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ABSTRACT

The role of lipids in health and disease in humans has been recognized for many decades and
over the last fifteen years there has been an intense effort to develop suitable methodologies to
discover, identify, and quantitatively monitor lipids in biological systems. That led to a
dramatical increase on the use lipidomics in search of new possible biomarkers or to better
understand pathological mechanisms. The cell membrane lipidomics is based on homeostatic
balance of the fatty acid metabolic pathways and can give us important information on the
composition activity and the cause of oxidative stress in the cellular membranes. Erythrocyte
membrane lipidomic analysis offers some new perspectives in nutraceuticals and personalized
health interventions in order to help therapies at molecular level, to maintain the best
homeostasis possible in a pathological condition. Several studies have shown modification of
the phospholipid content of cell membranes and point to alterations of the enzymic activity on

the fatty acid metabolic pathways in diabetic patients.

Using a protocol widely tested in human profiling, in the present study erythrocyte membrane
lipidome was examined in healthy and diseased dogs. In particular, a cluster composed of 10
cis fatty acids, present in membrane glycerophospholipids and representative of structural and
functional properties of cell membrane, was chosen and quantitatively analyzed. This cluster
consists of: 2 saturated fatty acids (SFA: palmitic and stearic acids); 3 monounsaturated fatty
acids (MUFA, palmitoleic, oleic and cis-vaccenic acids); 3 polyunsaturated fatty acids omega-
6 (PUFA, linoleic, dihomo-gamma linolenic, arachidonic acids); 2 polyunsaturated fatty acids

omega-3 (PUFA, eicosapentaenoic and docosahexaenoic acids).

For the purpose of this study, blood samples were collected from 68 clinically healthy dogs,
including 30 males (6 neutered) and 38 females (12 sterilized), weighting from 2.6 to 43 kg,
aged from 2 to 156 months (median 41). The interval values and distribution for each fatty acid
of the cluster were determined, providing the first panel describing the healthy dog lipidomic
membrane profile. We used these interval values to evaluate correlations between FAME types,
families and lipid indexes with the dog characteristics and the results showed an interesting
correlation to bodyweight increase. More specific, with the increase of the bodyweight, an
increase in palmitic acid and in the total levels of SFA, while a decrease of the omega-6 and

the total PUFA was observed.
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The same intervals when then used to evaluate diseased dogs:

1) 49 dogs affected with chronic enteropathy (CE), consisting of 17 females (7 spayed) and 32
males (1 neutered), with a median age of 47 months (range 4—144). Interestingly, the CE dogs
had higher values of palmitic acid and lower levels of stearic acid compared to healthy dogs,
with an overall reduction of total SFA. In addition, the CE dogs showed reduced content of LA
and increased DGLA when compared to healthy dogs.

i1) 12 dogs affected with diabetes mellitus (DM), consisting of 7 females (5 spayed) and 5
males (1 neutered), with a median age of 131 months (range 94—181). The results obtained
showed increased levels of palmitoleic and oleic acids as well as the total MUFA content on
DM dogs when compared to the healthy dogs. These fatty acids cannot derive from the
enzymatic transformation of palmitic acid by the delta-9 desaturase and their increased levels
indicate an accelerated A9 desaturase activity on the DM dogs. The activation of this enzymatic
transformation is known to be related to the insulin response and the carbohydrate
management, which is connected to lipid biosynthesis through the pyruvate and acetyl-CoA

pathways.

In the current study, we provided the first panel of erythrocyte membrane fatty acids in healthy
dogs choosing a cohort representative for the main structural and functional roles of these
hydrophobic molecules in the cell membrane compartment. and demonstrated a first utility of
the interval values established for healthy dogs to evaluate the condition of these two
pathological conditions. The results obtained from this study indicate that the erythrocyte
membrane lipidome of animal samples may be successfully applied in veterinary medicine and
provide important of the cell membrane status in physiological and pathological conditions and

a better understanding to how membranes are influenced by dietary habits.
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CHAPTER 1: Introduction
1.1 Lipids

Lipids are molecules essential for life with important biological roles within structural,
functional and signaling activities. They are known to be highly dynamic since they are
constantly changing along with physiological, pathological, and environmental conditions (van
Meer et al. 2018). The structural disposition of protein channels and lipid components
influencing fluidity and permeability, as well as the presence of specific fatty acid components
in membrane phospholipids, involving receptor functioning and intra/inter cellular signaling,
provide proper conditions for physiological operations (Giacometti et al.2017; Ferreri and
Chatgilialoglu 2012). Fatty acids (Fig.1), as structural components of membranes and
inflammation/anti-inflammatory mediators, have well-known protective and regulatory effect

(Ferreri et al. 2017)

SFA - Saturated MUFA - PUFA - Polyunsaturated
fatty acids Monounsaturated fatty acids:
fatty acids w3 w6
Palmitic Palmitoleic EPA Linoleic
Stearic Oleic DHA Diomo-gamma-linolenic
Vaccenic Arachidonic

Figure 1. Structural demonstration of fatty acids according to the three fatty acid families

(SFA, MUFA and PUFA)

Lipids are molecules essential for life with important biological roles within structural,
functional and signaling activities. They are known to be highly dynamic since they are
constantly changing along with physiological, pathological, and environmental conditions (van
Meer et al. 2018). The cell membrane lipidomics is based on homeostatic balance of the fatty
acid metabolic pathways (Fig.2) and can give us important information on the composition
activity and the cause of oxidative stress in the cellular membranes (Giacometti et al. 2017;

Berliner and Watson 2005; Tsimikas et al. 2006).
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C16:0 A9 desaturase (C16:1-A9)

Palmitic acid — Palmitoleic acid
Elongase
l Elongase l 9
(C18:1-A11)
(C18:0) Vaccenic acid
Stearic acid
A9 desaturase l
(C18:1-A9)
Oleic acid

Figure 2. The main transformations of the SFA-MUFA pathway. The SFA (palmitic and stearic
acids) transform into MUFA (palmitoleic, oleic and vaccenic acids) with the help of enzymatic activity

(elongase and A9 desaturase).

1.2 Lipidomics

Lipidomics is the discipline that gathers lipids, not only considering lipid structures and their
transformations, but also providing a “dynamic” interpretation of lipid diversity and functions
in view of cellular, metabolic and environmental conditions influencing living organisms (Han
2016). The lipidomic research covers a wide range of topics, going from physiological to
oxidative and pathological processes (Ni et al. 2019; Zhao et al. 2014). With the use of
lipidomics a large set of data can be acquired, giving important information about the entire
lipidome and its variations as a fingerprint of health status (Quehenberger et al. 2010; Wong et

al. 2019).

The physiological importance of lipids is illustrated by the numerous diseases to which lipid
abnormalities contribute including atherosclerosis, diabetes, obesity, and Alzheimer's disease
(Watson 2006). Cholesterol has been early identified as an important risk factor of heart disease

(Kuburovic et al. 2017; Bays et al. 2017).

Many diseases are characterized by dysregulated lipid metabolism and alterations of lipid
profiles that can precede the onset of diseases, rather than being a consequence (Markgraf et

al. 2016), allowing the development of specific disease biomarkers.
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Lipidomic approaches were applied to study diseases ranging from cancer to metabolic
diseases such as obesity and diabetes (Wang et al 2003; Sefiars et al. 2003; Berliner and Watson
2005; Holland and Summers 2008Sewell et al. 2012; Fan et al. 2015; Rojas-Gutierrez et al.
2017).

The role of lipids in health and disease in humans has been recognized for many decades and
over the last fifteen years there has been an intense effort to develop suitable methodologies to
discover, identify, and quantitatively monitor lipids in biological systems. That led to a
dramatical increase on the use lipidomics in order to discover biomarkers or to better

understand pathological mechanisms

The development of shotgun lipidomics accelerated the process of gathering information on
thousands of lipid molecules in different organisms and conditions, going from yeast, virus and
bacteria to murine models and humans (Jain et 1. 2013; Klose et al. 2012; Pradas et al. 2018;
Zhao et al. 2015). In particular, the membrane lipidome has a central place in a
multidisciplinary context of biophysical, biological, pharmacological and clinical studies that
demonstrates its importance in fundamental processes such as cell formation, regeneration and
metabolic regulation (Casares et al. 2019; Ferreri et al. 2016; Zhu et al. 2015). Focusing on
membrane glycerophospholipids, the analysis of the two fatty acid chains esterified to the
glycerol moiety led to the discovery of positional and geometrical isomers and of the
homeostatic balance created by these hydrophobic molecules, based on the fact that the fatty
acid structures influence bilayer thickness, permeability, fluidity and membrane protein
functions (Casares et al/ 2019; Ferreri et al. 2016; Zhu et al. 2015; Diaz et al. 2019;Ferreri and
Chatgilialoglu. 2012) [10-14]. In Figure 3 the main fatty acid types are shown, that can be
saturated (SFA), monounsaturated (MUFA) and polyunsaturated fatty acids (PUFA) (Prasinou
et al. 2020).
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Figure 3. (A) The structure of fatty acids considered in the present work. Together with the common
names, the abbreviations describe the position and geometry of the double bonds (e.g., 9¢ for
palmitoleic acid), as well as the notation of the carbon chain length and total number of double bonds
(e.g., C18:1). For polyunsaturated fatty acids (PUFA) in the parenthesis their acronyms are indicated.
(B) Molecular structures of glycerophospholipids with the two fatty acid residues at the C-1 and C-2
positions of the glycerol moiety (in red), whereas in the C-3 position the polar head group is connected

(examples of polar heads: ethanolamine, serine and choline).

Application of fatty acid-based membrane lipidomics to human health is a hot topic of
research, comparing healthy controls with disease subjects (Sansone et al. 2016; Amézaga et

al. 2018; Gai et al. 2019; Harris et al. 2013). Lipidomic analysis of tissue highlights local
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alteration, however the necessity of sequential biopsies may be unpractical in a first screening
clinical setting, as it occurs in diseases such as cancer (Bardelli et al. 2017). Plasma was
considered to follow a similar lipidomic pattern of that of the tissues (Arab 2003), however
nowadays it is well known that the lipid content of plasma can be greatly affected by the recent
dietary intake (Timlin and Parks 2005; Barrows and Parks 2006). Lipidomic analysis of the red
blood cell seems to overcome these limitations: indeed, erythrocytes come in contact with all
the bodily districts as they travel for the duration of their life (approximately 120 days), and
they are informative of metabolic, nutritional and healthy conditions of long term dietary habits
(Ebaugh et al. 1953); therefore it can be considered a representative cell of the general health
status (Table 1). Secondly, blood sampling necessary for lipidomic analysis is a routinely
performed technique, non-invasive with the possibility to obtain several samples over time.
Furthermore, analyses carried out on plasma give information about lipid metabolism of a few
weeks before withdrawal, whereas blood cell membrane fatty acids (e.g. RBC) account for
more stable information obtained from metabolic transformations together with stabilized

dietary contributions (Ferreri and Chatgilialoglu 2012).

N e AT

(%rel) (%rell (%ral)
18:2, omega-6, LIN 10.5 175

20:4 , omega-6, AA 0.3 15.2 1.7 9.6 Td

20:3, omega-6, DGLA 0.2 15 1.6 nd 1.2

20:5, omega-3, EPA traces 0.7 0.4 0.1 traces

22:6, omega-3, DHA 0.3 3.2 3.4 19.7 7.2

SFA 2¢.2 43.1 42.0 48.2 45.9

MUFA 29.7 23.0 23.8 14.2 28,7

PUFA 134 333 32.0 372 234

Table 1. The red blood cell — RBC with all classes of lipids. Looking at all the different tissues it can
be observed that the families of fatty acids have a similar contribution across tissues but different

quantities of each fatty acid characterize the specific tissue.

