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ABSTRACT 
  

The prevalence of obesity is rapidly increasing worldwide, constituting an important 

health problem. Similarly, as occurs in human, the number of pets with obesity is increasing 

notably, being the most common metabolic disorder in companion animals. Apart from genetic 

susceptibility, sedentary lifestyle and increased food consumption, environment factors such 

as changes in the gut microbiota seem to play a role in the development of this metabolic 

disease.  

In addition, studies in humans, animal models and dogs have revealed that the fecal 

microbiota of subjects with obesity is different from that of lean subjects, and changes after 

weight loss. However, the impact of weight loss on the fecal microbiota in dogs with obesity 

has not been fully characterized, existing discrepancies between different studies that aimed to 

investigate the effect of weight loss on the fecal microbiota of dogs. 

This study reviews the current knowledge about the role of the gut microbiota in the 

maintenance of energy homeostasis in mammalian hosts. Focusing on dogs and humans, and 

describing the mechanism purposed to explain how the gut bacteria can contribute to the 

development of obesity.  

Furthermore, to evaluate the possible changes in the gut microbiota of obese dogs 

associated to weight loss, 16S rRNA gene sequencing was performed in fecal samples of 20 

dogs with obesity and after weight loss with a high-fiber-high-protein diet. The endpoint of the 

weight loss program was individually tailored to the ideal body weight of each dog.  

The results obtained showed that after weight loss, the fecal microbiota of dogs with 

obesity changed significantly. This shift in the fecal microbiota composition was characterized 
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by an increase in bacterial diversity, a decrease in Firmicutes, and increase in Bacteroidetes 

and Fusobacteria.  

Taxonomic analysis of the gut microbial communities is the first approach to 

understand the composition of gut microbiota in obese individuals and detect gut microbiota 

signatures in the obese phenotype. However, methodological approaches such as metagenomic 

and metabolomic analyses are needed to elucidate the functions of these bacteria, which will 

allow to understand their interaction with the host, hence their possible role in obesity. 
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OBJECTIVES 
 

1. To provide information about the role of gut microbiota in the etiology of obesity  

2. To describe the current knowledge about gut microbiota signatures in obese dogs 

3. To characterize the fecal microbiota composition of client-owned dogs with obesity 

before and after weight loss with a high-protein-high-fiber weight loss diet  

4. To test the effect of the weight loss diet on the fecal microbiota composition of a small 

cohort of obese dogs without weight loss 
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CHAPTER I: LITERATURE REVIEW 
 

Gut microbiota: functions in mammalian hosts and its role 
in obesity 

 

1.1. The obesity problem 
 

Obesity is a major medical concern in terms of its impact on the quality of life of our 

society. Shared by both humans and small companion animals (i.e. pet dogs and cats), obesity 

is a complex disorder, defined as an accumulation of excessive amounts of adipose tissue in the 

body (Bartges et al. 2017). Although the pathology of obesity remains unclear, some factors 

are associated with the development of this pathology including diet, level of physical activity, 

behavioral factors, socioeconomic factors, environmental exposures, genetics, metabolism and 

lately, the microbiome composition (Day 2017). Obesity is considered a pandemic in most 

developed countries because of its contribution to the development of comorbidities, as well as 

of its impact on decreased lifespan in both companion animals (German 2006) and humans 

(Kopelman 2000).  

Despite treatment options, such as dietary management and increasing physical activity, 

the prevalence rises every year in humans as well as in pets. The prevalence of obesity has been 

estimated between 19.7 and 59.3 % in dogs (McGreevy et al. 2005; Hill 2009; Courcier et al. 

2010; Corbee 2013; Mao et al. 2013). In humans, it is expected that by 2030, more than 2.16 

billion people will be overweight and 1.12 billion obese (Kolahi, Moghisi, and Soleiman 

Ekhtiari 2018). Beyond the health consequences associated with the disease, obesity carries 

social disadvantages, reducing socio-economic productivity and creating an economic burden 

(Blüher 2019). 

Among all the factors contributing to obesity, the gut microbiota is receiving renewed 

attention due to its role in gut homeostasis. The mammalian intestinal tract accommodates 

various microorganisms such as viruses, bacteria, fungi, archaea, and protozoa, which shape 

the gut microbiota (Hillman et al. 2017). This ecosystem has a symbiotic interaction with the 

intestine of the host (Bäckhed et al. 2005). Commensal gut bacteria have been the subject of 
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study during recent decades since many of their metabolic products affect host physiology 

(Jandhyala et al. 2015). Therefore, some microbial functions such as enhancement of gut barrier 

integrity (Natividad and Verdu 2013), energy harvesting (den Besten, van Eunen, et al. 2013), 

protection against pathogens (Bäumler and Sperandio 2016), regulation of host immunity and 

development of the normal intestinal epithelium (Gensollen et al. 2016) are mediated by 

bacteria in the intestine. The disruption of the normal bacterial ecology within the gut may lead 

to functional changes in host-microbial interactions and homeostasis. Gut microbiota 

alterations have been reported in different gastrointestinal and metabolic diseases such as 

inflammatory bowel disease (IBD), cancer, obesity, metabolic syndrome, liver disease, and 

diabetes, in both humans (Durack and Lynch 2019) and companion animals (Redfern, 

Suchodolski, and Jergens 2017). However, the mechanisms as how microbes and their 

metabolites can contribute to the development of disease (McFall-Ngai et al. 2013) are still 

under investigation. 

This literature review aims to summarize the current knowledge on the interactions of 

intestinal bacteria with the host, with special emphasis on the role of intestinal microbiota in 

obesity. A summary of the possible mechanisms proposed to date, in which the gut microbiota 

can contribute to the development of obesity will be discussed. In addition, an overview of the 

studies that mention possible microbiota modulators will be reviewed. 
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1.2 Gut microbiota in humans and dogs  
 

Gut microbiota composition is affected by the physiological conditions within the 

region of the gastrointestinal tract (Donaldson, Lee, and Mazmanian 2016). Although the 

intestinal microbiota composition is variable in each segment of the gut (Hillman et al. 2017), 

strict anaerobic bacteria are the most abundant in the human gut. The major phyla in the gut are 

Firmicutes, Bacteroidetes, and Proteobacteria, with lower abundances of Actinobacteria, 

Verrumicrobia and Fusobacteria (Sommer and Bäckhed 2013). The lower gastrointestinal tract 

has a greater abundance of Firmicutes and Bacteroidetes, whilst the upper part is more enriched 

in Proteobacteria and Firmicutes (Vuik et al. 2019). The large intestine harbors the majority of 

the microbes found in the body, since the colonic conditions allow for the dense growth of 

diverse species of bacteria (Sears 2005).  

There are also differences between the lumen and the mucosal surface of the intestine. 

The fecal, luminal and mucosal bacterial composition seems to be significantly different in 

humans (Eckburg et al. 2005; Li et al. 2015). The predominant genera found in the lumen are 

Bacteroides, Bifidobacterium, Streptococcus, Enterococcus, Clostridium, Lactobacillus and 

Ruminococcus. Conversely, Clostridium, Lactobacillus, Enterococcus and Akkermansia are the 

predominant genera found in the mucosa and mucus layers of the small intestine (Swidsinski et 

al. 2005). Despite these differences in microbiota composition between stool samples and the 

cross-section of the intestine, fecal samples are used in most studies because they are easy to 

collect (Dieterich, Schink, and Zopf 2018).  

In dogs, the gut microbiota also differs along the intestinal tract, increasing gradually in 

diversity and abundance along the small and large intestine (Suchodolski et al. 2005; 

Suchodolski, Camacho, and Steiner 2008). Most of the bacteria belong to the phyla Firmicutes, 

Bacteroidetes, Fusobacteria, Proteobacteria and Actinobacteria (Suchodolski, Camacho, and 

Steiner 2008; Honneffer, Lidbury, and Suchodolski 2017). Within the mentioned phyla, the 

most abundant taxa that have been reported comprise Ruminococcaceae, Faecalibacterium, 

Peptostreptococcaceae, Lachnospiraceae, Blautia, Streptococcus, Lactobacillus, Turicibacter, 

Catenibacterium and Coprobacillus. The majority of bacteria from the phylum Bacteroidetes 

consists of the genera Prevotella, Bacteroides and Megamonas. The genus Fusobacterium is 

also highly represented, and its abundance, conversely to humans, is associated with a healthy 

status in dogs (Vázquez-Baeza et al. 2016). The phyla Actinobacteria and Proteobacteria are 
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also detected in fecal samples of dogs but with less abundance. Contrastingly to humans, stool 

samples have been demonstrated to provide accurate information about the intestinal 

microbiota composition in dogs (Vázquez-Baeza et al. 2016). 

Bacterial diversity is also a commonly used parameter for characterizing microbiota. 

Many gastrointestinal diseases are associated with lower bacterial diversity (Durbán et al. 2012) 

and therefore, the identification of the core microbiota is important to define the profile of a 

“healthy” or “normal” gut microbiota (Rinninella et al. 2019). However, this aim is difficult 

because of the enormous number of factors influencing gut microbiota composition (Hasan and 

Yang 2019). 
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1.3 Factors affecting gut microbiota composition 
 

One of the difficulties commonly found when analyzing gut microbiota is variability 

between different subjects (Suchodolski et al. 2005; Ursell et al. 2012). This is explained by the 

host and environmental pressures, which influence the gut microbiota composition (Rothschild 

et al. 2018). Host factors include biological conditions within the gastrointestinal tract, such as 

an intact mucus layer, digestive enzymes and antimicrobial proteins, and immunological factors 

like secretory immunoglobulin A (SIgA). In addition, life factors which can affect the diversity 

of the gut microbiota, are age, health status and delivery mode. Some external environmental 

factors that modulate the gut microbiota are antibiotics, diet and pre- and probiotics (Hasan and 

Yang 2019). 

1.3.1 Age  
 

It was until recently believed that gut microbiota colonization in mammals is initiated 

at birth, however, recent studies have reported traces of microbiota in the amniotic fluid and 

placenta (Collado et al. 2016; Aagaard et al. 2014). Differences in the fecal microbiota of 

vaginally born infants versus those delivered via cesarean section have been reported (Grönlund 

et al. 1999). From birth through the first year of life, the human gut microbiota undergoes major 

transitions, becoming more diverse over time (Bäckhed et al. 2015). These transitions in the gut 

microbiota are probably induced by interactions with the developing intestinal environment and 

diet, which are known to modulate the early gut microbiota composition (Guaraldi and Salvatori 

2012). After infancy, the composition of gut bacteria becomes more similar to an adult gut 

microbiota (Yatsunenko et al. 2012). Studies reported that monozygotic twins have a 

significantly more similar microbiota composition than dizygotic twins, suggesting that the 

microbiome composition is in part influenced by host genetics (Goodrich et al. 2014).  

