrossRef]

22. Jayasena, D.D.; Ahn, D.U.; Nam, K.C.; Jo, C. Flavour chemistry of chicken meat: A review. Asian-Australas. J. Anim. Sci. 2013,
26, 732. [CrossRef] [PubMed]

23. Tornberg, E. Effects of heat on meat proteins–Implications on structure and quality of meat products. Meat Sci. 2005, 70, 493–508.
[CrossRef] [PubMed]

24. Del Pulgar, J.S.; Soukoulis, C.; Biasioli, F.; Cappellin, L.; García, C.; Gasperi, F.; Granitto, P.; Märk, T.D.; Piasentier, E.; Schuhfried, E.
Rapid characterization of dry cured ham produced following different PDOs by proton transfer reaction time of flight mass
spectrometry (PTR-ToF-MS). Talanta 2011, 85, 386–393. [CrossRef] [PubMed]

25. Guerrero-Legarreta, I. Processed poultry products: A primer. In Handbook of Poultry Science and Technology; Wiley: Hoboken, NJ,
USA, 2011; p. 1.

26. Shahidi, F.; PEGG, R.B. Hexanal as an indicator of meat flavor deterioration. J. Food Lipids 1994, 1, 177–186. [CrossRef]

http://doi.org/10.3390/foods9050573
http://www.ncbi.nlm.nih.gov/pubmed/32375322
http://dx.doi.org/10.3184/175815513X13739879772128
http://dx.doi.org/10.1017/S0043933914000592
http://dx.doi.org/10.3382/ps/peu039
http://dx.doi.org/10.1080/00071660802629571
http://www.ncbi.nlm.nih.gov/pubmed/19234932
http://dx.doi.org/10.3382/ps.2013-03159
http://dx.doi.org/10.3390/nu8080511
http://dx.doi.org/10.1016/S0021-9258(18)64849-5
http://dx.doi.org/10.3390/ani11061505
http://dx.doi.org/10.3168/jds.2018-15868
http://www.ncbi.nlm.nih.gov/pubmed/30772019
http://dx.doi.org/10.1007/s13197-017-2789-z
http://www.ncbi.nlm.nih.gov/pubmed/28974784
http://dx.doi.org/10.3382/japr.2007-00043
http://dx.doi.org/10.1007/s00217-018-3037-0
http://dx.doi.org/10.1016/0309-1740(91)90005-B
http://dx.doi.org/10.3382/ps.0711504
http://dx.doi.org/10.1186/s12864-017-4292-3
http://dx.doi.org/10.1002/jcb.27024
http://dx.doi.org/10.1016/S0963-9969(01)00148-X
http://dx.doi.org/10.1017/S0043933913000548
http://dx.doi.org/10.5713/ajas.2012.12619
http://www.ncbi.nlm.nih.gov/pubmed/25049846
http://dx.doi.org/10.1016/j.meatsci.2004.11.021
http://www.ncbi.nlm.nih.gov/pubmed/22063748
http://dx.doi.org/10.1016/j.talanta.2011.03.077
http://www.ncbi.nlm.nih.gov/pubmed/21645714
http://dx.doi.org/10.1111/j.1745-4522.1994.tb00245.x


Foods 2022, 11, 370 9 of 9

27. Weenen, H. Reactive intermediates and carbohydrate fragmentation in Maillard chemistry. Food Chem. 1998, 62, 393–401.
[CrossRef]

28. Casaburi, A.; Piombino, P.; Nychas, G.J.; Villani, F.; Ercolini, D. Bacterial populations and the volatilome associated to meat
spoilage. Food Microbiol. 2015, 45, 83–102. [CrossRef]

http://dx.doi.org/10.1016/S0308-8146(98)00074-0
http://dx.doi.org/10.1016/j.fm.2014.02.002

	Introduction
	Materials and Methods
	Experimental Design and Samples Collection 
	Cooking Loss and Chemical Composition of Breast Meat
	Fatty Acid Profile of Breast Meat
	Determination of Volatile Components of Cooked Breast Meat
	Statistical Analysis

	Results
	Physical and Chemical Characterization of Chicken Breast Meat
	Fatty Acid Profile
	Volatile Profile of Cooked Meat

	Discussion
	Conclusions
	References