Fatty acid analysis can be carried out starting from a non-invasive blood withdrawal, separating
blood fractions that contain molecular information at different metabolic levels [(Harris et al.
2012; Furtado et al. 2019). In fact, while plasma informs on the daily fatty acid dietary intakes,
cell membrane fatty acids result from more complex contributions of physiological and

metabolic processes together with nutritional intakes. Erythrocytes are the most numerous cell
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type in blood (Sender et al. 2016) and their membrane homeostasis derives from the
distribution of the various fatty acid types, playing roles in several functions, such as for
example oxygen distribution. Having lost DNA very early, RBC fatty acids cannot come from
biosynthesis, but derive from exchange with lipoproteins and tissues. In this scenario, it is
worth mentioning that eukaryotic cells need essential fatty acids (EFA), such as omega-3 and
omega-6 PUFA, that must be taken daily from the diet in order to be processed enzymatically
in the body and provide long chain PUFAs. The PUFA pathways, together with SFA and
MUFA, contribute to the formation of the cellular lipid pool and subsequently to the specific
fatty acid biodistribution in RBC membranes as well as in the various organs. The RBC fatty
acid composition is informative of levels reached in tissues (fig, like muscle and liver, and also
in tissues not withdrawable during life, like retina and brain (Makrides et al. 1994; Baur et al.

2000; Acar et al. 2012; Abbott et al. 2012).

Analysis of erythrocyte membrane lipidome represents a powerful diagnostic tool in humans
for assessing the quantity and quality of fatty acids and for the follow-up of the membrane fatty
acid remodeling that is associated with different physiological and pathological conditions

(Ferreri et al. 2017; Acar et al. 2000).

1.3 Lipidomics in the Veterinary field

The analysis of erythrocytes in animals is also reported in veterinary, monitoring different
health conditions and supplementations (Ferreri and Chatgilialoglu 2015; Stoecle et al. 2011;
Mehta et al. 1991). However, a systematic study of the membrane fatty acids of domestic
animals (dogs and cats) to evaluate the healthy membrane balance for different animal species

and pathologies has not yet been established.

1.3.1 Chronic Enteropathy in the Veterinary field

Canine chronic enteropathies (CE) are chronic, inflammatory processes that affect the
gastrointestinal tract of dogs and, according to the response to subsequentially therapeutic trial,
are represented by food-responsive enteropathy (FRE), antibiotic-responsive enteropathy
(ARE) and immunosuppressant-responsive enteropathy (IRE). Dogs not responding to
treatment are categorized as having non-responsive enteropathy (NRE) (Washabau et al. 2010;

Dandrieux 2016).
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In addition to this classification, dogs with loss of protein across the gut are grouped as protein-
losing enteropathy (PLE), highlighting the more guarded prognosis of this particular form of
CE compared to dogs with normal serum albumin concentration (Craven et al 2005; Allenspach
et al. 2007).

The dysfunction in the interaction between the mucosal immune system, the intestinal
microbiota and dietary components are considered the trigger for the aberrant inflammatory
response, however knowledge on the underlying mechanisms of chronic enteropathy are still
in its infancy (Hall 1994; German et al. 2003; Washabau et al. 2010; Suchodolski et al. 2012).
Lipids are critical to cell membrane structure and fluidity, mucus production and barrier
integrity; furthermore, fatty acids are incorporated into phospholipids of the membrane bilayer
and they are recognized as key components of multiple signal transduction cascades, including

those associated with the activation and resolution of inflammation (Serhan et al. 2008).

In the recent years along with the development of the molecular medicine, membrane lipidome
and fatty acid-based functional lipidomics became important tools to examine the membrane
compartment, evidencing a relationship between health and lipidome composition (Hu et al.
2009; Ferreri and Chatgilialoglu 2012; Ferreri et al. 2017) and lipid alterations have been
observed in several canine conditions including idiopathic hyperlipidemia (Xenoulis et al.
2007), diabetes mellitus (Seage et al. 2018), renal disease (Behling-Kelly 2014; Smith et al.
2017), parvoviral or systemic infections (Yilmaz and Senturk 2007; Giiltekin et al. 2017).
Lipidomic analysis of tissue highlights local alteration, however the necessity of sequential
biopsies may be unpractical in a first screening clinical setting, as it occurs in diseases such as
cancer (Bardelli et al. 2017). Plasma was considered to follow a similar lipidomic pattern of
that of the tissues (Arab 2003), however nowadays it is well known that the lipid content of
plasma can be greatly affected by the recent dietary intake (Timlin and Parks 2005; Barrows
and Parks 2006). Lipidomic analysis of the red blood cell seems to overcome these limitations:
indeed, erythrocytes come in contact with all the bodily districts during their life of 120 days,
and they are informative of metabolic, nutritional and healthy conditions of long term dietary
habits (Ebaugh et al. 1953); secondly, blood sampling necessary for lipidomic analysis is a
routinely performed technique, non-invasive with the possibility to obtain several samples over
time.

Increasing evidence, in both humans and rodents, suggest that inflammation alters lipid
utilization in the intestine. Indeed, ulcerative colitis (UC) and active and inactive Crohn disease

patients had a significantly higher proportion of tissue saturated fatty acids (SFA) and long-
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chain -3 and -6 polyunsaturated fatty acids (PUFA) with a concomitant decline in MUFA
(Pacheco et al. 1987; Nishida et al. 1987; Buhner et al 1994; Fernandez-Banares et al. 1997).
Membrane phospholipids of circulating erythrocytes in IBD patients had higher concentrations
of linoleic acid and total -6 PUFA, without difference in ®-3 levels compared to control group
(Ueda et al. 2008). Recently, significant variances were identified in the plasmatic
phospholipid profiles of dogs with inflammatory bowel disease and food-responsive diarrhea
(Kalenyak et al. 2019). At molecular level, it is also known that SFAs induce inflammatory
signalling by stimulating toll-like receptors TLR2 and TLR4, whereas PUFA and, in particular
the omega-3 docosahexaenoic acid (DHA) is able to contrast such cascade (Hwang et al. 2016).
Mechanisms for the activation of Toll-like receptor 2/4 by saturated fatty acids and inhibition
by docosahexaenoic acid. (Eur. J. Pharmacol. 785, 24-35). On the other hand, long chain fatty
acids (LCFA) have different roles in the regulation of the intestinal barrier and functions,
therefore the fatty acid profile of the individuals has become more and more important for the
deep understanding of the molecular asset that influences pathological conditions (Ma et al.

2019).

1.4 Aims and Objectives

In human studies, there has been a contribution to research in membrane fatty acid-based
lipidomics making the arbitrary choice of analyzing a specific fatty acid cohort of erythrocyte
membrane glycerophospholipids, made of 10 cis fatty acids representative of SFA, MUFA and
PUFA families (Ferreri et al. 2016). Their interval values in healthy cohorts were reported in
membrane fatty acids by several studies (Heude et al. 2003; Giacometti et al. 2017; Pallot et
al. 2019) and in one of the most complete meta-analysis appeared in the literature (Hodson et
al. 2008). Taking into account that novel fatty acid pathways and transformations are
continuously studied (Sansone et al. 2013) it is important to make the strategic choice of a 10
fatty acids cohort considering their fundamental biochemical/biological roles and the

consensus reached about their levels in cell membranes.

By these premises, we considered whether analogous data are reported in domestic animals,
finding only a few studies on plasma or other tissues (brain, sperm) and on correlations between
dietary uptake and lipidomic profiles of dogs (Snigdha et al. 2011; Hall et al. 2012; Risso et al.
2016; Sieber-Ruckstuhl et al. 2019; Boretti et al. 2020). Limited studies presented a small
number of samples (Mehta et al. 1991; Fuhrmann et al. 2006), focusing for example on PUFA
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(omega-6 and omega-3), and not deepening the different fatty acid families which are instead
important for molecular contribution to membrane homeostasis (Stoeckel et al. 2011).

In addition, analyses conducted on plasma provide information essentially related to the daily
dietary intake, while the lipidomic analysis conducted on the erythrocyte membrane provides
information derived from endogenous metabolic processes balanced by the effects of the diet
(Ferreri et al. 2016).

Although fatty acids are recognized to be crucial for all animals (Siobhan et al. 2017) an effort
to build up the methodology for fatty acid-based membrane lipidomics in the veterinary field
is missing.

In the current study we propose a systematic methodology for erythrocyte fatty acid-based
membrane lipidomics in healthy dogs, extending our previous studies of human healthy and
disease conditions (Ferreri et al. 2016).

The erythrocyte membrane profile is nowadays a well-assessed tool for the evaluation of both
stabilized dietary habits and metabolic processes and this is an important information to gather
especially in case of intestinal diseases, where the nutritional strategy can be relevant for local
and systemic effects. Indeed, it is well known that malnutrition is associated with intestinal
diseases (Sugihara et al. 2019) therefore it is often suggested a “balanced diet” that in many
cases needs to be personalized.

In the present work we evaluated the composition of fatty acids in erythrocyte membrane
phospholipids in a group of clinically healthy dogs (n = 68), focusing on the interval ranges of
the 10 cis fatty acid cohort previously used for humans. We are also interested in teh
correlations with dog characteristics such as age and bodyweight. The general aim of this work
is to create a benchmark of fatty acid interval values in the membrane lipidome of healthy
animals, useful to start a systematic approach for the examination of metabolic and nutritional

status in healthy and diseased dogs.

Lipidomics is an important aspect of personalized medicine in relation to nutrition and
metabolism and it is aiming to individuate molecular profiles and indicate personalized nutra-
strategies, useful to keep a healthy balance or to synergize with pharmacological treatments
(Brenner 2016). It is therefore of high interest to be able to apply this methology in order to
investigate the analysis of erythrocyte membrane lipidome for assessing the quantity and
quality of fatty acids in the erythrocyte membrane lipidome of dogs with pathological
conditions such as CE and DM.
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CHAPTER 2: LIPIDOMIC ANALYSIS
2.1 MATERIALS AND METHODS

2.1.1 Chemicals

Table 2. The materials used on this project with the corresponding suppliers

Materials Company
TITOLCHIMICA, Pontecchio Polesine (Ro)
n-Hexane 95% Italy
TITOLCHIMICA Pontecchio Polesine (Ro)
Methyl alcohol HPLC Italy

Chloroform extra pure 99.5%

TITOLCHIMICA Pontecchio Polesine (Ro)
Italy

PBS pH 7.4 RS

Carlo Erba, Milan ( Italy)

Polar Lipid Mixture (quantitative)

MATREYA LLC State College, PA, USA

non-Polar Lipid Mixture B (quantitative)

MATREYA LLC State College, PA,USA

Phosphatidylserine

MATREYA LLC State College, PA, USA

L-a-Phosphatidylcholine

Merck, Darmstadt. Germany

ALUGRAM Xtra sheets 200x200mm

Carlo Erba, Milan Italy

Potassium hydroxide, pellets RPE - For analysis

Carlo Erba, Milan Italy

Sodium sulfate anhydrous RS - For anhydrification

Carlo Erba, Milan Italy

C16:0 — palmitic acid methyl ester

Merck, Darmstadt Germany

C16:1 — palmitoleic acid methyl ester

Merck, Darmstadt Germany

C18:0 — stearic acid methyl ester

Supelco, Bellefonte, PA, USA

9c, C18:1 — oleic acid methyl ester

Merck, Darmstadt. Germany

I1c, C18:1 — vaccenic acid methyl ester

Supelco, Bellefonte, PA ,USA

LA omega-6 — C18:2 — linoleic acid methyl ester

Merck, Darmstadt Germany

DGLA omega-6 — C20:3 dihomogammalinolenic acid methyl
ester

Merck, Darmstadt Germany

ARA omega-6 C20:4 — arachidonic acid methyl ester

Merck, Darmstadt Germany

EPA omega-3 — C20:5 — eicosapentaenoic acid methyl ester

Supelco, Bellefonte, PA, USA

DHA omega-3 — (C22:6 — docosahexaenoic acid methyl ester

Merck, Darmstadt Germany

Supelco 27 component FAME mix

Supelco, Bellefonte, PA, USA

Materials were used as received.

2.1.2 Inclusion criteria and samples collection

Blood samples from healthy and diseased dogs were collected in EDTA tubes from the medical
staff of the VTH of Teramo and of other Veterinary Hospitals. The samples were stored at 40C,

for a maximum of 15 days.
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All the subjects have been selected based on physical examination and haemato-biochemical
laboratory workup.