A study in German Shepherd dogs, revealed different clustering of the fecal microbiota 

composition from 7 weeks to 18 months, in addition, an increase of diversity was observed 

from pregnancy to end of lactation (Vilson et al. 2018). Similarly, the study carried out by 

Guard and colleagues revealed significant differences between puppies from parturition to 2, 

21, 42 and 56 days of life, and showing a gradual increase in bacterial diversity (Guard et al. 

2017). In addition, a change in the gut bacterial composition across age has also been 
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demonstrated, showing a decrease in bacterial diversity associated with age, in both humans 

and dogs, from an adult microbiota to an elderly microbiota (Mizukami et al. 2019; Odamaki 

et al. 2016), which also correlates with a decline in health status (Claesson et al. 2012). 

1.3.2 Geographical location and diet 
 

Gut microbiota changes associated with dietary factors can be classified as either short-

term or long-term. In humans, a different microbial composition was reported between 

individuals from Malawi, Venezuela and the United States (Yatsunenko et al. 2012), also in 

children from Bangladesh and the United States (Lin et al. 2013) and between subjects from 

rural areas of Africa compared to African Americans (Ou et al. 2013). However, sometimes it 

is difficult to separate the factor of long-term dietary habit from the environmental factor 

associated with location. Geographical location has been proposed to influence the intestinal 

microbiota composition in humans (Yatsunenko et al. 2012). However, these differences 

remain unclear when different geographical locations do not implicate different dietary habits 

(Lay et al. 2005).  

The factor of geographical location affecting gut bacteria profile seems to not be as 

relevant in dogs. A recent study showed differences in the fecal microbiota Shannon diversity 

index between Western United States and Midwestern dogs, however, no differences in gut 

microbiota were reported between dogs from the other regions of United States (Jha et al. 2020). 

This could be explained because diet macronutrient composition in dogs is more uniform across 

developed countries, since dogs are usually fed commercial diets manufactured to adhere to 

specific standards.  

Short term dietary interventions have been studied in humans to evaluate the effect on 

intestinal microbiota (Thaiss et al. 2014). The results obtained are variable, several studies have 

reported no significant effect of diet change on gut microbiota composition (Xu and Knight 

2015; Wu et al. 2011). Extreme dietary macronutrient shifts, such as a change to animal-based 

diets or plant-based diet, have shown slight effects in the intestinal microbiota, reporting 

changes in the relative abundance of several bacterial groups and in beta diversity. However, 

fecal microbiota composition returned to baseline 2 days after the diet intervention (David et 

al. 2014). Several studies tagged fiber content and type as crucial modulators of intestinal 

microbiota composition (Chassaing, Vijay-Kumar, and Gewirtz 2017). Some bacterial 
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populations such as Lactobacillus and Bifidobacterium are increased after dietary fiber 

consumption (Liu et al. 2017), which is accompanied with an increase of butyrate. However, 

no significant differences were observed in humans, in terms of alpha bacterial diversity when 

reviewing a high number of studies evaluating fiber effect on intestinal microbiota (So et al. 

2018). However, these changes are only maintained during the time that the dietary fiber was 

consumed. Concluding that short-term changes in fecal microbiota due to diet shift are transient 

(Albenberg and Wu 2014). 

Similarly, in healthy dogs, only minor dietary effects on fecal microbiota have been 

observed when the macronutrient composition of the dietary changes remained within a 

reasonable range (Sandri et al. 2017; Schauf et al. 2018). Moreover, diets with similar 

macronutrient content but substituting the traditional mixed plant and animal source of protein 

for plant-based protein exclusively, did not lead to significant differences in the fecal 

microbiota composition (Bresciani et al. 2018). Consistently in dogs as in humans, large shifts 

in microbiome composition have been observed only with drastic dietary changes, such as 

animal-based raw food diets, which include significantly more protein and less fiber and 

carbohydrates than kibble diets (Schmidt et al. 2018; Bermingham et al. 2017). 

1.3.3 Antibiotics 
 

Antibiotics have a dual role in the modulation of the gut microbiota. They eliminate 

microbial pathogens but also beneficial bacteria that contribute to the homeostasis of intestinal 

health (Klingensmith and Coopersmith 2016). Studies in mouse models revealed that microbial 

depletion with antibiotics affected host serotonin biosynthesis, secondary bile acids 

metabolism, and induced a delayed intestinal motility (Ge et al. 2017). More evidence of the 

important role of gut microbiota in obesity is demonstrated by several studies in which low 

doses of antibiotics administrated in early life altered the intestinal microbiota and adiposity in 

humans and mice (Cox et al. 2014; Stark et al. 2019). Cho and colleagues developed a study in 

which administration of penicillin, vancomycin or chlortetracycline in young mice induced a 

significant change in the gut microbiota composition at family level, and a consequent increase 

in percent of body fat from 22.9% in the control group to 32% (Cho et al. 2012).  

Gut microbiota disruption due to antibiotics promotes the invasion of pathogens in the 

intestine, such as Clostridium difficile (Ramnani et al. 2012). Moreover, it has been shown that 
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the use of antibiotics such as clindamycin, clarithromycin, metronidazole and ciproflaxin 

affects gut microbiota composition by alteration of the relative abundance of some intestinal 

bacteria taxa and by the expression of resistance genes up to 2 years in humans (Dethlefsen and 

Relman 2011; Jakobsson et al. 2010; Jernberg et al. 2007). 

In healthy dogs that were administered metronidazole for 14 days, the fecal microbiota 

composition showed lower bacterial diversity (Igarashi et al. 2014). The changes reverted after 

28 days, while after 42 days of antimicrobial intake, the fecal microbiota composition returned 

to the initial microbiota profile detected before antibiotic intake. However, the same results 

were not observed with prednisolone intake, showing no significant differences in terms of 

bacterial diversity after antimicrobial use (Igarashi et al. 2014). In the case of tylosin, after 7 

days healthy dogs showed a significantly different microbiota composition compared to the 

baseline day, before antimicrobial intake. After 63 days, however, these differences were no 

longer significant (Manchester et al. 2019). 

1.3.4 Probiotics  
 

“Probiotics are living microorganisms that when administrated in adequate amounts 

provide benefits to the host” (Gibson et al. 2017). High tolerance to gastric acid and bile, 

capability to adhere to intestinal surfaces, low pH and gastric juice withstand, antibiotic 

resistance, exopolysaccharides production, and inhibition of potentially pathogenic species by 

its antimicrobial activity, are some essential characteristics of probiotics. Due to the 

demonstrated beneficial effect on the host (Fijan 2014), the most commonly used probiotics 

belong to the genera Lactobacillus and Bifidobacterium (Marco, Pavan, and Kleerebezem 

2006). The proposed mechanisms by which probiotics may improve host health are growth 

promotion of beneficial bacteria, protection against adhesion of harmful bacteria, and exclusion 

or inhibition of pathogens directly producing antimicrobial compounds or inducing an immune 

response from the host (Cleusix et al. 2007; Servin 2004). Probiotics may also enhance the 

intestinal epithelial barrier and modulate the immune system and commensal microbiota 

(Mohan et al. 2008).  

Due to the ability of some probiotics and ingested bacteria to modulate bacterial 

colonization in the gut, probiotics have been used as a therapeutic approach in the treatment of 

several gastrointestinal diseases (Alagón Fernández Del Campo et al. 2019). In patients with 
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IBD, ingestion of a probiotic preparation (VSL#3) showed a decrease of inflammatory 

cytokines and helped to maintain remission status (Miele et al. 2009; Fedorak et al. 2015). There 

is also evidence that commensal bacteria may regulate epithelial permeability in the gut (Plöger 

et al. 2012), which is an obesity associated parameter. Probiotic bacteria such as VSL3 and 

Lactobacillus rhamnosus showed decrease of gut permeability in addition to preventing 

apoptosis of colonic cells in mouse models of colitis (Mennigen et al. 2009; Miyauchi, Morita, 

and Tanabe 2009). 

In animal models, convincing evidence suggest that probiotics may have a potential 

anti-obesity activity (Kobyliak et al. 2016). Lactobacillus curvatus HY7601 and Lactobacillus 

plantarum, suppressed body weight gain and reduced fat accumulation in liver tissue, as well 

as cholesterol in plasma in a diet-induced obesity model. In addition, in the liver, it was 

observed an up-regulation of the fatty acid oxidation-related genes (such as the peroxisome 

proliferator-activated receptor gamma coactivator 1-alpha; PGC1α, the carnitine-

palmitoyltransferase I and II (CPT1, CPT2) and peroxisomal acyl-coenzyme A oxidase 1, 

ACOX1 genes) in mice receiving probiotic treatment (Yoo et al. 2013; Park et al. 2013). 

Although there is evidence that probiotics may have a positive effect on health, 

especially in individuals with a risk of developing gastrointestinal disease, further studies must 

be done in order to clarify the dose, the strain-dependence and the mechanisms underlying their 

beneficial effects (Markowiak and Śliżewska 2017). Related to metabolic disorders in humans, 

one study evaluating the effect of the probiotics Lactobacillus acidophilus, L. bulgaricus, L. 

bifidum, and L. casei in individuals with type 2 diabetes reported a reduction of insulin 

resistance and the levels of triglyceride after 6 weeks of daily intake of probiotic 

supplementation, however, these differences were not significant (Mazloom, Yousefinejad, and 

Dabbaghmanesh 2013) In addition, studies that examine the effect of probiotic supplementation 

in obese individuals reported a limited influence on weight loss, highlighting the necessity of 

additional studies to prove that probiotic supplementation could become an effective strategy 

for the prevention and treatment of obesity (Wang et al. 2019). 

The effect of probiotics on the intestinal microbiota in dogs is controversial. 

Commercial probiotics include Enterococcus faecium, Lactobacillus acidophilus, and 

Bifidobacterium sp. animalis and a mix of different strains (multi-strain probiotics). Although, 

most of the studies that showed their efficacy are ex vivo (Schmitz et al. 2014), there is one 
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study that has demonstrated an improvement in gastrointestinal disease signs with the use of a 

mix of probiotic strains (Rossi et al. 2014; White et al. 2017). 

Although, the beneficial effect of probiotic in obese dogs has not been yet investigated, 

in healthy dogs, the effect of probiotics such as Enterococcus faecium, Bifidobacterium 

animalis, Lactobacillus casei, and Lactobacillus fermentum is very limited. Hence, no 

differences in the fecal microbiota composition or serum biochemical parameters after probiotic 

supplementation have been reported (Strompfová et al. 2006; Strompfová et al. 2014; Chung et 

al. 2009; Lucena et al. 2019). Despite a modulation of the gut microbiota (increase in 

bifidobacterial and lactobacilli) and greater levels of butyrate and lactate were observed after 

Fructooligosaccharides and Lactobacillus acidophilus supplementation in healthy dogs 

(Swanson et al. 2002), its beneficial effect for the host was attributed to the fructo-

oligosaccharides incorporated.  

1.3.5 Prebiotics 
 

Prebiotics are defined as fermentable products that have an impact on the composition 

and/or activity of the gastrointestinal microbiota, providing a benefit for host health (Roberfroid 

et al. 2010). Usually, prebiotics are classified as fibers and complex polysaccharides that are 

not able to be digested by host enzymes (Gibson, et al 2010). The main beneficial effect of 

dietary fiber for the host is the ability to maintain an intact intestinal mucosal barrier (Ray 

2018). Some examples of prebiotics are the disaccharides lactulose, tagatose, the oligo and 

polysaccharides fructo-oligosaccharides (FOS), manna-oligosaccharides (MOS) xylo-

oligosaccharides, polydextrose, galacto-oligosaccharides or inulin (Hughes and Rowland 2001; 

Koh et al. 2013; Ogué-Bon et al. 2010). In animal studies, administration of the fiber inulin 

prevented increased mucus penetrability in Western style diet -fed mice (Schroeder et al. 2018). 

In healthy dogs, several fibers have been associated with changes in gut microbiota 

composition (Spears, Karr-Lilienthal, and Fahey 2005; Middelbos et al. 2010; Beloshapka et 

al. 2013; Myint et al. 2017; Panasevich et al. 2015). In addition, studies in obese mice treated 

with prebiotics, resulted in a lower concentration of LPS, cytokines and a decreased hepatic 

expression of inflammatory and oxidative stress markers than those without prebiotic intake via 

glucagon-like peptide 2 (GLP-2). This was associated with a decrease in intestinal permeability 



Chapter I. Literature Review 
 

 19 

(Cani et al. 2009). However, further studies are necessary to demonstrate a significant beneficial 

effect of probiotics and prebiotics in gastrointestinal diseases (Schmitz and Suchodolski 2016). 
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1.4 Gut microbiota and obesity  
 

The first association between gut microbiota and obesity was observed when fecal 

content from normal mice was transplanted into germ-free mice, with the consequence of 

weight gain despite a reduction in food intake (Bäckhed et al. 2004). This study suggested that 

gut microbiota was involved in harvesting energy from the diet. Subsequently, it was revealed 

that lean individuals have different fecal microbiota composition than obese individuals, both 

in mice (Ley et al. 2005) and humans (Ley et al. 2006). In addition, when fecal microbiota from 

obese mice donors was transplanted to germ-free mice, they developed the obese phenotype 

(Turnbaugh et al. 2008; Turnbaugh et al. 2006). Similar results were observed when the donors 

were twins discordant for obesity (Ridaura et al. 2013), suggesting that the gut microbiota 

composition contributes to energy metabolism. This was also supported by another study in 

which germ-free mice were protected against diet-induced obesity even when the diet was low 

in complex carbohydrates, suggesting that germ-free mice are resistant to developing obesity 

by having elevated levels of Fiaf (factor induce adiposity) and increased AMPk activity which 

led to an increased fatty acid metabolism (Bäckhed et al. 2007). 

Initially, a significantly higher abundance of Firmicutes and lower abundance of 

Bacteroidetes was reported in the obese phenotype and the proportion of Bacteroidetes 

increased after a weight loss diet (Ley et al. 2006). It was hypothesized that Firmicutes help to 

incorporate more calories from the diet, caused by a higher proportion of genes encoding 

enzymes involved in energy extraction from complex carbohydrate (Turnbaugh et al. 2006). 

However, the postulated higher ratio of Firmicutes/Bacteroidetes in obesity was not always 

observed in studies (Schwiertz et al. 2010), and a decrease in the abundance of Firmicutes has 

also been observed after weight loss (Duncan et al. 2007). Despite the discrepancies between 

studies, the gut microbiota of obese individuals shows in general a lower bacterial diversity (Le 

Chatelier et al. 2013), and calorie restriction has been shown to increase gut bacteria richness 

in obese and overweight individuals (Cotillard et al. 2013; Le Chatelier et al. 2013). However, 

the discrepancies in the results may be due to other factors that influence the gut bacteria 

composition, such as age, genetic background, geographical location, diet and other 

environmental factors. 
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1.5 Fecal microbiota alterations in obese dogs 
 

The first study to evaluate the fecal microbiota composition of obese and lean dogs 

reported minor differences between the groups (Handl et al. 2013). Similar results were 

observed in a study with beagle dogs, however, the study showed lower microbial diversity in 

the obese group (Park et al. 2015).  

A further study that compared fecal microbiota between normal weight, overweight and 

obese companion dogs, showed few differences in some bacteria populations, such as family 

Bifidobacteriaceae, being increased in obese dogs, and the genus Eubacterium being decreased. 

A trend towards lower bacterial richness in obese dogs compared to normal weight dogs has 

also been reported but did not reach statistical significance (Forster et al. 2018). The results 

were similar when the fecal microbiota of overweight dogs was evaluated before and after a 

12-week weight loss program, revealing minor changes in fecal microbiota composition that 

did not reach significance (Kieler et al. 2017). However, an actual change in the microbial 

composition was observed after a 17-week weight loss program in a recent study of obese 

beagle dogs (Salas-Mani et al. 2018). It was the first study to report similar results as in obese 

humans (Ley et al. 2006) showing a greater abundance of Firmicutes in obese dogs and lesser 

of Bacteroidetes which changed after weight loss.  

To find an explanation as to why the intestinal microbiota of dogs with obesity was 

different from that of ideal weight dogs, it is important to explore the gut microbiota functions 

and its effect on host physiology, therefore on host health. 
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1.6 Host-microbial relationship and possible mechanisms to link gut 
microbiota and obesity  

 

The importance of exploring the gut microbiota functions resides in its effect on host 

physiology and, therefore, on host health. The symbiotic relationship between the gut 

microbiota and the host is represented by the interactions with the intestinal cells, the immune 

system, the enteric nervous system, and the endocrine system (Cani, Everard, and Duparc 2013; 

Bengmark 2013; Sittipo et al. 2018). These functions are mediated by the metabolic 

interconversions and the exchange of metabolites between the host and bacteria (Rowland et 

al. 2018; Jandhyala et al. 2015). Gut microbiota processes contribute to epithelial development, 

mucosal immunity, defense against pathogens, xenobiotic degradation, nutrient metabolism, 

biosynthesis of bioactive compounds, and bile acid metabolism among others (Nicholson et al. 

2012).  

Bacterial metabolism, including de novo synthesis and the molecular transformations of 

dietary compounds and intestinal metabolites, has a crucial role in the maintenance of intestinal 

health. Therefore, a disruption of the intestinal microbiota may contribute to intestinal 

pathologies or metabolic disorders. For example, alterations in the metabolism of bile acids, 

branched fatty acids, and choline, has been associated with the development of metabolic 

diseases such as obesity and type 2 diabetes (Palau-Rodriguez et al. 2015). Different 

mechanisms have been proposed to explain the link between gut microbiota and obesity. The 

conversion of undigested nutrients and host products by commensal bacteria in the gut produces 

different metabolites that have crucial roles in different physiological functions of the host, but 

are also targeted by the gut microbiota (Sittipo, Shim, and Lee 2019). Control of the energy 

homeostasis in the host by increased energy harvest from the diet, regulation of lipid 

metabolism, as well as the release of hormones implicated in satiety, and the intestinal low-

grade inflammation related with an increase in gut permeability of the intestine, have been some 

of the mechanisms through which gut microbiota can contribute to the etiology of obesity 

(Figure 1.1). 
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1.6.1 SCFAs increase the energy harvest from the diet  
 

The digestive system of humans and companion animals, such as dogs and cats, is not 

capable of digesting a high number of polysaccharides from the diet, such as cellulose, xylan 

and pectin. These food compounds reach the intestine where they are fermented by the intestinal 

microbiota, generating ATP (adenosine triphosphate) and simple carbon molecules that include 

SCFAs. The three most abundant SCFAs detected in feces are acetate, propionate and butyrate 

(Macfarlane and Macfarlane 2003). These volatile compounds perform different roles in the 

mammalian body such as regulation of gene expression, chemotaxis, differentiation, 

proliferation and apoptosis (Corrêa-Oliveira et al. 2016). Butyrate has also been proposed as an 

energy source for human colonocytes (den Besten, Lange, et al. 2013), moreover, butyrate and 

propionate have the ability to regulate gene expression by inhibiting histone deacetylases 

(Steliou et al. 2012). It has been hypothesized that the composition of the gut microbiota could 

influence the amount of energy harvested from the SCFAs (Bäckhed et al. 2005), since a greater 

content of SCFA in fecal samples and higher expression of genes involved in polysaccharides 

metabolism have been associated with an obese phenotype in mice (Turnbaugh et al. 2006). 

However, this is not supported by evidence in humans where high-fiber diets, which would be 

expected to increase SCFA production, protect against weight gain (Du et al. 2010). In addition, 

in vitro fermentations using fecal samples from obese and ideal weight individuals showed no 

difference in total SCFA production (Yang, Keshavarzian, and Rose 2013). 

1.6.2 Lipid metabolism and gut microbiota 
 

The first studies that aimed to elucidate the mechanism in which gut microbiota 

contributes to obesity, revealed that SCFAs might induce de novo lipogenesis. This conclusion 

was made after observing an excess in body fat mass in germ-free mice which received the 

fecal microbiota of conventionally raised mice (conventionalized mice) (Bäckhed et al. 2004). 

Accordingly, an increase of lipogenic genes expression such as acetyl-CoA carboxylase (Acc1) 

and fatty acid synthase (Fas) was reported after conventionalization (Bäckhed et al. 2004). 

Interestingly, Acc1 and Fas are transcriptional sites of two transcription factors involved in 

lipogenesis in the liver in response to insulin and carbohydrates, sterol response element 

binding protein 1c (SREBP-1c) and carbohydrate response element binding protein (ChREBP) 

(Bäckhed et al. 2004). Accordingly, to investigate the effect of gut microbiota on host energy 
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and lipid metabolism, another study evaluated the serum, adipose tissue and liver metabolomes 

of germ-free mice and conventionalized mice. The results showed increased levels of energy 

metabolites, such as pyruvic acid, citric acid, fumaric acid, and malic acid in conventionalized 

mice, however, a reduction of serum cholesterol and fatty acids was also detected in comparison 

with germ-free mice (Velagapudi et al. 2010). These results were also in agreement with a 

subsequent in vitro study with HepG2 cells treated with gut microbiota-producing lipids. These 

compounds activated de novo lipogenesis and triglyceride synthesis via the mTOR/SREBP1 

pathway, with consequent fat accumulation in HepG2 cells (Go et al. 2013).  