2.1.2.1 Ethical Statement

The project has been approved by the Health Ministry and the Committee on Animal Research
and Ethics of the Universities of Chieti-Pescara, Teramo and Experimental Zooprophylactic
Institute of AeM (CEISA), Protocol UNICHD12 n.1168 (Chieti, March 19, 2018). In addition,

a written informed consent by the animal’s owners is being acquired.

2.1.2.2 Healthy Dogs

Inclusion criteria for the study were: healthy dogs without any clinical or pathological evidence
of disease accordingly to unremarkable history, physical examination and results of CBC,
serum biochemistry and voided urine analysis (Table 3) within the reference range for each
dog.

Table 3. Complete blood count, serum chemistry and urine parameters evaluated to
determine the healthy status of enrolled healthy dogs.

Variable (Unit of measure) Manufacturers
Red Blood Cells (cells/mm?) ADVIA 2120;
Hematocrit (%) Siemens Healthcare Diagnostics
Hemoglobin (g/dL)
Mean Cell Volume (fL.)

Mean Platelet Volume (fL)
Mean Corpuscular Hemoglobin Concentration
(g/dL)
Mean Corpuscular Hemoglobin (pgr)
Red Blood Cell Distribution Width (%)
White Blood Cells (cells/mm?)
Neutrophils (cells/mm?)
Lymphocytes (cells/mm?)
Monocytes (cells/mm?)
Eosinophils (cells/mm?)
Platelets (cells/mm?)
Basophils (cells/mm?)
Microscopic evaluation blood smear
Creatinine (mg/dl) OLYMPUS AU 400;
Urea (mg/dl) Olympus-Beckman Coulter
Total calcium (mg/dl)
Ionized calcium (mmol/l)
Phosphate (mg/dl)
Sodium (mEqg/])
Chloride (mEgq/1)
Potassium (mEq/])
Magnesium (mg/dl)

27



Variable (Unit of measure) Manufactuarers

Total proteins (g/dl)
Albumin (g/dl)
Albumin-to-globulin ratio OLYMPUS AU 400;
Glucose (mg/dl) Olympus-Beckman Coulter

Fructosamine (mg/dl)
Aspartate transaminase (U/])
Alanine transaminase (U/])
Gamma(y)-glutamyl transferase (U/1)
Alkaline phosphatase (U/I)
Total bilirubin (mg/dl)

Total cholesterol (mg/dl)
Triglycerides (mg/dl)

Lipase (U/l)

Amylase (U/])
c-reactive protein (mg/dl)

Iron (ng/dL)

Total Iron Binding Capacity (ug/dL)
Latent Iron Binding Capacity (ug/dL)
Iron Saturation (%)

Urinary Specific Gravity Refractometer; American Optical
Urine dipstick examination Comburl0Test; Roche Diagnostic
Microscopic evaluation urine sediment

Furthermore, recruited dogs were on commercial diet and did not receive supplements and
medications in the previous 4 months (except regular preventive treatments for ecto- and

endoparasites and prophylactic vaccination), as ascertained by an interview with the owners.
2.1.2.3 Dogs diagnosed with Chronic Enteropathy

Dogs with primary chronic gastrointestinal signs presented to Veterinary Teaching Hospitals
of the Universities of Teramo and Bologna and to the Veterinary Hospital “I Portoni Rossi”,

Italy, were prospectively enrolled in the study.

Dogs were eligible for the study if they had at least 3-week history of clinical signs consistent
with CE, including vomiting, diarrhea, borborygmus, hyporexia, abdominal pain and/or weight

loss.

The Canine Chronic Enteropathy Clinical Activity Index (CCECAI) (Allenspach. et al 2007)
and the body condition score (BCS) were obtained for each patient and every dog underwent a
5-day course of fenbendazole 50 mg/Kg once a day regardless to the faecal tests results.

Moreover, all dogs underwent complete blood count, serum chemistry panel, evaluation of
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basal cortisol, c-reactive protein (CRP), canine Trypsin-like Immunoreactivity (¢TLI), folate,

cobalamin and abdominal ultrasound.

Based on the retrospective diagnosis achieved considering the clinical response to sequential
therapeutic trials, dogs affected by chronic enteropathy (CE) were further divided into 4
subgroups (Washabau et al. 2010; Dandrieux 2016). The FRE group included patients with
complete remission of the gastrointestinal symptoms within 3 weeks of dietetic trial with a new
exclusive diet (hydrolysed or restricted antigen diet); the ARE group included patients with
partial or no response to dietetic trial but complete remission of the gastrointestinal symptoms
within 3 weeks of antibiotic trial with tylosin at dose of 15 mg/Kg twice a day; the IRE group
included patients that neither responded to diet nor to antibiotics and that went to complete
remission on antinflammatory/immunosuppressive drugs such as prednisolone or budesonide.
Regardless to the diagnosis (i.e. FRE, ARE, IRE), those patients with low albumin
concentration (< 2 mg/dl) due to a severe loss of serum proteins into the intestine were further
classified into the PLE sub-group. For IRE, NRE and PLE dogs a histopathological analysis of

multiple gastrointestinal endoscopic biopsies was available.

Exclusion criteria were the presence of extra-gastrointestinal disease or exocrine pancreatic
insufficiency and recent (< 1 month) anti-inflammatory/immunosuppressive and/or antibiotics

treatment and dietary -3 supplementation in last 4 months.
2.1.2.4 Dogs diagnosed with Diabetes Mellitus

All the diseased animals were selected based on diagnostic international guidelines. Dogs were
diagnosed with DM based on consistent clinical signs, and persistent fasting hyperglycaemia

and glycosuria.

Dogs with signs of presence of Diabetic Ketoacidosis or other concurrent relevant disorders
or/and dogs that received supplementation with ®3 or medications in the last 4 months were

excluded from the study.

2.1.3 Lipidomic analysis of the blood samples

The steps of the protocol procedure are depicted in the following figure (4).
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Figure 4. The 8 steps of the fatty acid-based erythrocyte membrane lipidomic analysis.

2.1.3.1 Isolation of phospholipids from erythrocyte membranes

Step 1: separation of red blood cells from plasma, effected on 1 mL of fresh EDTA-treated
whole blood sample, by two consecutive centrifugations (3000 g x 5 min, each) followed by
plasma removal. Step 2: cell washings (2 times) with phosphate buffer (0.5 mL) followed by
centrifugation (3000 g x 5 min, each) and elimination of supernatant. Step 3: lysis of
erythrocytes by twice mixing cells with distilled water (1 mL), followed by centrifugation
(15000 g x 15 min), in order to eliminate the aqueous layers and to obtain the erythrocyte
membrane pellet. Step 4: the pellet was added by a mix of 2:1 chloroform:methanol (2 mL)
and partitioned with pure water (1 mL) according to the Folch’s procedure (Folch J. et al.,
1957), for the lipid extraction. The organic layer was separated and evaporated under vacuum

to dryness.
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2.1.3.2 Thin Layer Chromatography - TLC

Step 5: This procedure determines the efficacy of the lipid extraction using
chloroform/methanol/water 65:25:4 to determine the purity of the phospholipid fraction
(Fuchs B. e al., 2011).

2.1.3.3 Transesterification procedure

Step 6: The phospholipid extract was transesterified at room temperature for 10 min with 0.5
M KOH/MeOH to obtain the fatty acid methyl esters (FAME), derived from the fatty acid
residues present in membrane glycerophospholipids. This chemical procedure avoids oxidative
and degradation reactions and gives the fatty acid composition which represents that of the
membrane, as ascertained using appropriate MUFA and PUFA internal standards. FAME were
extracted by partition between n-hexane (2 mL) and water (0.5 mL), followed by evaporation
of the organic phase under vacuum to dryness. Steps 7 and 8: analysis using gas

chromatography (GC) as described below.

2.1.3.4 Gas Chromatography (GC)
Step 7 of the protocol (fig 5): GC analysis and identification by standard references.
2.1.3.4.1 Calibration procedure

Firstly, GC analysis of the commercially available reference standard materials for the 10 fatty

acids of the cluster was performed as follows:

For this study we chose to study a cluster of 10 fatty acids, which also corresponds to
chromatographic peak areas >97%. This cluster consists of: 2 saturated fatty acids (SFA:
palmitic and stearic acids); 3 monounsaturated fatty acids (MUFA, palmitoleic, oleic and cis-
vaccenic acids); 3 polyunsaturated fatty acids omega-6 (PUFA, linoleic, dihomo-gamma
linolenic, arachidonic acids); 2 polyunsaturated fatty acids omega-3 (PUFA, eicosapentaenoic

and docosahexaenoic acids) (table 4).
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Table 4. The 10 fatty acids that were chosen for this study. Common name, name I[UPAC and
their chemical formula is demonstrated,

FATTY ACIDS COMMON NAME IUPAC FORMULA
NAME
1 C16:0 palmitic Hexadecanoic CH3s(CH;)14,CO0H
2 9¢,C16:1 palmitoleic (92)-Hexadec-9-enoic CH3(CH2)sCH=CH(CH:);COOH
3 C18:0 stearic Octadecanoic CHs(CH2)1sCH
4 9¢,C18:1 oleic (92)-Octadec-9-enoic acid CH3(CH2)7CH=CH(CH:),COOH
5 11c,C18:1 Cis-vaccenic (E)-Octadec-11-enoic CH3(CH2)4CH=CH(CH)7COOH
6 9¢,12¢,C18:2 Linolenic (LA) (92,127)-9,12-Octadecadienoic CH3(CH2)4CH=CHCH2CH=CH(CH,),C
OOH
7 8c, 11¢,14¢,C20:3 Dihomo-gamma  8,11,14-eicosatrienoic C20H3402
linolenic (DGLA)
8 5¢,8¢,11¢,14¢,C20:4  Arachidonic 5,8,11,14-eicositetraenoic CH3(CH2)4CH=CHCH2CH=CHCH,CH=
(AA) CHCH2CH=CH(CH)sCOOH
9 EPA EPA (52,82,112,142,172)- CHs(CH2)12COOH
5,8,11,14,17-eicosapentaenoic
10 DHA DHA 4,7,10,13,16-docosatetraenoic CHsCH2CH=CHCH2CH=CHCH,CH=CH
CH2CH=CHCH2CH=CHCH2CH=CH(CH
2)2COOH

The quantitation of the fatty acids was carried out by calibration procedures, for which the

following protocol has been followed:

initially a n-hexane (HPLC grade, Titolchimica) 5SmM solution of stearic acid methyl ester (2
mg in 1340 pL) was prepared and 1pl was directly injected to the Agilent 7890B GC system
equipped with a flame ionization detector and a DB-23 (50%-Cyanopropyl)-
methylpolysiloxane capillary column (60 m, 0.25 mm i.d., 0.25 pm film thickness). The
following oven conditions were established to be kept for all the analyses: the initial
temperature was 165 °C, held for 3 min, followed by an increase of 1 °C/min up to 195 °C,
held for 40 min, followed by a second increase of 10 °C/min up to 240 °C, held for 10 min.
The carrier gas was hydrogen, held at a constant pressure of 16.482 psi. The injections were

repeated in triplicates.

32



The second round of injections for calibration was then performed with 0.5 mM solution of the
same fatty acid methyl ester (taking 100uL of the initial solution and diluting with 900uL of n-

hexane), injecting 1 pL as previously described for triplicates.

The same protocol was carried out using dilutions of 0.05mM, 0.005mM and 0.0005mM of

stearic acid methyl ester.

In all the injections a calibration curve was created using the software of the GC equipment

(Agilent 7890B GC system).

Using the concentration of 0.0005mM for methyl stearate, the corresponding peak area was
detectable but not quantifiable, indicating this concentration as the limit of detection (LOD) of
the specific GC system (<0.5nM). The same protocol has been followed for all the fatty acids
of the cohort. Calibration curves were obtained for the quantitative analysis of each peak of the

chromatogram and are shown below in Figure 5.
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Figure 5. Calibration curves of the 10 fatty acids at high (0.5-5mM) and low (0.001-0.5mM)
concentration ranges, chosen as representatives of the SFA, MUFA and PUFA families present in the
erythrocyte membrane phospholipids.