Fasting induced adiposity factor, also known as angiopoietin-like protein 4 

(Fiaf/ANGPTL4), produced by large intestinal epithelial cells and the liver, plays a crucial role 

in triglyceride metabolism by inhibiting lipoprotein lipase (LPL). Inhibition of Fiaf expression 

causes accumulation of fat in peripheral tissues (Dutton and Trayhurn 2008). Seeking for a 

possible hypothesis to explain the increase in fat storage in conventionalized mice, Backhed 

and colleagues analyzed the role of Fiaf as a gut microbiota-host signaling pathway. Total body 

fat content in germ-free and conventionalized, normal and Fiaf knockout mice was measured. 

The results showed that Fiaf suppression is essential for the microbiota-induced deposition of 

triglycerides in adipocytes (Bäckhed et al. 2004; Bäckhed et al. 2007) In addition, it was 

suggested that expression of Fiaf may be mediated by the composition of the gut microbiota 

(Aronsson et al. 2010; Bäckhed et al. 2004). However, the association between Fiaf expression 

and fat storage is still under discussion. The study conducted by Fleissner and colleagues found 

that different diets modulated the intestinal microbiota in germ-free mice and conventionally 

raised mice did not result in changes in the level of Fiaf, as suggested in the previous studies 

(Fleissner et al. 2010).  

Another proposed mechanism in which gut microbiota may interact in obesity is by 

suppression of the activity of the enzyme adenosine monophosphate kinase (AMPk). AMPk is 

a crucial enzyme in the regulation of energy homeostasis in cells. AMPk activates enzymes 

including acetyl-CoA carboxylase (Acc1) and carnitine-palmitoyltransferase I (CPT-1), both 

involved in energy expenditure by fatty acid oxidation in the mitochondria (Kim et al. 2016). 

In addition to favoring catabolic pathways, AMPk inhibits anabolic pathways such as 

lipogenesis, glycogenolysis, and protein synthesis, improving insulin sensitivity (Angin et al. 

2016). Its association with gut microbiota was first studied by an experiment in which higher 

levels of AMPk, Acc1 and CPT-1 in the liver and skeletal muscle were observed in germ-free 
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mice in comparison with conventional raised mice when fed a Western type diet (Bäckhed et 

al. 2007). Inhibition of AMPk by gut microbiota leads to a decrease in fatty acid oxidation and 

consequently results in increased fat accumulation (Hardie 2008; Boulangé et al. 2016). 

It has also been proposed that gut bacteria may contribute indirectly to the high fat diet 

induced obesity phenotype through the regulation of Farnesoid X Receptor (FXR) via bile acids 

metabolism (Wahlström et al. 2017). Bile acids are physiological molecules synthetized in the 

liver and secreted into the intestinal lumen with the bile. The functions of bile acids include 

facilitating fat digestion and absorption. In addition, they play a crucial role in removing toxic 

metabolites with the feces. Bile acids are reabsorbed from the intestine and transported back to 

the liver via blood circulation regulating its feedback, synthesis and secretion (Liu et al. 2018).  

Gut microbiota plays a crucial role in bile acid metabolism by the conversion of primary 

bile acids (cholic acid and chenodeoxycholic acid) to secondary bile acids (deoxycholic acid 

and lithocholic acid). In humans, 95% of the bile acids secreted into the gut are reabsorbed, and 

the rest 5% are converted to secondary bile acids by gut bacteria such as some species of the 

genera Clostridium (Gopal-Srivastava and Hylemon 1988; Sorg and Sonenshein 2008). 

Both primary and secondary bile acids activate FXR signaling, which regulates bile acid 

production, lipid and glucose homeostasis (Zhang and Edwards 2008). FXR regulates 

expression of cholesterol 7a-hydroxylase (CYP7A1) and CYP27A1, by its inhibition, which is 

required for the beginning of bile acid synthesis, regulating in this way the production of bile 

acids (Chiang 2009). In addition, Swann and colleagues suggested a contribution of gut 

microbiota in the diversity of bile acids (Swann et al. 2011). A subsequent study confirmed that 

gut microbiota can modulate the synthesis of bile acids by regulating the enzymatic activity of 

CYP7A1 and CYP27A1 (Sayin et al. 2013).  

In addition to the interaction of the gut microbiota with FXR via bile acid metabolism, 

secondary bile acids are also ligands for the G protein coupled receptor (GPCR) TGR5, which 

is expressed in the brown adipose tissue and muscle. Stimulation of the TGR5 signaling 

pathway confers to bile acids the ability to modulate energy expenditure by regulating the 

activity of type 2 deiodinase and the subsequent activation of thyroid hormone (Watanabe et al. 

2006). Moreover, it has been suggested that TGR5 stimulates the expression of glucagon-like 

peptide 1 (GLP-1) (Thomas et al. 2009), presenting a possible role in glucose homeostasis 
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(Aron-Wisnewsky et al. 2013). These findings highlight the possible contribution of gut 

microbiota to host metabolism homeostasis via TGR5 stimulation by secondary bile acids. 

1.6.3 Gut microbiota and its role in satiety 
 

SCFAs may also regulate host metabolism via G-protein-coupled receptors (GPCRs), 

expressed by immune cells, adipocytes, enteroendocrine cells and the gut epithelium. These 

mediate signaling to secrete GLP-1 and leptin production (Xiong et al. 2004; Samuel et al. 

2008; Tolhurst et al. 2012), which regulates metabolic functions such as appetite and satiety.  

The production of SCFAs by commensal microbiota also has been proposed to have a 

beneficial role in systemic glucagon and insulin regulation (satiety and host metabolism). 

SCFAs can act as signaling molecules, for example binding to GPR43 and GRP41. GRP43 is 

expressed in immune cells and in adipocytes, GRP41 by its side is expressed also in adipose 

tissue and in a subset of enteroendocrine cells in the gut epithelium (Brown et al. 2003) and 

both have been suggested to have a role in energy homeostasis. Mice deficient in GRP43 show 

an obese phenotype, and when overexpressing GRP43 in the adipose tissue present resistance 

to diet induced obesity, even when receiving a high fat diet (HFD) (Kimura et al. 2013). GPCRs 

stimulate peptide YY (PYY) which reduce appetite, GLP-1, which inhibit glucagon release and 

promotes insulin secretion, decreasing the glucosyl levels in blood (Kasubuchi et al. 2015). 

Studies in mice showed that acetate may have a role in the central appetite regulation (Frost et 

al. 2014). In fact, there are several studies in humans and animal models that confirm that the 

intake of indigestible polysaccharides upregulates the GLP-1 and PYY levels via SCFAs (Zhou 

et al. 2008; Tarini and Wolever 2010). GPR41 and GPR43 knockout mice had reduced levels 

of GLP-1 and impaired glucose tolerance (Tolhurst et al. 2012). In addition, a role of the gut 

microbiota in the suppression of food intake has been demonstrated with in vitro studies in 

which it has been shown that SCFAs stimulate leptin production through the interaction with 

the GRP41/43 (Xiong et al. 2004; Zaibi et al. 2010). 

1.6.4 Gut microbiota and the innate immunity  
 

Intestinal microbiota plays a crucial role in maintaining immune homeostasis in the gut 

(Kurilshikov et al. 2017). In the intestinal epithelium, enterocytes and dendritic cells (DCs) 
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express PRRs, such as TLRs, which are activated by contact with microbe-associated molecular 

patterns (MAMPs), and pathogen-associated molecular patterns (PAMPs), such as 

lipopolysaccharide (LPS), lipoteichoic acids (LTK) of bacterial cell walls, flagellin and double- 

or single-stranded RNA and DNA. This interaction is crucial to promote innate immunity, 

contributing to homeostatic balance of the gut microbiota by mediating host-microbe 

interaction (Clevers and Bevins 2013).  

Considering the important role of TLRs and MAMPs, in the immune homeostasis, the 

function of one of the most expressed TLRs in the intestinal mucosa was evaluated. TLR5 

genetically deficient T mice (T5KO mice), apart from exhibiting elevated proinflammatory 

gene expression, surprisingly had an increase in body mass, which was associated with a greater 

secretion of proinflammatory factors, such as IL-1β and INF-γ (Vijay-Kumar et al. 2007). Mice 

deficient in TLR5 expression also showed hyperphagia, hyperlipidemia, hypertension, insulin 

resistance, and increased fat deposition in comparison with conventionally raised mice, 

suggesting a role of TLR5 with metabolic syndrome, by its association with increased adiposity 

(Vijay-Kumar et al. 2010). In addition, they showed that antibiotic use improved the metabolic 

syndrome. The role of gut microbiota was also confirmed after observing that wild type and 

T5KO mice had different microbiota compositions. In fact, when T5KO microbiota was 

transplanted to wild-type germ free mice, a similar inflammatory phenotype as exhibited by the 

T5KO mice was observed. However, a subsequent study did not reproduce the same results 

with different animal colonies (Letran et al. 2011), concluding that the suggested inflammatory 

phenotype is not a consistent feature of TLR5-deficient mice. 

1.6.5 Alteration in intestinal permeability and low-grade chronic inflammation   
 

Obesity is associated with low-grade inflammation due to the release of signaling 

molecules from the adipose tissue (adipokines) such as TNF-alpha, IL-1 and IL-6, which have 

been associated with increased insulin resistance (Ouchi et al. 2011) and risk of cardiovascular 

diseases (Lau et al. 2005). In addition, one of the consequences of insulin resistance is the 

excessive fat storage in the haptic and adipose tissue, increasing inflammation and contributing 

to the fat accumulation loop. 

Seeking an inflammatory factor in high fat diet induced obesity in mice, Cani and his 

group reported that low-grade inflammation in obesity and diabetes could be mediated by 
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lipopolysaccharide (LPS) from Gram-negative bacteria via interactions with the receptors 

CD14 and TLR4 (Cani, Amar, et al. 2007; Davis et al. 2008). This increase in plasma LPS in 

mice fed with a HFD was denominated “metabolic endotoxemia”, and was accompanied with 

significantly decreased populations of Bacteroides/Prevotella spp, Bifidocbacterium spp, and 

Lactobacillus spp. (Cani, Amar, et al. 2007). Interestingly, metabolic endotoxemia improved 

after supplementation with Bifidobacteria (Cani, Neyrinck, et al. 2007).  

Consistent with the previous hypothesis of LPS triggering low grade inflammation, an 

increase in intestinal permeability in obese mice during HFD was observed by reduction of the 

expression of genes that encode for tight junction proteins ZO-1 and occludin (Cani et al. 2008). 

Consequently, the same research group reported enhancement of the gut barrier integrity after 

Bifidobacteirum spp. supplementation by an increase of glucagon like peptide-2 (GLP-2) 

production (Cani et al. 2009). Subsequently, a possible role of the endocannabinoid (eCBs) 

system was proposed to link gut microbiota with gut barrier integrity and obesity. The 

cannabinoid receptors 1 (CB1) and 2 (CB2) are G proteins activated by the eCBs. Arachidonoyl 

ethanolamide (anandamide, AEA) and 2-arachidonyl glycerol (2-AG) together with their 

synthetizing and degrading enzymes, are two eCBs that play an important role in eating 

stimulation, adipogenesis and glucose uptake (Matias and Di Marzo 2007; Di Marzo et al. 

2009). 

Considering all the above, and that gut LPS has been demonstrated to regulate eCBs 

synthesis (Maccarrone et al. 2001), the role of gut microbiota in obesity was evaluated via eCBs 

activation in mice models of obesity. The results confirmed an increase of the expression of 

CB1 and the enzyme implicated in AEA synthesis, N-acylphophatidylethanolamine 

phospholipase D (NAPE-PLD) in the intestine and adipose tissue of obese mice. Same study 

also reported a modulation of the intestinal permeability via CB1 activation. In addition, it was 

demonstrated an in vivo and in vitro modulation of eCBs by the gut microbiota, via LPS by 

blocking the cannabinoid driven adipogenesis (Muccioli et al. 2010). Despite authors reported 

a decrease in fat mass and CB1 expression in obese mice by modulation of the gut microbiota 

composition using prebiotic, the composition of the microbiota was not evaluated to confirm 

this statement. In addition, the mechanisms by which the gut microbiota participate in the 

regulation of eCBs is not fully understood and requires further investigation (Cani 2012). 
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Figure 1.1 Suggested mechanisms by which the gut microbiota could contribute to the 
pathogenesis of obesity. 
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1.7 Conclusion   
 

In summary, the gut microbiota lives in a mutualistic relationship with their mammalian 

host, affecting many important functions that maintain the health status of the host, and 

regulating energy balance. According to the studies described, the gut microbiota increases 

energy uptake and modulates energy homeostasis through the production of metabolites that 

act as signaling molecules, mediating host functions such as satiety, gut motility, energy storage 

and energy expenditure. Obese individuals have an altered fecal microbiota composition, and 

fecal microbiota of obese individuals transferred the obese phenotype in mice, suggesting an 

important role of gut microbiota in the development of obesity.  

However, additional studies are necessaries in humans and companion animals to understand 

if gut microbiota manipulation could control the development of obesity, improve its prognosis 

or contribute to a faster weight loss rate. 
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CHAPTER II 
 

Fecal microbiota in client-owned obese dogs changes after 
weight loss with a high-fiber-high-protein diet 

 

2.1 Abstract 
 

Background. The fecal microbiota from obese individuals can induce obesity in animal 

models. In addition, studies in humans, animal models and dogs have revealed that the fecal 

microbiota of subjects with obesity is different from that of lean subjects and changes after 

weight loss. However, the impact of weight loss on the fecal microbiota in dogs with obesity 

has not been fully characterized. 

Methods. In this study, we used 16S rRNA gene sequencing to investigate the differences in 

the fecal microbiota of 20 pet dogs with obesity that underwent a weight loss program. The 

endpoint of the weight loss program was individually tailored to the ideal body weight of each 

dog. In addition, we evaluated the qPCR based Dysbiosis Index before and after weight loss.  

Results. After weight loss, the fecal microbiota structure of dogs with obesity changed 

significantly (weighted ANOSIM; p=0.016, R=0.073), showing an increase in bacterial richness 

(p=0.007), evenness (p=0.007) and the number of bacterial species (p=0.007). The fecal 

microbiota composition of obese dogs after weight loss was characterized by a decrease in 

Firmicutes (92.3% to 78.2%, q=0.001), and increase in Bacteroidetes (1.4% to 10.1%, q=0.002) 

and Fusobacteria (1.6% to 6.2%, q=0.040). The qPCR results revealed an overall decrease in 

the Dysbiosis Index, driven mostly due to a significant decrease in E. coli (p=0.030), and 

increase in Fusobacterium spp. (p=0.017). 

Conclusion. The changes observed in the fecal microbiota of dogs with obesity after weight 

loss with a weight loss diet rich in fiber and protein were in agreement with previous studies in 

humans, that reported an increase of bacterial biodiversity and a decrease of the ratio 

Firmicutes/Bacteroidetes.  
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2.1 Introduction  
 Canine obesity is a serious metabolic disease that affects the quality of life and decreases 

life span (Salt et al. 2019; German et al. 2012). The prevalence of obesity has been increasing 

in the past years in small animals (Courcier et al. 2010), and it is a major healthcare problem in 

veterinary practice (Chandler et al. 2017; German 2006). Obesity is associated with a greater 

risk of developing other diseases such as diabetes mellitus, cardiovascular and orthopedic 

diseases, and even some types of cancer (Kopelman 2000; Tropf et al. 2017; German, Ryan, et 

al. 2010). Diet restriction increased life span in dogs and weight loss regimen based on weight 

loss diet and exercise decreased plasma insulin concentrations and insulin:glucose ratio (Kealy 

et al. 2002; German et al. 2009). Due to the detrimental effect of obesity on the welfare of both 

dogs and their owners, investigating new approaches to prevent obesity and promote weight 

loss in small animals is of crucial interest in veterinary research (Day 2017; Bartges et al. 2017). 

 In the past years, there has been interest on investigating a possible role for gut 

microbiota in obesity in humans, mouse models (Zhao 2013; Turnbaugh et al. 2008; Ridaura et 

al. 2013), and also in dogs (Forster et al. 2018; Handl et al. 2013; Park et al. 2015; Kieler et al. 

2017; Salas-Mani et al. 2018). Studies have found that obesity is associated with alterations, 

disruption, and decreased biodiversity of the intestinal microbiota (Durack and Lynch 2019; 

Ley et al. 2005; Ley et al. 2006; Cotillard et al. 2013). In addition, colonization of germ-free 

mice with the fecal microbiota of obese humans lead to significant weight gain when compared 

to mice that received fecal microbiota from lean controls (Ridaura et al. 2013), suggesting that 

gut microbiota impacts host physiology and metabolism. 

 While a relationship between the gut microbiome and obesity has been observed, it 

remains unclear as to how the gut microbiome contributes to the development of obesity, but 

proposed mechanisms include the production of short chained fatty acids (SCFAs), 

monosaccharides, and other bioactive molecules. These bacterial products may lead to an 

increase in dietary energy harvest (Turnbaugh et al. 2006), changes in lipid metabolism 

(Ghazalpour et al. 2016), changes in fat storage regulation (Bäckhed et al. 2004; Bäckhed et al. 

2007), altered satiety (Arora, Sharma, and Frost 2011), and an increase in systemic low-grade 

inflammation via the interaction with either the enteric nervous system (Schwartz 2000; Tehrani 

et al. 2012; de Lartigue, de La Serre, and Raybould 2011), the endocrine system (Mondo et al. 

2020; Kirchoff, Udell, and Sharpton 2019; Scarsella et al. 2020), or the immune system (Cani 

et al. 2007; Cani et al. 2012). 
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 In human and animal models of obesity, a greater abundance of the phylum Firmicutes 

and lesser abundance of Bacteroidetes have been reported (Turnbaugh et al. 2009; Vrieze et al. 

2012), and the Firmicutes/Bacteroidetes (F:B) ratio is commonly used as a marker of gut 

microbial dysbiosis in obesity. The F:B ratio is greater in individuals with obesity and, 

interestingly, decreases after weight loss (Ley et al. 2005; Ley et al. 2006). Previous data have 

shown similarities in the gut microbiota of humans and dogs (Swanson et al. 2011; Coelho et 

al. 2018), but it is not clear whether results from human and animal models can be translated to 

canine obesity. 

 One study in research Beagles evaluated the fecal microbiota of lean dogs and dogs that 

developed obesity after overfeeding for 6 months. Analysis of fecal microbiota demonstrated 

differences in microbial communities between dogs in the obese and lean groups, with a lesser 

diversity in the obese group. In particular, there was a lesser abundance of Firmicutes and 

Fusobacteria in the obese group, and the abundance of Proteobacteria was significantly greater 

in the obese group compared to the lean group (Park et al. 2015). 

 In one study of client-owned dogs, a dominance of the phylum Firmicutes has been 

seen, with significant differences at the taxonomic level, between dogs with obesity and those 

in ideal body condition, but no significant differences in the overall composition of fecal 

microbiota or bacterial diversity (Handl et al. 2013). However, in a second study, a trend 

towards lower fecal microbial diversity was seen in dogs with obesity, compared with dogs in 

ideal bodyweight (Forster et al. 2018). 

 Two studies have evaluated the impact of weight loss on the fecal microbiota of dogs 

with obesity. In one study, the fecal microbiota was assessed before, during, and after 12 weeks 

of a weight loss program that consisted of diet and exercise or diet alone. Despite the short 

follow-up period, differences in bacterial abundance were identified after 6 weeks and 12 weeks 

of the weight loss program. While not all the dogs lost as much weight as expected, a decrease 

in Megamonas and an unknown genus of the family Ruminococcaceae was observed in the 

dogs with a higher weight loss rate (Kieler et al. 2017). The fecal microbiota composition of 

research Beagles with obesity has also been assessed before and after a 17-week weight loss 

program with a hypocaloric diet (Salas-Mani et al. 2018). Despite all dogs reaching ideal body 

weight, no significant impact on diversity was seen and microbial communities remained 

similar to baseline values after 17 weeks. At the genus level, significant differences were found 

only in the abundances of the Firmicutes genera Lactobacillus, Clostridium, and Dorea, which 



Chapter II. Microbiota Obese Dogs 
 

 54 

decreased after the weight loss program, and Allobaculum, which increased (Salas-Mani et al. 

2018). 

 A number of limitations need to be considered in these studies. Microbiome analysis 

evaluates a large number of variables, which limits the statistical power, especially in small 

cohorts (Falony et al. 2016). In addition, studies with healthy client-owned dogs have identified 

large individual variations, which need to be taken into account (Garcia-Mazcorro et al. 2012). 