35




2.1.3.4.2 GC Analysis of FAME

The FAME mixture obtained from the erythrocyte membrane pellet was dissolved in 20ul of
n-hexane and 1ul was directly injected to the Agilent 7890B GC (Agilent, Milan) system
equipped with a flame ionization detector and a (50%-cyanopropyl)-methylpolysiloxane
capillary column (60 m, 0.25 mm i.d., 0.25 pum film thickness) (DB-23, Agilent; Milan). The
initial oven temperature was 165 °C, held for 3 min, followed by an increase of 1 °C/min up to
195 °C, held for 40 min, followed by a second increase of 10 °C/min up to 240 °C, held for 10
min (figure 6).

250
240 4
230 4
220 1
210+
200
190 4
160 4
170
160 4

15[] T T T T T T T T 1
0 10 20 30 40 50 &0 70 80 a0

Temperature (°C}

Time(min)

Figure 6. The temperature program of the gas chromatograph. Total program duration: 87 minutes.
165°C for 3 minutes. Increase to 195°C for 40 minutes (rate 1°C/min). Increase to 240°C for 10 minutes
(rate 10°C/min). Increase to 250°C for 10 minutes.

The carrier gas was hydrogen, held at a constant pressure of 16.482 psi. FAMEs were identified
by comparison with the retention times of standard references. In agreement with previously
reported procedures, satisfactorily separating all the 10 fatty acids, without superimposition of
other peaks [(Sansone A. et al., 2016) (Amézaga J. et al., 2018) (Giacometti G. et al., 2017)
(Sansone A. et al., 2013)]. A representative chromatogram is demonstrated below on Figure 7.
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Figure 7. Representative GC chromatogram of the FAME obtained from dog erythrocyte membrane
phospholipids after work-up, as described in the main text. The 10 fatty acids chosen for the cluster
are satisfactorily separated and recognized by appropriate standard references. The sum of their areas
corresponds to >97% of the total peak areas.

The group of 10 fatty acids corresponds to chromatographic peak areas >97%, and consisted
of: 2 saturated fatty acids [SFA: palmitic (C16:0) and stearic acids (C18:0)]; 3
monounsaturated fatty acids [MUFA, palmitoleic (C16:1), oleic (9¢,C18:1) and cis-vaccenic
(11¢,C18:1) acids]; 3 polyunsaturated fatty acids omega-6 [PUFA, linoleic (LA, C18:2),
dihomogammalinolenic (DGLA;C20:3) and arachidonic (ARA, C20:4)]; 2 polyunsaturated
fatty acids omega-3 [PUFA, eicosapentaenoic (EPA, C20:5) and docosahexaenoic (DHA,
(C22:6) acids]. Step 8: Using the calibration curves, the quantitative values for each peak were

obtained as pg/mL allowing to calculate also the total fatty acid contents (total SFA, total
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MUFA, total PUFA), ratios between the families (SFA/MUFA, omega-6/omega-3) and three
indexes (unsaturation index, peroxidation index, PUFA balance). The obtained data for each
fatty acid is expressed as % of its quantity (% quant. rel.) respect to the sum of the 10 fatty acid

quantities taken as 100%.

2.1.3.5 Statistical Methods

Statistical analysis was performed using GraphPad Prism 6.01 software (GraphPad Software,
Inc., San Diego, CA). All data were evaluated using a standard descriptive statistic and reported
as mean + standard deviation (sd) or as median and range (minimum-maximum), based on their
distribution. Normality was checked graphically or using the D’Agostino Pearson test. A
comparison between 2 groups was done using the unpaired 7 test or the Mann-Whitney test.
According to the distribution of data, Pearson or Spearman correlations were used to evaluate
the relationship between fatty acids percentages or fatty acids indexes with bodyweight and
age. The threshold for the statistical significance (p value) was set up at 0.05. The distribution

graphs were produced using Past 3.14 software.

38



39



2.2 RESULTS

2.2.1 The erythrocyte membrane lipidome in healthy dogs

Blood samples were collected from 68 clinically healthy dogs, including 30 males (6
neutered) and 38 females (12 sterilized), weighting from 2.6 to 43 kg, aged from 2 to 156
months (median 41). In the following table (5) the characteristics (breed, sex, age, and

bodyweigh) of the cohort of HD are presented.

Table 5. Characteristics of the recruited healthy dogs (n=68). Breed, sex, age and bodyweight
are reported. M: male; F: female; Mn: neutered male; Fs: spayed female.

n Breed Sex Age (months) Bodyweight (kg)
1 Boxer M 36 30

2 Boxer F 34 24,5
3 Mixed-breed Fs 48 8

4 Boxer F 42 22

5 Mixed-breed F 63 8

6 Dobermann F 40 35

7 Mixed-breed F 75 8

8 Romagna Water Dog M 38 14

9 Italian Mastiff M 2 8

10 Romagna Water Dog  F 52 13
11 Mixed-breed F 12 22
12 Mixed-breed F 12 21.8
13 Alaskan Malamute M 29 25
14 Boxer M 36 35
15 Mixed-breed Fs 96 29.5
16 Mixed-breed M 08 17.5
17 Mixed-breed M 6 17.5
18 Mixed-breed Fs 20 24.6
19 Mixed-breed Mn 26 8

20 Golden Retriever M 112 25,8
21 Italian Mastiff M 5 29
22 Mixed-breed Mn 90 14
23 Mixed-breed M 36 30,1
24 Mixed-breed Mn 12 6.7
25 Mixed-breed Fs 60 20
26 Mixed-breed F 48 16
27 Mixed-breed Mn 36 22
28 Mixed-breed M 36 24
29 Border Collie M 65 30
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n Breed Sex Age (months) Bodyweight (kg)
30 Mixed-breed Fs 48 28
31 Breton Mn 48 17
32 Rottweiler F 9 35
33 Miniature poodle F 48 2,6
34 Maremma Scenthound F 24 12
35 Golden Retriever Fs 156 29
36 Maremma Scenthound Fs 31 16
37 Border Collie F 9 10
38 Cocker Spaniel F 80 15
39 Labrador Mn 91 30
40 Pinscher M 83 5
41 Mixed-breed M 36 4

42 Mixed-breed M 110 15,85
43 Border Collie F 18 22
44 Mixed-breed Fs 118 18
45 Siberian Husky F 102 24
46 Siberian Husky Fs 138 26
47 Labrador Fs 30 28
48 Mixed-breed M 117 7

49 Labrador M 6 32
50 Labrador M 80 43
51 Labrador M 52 35
52 Labrador F 122 40
53 Labrador F 24 32
54 Labrador F 85 35
55 Labrador F 24 39
56 Labrador F 24 30
57 Labrador F 35 35
58 Labrador F 50 35
59 Labrador M 22 43
60 Miniature poodle Fs 29 6

61 Jack Russell Terrier M 51 7

62 Cocker Spaniel M 47 14
63 Rottweiler F 5 20
64 Mixed-breed F 21 22.3
65 Miniature poodle M 95 5

66 Siberian Husky Fs 51 22,5
67 Jack Russell Terrier M 69 9,7
68 Mixed-breed F 25 29.5
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The work up of the erythrocyte membrane glycerophospholipids to obtain the corresponding
fatty acid methyl esters (FAME) followed the procedure described in Figure 4, and each step

is detailed in the Experimental section.

The FAMEs were separated, recognized and quantified by gas chromatography (GC) as
previously described (see Materials and Methods, chapter 2.1.3.4). The cluster of 10 fatty acids
contains the following molecules (see Figure 1 for their structures): palmitic (C16:0) and
stearic (C18:0) acids as SFA; palmitoleic (C16:1), oleic (9¢,C18:1) and vaccenic (11¢,C18:1)
acids as MUFA; linoleic (LA, C18:2), dihomogammalinolenic (DGLA;C20:3) and arachidonic
(AA, C20:4) acids as PUFA omega-6; eicosapentaenoic (EPA, C20:5) and docosahexaenoic
(DHA, C22:6) acids as PUFA omega-3.

Evaluation of the 10 peaks of the GC chromatogram was performed using calibration curves
(see Materials and Methods, chapter 2.1.3.4.1), obtaining pg/mL values and then expressing
each fatty acid as relative quantitative percentage (% rel. quant.) of the total quantities of the

10 fatty acids recognized and calibrated in the GC analysis.

2.2.1.1 Interval Values

The intervals and the median values obtained for our cohort of healthy dogs are reported in
Table 6, together with lipid indexes, derived from the 10 fatty acid values, as follows: omega-
6/omega-3 ratio, PUFA balance (omega-3/omega-3 + omega-6), SFA/MUFA ratio,
unsaturation index (Ul = MUFA tot x 1 + C18:2 x 2+ C20:3 x 3 + C20:4 x 4 + C20:5 x5+
(C22:6 x 6) and peroxidation index (PI = MUFA tot x 0.025 + C18:2 x 1 + C20:3 x 2 + C20:4
x 4+ C20:5 x 6 + C22:6 x 8) (Hulbert et al. 2006).
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Table 6. Interval values of the 10 fatty acids cohort expressed as relative percentages of the
pg/mL quantities detected by gas chromatographic analyses' after isolation and work-up of
erythrocyte membrane glycerophospholipids of healthy dogs (n=68). The corresponding values
of fatty acid families and lipid indexes are also reported.

Fatty acids! Interval values?  Median Value
(min-max)
C16:0 — palmitic acid 82-258 15.4
C16:1 — palmitoleic acid 0.08 - 0.55 0.25
C18:0 — stearic acid 15.6-273 20.2
9¢,C18:1 — oleic acid 69-143 9.2
11¢,C18:1 — vaccenic acid 1.2-2.7 1.95
LA omega-6 — C18:2 — linoleic acid 92-21 14.5
DGLA omega-6 — C20:3 04-23 1.26
dihomogammalinolenic acid
ARA omega-6 C20:4 — arachidonic acid 17.5-43.7 35
EPA omega-3 — C20:5 — 02-1.5 0.66
eicosapentaenoic acid
DHA omega-3 — C22:6 — 02-25 0.9
docosahexaenoic acid
Total SFA’ 27.8-43 35.4
Total MUFA* 8.7-16.7 11.6
PUFA omega-3° 0.5-4 1.75
PUFA omega-6° 34.9 -60.8 51
Total PUFA’ 329-61.8 53
SFA/MUFA3 2-39 3
Omega-6/omega-3 ratio’ 12.5-83.7 28.4
PUFA balance!® 09-7.4 3.3
ur'! 130 - 234 194.8
P12 101 -214 171.1

Fatty acids are evaluated as FAME (fatty acid methyl esters) after membrane isolation, lipid extraction and
derivatization as described in the Experimental section. Structures are shown in Figure 3.

2 The values are expressed as percentage of the found quantities (calculated as pg/mL) from the gas
chromatographic analysis, using calibration and quantitation protocols and standard reference compounds for each
FAME, as described in Materials and Methods. The GC peak areas of the 10 fatty acids cohort corresponds to ca.
97% of the total peak areas of the chromatogram. The minimum and maximum values obtained from the
population of the healthy dogs are shown for each FAME, together with the median value and the corresponding
distributions as shown in Figures 11 and 12.

3 Total SFA (Saturated Fatty Acids) =% C16:0 + % C18:0.

4 Total MUFA (MonoUnsaturated Fatty Acids) =% C16:1 + % 9¢,C18:1 + % 11¢,C18:1.

SPUFA (PolyUnsaturated Fatty Acids) omega-3 = %EPA + %DHA.

®PUFA (PolyUnsaturated Fatty Acids) omega-6 = %LA + %DGLA + %ARA.

"Total PUFA =%LA + %DGLA + %ARA + %EPA + %DHA.

8 SFA/MUFA = (% C16:0 + % C18:0)/( % C16:1 + % 9¢,C18:1 + % 11¢,C18:1).

°Omega-6/omega-3 ratio = (%LA + %DGLA + %ARA)/ (%EPA + %DHA).

10 PUFA balance = [(%EPA + %DHA) / Total PUFA] x 100.

UL = (%MUFA x 1) + (%LA x 2) + (%DGLA x 3) + (%ARA x 4) + (%EPA x 5) + (%DHA x 6).

2Pl = (%MUFA x 0.025) + (%LA x 1) + (%DGLA x 2) + (%ARA x 4) + (%EPA x 6) + (%DHA x 8).
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A few fatty acids of healthy dog erythrocyte membranes (as control groups) were previously
reported (Mehta et al. 1991; Fuhrmann et al. 2006; Stoeckel et al. 2011) and their values are
listed in following Table (7).

Table 7. Data of the fatty acids of erythrocyte membranes of our healthy dog cohort (see Table 6 in
the main text) together with the data reported in previous literature.

Fatty acids Interval Ref.1 Ref.2 Ref.3
values?

(min-max)
Number of samples 68 5 8 30
LA omega-6 — C18:2 — linoleic acid 9.2-21 7.80 10.13 -
DGLA omega-6 — C20:3 04-23 - 1.55 -
dihomogammalinolenic acid
ARA omega-6 C20:4 — arachidonic acid 17.5-43.7 2829 28.05 28.6 - 30.8
EPA omega-3 — C20:5 — eicosapentaenoic 02-1.5 - - 0.364 - 0.42
acid
DHA omega-3 — (C22:6 — docosahexaenoic 02-25 - - 0.22-0.28
acid
Total SFA 27.8-43 - 41.14 -
MUFA 8.7-16.7 - - -
Total PUFA omega-3 05-4 - 1.87 1.35-1.65
PUFA omega-6 34.9-60.8 - 42.31 44.4- 448

1. Mehta JR, Braund KG, Hegreberg GA, Thukral V. Lipid Fluidity and Composition of the
Erythrocyte Membrane for Healthy Dogs and Labrador Retrievers with Hereditary Muscular
Dystrophy. Neurochem Res (1991) 16:129-35.

2. Fuhrmann H, Zimmermann A, Giick T, Oechtering G. Erythrocyte and plasma fatty acid patterns in
dogs with atopic dermatitis and healthy dogs in the same household. Can J Vet Res (2006) 70: 191—
196.

3. Stoekel K, Nielsen LH, Fuhrmann H, Backmann L. Fatty acid patterns of dog erythrocyte
membranes after feeding of a fish-oil based DHA-rich supplement with a base diet low in n-3 fatty
acids versus a diet containing added n-3 fatty acids. Acta Vet Scand (2011) 53:57. doi: 10.1186/1751-
0147-53-57.

In Figure 8 the distribution graphics for each fatty acid (% rel. quant.) are shown together with

their families (SFA, MUFA and PUFA omega-6 and omega-3), whereas Figure 9 shows the
distribution graphics of the total PUFA and lipid indexes obtained from the 10 fatty acid values.
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Figures 8 and 9 also show minimum and maximum values, as well as the median value of each

measured parameter, as listed in Table 6.

Individual Fatty Acids
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Figure 8. Distribution of the values in the population of Healthy Dogs (n=68) for the individual fatty
acids and the corresponding families using the data in Table 6 with 95% confidence interval. Each
member of the fatty acid family is given in a row, the last column being the sum of the corresponding
fatty acid family. Black: the minimum and the maximum value obtained. Green: the median value.
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Lipid Indexes
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Figure 9. Distribution of the lipid indexes of the population of Healthy Dogs (n=68) with 95%
confidence interval as reported in Table 6. 1st row: total PUFA, omega-6/omega-3 and SFA/PUFA
ratios; 2nd row: SFA/MUFA ratio, unsaturation and peroxidation indexes. Black: the minimum and the

maximum value obtained. Green: the median value.
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2.2.1.2 The correlations of fatty acids with healthy dog characteristics
We used the above described interval values to evaluate any possible correlations between
FAME types, families and lipid indexes with the dog characteristics and the results are

demonstrated in the following figures. (breed, sex, age, and bodyweight).

2.2.1.2.1 The correlations of fatty acids with age
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Figure 10. Pearson correlation with linear regression and parameters for healthy dogs (n=68) using age
and each fatty acid type and family obtained from erythrocyte membranes (data are reported in Tables
2 and 3 in the main text). Each member of the fatty acid family is given in a row, the last column being
the sum of the corresponding fatty acid family.
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Figure 11. Pearson correlation with linear regression and parameters for healthy dogs (n=68) using age
and lipid indexes obtained from erythrocyte membranes (data are reported in Tables 2 and 3 in the main
text). 1st row: total PUFA, omega-6/omega-3 and PUFA balance ratios; 2nd row: SFA/MUFA ratio,
unsaturation and peroxidation indexes.

A correlation with age, was found with eicosapentaenoic acid (EPA, omega-3), that show that
along with age the levels of EPA increase (p<0.001, r=0.396).
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2.2.1.2.2 The correlations of fatty acids with Bodyweight
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Figure 12. Pearson correlation with linear regression and parameters for healthy dogs (n=68) using
bodyweight and each fatty acid type and family obtained from erythrocyte membranes (data are reported
in Tables 2 and 3 in the main text). Each member of the fatty acid family is given in a row, the last
column being the sum of the corresponding fatty acid family.
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Figure 13. Pearson correlation with linear regression and parameters for healthy dogs (n=68) using
bodyweight and lipid indexes obtained from erythrocyte membranes (data are reported in Tables 2 and
3 in the main text). Ist row: total PUFA, omega-6/omega-3 and PUFA balance ratios; 2nd row:
SFA/MUFA ratio, unsaturation and peroxidation indexes.

From the analysis according to the bodyweight, several fatty acid parameters correlated
significantly, as follows: positive correlation with palmitic acid (C16:0; p = 0.001, r = 0.385)
and the total amount of SFA (p = 0.001, r = 0.402). The MUFA palmitoleic acid (C16:1)
significantly correlated in a positive manner to bodyweight (p = 0.007; r = 0.326). The
bodyweight negatively correlated with arachidonic acid (p =0.036, r = 0.257), the total content
of the omega-6 PUFA (p = 0.003, r = 0.361) and the total amount of PUFA (p = 0.004, r =
0.347). Moreover, both Ul and PI showed negative correlation with bodyweight (p =0.031, r =
0.301 and p = 0.037, r = 0.256, respectively). A statistical analysis based on the different
breeds of the healthy dogs was not possible because of the limited number of samples for each
breed and in addition 24 out of the total 68 (35%) of the healthy dogs recruited for this study

were mixed-breed.
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2.2.1.2.3 Examination of FA between Male and Female dogs

Subsequently, two groups of male and female healthy dogs were examined to envisage
differences of the membrane RBC fatty acid composition between the two genders. Because
of the small number of sterilized females (n=12) and neutered males (n=6) we did not consider
this additional characteristic to further discriminate groups. The values for the individual
FAME and the lipid indexes for male and female healthy dogs are reported as mean = SD
values in Table 8, always expressed as quantitative relative percentages (% rel. quant.) of each
value over the total 10 fatty acids values, as explained above. Significant differences were
found for the lower levels of stearic and linoleic acids (p = 0.0126 and p = 0.0266, respectively)
and higher levels of palmitoleic acid (p = 0.0344) in female than in male dogs.

Table 8. Cohort of 10 fatty acids expressed as percentages of the found pg/mL quantities,
detected by gas chromatographic analyses of the fatty acid methyl esters (FAME)! after
isolation and work-up of erythrocyte membrane glycerophospholipids, of male dogs (M=30)
and female dogs (F=38). The corresponding values of fatty acid families and lipid indexes are
also reported. The significance as p values is also indicated; italic denotes significativity.

Fatty acids! M (pg/mL %)? F (ng/mL %)? MvsF
n=30 n=38 p value®
C16:0 — palmitic acid 15.88 £3.52 15.38 £3.53 0.5639
C16:1 — palmitoleic acid 0.35+0.27 0.24+0.10 0.0266
C18:0 — stearic acid 19.62 +2.45 21.09+2.23 0.0126
9¢,C18:1 — oleic acid 10.07 £3.31 9.62 +1.85 0.4793
11¢,C18:1 — vaccenic acid 1.93 £0.35 2.06 £0.33 0.1209
LA omega-6 — C18:2 — linoleic acid 15.29 £2.65 1411 £1.84 0.0344
DGLA omega-6 — C20:3 1.36 £ 0.35 1.28 £0.39 0.4075
dihomogammalinolenic acid
ARA omega-6 C20:4 — arachidonic 33.65+7.06 3433 £5.25 0.6506
acid
EPA omega-3 — C20:5 — 0.76 = 0.39 0.70 £ 0.32 0.4933
eicosapentaenoic acid
DHA omega-3 — C22:6 — 1.10 £ 0.61 1.20 £ 0.67 0.5296
docosahexaenoic acid
Total SFA? 35.50 £ 4.60 36.46 £4.12 0.3697
Total MUFA* 12.35+£3.36 11.92+1.84 0.5062
PUFA omega-3° 1.86 +0.89 1.90 £0.83 0.8450
PUFA omega-6° 50.29 + 6.80 49.72 +5.16 0.6944
Total PUFA’ 52.15+6.84 51.62+5.30 0.7194
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Fatty acids!

SFA/MUFA ratio®
Omega-6/omega-3 ratio’
PUFA balance'’
Unsaturation Index (UI)!
Peroxidation Index (PI)!?

'FAME (fatty acid methyl esters) are expressed as percentage of the found quantities from the gas

M (pg/mL %)?
n=30
2.98+0.48
3433 £19.32
3.60+1.67
191.98 +25.47

166.26 + 29.09

F (ng/mL %)?
n=38
3.09+0.36
32.78 £ 18.96
3.69+1.55
192.00 +£20.24
168.09 +22.31

Mvs F
p value®
0.2544

0.7423
0.8229
0.9977
0.7705

chromatographic analysis using calibration and quantitation protocols and standard reference compounds for
each FAME, as described in Experimental section and Supplementary Information.
2 The values are expressed as percentage of the found quantities (calculated as ug/mL) + standard deviation (sd)
obtained from the gas chromatographic analyses, using calibration and quantitation protocols and standard

reference compounds for each FAME, as described in Supplementary Information. The GC peak areas of the 10
fatty acids cohort corresponds to ca. 97% of the total peak areas of the chromatogram.
3 Total SFA (Saturated Fatty Acids) =% C16:0 + % C18:0.
4 Total MUFA (MonoUnsaturated Fatty Acids) =% C16:1 + % 9¢,C18:1 + % 11¢,C18:1.
SPUFA (PolyUnsaturated Fatty Acids) omega-3 = %EPA + %DHA.
®PUFA (PolyUnsaturated Fatty Acids) omega-6 = %LA + %DGLA + %ARA.
"Total PUFA =%LA + %DGLA + %ARA + %EPA + %DHA.
8 SFA/MUFA = (% C16:0 + % C18:0)/( % C16:1 + % 9¢,C18:1 + % 11¢,C18:1).

°Omega-6/omega-3 ratio = (%LA + %DGLA + %ARA)/ (%EPA + %DHA).

10 PUFA balance = [(%EPA + %DHA) / Total PUFA] x 100.

U = (%MUFA x 1) + (%LA x 2) + (%DGLA x 3) + (%ARA x 4) + (%EPA x 5) + (%DHA x 6).

12P] = (%MUFA x 0.025) + (%LA x 1) + (%DGLA x 2) + (%ARA x 4) + (%EPA x 6) + (%DHA x 8).

The corresponding graphical representations are shown below in Figures 14 and 15.
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Figure 14. Relative quantitative percentage differences between Male (M, grey, n=30) and Female (F,
black, n=38) healthy dogs for each type of fatty acid in the erythrocyte membranes. The values are
given as mean + SD. Each member of the fatty acid family is given in a row, the last column being the
sum of the corresponding fatty acid family. Values significantly different when compared to with each
other: (*) p <0.05. For healthy dogs’ characteristics see Table 2. For specific values see Table 8 in the
main text.
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Figure 15. Relative quantitative percentage differences between Male (M, grey, n=30) and Female (F,
black, n=38) healthy dogs for the membrane homeostasis indexes. 1st row: total PUFA, omega-
6/omega-3 and SFA/PUFA ratios; 2nd row: SFA/MUFA ratio, unsaturation and peroxidation indexes.
The values are given as mean + SD. For healthy dog characteristics see Table 2. For specific values

see Table 8.
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2.2.2 The erythrocyte membrane lipidome in dogs with CE

A total of 117 dogs were included in the present study, of these 49 were diagnosed with CE,
while 68 were healthy dogs enrolled as control group in the previous study (see Results 2.1).
The CE group comprised 17 females (7 spayed) and 32 males (1 neutered), with a median age
of 47 months (range 4—144). Table 9 shows age, sex, bodyweight and breed of the cohort of
CE dogs.