Given that obesity develops over time, it is reasonable to expect that significant changes will 

be seen only when follow-up focuses on the long-term improvement. Therefore, the aim of this 

study was to use 16S rRNA sequencing to evaluate the differences in fecal microbiota 

composition of client-owned dogs with obesity before and after weight loss. We also performed 

quantitative PCR to calculate the Dysbiosis Index in obese dogs before and after weight loss 

and to compare the values obtained with the established reference intervals from healthy dogs 

(AlShawaqfeh et al. 2017). Moreover, we evaluated the fecal microbiota of obese client-owned 

dogs enrolled in the weight loss program that did not reach ideal body weight to quantify the 

effect of the diet alone on the fecal microbiota. 
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2.2 Materials and methods 
 

2.2.1 Study animals, eligibility criteria and ethical considerations 
 Client-owned dogs with obesity were referred to the Royal Canin Weight Management 

Clinic, University of Liverpool, UK. All were presented between June 2009 and August 2017, 

and completed their weight loss regimens between November 2009 and August 2018. To be 

included in the study, dogs had to be clinically healthy with no signs of gastrointestinal disease, 

a BCS of ≥6, and no antimicrobial usage in the past month (Igarashi et al. 2014). None of the 

dogs had antimicrobials throughout their weight loss program. No fecal analyses were 

performed on the fecal samples and so occult infection with intestinal parasites could not be 

excluded. However, no dog showed signs consisted with parasitic infection. 

 Historical data and fecal samples, before and after participation in the weight loss 

program, had to be available for the analysis. The final number of dogs with obesity that met 

the inclusion criteria was 25. At time point zero (T0), fecal samples of all 25 dogs were 

collected. Twenty dogs completed the weight loss program and reached their target weight, 

whilst five dogs stopped their program early as request of the owners for undeclared reasons. 

From dogs that completed the weight loss, a fecal sample from the visit in which they reached 

their target body weight, was collected to include in the analysis as time point two (T2). Dogs 

that did not complete the weight loss program but had a fecal sample from the first follow-up 

visit (time point one (T1)) were included in the analysis to account for the effect of the new diet 

on the fecal microbiota. The study protocol was reviewed and approved by the University of 

Liverpool Veterinary Research Ethics Committee (Approval reference: RETH000353 and 

VREC793), the Royal Canin ethical review committee, and the WALTHAM ethical review 

committee. Owners of dogs with obesity gave informed consent in writing. 

 

2.2.2 Weight loss regimen 
 Prior to commencing weight reduction, all dogs were considered to be healthy apart 

from their obesity. All dogs were screened for overall health by performing complete blood 

count, serum biochemical analysis, serum free thyroxine concentration (by equilibrium 

dialysis) and urinalysis.  Dogs were weighed at admission, and the body condition score (BCS) 

was estimated using a 9-integer scale by the attending clinician (AJG). Percentage body fat was 

measured by dual-energy x-ray absorptiometry (DEXA) as previously described (Raffan et al. 
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2006).  For weight reduction, all dogs were fed a dry therapeutic diet (Canine Satiety® diet, 

Royal Canin), with the exception of one dog (OBE16) that was fed a combination of wet and 

dry food (Canine Satiety® diet, Royal Canin). Moreover, the formulation of Satiety changed in 

2010 (Table 2.1, Data S2.1). The endpoint of the study was achievement of ideal body weight 

which, given differing degrees of adiposity, was individually set for each dog using the results 

of body composition analysis from before weight loss, as previously reported (German et al 

2012). Briefly, pre-weight-loss body composition data were entered into a computer 

spreadsheet which contained a bespoke mathematical formula to predict ideal bodyweight. The 

formula was based upon typical changes in body composition seen from previous weight loss 

studies at the same clinic (German et al. 2007; German, Holden, et al. 2010). 
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Table 2.1 Average composition of diets for weight loss 

Criterion Dry food1 Wet food2 

    

ME content 2900 / 2865 Kcal/kg 602 Kcal/kg 

 Per 100g AF g/1000 Kcal (ME) Per 100g AF g/1000 Kcal (ME) 

Moisture 8 / 10 28 / 33 83 1379 

Crude protein 30 / 30 103 / 105 8.5 141 

Crude fat 10 / 10 33 / 33 2.0 33 

Starch 19 / 18 66 / 61 1.8 30 

NFE 30 / 29 102 / 100 3.0 50 

Crude fiber 18 / 16 60 / 58 2.0 33 

Total dietary fiber 28 / 28 97 / 97 3.2 53 

Ash 5.3 / 5.7 18 / 20 1.5 25 

1 Satiety Support Canine Dry (Royal Canin); 2Satiety Support Canine Wet (Royal Canin); 3 Diet formulation 
changed in 2010; figures in column refer to pre-2010 and post-2010 diets, respectively.  ME= Metabolizable 
energy content, as measured by animal trials according to the American Association of Feed Control Officials 
protocol (AAFCO, 2010); AF= as fed; DM= dry matter. 

 

2.2.3 Fecal collection and DNA extraction  
Fecal samples from dogs with obesity were collected after spontaneous defecation and 

stored at -20°C being shipped to the Gastrointestinal Laboratory at Texas A&M University in 

February 2019. DNA was extracted from approximately 100 mg of stool using the Mo Bio 

PowerSoil® DNA isolation kit (MoBio Laboratories, USA) according to the manufacturer’s 

instructions. 
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2.2.4 Quantitative real-time PCR (qPCR) and Dysbiosis Index (DI) 
 Quantitative PCR was performed using universal bacteria primers and primers for the 

following bacterial groups: Blautia spp., Clostridium hiranonis (C. hiranonis), Escherichia coli 

(E. coli), Faecalibacterium spp., Fusobacterium spp., Streptococcus spp., and Turicibacter spp.  

The analysis was performed using a CFX 96 Touch TM Real-Time PCR Detection system 

(Biorad Laboratories). Ten μL SYBR-based reaction mixtures: 5 μL of SsoFast™ EvaGreen® 

Supermix (Biorad Laboratories), 2.2 μL of water, 0.4 μL of each primer (final concentration: 

400 nM), and 2 μL of DNA (1: 10 or 1: 100 dilution) were used for a protocol of 95°C for 2 

min, and 40 cycles at 95°C 5 s and 10 s at the optimized annealing temperature for each primer 

set. Afterwards, a melt curve analysis was completed (AlShawaqfeh et al. 2017). 

 Results from the qPCR analysis for Blautia spp., C. hiranonis, E. coli, Faecalibacterium 

spp., Fusobacterium spp., Streptococcus spp., and Turicibacter spp. are expressed as the 

abundance of DNA for each bacterial group (logarithm of starting quantity or logarithm of 

relative DNA copy number). Relative DNA copy number for the mentioned bacteria were used 

to calculate a single numerical value known as the Dysbiosis Index (AlShawaqfeh et al. 2017). 

A value <0 is indicative of a normal microbiota, numbers between 0 and 2 are considered 

equivocal, while numbers greater than 2 indicate fecal dysbiosis. The dysbiosis index is a 

commercially available assay, and the reference intervals have been validated with dogs from 

various countries, including the UK.   

   

2.2.5 16S rRNA gene sequencing 
The V4 variable region of the 16S rRNA gene was sequenced at the MR DNA 

laboratory (www.mrdnalab.com, Shallowater, TX, USA). Primers 515F (5’-

GTGYCAGCMGCCGCGGTAA) (Parada, Needham, and Fuhrman 2016) to 806RB (5’-

GGACTACNVGGGTWTCTAAT) (Apprill et al. 2015) and HotStarTaq Plus Master Mix 

(Qiagen, USA) were used to amplify samples and perform the Illumina MiSeq protocol 

following the manufacturer’s guidelines. Raw sequences were uploaded into Sequence Read 

Archive of the NCBI GenBank database under the accession number PRJNA580258. 

2.2.6 Analysis of sequences 
Quantitative Insights into Microbial Ecology 2 (QIIME 2.0) was used for analysis of 

the 16S rRNA amplicon sequences (Bolyen et al. 2019). Sequences were demultiplexed and 
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the OTU table was created using DADA2 (Callahan et al. 2016). Operational taxonomic units 

(OTUs) were defined as sequences with at least 97% similarity within the Greengenes v 13.8 

database (DeSantis et al. 2006). Prior to downstream analysis, sequences assigned as 

chloroplast, mitochondria, and low abundance OTUs, containing less than 0.01% of the total 

reads in the dataset were removed (McDonald et al. 2012). All samples were rarefied to an even 

depth of 36,775 sequence reads, based on the lowest read depth of samples. 

Alpha diversity was evaluated with Chao1, Shannon diversity, and observed OTUs. 

Beta-diversity metric was estimated by unweighted and weighted phylogeny-based UniFrac 

distances and visualized using PCoA (Principal Coordinate Analysis) plots. 

 

2.2.7 Statistical analysis 
 Normality was tested for all continuous variables using the Shapiro-Wilk test. Results 

were reported as mean (standard deviation [SD]) or median (range), when data were normally- 

or not normally-distributed, respectively. Differences in dog characteristics (i.e., age) between 

groups at baseline were compared using either the t-test. The ANOSIM (Analysis of Similarity) 

test within PRIMER 6 software package (PRIMER-E Ltd., Luton, UK) was used to analyze 

significant differences in microbial communities between groups. 

Alpha diversity indices (Shannon, Chao1, and Observed OTUs), Dysbiosis Index, and 

quantitative PCR results were compared between groups using Wilcoxon test. A statistical 

software package (Prism version 8.0; GraphPad Software, San Diego, CA, USA), was used for 

the described analyses. To minimize false discoveries in univariate statistics, OTUs not present 

(0%) in at least 50% of the samples of at least one of the compared groups were considered rare 

and excluded from analysis. Filtered taxa were tested with Wilcoxon test for paired analysis 

using statistical software (R Studio Software version 1.2.1335 ©, R Studio, Boston, MA, USA; 

and JMP Pro 14; SAS, Durham, NC, USA). P-values were adjusted using the Benjamini–

Hochberg Step-up method with a false discovery rate (FDR) of 0.05. For all statistical analyses, 

significance was set at p<0.05.  
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2.3 Results 
 

2.3.1 Animal population characteristics 
 After a mean of 330.9 (SD 203.4) days on weight loss diet, BCS changed significatively 

in dogs with obesity when compared before (BCS 8; range 6-9) and after weight loss (median 

BCS 5; range 4-7; p<0.001). However, BCS was not significantly different at baseline between 

the group of dogs that lost weight and those that did not complete the weight loss program 

(p=0.551). At baseline, the mean age in dogs with obesity that lost weight was 69.4 (SD 32.3) 

months, and 75.0 (SD 23.6) months for those that did not lose weight (p=0.730), (Table 2.2, 

Data S2.1). The breeds included in the obese group were: Labrador Retriever (n=7), Golden 

Retriever (n=2), Cavalier King Charles spaniel (n=2), Border Collie (n=2), Pug (n=2), Lhasa 

Apso (n=1), American Bulldog (n=1), Dachshund (n=1), Rottweiler (n=1), Newfoundland 

(n=1), Bichon Frise (n=1), Rough Collie (n=1), and mixed breed (n=3). 

 Body composition measurements were available for 19 out of the 20 dogs with obesity 

that lost weight (n=20) and mean body fat mass was 44.8% (SD 5.0%) before weight loss (T0) 

and 30.4% (SD 6.5%) after weight loss (T2, p<0.001). Mean rate of weight loss of starting body 

weight was 0.68% (SD 0.29%) per week, while the energy intake during the weight loss period 

was 60.8 (SD 5.5) kcal per kg0.75 of ideal body weight per day (Table 2.2, Data S2.1). 

 Dogs were classified as having discontinued prematurely (n=5) when their body weight 

at the time that they dropped out of the study (T2) were still significantly above of their ideal 

weight. The time between enrollment (T0) and the first follow-up (T1) was 15 (14-37) days, 

during which they had lost a median of 2.7% (0.0%-4.8%) of their starting body weight. At the 

time they dropped out of the program, after 414 (414-781) days on weight loss, they lost 9.9% 

(-3.6%-21.3%) of body weight. Although one dog did eventually lose 21.3% of its body weight, 

it was still significantly (~13%) above its ideal weight at the time it discontinued and had also 

not lost any weight when the follow-up fecal sample was taken. All other dogs in this group 

lost <11% of their starting weight and were also above their ideal weights at the point that their 

weight loss was ended. The median rate of weight loss of starting body weight was 0.10% (-

0.06%-0.39%) per week and the energy intake was 54.0 (51.8%-60.9%) kcal per kg0.75 of ideal 

body weight per day. Body composition measurements were available in 4 out of 5 of the dogs 

at baseline, and median body fat was 44.7% (44.0%-47.5%). Body condition score did not 

change significatively during the period of weight loss (Data S2.1). No significant differences 
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were identified for alpha and beta diversity when sex, age and neutered status were investigated 

for association with fecal microbiota in all dogs at baseline (Data not shown).  
 

Table 2.2 Demographics for obese dogs enrolled in the study. 

 
Days on 

weight loss 
diet, Mean 

(SD) 

Age in 
months, 

Mean (SD) 
Sex Sexual 

status 

BCS 
Baseline, 
median 
(range) 

BCS after 
weight loss, 

median 
(range) 

BCS 
during 
weight 

loss, 
median 
(range) 

Obese dogs, 
completed 

study (n=20) 
330.9 (SD 

203.4) 
69.4 (SD 

32.3) 
10F/10 

M 18N/2I 8 (6-9) 5 (4-7) N/A 

Obese dogs, 
did not 

complete 
study 
(n=5) 

536.4 (SD 
154.8) 

75 (SD 
23.6) 3F/2M 5N 8 (8-9) N/A 8 (8-9) 

Unpaired T-test was used to compare age between the groups of obese dogs that completed the study vs. obese 
dogs that did not complete the study (p = 0.730). Mann-Whitney for unpaired analysis and Wilcoxon for paired 
analysis were used to test significance of differences in BCS between groups: obese before vs. after weight loss 
(p < 0.001); obese dogs that completed the program at baseline vs. obese dogs that did not complete the study 
(p = 0.551). 

 

 

 

2.3.2 qPCR and Dysbiosis Index 
On analysis by qPCR, there was a decreased abundance of E. coli (T0: 4.8 vs. T2: 3.5; 

p=0.030), and an increased abundance of Fusobacterium spp. (T0: 7.4 vs. T2: 8.0; p=0.017) 

after weight loss (Figure 2.1). The values for the abundances of the evaluated bacteria by qPCR 

and for the Dysbiosis Index showed that the changes observed in the fecal microbiota before 

and after weight loss were mostly within the established reference intervals for clinically 

healthy dogs. 
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Figure 2.1 Dysbiosis Index and quantitative PCR results for Blautia spp., C. hiranonis, E. 
coli, Faecalibacterium spp., Fusobacterium spp., Streptoccocus spp., and Turicibacter spp. 

Bacterial concentrations are expressed in Log DNA (Log of the starting quantity, which is the relative DNA 
copy number). The dotted lines indicate the established reference intervals for each bacterial group for clinically 
healthy dogs. The Dysbiosis Index is a mathematical algorithm that summarizes the results in one number. A 
negative value is indicative of a normal microbiota, numbers between 0 and 2 are considered equivocal, and 
values greater than 2 indicate dysbiosis. Wilcoxon test was used to compare bacterial abundance and Dysbiosis 
Index between dogs with obesity before and after weight loss. Significance *p < 0.05, **p < 0.01, ***p < 0.001
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2.3.4 Changes in the fecal microbiota with weight loss in dogs with obesity  
 

Weighted UniFrac analysis of similarities revealed significant clustering of the 

microbial communities in dogs with obesity before and after weight loss (weighted ANOSIM; 

p=0.016, R=0.073; Figure 2.2A). Alpha diversity evenness and richness, as indicated by 

Shannon (p=0.007), Chao1 (p=0.007), and Observed OTUs (p=0.007) indices were 

significantly increased after weight loss (Figure 2.2B). 
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Figure 2.2 Principal coordinate analysis of beta and alpha diversity of dogs with obesity before 
and after weight loss. 

(A) PCoA plot based on weighted UniFrac distances of 16S rRNA genes. Visible clustering was 

confirmed by ANOSIM, showing that fecal microbiota of obese dogs changed significatively after weight loss 

(p=0.016, R=0.073). (B) Observed OTUs, an indicator of species richness, and (C) Chao1, indicator of rare 

bacterial species abundance showed an increase after weight loss (p=0.007). (D) Shannon index, indicator of 

bacterial evenness, also increased significatively when dogs lost weight (p=0.007).  
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When the bacterial abundance was investigated at the taxa level, significant differences 

were found for the phyla Bacteroidetes, Firmicutes and Fusobacteria (Figure 2.3A). The 

median Firmicutes/Bacteroidetes ratio decreased from 0.123 to 0.014 (p=0.004) in dogs with 

obesity after weight loss (Figure 2.3B). 

 

 

Figure 2.3 Abundance of fecal bacteria at phylum level found in obese dogs before and after 

weight loss. 

(A) Relative abundance of the phyla detected in fecal samples of obese dogs before weight loss and after 

weight loss. Increases of the abundance of the phyla Bacteroidetes (q=0.002) and Fusobacteria (q=0.040), and 

decreases of the abundance of the phylum Firmicutes (q=0.001) were observed after weight loss. (B) 

Firmicutes/Bacteroidetes ratio values for each dog. After weight loss, Firmicutes/Bacteroidetes ratio decreased 

significantly as a consequence of a greater abundance of Bacteroidetes and lesser of Firmicutes (p=0.004). 
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The relative abundance of Bacteroidetes (T0: 1.4% vs. T2: 10.1%; q=0.002; Figure 2.4A) 

and Fusobacteria (T0: 1.6% vs. T2: 6.2%; q=0.040; Figure 2.5A) increased significantly after 

weight loss, whilst the abundance of the phylum Firmicutes, instead decreased (T0: 92.3% vs. 

T2: 78.2%; q=0.001; Figure 2.6A).  

 

 

 

 

 

Figure 2.4 Relative abundance of bacterial populations belonging to the phylum 

Bacteroidetes detected in fecal samples of obese dogs that changed after weight loss. 

Individual values for each dog before (red) and after weight loss (blue) of the relative abundance for each 

bacterial population as indicated: A) phylum Bacteroidetes, B) family Bacteroidaceae, C) genus Bacteroides, D) 

Bacteroides plebeius, E) family Paraprevotellaceae, F) and genus Paraprevotella. Significance *p < 0.05, **p < 

0.01, ***p < 0.001. Red significance lines indicate p-values that did not pass multiple comparison correction. 
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The increase in Bacteroidetes (Figure 2.4C) was driven by the genera Bacteroides (T0: 

0.7% vs. T2: 7.9%; q=0.017; Figure 2.4F) and Paraprevotella (T0: 0% vs. T2: 0.1%; q=0.033). 

From the phylum Fusobacteria (Figure 2.5C), the genus Fusobacterium (T0: 1.6% vs. 

T2: 6.2%; q=0.099) increased after weight loss. However, the corrected q-value did not reach 

significance. 

 

 

 

Figure 2.5 Relative abundance of bacterial populations belonging to the phylum 

Fusobacteria detected in fecal samples of obese dogs that changed after weight loss. 

 Individual values for each dog before (red) and after weight loss (blue) of the relative abundance for each 

bacterial population as indicated: A) phylum Fusobacteria, B) family Fusobacteriaceae, C) and genus 

Fusobacterium. Significance *p < 0.05, **p < 0.01, ***p < 0.001. Red significance lines indicate p-values that 

did not pass multiple comparison correction. 

 

Belonging to the phylum Firmicutes, the family Clostridiaceae decreased in abundance 

after weight loss (T0: 37.3% vs. T2: 24.6%; q=0.068), but this difference did not reach 

significance after Benjamini correction (Figure 2.6B). The same was noticed for the genus 

Clostridium (T0: 0.7% vs. T2:  0.6%; q=0.119; Figure 2.6C). The genus Megamonas (T0: 

0.2% vs. T2: 0.0%; q=0.027; Figure 2.6E) and the genus Catenibacterium (T0: 2.3% vs. T2: 

0.5%; q=0.017) decreased significantly after weight loss (Figure 2.6F), and the genus 

Coprobacillus increased in abundance (T0: 0% vs. T2: 0.5%, q=0.033; Figure 2.6G). 
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Figure 2.6 Relative abundance of bacterial populations belonging to the phylum Firmicutes 

detected in fecal samples of obese dogs that changed after weight loss. 

 Individual values for each dog before (red) and after weight loss (blue) of the relative abundance for 
each bacterial population as indicated: A) phylum Firmicutes, B) family Clostridiaceae, C) genus Clostridium, 
D) family Veillonellaceae, E) genus Megamonas, F) genus Catenibacterium, G) and genus Coprobacillus. 
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Significance *p < 0.05, **p < 0.01, ***p < 0.001. Red significance lines indicate p-values that did not pass 
multiple comparison correction. 