Table 9. Characteristics of the CE dogs (n=49) involved in the study.

n Breed Sex  Age (months) Bodyweight (kg)
1 | Miniature Poodle M 84 5,3
2 | Labrador M 12 35,0
3 | French Bulldog (Bouledogue) M 15 10,3
4 | Staffordshire Terrier M 108 23.0
5 | Border collie M 72 25,2
6 | English Setter M 48 16,0
7 | American Staffordshire Terrier M 47 23,1
8 | French Bulldog (Bouledogue) Fs 22 10,6
9 | Mixed-breed F 42 18,5
10 | Jack Russell Terrier F 10 4.4
11 | English Bull terrier M 35 26,0
12 | Pitbull M 66 22,0
13 | Dogo Argentino M 96 35,5
14 | Boxer M 87 17,0
15 | French Bulldog M 13 7,1
16 | German Shepherd Fs 41 25,0
17 | Miniature Poodle M 83 6,0
18 | Malinois M 24 22.0
19 | Maltese Fs 114 4,0

20 | German Shepherd M 14 28.0

21 | Mixed-breed M 37 36,3

22 | Mixed-breed F 32 12,5

23 | Labrador Fs 76 28.2

24 | Dobermann M 11 30,5
25 | Boxer M 12 32,3
26 | Dachshund F 96 4,0
27 | Mixed-breed F 96 25,0
28 | Maltese F 36 4,0
29 | Golden Retriever M 24 31,0
30 | Bolognese M 104 4.6

31 | Italian Segugio F 48 15,0
32 | German Shepherd M 14 34,5

(O]
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n | Breed Sex  Age (months) Bodyweight (kg)
33 | Bull terrier F 33 15.5
34 | Labrador M 10 31,0
35 | Portuguese Sheepdog (Cao da M 131 12,6

Serra de Aires)
36 | Jack Russell Terrier Fs 48 5,5
37 | Labrador F 24 29,7
38 | Belgian Shepherd Dog Mc 45 28.0

(Groenendael)
39 | Basset Hound M 55 23.0
40 | Golden Retriever Fs 48 28.3
41 | Mixed-breed F 84 7.3
42 | Mixed-breed M 96 17,0
43 | Miniature Poodle M 144 6.7
44 | Setter Inglese M 4 21,5
45 | Mixed-breed Fs 96 22.5
46 | Kurzhaar M 72 20,2
47 | Pitbull M 12 30,0
48 | Golden Retriever M 144 36,0
49 | Boxer M 18 30,0

Values of single fatty acid, total fatty acid contents (total SFA, total MUFA, total PUFA), ratio
between the families (SFA/MUFA, omega-6/omega-3), and indexes (unsaturation index,
peroxidation index, PUFA balance, EI, D6DI) of study dogs are reported in the following
table (10).
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Table 10. Cohort of 10 fatty acids expressed as percentages of the found pg/mL quantities,
detected by gas chromatographic analyses of the fatty acid methyl esters (FAME)' after
isolation and work-up of erythrocyte membrane glycerophospholipids, of CE dogs (n=49) The
corresponding values of fatty acid families and lipid indexes are also reported.

CE dogs (n=49)

Fatty acids! Mean SD

C16:0 — palmitic acid 10,87 1,77
C16:1 — palmitoleic acid 0.47 0.42
C18:0 — stearic acid 23,60 2,00
9¢,C18:1 —oleic acid 9,76 1,40
11¢,C18:1 — vaccenic acid 2,12 0,60
LA omega-6 — C18:2 — linoleic acid 13,23 2,31
DGLA omega-6 — C20:3 dihomogammalinolenic 1,67 0,54
aACII{dA omega-6 C20:4 — arachidonic acid 35,99 2,59
EPA omega-3 — C20:5 — eicosapentaenoic acid 0,90 0,45
DHA omega-3 — C22:6 — docosahexaenoic acid 1,39 0,62
Total SFA? 34,47 239
Total MUFA* 12,34 1,68
PUFA omega-3° 2.29 0,87
PUFA omega-6° 50,89 3,17
Total PUFA’ 53,18 3.31
SFA/MUFA3 2,84 0,38
Omega-6/omega-3 ratio’ 26,03 11,91
PUFA balance'” 4,29 1,59
ur't 200,63 11,11
PI* 177,38 12,53

Fatty acids are evaluated as FAME (fatty acid methyl esters) after membrane isolation, lipid extraction and
derivatization as described in the Experimental section. Structures are shown in Figure 1.

2 The values are expressed as percentage of the found quantities (calculated as pg/mL) from the gas
chromatographic analysis, using calibration and quantitation protocols and standard reference compounds for each
FAME, as described in Materials and Methods. The GC peak areas of the 10 fatty acids cohort corresponds to ca.
97% of the total peak areas of the chromatogram.

3 Total SFA (Saturated Fatty Acids) =% C16:0 + % C18:0.

4 Total MUFA (MonoUnsaturated Fatty Acids) =% C16:1 + % 9¢,C18:1 + % 11¢,C18:1.

SPUFA (PolyUnsaturated Fatty Acids) omega-3 = %EPA + %DHA.

®PUFA (PolyUnsaturated Fatty Acids) omega-6 = %LA + %DGLA + %ARA.

7Total PUFA =%LA + %DGLA + %ARA + %EPA + %DHA.

8 SFA/MUFA = (% C16:0 + % C18:0)/( % C16:1 + % 9¢,C18:1 + % 11¢,C18:1).

°Omega-6/omega-3 ratio = (%LA + %DGLA + %ARA)/ (%EPA + %DHA).

10 PUFA balance = [(%EPA + %DHA) / Total PUFA] x 100.

UL = (%MUFA x 1) + (%LA x 2) + (%DGLA x 3) + (%ARA x 4) + (%EPA x 5) + (%DHA x 6).

2Pl = (%MUFA x 0.025) + (%LA x 1) + (%DGLA x 2) + (%ARA x 4) + (%EPA x 6) + (%DHA x 8).
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Dogs affected by chronic enteropathies, regardless to the diagnosis, had higher values of
palmitic acid (p < 0.0001) and lower levels of stearic acid (p < 0.0001) compared to healthy
dogs, with an overall reduction of total SFA observed in CE dogs (p = 0.02). No differences
were observed between healthy and CE dogs in regards of single (palmitoleic, oleic and
vaccenic acids) and total MUFA values. CE dogs showed higher EPA (p = 0.02) and DHA (p
= 0.02) content, as well as an increased content of total omega-3 PUFA (p = 0.01). In regards
of omega-6 PUFA, CE dogs showed reduced content of linoleic acid (p = 0.0006) and increased
dihomo-gamma-linoleic acid (p = 0.0001) compared to healthy dogs, while no differences were
observed in arachidonic acid levels and total content of omega-6 PUFA between CE and

healthy patients.

CE dogs showed membranes homeostasis indexes patterns different compared to healthy dogs.
In particular, CE dogs had reduced values of omega-6/omega-3 (p = 0.034) and SFA/MUFA
(p =0.001) ratios, and increased PUFA balance (p = 0.035), Ul (»p = 0.013) and PI (p = 0.014).

No significant differences were observed in fatty acid contents, membrane homeostasis indexes

among dogs affected by different forms of CE, or between CE dogs with and without PLE.
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A comparative analysis between HD and CE dogs is demonstrated on the following Figures

(16 and 17):
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Figure 16. Distribution of the lipid indexes of the population of CE dogs (n=49) with the reference
interval values obtained from HD (see fig 9). for the individual fatty acids and the corresponding
families using the data in Table 3 with 95% confidence interval. Each member of the fatty acid family
is given in a row, the last column being the sum of the corresponding fatty acid family. Black: reference
interval values (see fig 9). Blue: the median value of HD. Red: the median value of CE dogs. A Mann-
Whitney test has been performed for the comparison between HD and CE dogs. The p-value is indicated
on the top right. Values significantly different when compared to with each other: (*) p <0.05, (**) p
<0.01, (***) p<0.001, (****) p < 0.0001.
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Figure 17. Distribution of the lipid indexes of the population of CE dogs (n=49) with the reference

interval values obtained from HD (see fig 10). Healthy Dogs (n=68) with 95% confidence interval. 1st
row: total PUFA, ®-6/w-3 and SFA/PUFA ratios; 2nd row: SFA/MUFA ratio, unsaturation and
peroxidation indexes reference interval values (see fig 10 Blue: the median value of HD. Red: the
median value of CE dogs. A Mann-Whitney test has been performed for the comparison between HD
and CE dogs. The p-value is indicated on the top right. Values significantly different when compared
to with each other: (*) p <0.05, (**) p <0.01.
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2.2.3 The erythrocyte membrane lipidome in dogs with DM

A total of 80 dogs were included in the present study, of these 12 were diagnosed with DM, while 68
were healthy dogs enrolled as control group in the previous study (see Results 2.1). The 12 dogs
affected with diabetes mellitus (DM), were 7 females (5 spayed) and 5 males (1 neutered), with a
median age of 131 months (range 94—181). Table 11 shows age, sex, bodyweight and breed of
the cohort of the DM dogs.

Table 11. Characteristics of the DM dogs (n=12) involved in the study.

n Breed Sex Age (months) Bodyweight (kg)

1 Mixed-breed M 96,00

2 Mixed-breed F 158,00 5

3 Mixed-breed F 156,00 5,40

4 Mixed-breed Fs 110,00

5 Mixed-breed M 144,00

6 Yorkshire Terrier M

7 Mixed-breed Fs 181,00 8,60

8 Mixed-breed Fs 94,00 4,90

9 Yorkshire Terrier Fs 135,00 4,80

10 Cavalier king charles M 113,00 12,60
spaniel

11 Mixed-breed Fs 112,00 21,90

12 Mixed-breed Mc 151,00 22,50

Table 12. Cohort of 10 fatty acids expressed as percentages of the found pg/ml. quantities,
detected by gas chromatographic analyses of the fatty acid methyl esters (FAME)! after
isolation and work-up of erythrocyte membrane glycerophospholipids, of DM dogs (n=12)
The corresponding values of fatty acid families and lipid indexes are also reported.

DM dogs (n=12)

Fatty acids' Mean SD

C16:0 — palmitic acid 14,97 1,61
C16:1 — palmitoleic acid 0,53 0,32
C18:0 — stearic acid 21,43 4,19
9¢,C18:1 — oleic acid 10,24 1,12
11¢,C18:1 — vaccenic acid 2,05 0,40
LA omega-6 — C18:2 — linoleic acid 13,64 1,70
DGLA omega-6 — C20:3 dihomogammalinolenic acid 1,21 0,24
ARA omega-6 C20:4 — arachidonic acid 33,69 3,63
EPA omega-3 — C20:5 — eicosapentaenoic acid 0,91 0,82
DHA omega-3 — (C22:6 — docosahexaenoic acid 1,32 0,64
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Fatty acids' Mean SD

Total SFA3 36,40 4,25
Total MUFA* 12,82 1,33
PUFA omega-3° 2,23 1,29
PUFA omega-6° 48,54 4,26
Total PUFA? 50,78 3,75
SFA/MUFAS3 2,88 0,56
Omega-6/omega-3 ratio’ 29,21 17,02
PUFA balance'® 4,47 2,79
uIt! 190,98 13,28
P12 167,18 12,19

Fatty acids are evaluated as FAME (fatty acid methyl esters) after membrane isolation, lipid extraction and
derivatization as described in the Experimental section. Structures are shown in Figure 1.

2 The values are expressed as percentage of the found quantities (calculated as pg/mL) from the gas
chromatographic analysis, using calibration and quantitation protocols and standard reference compounds for each
FAME, as described in Materials and Methods. The GC peak areas of the 10 fatty acids cohort corresponds to ca.
97% of the total peak areas of the chromatogram.

3 Total SFA (Saturated Fatty Acids) =% C16:0 + % C18:0.

4 Total MUFA (MonoUnsaturated Fatty Acids) =% C16:1 + % 9¢,C18:1 + % 11¢,C18:1.

SPUFA (PolyUnsaturated Fatty Acids) omega-3 = %EPA + %DHA.

®PUFA (PolyUnsaturated Fatty Acids) omega-6 = %LA + %DGLA + %ARA.

7Total PUFA =%LA + %DGLA + %ARA + %EPA + %DHA.

8 SFA/MUFA = (% C16:0 + % C18:0)/( % C16:1 + % 9¢,C18:1 + % 11¢,C18:1).

°Omega-6/omega-3 ratio = (%LA + %DGLA + %ARA)/ (%EPA + %DHA).

10 PUFA balance = [(%EPA + %DHA) / Total PUFA] x 100.

UL = (%MUFA x 1) + (%LA x 2) + (%DGLA x 3) + (%ARA x 4) + (%EPA x 5) + (%DHA x 6).

2Pl = (%MUFA x 0.025) + (%LA x 1) + (%DGLA x 2) + (%ARA x 4) + (%EPA x 6) + (%DHA x 8).
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A comparative analysis between HD and DM dogs is demonstrated in the following

distribution Figures (18 and 19):
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Figure 18. Distribution of the lipid indexes of the population of DM (n=12) dogs with the reference
interval values obtained from HD (see fig 9). for the individual fatty acids and the corresponding
families using the data in Table 3 with 95% confidence interval. Each member of the fatty acid family
is given in a row, the last column being the sum of the corresponding fatty acid family. Black:
reference interval values (see fig 9). Blue: the median value of HD. Red: the median value of DM
dogs. A Mann-Whitney test has been performed for the comparison between HD and DM dogs. The
p-value is indicated on the top right. Values significantly different when compared to with each other:

(*)p <0.05.
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Figure 19. Distribution of the lipid indexes of the population of DM dogs (n=12) with the reference
interval values obtained from HD (see fig 10). Healthy Dogs (n=68) with 95% confidence interval.
1st row: total PUFA, m-6/®-3 and SFA/PUFA ratios; 2nd row: SFA/MUFA ratio, unsaturation and
peroxidation indexes reference interval values (see fig 10). Blue: the median value of HD. Red: the
median value of DM dogs. A Mann-Whitney test has been performed for the comparison between HD
and DM dogs. The p-value is indicated on the top right.

The results showed an increased level of the MUFA palmitoleic acid (9cis-16:1) and oleic acid
(9¢,C18:1) as well as the total MUFA content on DM dogs in erythrocyte membrane when

compared to the HD.
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2.3 DISCUSSION

2.3.1 Healthy Dogs

For the first time the erythrocyte membrane lipidome characterization of the fatty acid content
of glycerophospholipids is provided in a cohort of clinically healthy dogs (n=68). The rationale
for the choice of 10 fatty acids takes into account the most representative components in terms
of structural and functional roles played by such hydrophobic moieties in membrane
phospholipids, as well as the nutritionally important polyunsaturated fatty acids (see Figure 1).
We arbitrarily chose this cohort for the application to veterinary analyses, taking into
consideration previous work done in humans with physiological and pathological conditions
(Heude et al. 2003; Hodson et al., 2008; Harris et al. 2012; Sansone et al. 2016; Giacometti et
al. 2017; Amézaga et al. 2018; Gai et al. 2019; Pallot et al. 2019;). It is worth underlining that
studies reported in literature on fatty acids of erythrocyte membranes in both humans and
animals do not report the same cohort of fatty acids. For humans, the meta-analysis reported
by Hodson et al, (2018) highlighted 13 SFA, MUFA and PUFA moieties in erythrocyte
membrane phospholipids obtained from 9 studies of 321 men and 70 women. In another study
on infants, only the total SFA and MUFA values are given without specifying each fatty acid
type, whereas for the omega-6 pathway together with the C18 and C20 PUFA long chain fatty
acids such as 22:4 and 22:5 are evaluated, which are not commonly reported in other studies
(Makrides et al. 1994). With the emerging field of lipidomics, new fatty acid structures are
evidenced, such as for example the presence of the n-10 MUFA family, with 6¢is-C16:1
(sapienic acid) as positional isomer of palmitoleic acid, and the corresponding geometrical
trans isomer (6trans-C16:1). These new markers indicate the metabolic partition of delta-6
desaturase enzymes between palmitic and linoleic acids and the free radical-based
transformations (Ferreri et al. 2016) respectively, but it is not possible to define yet their
participation and effects for the membrane composition. In model animals as well as in humans,
increased or decreased fatty acid levels were found in kidney (Zhao et al. 2012) or liver diseases
(Svegliati-Baroni et al. 2019), respectively, and such alterations were correlated with other
biochemical markers, however further research are needed to establish normal and altered
levels for newly identified fatty acid markers. Considering such complexity, it was evaluated

of strategic importance to concentrate on a specific number of fatty acids, i.e., the 10 fatty acid
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cohort, and on a specific cell compartment, i.e., the erythrocyte membrane, in order to get a
simplified, yet representative and significative, approach for the examination of known
metabolic and nutritional influences on the biophysically regulated homeostatic control of
membrane formation and remodeling. The cohort includes fatty acids that cannot be missed in
biological membranes, that are characteristic for each tissue type (Pradas et al. 2018; Ferreri
and Chatgilialoglu 2012; Abbott et al. 2012; Harayama and Riezman 2018) and their interval
values (minimum and maximum values) in the specific membrane type, such as in erythrocytes,

derive from population studies, as previously mentioned.

It is worth mentioning that, when fatty acid analysis is performed, it is very important to
ascertain that the subjects did not follow any supplementation during the last 4 months. In the
canine diets, it is becoming more and more popular the use of “omega” supplements or “omega-
enriched” commercial diets, that lead to the uptake of these essential fatty acids that cannot be
prepared by de novo biosynthesis. It is known that such supplementations can change the
results of lipid analyses (Walker et al. 2015), therefore we asked this specific information to

the owners during the recruitment.

The analytical conditions are also important to ensure the efficient separation of the 10 fatty
acid cohort especially of unsaturated fatty acids with the same fatty acid chain length but
different geometry and position of the double bonds. In this respect the library of geometrical
and positional isomers in our hands plays an important role to check peak superimposition
(Sansone et al. 2013; Ferreri et al. 2016; Sansone et al. 2016; Amézaga et al. 2018). The overall
fatty acid distribution reported in Table 1 and Figures 2-3 highlights that in the dog erythrocyte
membrane lipidome the omega-6 PUFA content is prevalent followed by SFA and MUFA. It
is worth underlining that omega-3 fatty acids are present in minimal concentrations, marking
the difference with human lipidome (Abbott et al. 2012; Harris et al. 2012; Hall et al. 2012;
Ferreri et al. 2016; Sieber-Ruckstuhl et al. 2019; Boretti et al. 2020). Moreover, in healthy dogs
the SFAs, stearic and palmitic acids, and the omega-6 PUFAs, arachidonic and linoleic acids,
sum up to nearly the 94% of the total RBC fatty acids, as already observed in other mammalian
species (Abbott et al. 2012). In the distribution graphs of Figure 2, large interval ranges for the
palmitic acid percentage (8.2-25.8) and arachidonic acid (17.5 - 43.7) can be appreciated. It is
also interesting to note that 80% of these values describes a narrower range (palmitic acid: 8.5-
20%, arachidonic acid: 30-40%). On the other hand, the distribution of linoleic acid values
follows a gaussian-like behavior, with a probability distribution symmetric about the mean,

showing that data near the mean are more frequent in occurrence than data far from the mean.
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The different distributions of SFA, C18 and C20 PUFA omega-6 indicate that it is necessary
to gather large sets of these data for mathematical treatment to model their roles in the
membrane compositions (Mar 2019). It is also worth pointing out again that the omega-6 are
essential fatty acids (EFA), not prepared directly by biosynthesis, and also dogs need the intake
of linoleic acid as precursor of other biosynthetically prepared omega-6 fatty acids. The
importance of ascertaining the omega-6 dietary supply to animals represents an historical
highlight in veterinary medicine, having been noted in canine dermatological problems by Burr
and Burr in 1929 (Burr and Burr 1973). Therefore, it is of extreme importance to follow-up the
intakes of linoleic acid and its metabolic transformations to DGLA and arachidonic acid,
together with their incorporation at the level of cell membranes, since they regulate
fundamental structural and functional properties for health in the whole. This information can
be integrated in a panel with other biochemical, biomolecular, clinical parameters for a

thorough evaluation of health in dogs.

The strength of our cohort of fatty acids is to provide a valuable set of metabolic information
to examine: i) data on the PUFA pathways that start from precursors that must be necessarily
taken from the diet thus reporting on the omega-6 and omega-3 fatty acid balance, that in dogs
such balance is shifted towards the omega-6 family; and ii) data on the SFA-MUFA pathway
that starts from the de novo biosynthesis of the first fatty acid in the body, that is the SFA
palmitic acid, thus including the effects of insulin response and liver conditions (Han 2016;
Abbott et al 2012). From these crucial data sets the influence of enzymatic activities, hormones
and nutrients, can be studied and it is possible to use a specific SFA-MUFA-PUFA cohort to
examine metabolic profiles, decide nutritional-based strategies and follow-up the changes
during physiological and pathological conditions, including oxidative stress (Zhao et al. 2014;
Zhao et al. 2015; Ferreri et al. 2016; Han 2016; Ni et al. 2019;). The limitations are due to the
small size of our data, compared with the large data set provided by other powerful lipidomic
techniques, although the balance cost-effectiveness are important parameters to evaluate in

wide applications to population.

The omega-6 EFA linoleic acid and its transformation to DGLA and ARA, which is
predominant in dogs, affect not only from the point of view of the membrane structural
properties but also affects the membrane response to stimuli. In fact, upon different kinds of
stimuli, phospholipase A2 is activated and liberates the fatty acid moieties from the cell
membrane phospholipids (Murakami et al. 2010), therefore the membrane fatty acid

composition can be considered a precious information of the pro- and anti- inflammatory
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predisposition of the organism (Adler et al. 2018; Loef et al. 2019). Indeed, liberation of SFA,
MUFA and PUFA fatty acids generates potent mediators, such as prostaglandins, leukotrienes,
endocannabinoids and many others, that influence dog metabolism in health and diseases
(Bauer et al. 2008; Abramo et al. 2014; Kalenyak et al. 2019). There is a growing attention to
the lipidomic analysis in animal studies, as reported recently for variations of phospholipids of
whole blood and plasma in canine inflammatory bowel disease (Kalenyak et al. 2019). In this
context we believe that the present work on erythrocyte membrane fatty acid cohort in healthy

animals could represent the benchmark for assessment of healthy dog molecular profile.

A focus of our approach in dogs was to observe the omega-3 value and its distribution in
healthy dogs, since omega-3 are essential fatty acids and EPA and DHA levels derive from the
dietary intake of the precursor (alpha-linolenic acid). It is well known that this pathway in
animals is less prevalent than omega-6 (Abramo et al. 2014). Our data confirmed low levels
and a narrow range (0.5-4) (Table 1) together with a significant age-related increase of EPA
(Supplementary Figure 3). It is worth noting that in humans EPA and DHA levels are strongly
influenced by dietary intakes, but some studies have shown that age remains a significant
determinant of EPA and DHA status regardless of dietary intake (Johnson et al. 2015). Omega-
3 are known to have specific anti-inflammatory activities and, being the omega-6/omega-3
ratio naturally high in dogs (12-7-83.7), it is evident that their increase in the cellular
environment, influencing this ratio, can exert significant metabolic effects. In this context the
establishment of omega-3 levels under various dog health conditions can be interesting to
precisely individuate levels of omega-3 to introduce in the regular diets of animals. Limitations
of our study are in the non-homogeneous distribution of male and female dogs and in the
diversity of breeds, but the prosecution of data collection will certainly compensate such

weaknesses.

Considering the correlations found in our work, it is worth underlining that de novo lipogenesis
with formation of palmitic acid and palmitoleic acid are known biomarkers of bodyweight
increase in animals and humans (Sansone et al. 2016; Guo et al. 2012) and their increase over
the normal levels are indicators of metabolic derangements in humans at older ages (Zong et
al. 2012). We found positive correlation between bodyweight and the values of palmitoleic,
stearic acids and total SFA of our healthy dog cohort. At the same time the negative correlation
between bodyweight with all unsaturated indicators (arachidonic acid, PUFA omega-6, UI, PI)
indicates a shift of membrane components from unsaturated to saturated moieties, that will be

worth of further deepening especially in the dog obesity conditions. An increase of SFA and
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MUFA components has been correlated with suppression of inflammatory response in animal

models (Guo et al. 2012).

Correlations of the fatty acid data with different breeds need more data, whereas interesting
observations could be done related to dog sex. The lower levels of stearic acid and the higher
levels of palmitoleic acid detected in male dogs indicate that SFA to MUFA pathway functions
more than in females. Palmitoleic acid is a lipokine that travels to muscles and liver, where it
improves cell sensitivity to insulin, blocks fat accumulation in the liver (Cao et al. 2008) and
seems to be involved in regulating muscle mass (Cao et al. 2008; Lipina et al. 2017). Although
preliminarily, this different distribution of FA indirectly indicates differences in metabolism of
dogs according to the sex, to be deepened also considering larger numbers of sterilized females

and neutered males.

2.3.2 Dogs diagnosed with Chronic enteropathy

The current study suggests that there is a peculiar pattern of red blood cells membrane lipidome
in dogs affected by chronic enteropathy, however red blood cells lipidomic analysis does not
seem useful to distinguish the different forms of CE at the time of the first visit. This shift in
fatty acid patterns are not completely explained by alterations in dietary intake and may be a
response to inflammation rather than an etiological factor. Indeed, circulating fatty acids seems
correlated with intestinal pro-inflammatory cytokines levels (Wiese et al 2016). Despite
increased SFA levels have been observed in rats with experimentally induced ulcerative colitis
(Fernandez-Bafiares et al. 1997; Nieto et al 1998), in the present study CE dogs showed lower
total SFA levels compared to healthy dogs. This finding is consistent with the results of a
previous study on human ulcerative colitis, in which patients have significantly lower serum
percentages of SFA (Wiese et al 2016). In regards of single SFA, the relative quantitative
percentage stearic acid (C18:0) was significantly higher and that of palmitic acid (C16:0) was
significantly lower than those observed in the healthy subjects, as already observed in
erythrocytes membranes of Japanese people affected by Chron disease (Uchiyama et al 2013).
This finding, together with higher elongase-6 activity observed, suggest that in the CE dogs,

the pathway to form stearic acid from palmitic acid seems hyperactivated.

On the other hand, despite palmitoleic acid levels were higher in the CE group compared to

healthy dogs, trending toward significance (p = 0.07), it can be hypothesized that the parallel
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Delta-9 desaturase transformation of palmitic to the MUFA palmitoleic acid is reduced in dogs
affected by CE. As matter of fact, it is worthy to note that the liver expression of stearoyl-
coenzyme A desaturase 1 (SCDI1, Delta-9 desaturase), the key enzyme controlling the
desaturation of saturated fatty acids, is dramatically inhibited in colitis mice (Chen et al 2008;

Wang et al 2016).

It has been hypothesized that IBD patients would have decreased blood and tissue n-3 PUFA
due to the inflammatory state. However, looking at the membrane asset in CE dogs higher
EPA, DHA and total n-3 PUFA levels were found. Our results indicate to a n-3 accumulation.
Indeed, the data observed in this canine cohort are consistent with pattern previously observed
in active IBD patients showing a significantly higher fraction of the n-3 PUFA, and DHA
(Esteve-Comas et al 1992; Esteve-Comas et al 1993). A further prior study found plasma n-3
PUFA concentrations increased in patient with Chron disease compared to control patients;
moreover, in these patients, total n-3 PUFA and EPA levels directly correlates with pro-

inflammatory cytokines levels (Scoville et al 2019).

On the other hand, on the present canine cohort is presented an accumulation of n-3 fatty acids

accompanied by altered levels of n-6.

The total n-6 PUFA and AA levels did not differ between CE and healthy dogs. On the other
hand, the percentage weight of LA was significantly lower and that of DGLA was significantly
higher, than those of the healthy subjects. These results point to the similarity of dog with
human IBD (Uchiyama et al 2013; Sitkin and Pokrotniesks 2018), in which the metabolism of
linoleic acid supported by the Delta-6 desaturase seems to be accelerated than that of healthy
individuals (Uchiyama et al 2013; Ito et al 2015). The profile of CE dogs showed an
hyperactivation of this enzymatic pathway with faster metabolization of linoleic acid to DGLA
in canine CE. Interestingly, in humans, genetic polymorphisms associated with alterations in
the metabolism of long chain PUFA from dietary linoleic acid and alpha-linolenic acid have
been associated with the risk of developing Chron disease (Costea et al 2010; Costea et al.

2014; Kettunen et al 2012; Ananthakrishnan et al 2017).

In the fatty acid profile of healthy dogs we found that SFAs, stearic and palmitic acids, and the
omega-6 PUFAs, arachidonic and linoleic acids, constitute ca. 94% of the total RBC fatty acids,
with the palmitic acid (8.2-25.8) and arachidonic acid (17.5 - 43.7) percentages that are the
largest in the membrane lipidome with the widest interval ranges. Therefore, the significant

changes of palmitic, stearic and linoleic acids levels mirror a relevant metabolic derangement.
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On the other hand, in the omega-6 pathway the elevated levels of DGLA assumes a meaning
if one considers that in dog metabolism the linoleic acid transformation to gamma linolenic
and DGLA acids is the main anti-inflammatory control of the animal, leading to potent
antinflammatory eicosanoids, trespassing the role of omega-3 that have much lower levels.
Indeed, since the first historical observation of dermatological canine problems (Burr et al.
1973), it should be always recalled that in dogs the omega-3 have not the same physiological

role that in human metabolism in controlling inflammation.

We are aware that further and larger studies are needed to asses membrane profiles for dogs
health and also to evaluate the role of gene encoding desaturase enzymes in dogs. In addition,
should be taken into account that desaturases are usually controlled by feedback regulation and
it cannot be excluded that the feedback regulation of PUFA could be altered in canine CE. To
further understand the complex interaction occurring in PUFA metabolism is worth to note that
DGLA is metabolized by cyclooxygenase (1 and 2) and arachidonate 15-lipoxygenase, into
prostaglandins and anti-inflammatory eicosanoids with the ability to antagonize synthesis of

AA-derived pro-inflammatory eicosanoids (Sergeant et al 2016).

It is worth noting that also membrane homeostasis indexes are altered in CE dogs, and in
particular the n-3 PUFA/n-6 PUFA ratio (n-3/n-6 ratio) that is known to be influenced through
diet therapy as important factor for reducing human IBD activity. PUFA are essential elements
in the diet since they are not prepared by enzymatic systems as precursors omega-6 linoleic
acid and omega-3 alfa-linolenic acid. A high vital membrane n-3/n-6 ratio was effective in
maintaining remission in IBD patients (Uchiyama et al 2010). In consequence of this, it could
be argued that it is pivotal to establish optimal n-6/n-3 ratio and PUFA balance values also in
dogs and diet therapy and nutraceutical interventions should be investigated in detail in canine

CE.

The unsaturation and peroxidation indexes are useful parameters for estimating the
homeostasis of membranes in terms of protection of the tissues against oxidative damage while
maintaining an appropriate environment for membrane function. A low degree of fatty acid
unsaturation is present in longevous species and membrane peroxidizability index is inversely
related to maximum life span in mammals (Pamplona et al. 1998; Puca et al. 2008). PUFAs
may integrate into phospholipids and modify the physical properties of cell membranes, thus
increasing membrane fluidity and permeability. Indeed, PUFAs affect in vitro presence of

occludin and Zonula occludens-1 (ZO-1) intensity, and DHA limited the effect of the
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inflammatory stimulus on occludin, ZO-1 and barrier function, suggesting a role of PUFAs in

trans-cellular permeability (Beguin et al. 2013).

Oxidative damage in dogs with IBD has been recently demonstrated (Minnamoto et al 2015;
Rubio et al. 2017) and the increased peroxidation index observed in CE fogs of the present
study suggests a higher susceptibility of the membranes to peroxidability and oxidative
damage. The usefulness of antioxidant treatment alongside the traditional therapeutic

approaches, should be investigated in detail in canine CE.

Finally, the positive correlation between folate and arachidonic acid levels can be evaluated
also in view of the known correlation in humans between folate and PUFA (Das 2008; Umhau

et al. 2006) which brings also important correlation with neurological functions.

2.3.3 Dogs diagnosed with Diabetes Mellitus

Interestingly, this group of diseased dogs showed the values of MUFA palmitoleic acid (9cis-
16:1) and oleic (C18:1) different from normality, with an increased content of both of these
fatty acids in erythrocyte membrane. These fatty acids cannot come from the diet and their
biological meaning is directly derived from the lipid metabolism. In fact, it derives from the
enzymatic transformation of palmitic acid to palmitoleic acid and to oleic acid by the delta-9

desaturase (fig 20).
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Figure 20. The main transformations of the SFA-MUFA pathway. Along the palmitic acid

transformation, there is an increase in the formation of palmitoleic and oleic acid due to an

accelerated A9 desaturase enzymatic activity on the DM dogs.

The activation of this enzymatic transformation is known to be related to the insulin response
and the carbohydrate management, which is connected to lipid biosynthesis through the
pyruvate and acetyl-CoA pathways.

The erythrocyte membrane lipidome of DM dogs may be successfully applied to expand the
molecular evaluations in veterinary medicine providing important information of the cell
membrane status in physiological and pathological conditions, involving structural and

signaling properties.
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CHAPTER 4: Conclusion

In the current study, we provided the first panel of erythrocyte membrane fatty acids in healthy
dogs choosing a cohort representative for the main structural and functional roles of these
hydrophobic molecules in the cell membrane compartment. The panel of 10 fatty acids
represents a set of information, chosen for their biochemical, nutritional and metabolic
significance, and their reference ranges for healthy dogs can represent a benchmark to examine
unhealthy conditions. only by constructing a benchmark of the membrane fatty acid profile of
a specific compartment of a living organism, it will be possible to individuate in a holistic and
sustainable way the differences between healthy and unhealthy conditions. It is worth to remark
that the effects of fatty acids in cellular metabolism departing from the membrane release and
remodeling processes are more and more studied also for immune functions (Alarcon et al.
2020) therefore the knowledge of the membrane asset can be a useful indication for the
examination of animal response at molecular level. Indeed, the protocol herein described,
including calibration and quantitation procedures, can be applied to large animal populations,
with molecular information that are ready to be combined with other medical data sets for
mining techniques, which are nowadays under study for the exploitation of disease risks and

prevention plans (Frigolet et al. 2017).

Our findings indicate that the erythrocyte membrane lipidome may be successfully applied in
dogs with CE, as well as dogs with DM. The lipidomic analysis is demonstrated to provide
important information on pathogenesis of the CE and potentially leading to personalized
therapeutic intervention targeted to decrease inflammation and to increase protective
components. A protocol has been defined for the erythrocyte membrane fatty acid analysis to
be used as the methodology for evaluating a high number of animals. In this way we started to
create the paradigm of fatty acid-based lipidomic analysis to evaluate health conditions in dogs
and demonstrated a second utility in the assessment of the insulin response on the lipid

metabolism of diabetic dogs, to be treated with appropriate diet and therapy.

Clinically speaking, since imbalances in lipid metabolism contributes to diverse animal
phenotypes and disease states, ranging from inflammation and cancer to metabolic diseases,
the study of membrane lipids in normal and pathological states can successfully contribute to
monitor health conditions as well as the result of treatments. Membrane lipidomic research in
veterinary will provide, as done for humans, deep insights in mechanisms of several diseases,

helping to identify molecular targets, patient selection for better treatment response, prediction
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and monitoring of treatment efficacy and response to therapeutic measures. In the light of this,
membrane lipidomics may become part of the arsenal adopted for clinical diagnostics in
veterinary medicine, useful for the evaluation of a disease onset and its progression,
representing a potential avenue to individualized treatment and monitoring in different

pathological states.
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