 

2.3.6 A short-term change in diet does not alter fecal microbiota. 
  

The fecal microbiota beta diversity of the dogs with obesity that stopped the weight loss 

program before reaching the endpoint (n=5) was analyzed before and during the weight loss 

program. No significant differences were evident between the two time points (Weighted 

ANOSIM; p=0.778 R=-0.080; Figure 2.7A). Alpha diversity evenness and richness, as 

indicated by Shannon (p=0.313), Chao1 (p=0.438), and Observed OTUs (p=0.438) indices did 

not show significant differences after a median period of 15 days on weight loss diet. 
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Figure 2.7 Principal coordinate analysis of beta diversity and alpha diversity indices of obese 

dogs that did not complete the weight loss program. 

 A) PCoA plot based on weighted UniFrac distances of 16S rRNA gene shows no clustering of microbial 

communities from feces of obese dogs before weight loss (red) and during weight loss (purple). Fecal microbiota 

profile of obese dogs did not change after a median period of 15 days (weighted ANOSIM; p=0.778, R=-0.080). 

B) Observed OTUs, an indicator of species richness, C) Chao1, indicator of rare bacterial species abundance 

(p=0.438), and D) Shannon index, indicator of bacterial evenness (p=0.313), were not different in obese dogs after 

a median period of 15 days on weight loss program. 
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2.4 Discussion 
 

In this study, we report significant differences in the fecal microbiota in a population 

of 20 obese client-owned dogs after weight loss. Dogs with obesity were enrolled in a weight 

loss program with the endpoint set as the achievement of target body weight (German et al. 

2007; German, Holden, et al. 2010). 

We observed that the fecal microbiota richness and evenness of dogs increased 

significantly after weight loss, which is consistent with previous studies for dogs and humans 

with obesity, where a lesser richness and evenness of the fecal microbiota was reported in obese 

individuals (Park et al. 2015; Peters et al. 2018). At the phylum level, our results showed a 

decrease of the abundance of Firmicutes (92.3% vs. 78.2%) and an increase of the abundance 

of Bacteroidetes (1.4% vs. 10.1%) after weight loss, as a result, we observed  a decrease of the 

F:B ratio in dogs with obesity after weight loss (Figure 2.3B). This is consistent with the 

literature (Ley et al. 2006), since  the F:B ratio of obese individuals has been reported to be 

greater in studies that analyzed the fecal microbiota of obese humans, dogs, and animal models 

of obesity, that also decreased after weight loss (Ley et al. 2005; Ley et al. 2006; Turnbaugh et 

al. 2006; Turnbaugh et al. 2009; Salas-Mani et al. 2018).  

An important difference of the core microbiota between humans and dogs is the 

abundance of the phylum Fusobacteria. In human studies, Fusobacteria is not as abundant in 

the fecal microbiota compared to dogs (Swanson et al. 2011; Coelho et al. 2018). In fact, in 

humans, a high abundance of Fusobacteria is associated with colon cancer (Kelly, Yang, and 

Pei 2018). In contrast, in dogs, Fusobacteria appears to play an important role in the 

maintenance of health, and has been reported to be decreased in dogs with gastrointestinal 

diseases (AlShawaqfeh et al. 2017; Minamoto et al. 2014). Previous studies have demonstrated 

that a greater abundance of Fusobacteria is associated with leanness and it increases after 

weight loss in dogs (Park et al. 2015; Handl et al. 2013). Our results by 16S rRNA gene 

sequencing confirm that the abundance of Fusobacteria increases after weight loss (Figure 

2.5).  

In agreement with this, results from qPCR (Figure 2.1) showed also a significant 

increase in Fusobacterium spp. and a significant decrease in E. coli, with a numerical decrease 

in the Dysbiosis index, although this was not significant. Most dogs remained within the 

established reference interval for clinically healthy dogs. 
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A greater abundance of the class Clostridia has been associated with an obese 

phenotype and it is reported to decrease after weight loss in humans (Nadal et al. 2009). In a 

similar study in dogs, the genus Clostridium decreased after a weight loss program of 17 weeks 

(Salas-Mani et al. 2018). Our results also showed a slight decrease of Clostridium after weight 

loss. However, this difference was not statistically significant (Figure 2.6). 

One of the factors to consider may be the variability between diets. In order to evaluate 

the effect of the weight loss diet in the gut microbiota, fecal microbiota of dogs with obesity 

before and after an initial period on the weight loss diet was analyzed in a small cohort of dogs 

with obesity that did not complete the weight loss program. The fecal microbiota analysis 

before and after this period did not show significant differences (Figure 2.7). Despite the short-

term on weight loss diet and the small sample size, similar results were shown in the study 

carried out by Kieler and colleagues (Kieler et al. 2017), that evaluated the fecal microbiota of 

overweight pet dogs after a weight loss program. In addition, the same weight loss diet used in 

our study was used with or without exercise in the mentioned study, and researchers observed 

only minor changes in the microbiome composition. In that particular study, the dogs were 

followed for 12 weeks, and it is not clear how many dogs reached an ideal body weight. The 

main finding was that a decrease in abundance of the genus Megamonas correlated with a 

greater weight loss rate during 12-week weight loss program (Kieler et al. 2017). We also 

observed a decrease in the genus Megamonas after weight loss, which could be attributed to an 

effect of the weight loss diet. However, the role of Megamonas in obesity is unclear and merits 

further investigation. 

There is significant interest in body weight management by modifying macronutrient 

distribution in diets. Fiber promotes digestive health and weight control and has been 

demonstrated to improve satiety in dogs (Weber et al. 2007), however, the effect of diet on 

fecal microbiota in dogs is controversial. Whilst diet has been shown to modulate the gut 

microbiota in humans (David et al. 2014), in dogs this correlation is not always clear. Gut 

microbiota seems to be modulated by diet only when its formulation changes significantly in 

macronutrient content from the previous diet (Schmidt et al. 2018; Kim et al. 2017) or the 

intestinal microbiota is compromised due to a gastrointestinal disease (Bresciani et al. 2018). 

Consistently, in healthy dogs, small variations in diets seem not to have substantial effects on 

the composition of the fecal microbiota (Sandri et al. 2017; Schauf et al. 2018; Bresciani et al. 

2018). The diet used in our study is considered a high-protein, high-fiber diet (Table 2.1). 
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Although we cannot exclude that changes observed in the fecal microbiota of dogs with obesity 

after weight loss are associated to the new diet, minor changes have been reported when an 

increase of fiber is included in the diet of healthy dogs (Middelbos et al. 2010). 

It has been hypothesized that increased satiety, an important factor to aid weight loss, 

could be mediated by SCFAs (Arora, Sharma, and Frost 2011). Our results confirm significant 

differences in SCFAs-producing bacteria, as Clostridiaceae, Veillonellaceae and Blautia 

between obese before and after weight loss (Data S2.2). However, study of SCFAs in obese 

dogs and after weight loss it is necessary to confirm its role in satiety and hence, in weight 

modulation. 
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2.5 Conclusion 
  

In summary, this study shows that the fecal microbiota of dogs with obesity 

significantly changes after weight loss. In addition, our results by qPCR show that after weight 

loss with a high-fiber and high-protein diet, the abundance of the bacterial population analyzed 

are mostly within the reference intervals for clinically healthy dogs.  
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Supplementary data 2.1 Characteristics of dogs with obesity enrolled in the study.  

 

 

 

#SAMPLEID 
Days on 

diet 
(T2)

Age in 
months (T0)

Sex Breed
Neutered 

status
BCS (T0) BCS (T2) Weight loss diet (Satiety Royal Canin) Diet before weight loss diet (Satiety Royal Canin)

Body 
weight loss 

rate per 
week (T2) 

Percentage 
weight loss of 
starting body 
weight (T2)

 Percentage 
starting 
body fat 

(T0)

Percentage 
ending 

body fat 
(T2)

Change in 
lean 

tissue 
mass

Energy intake 
during weight 
loss of ideal 
body weight 

(kcal per 
kg0.75)

OBE01 250 33 F Lhasa Apso N 9 5  dry diet pre-2010 Royal Canin Hepatic dry 0,86 30,6% 36,9% 24,8% -17,6 73,6
OBE02 748 26 M Golden Retriever N 8 5  dry diet pre-2010 Royal Canin Obesity dry 0,23 24,9% 50,2% 40,7% -11,6 61,4
OBE03 139 16 M Labrador N 6 5  dry diet post-2010 Royal Canin Urinary mod cal 0,80 12,0% 38,7% 28,5% 2,7 64,5
OBE04 349 43 M Golden Retriever N 7 5  dry diet post-2010 Chappie dry 0,38 19,0% 47,7% 37,0% -3,6 63,6
OBE05 504 59 F Labrador N 9 5  dry diet post-2010 JWB Natural, wet and dry 0,45 32,3% 51,9% 38,5% -14,4 57,1
OBE06 204 67 M American Bulldog N 7 5  dry diet post-2010 Wainwrights dry 0,75 21,8% 39,9% 18,4% 0,3 55,8
OBE07 434 108 F Mix breed N 9 5  dry diet post-2010 Royal Canin Hypoallergenic dry 0,57 35,6% 50,5% 32,6% -12,4 56,7
OBE08 280 57 M Labrador N 8 6  dry diet post-2010 Wainwrights dry 0,54 21,4% 47,3% 31,0% 3,8 55,4
OBE09 223 91 F Labrador N 7 5  dry diet post-2010 Bakers Weight Control dry and Royal Canin Obesity dry 0,71 22,5% 46,4% 31,6% -0,3 57,1
OBE10 188 126 M Labrador I 7 5  dry diet post-2010 Chappie dry 0,81 14,6% 39,2% 29,4% -0,8 55,4
OBE11 126 41 M Cavalier King Charles Spaniel N 9 ?  dry diet post-2010 Wagg dry, Hero Light wet 1,22 35,3% 44,6% 23,0% -5,6 60,2
OBE12 768 73 F Mix breed N 9 5  dry diet post-2010 Royal Canin Satiety/ Obesity, Burns dry 0,43 47,1% 48,9% 23,4% -19,8 60,2
OBE13 263 98 F Labrador N 9 5  dry diet post-2010 Pedigree Light dry 0,89 33,3% 48,5% 33,1% -7,4 68,3
OBE14 349 57 M Dachshund N 8 5  dry diet post-2010 Wainwrights Light 0,61 30,4% 48,0% 28,6% -3,9 55,0
OBE15 702 53 M Mix breed N 9 6  dry diet post-2010 Bakers Weight Control dry 0,27 27,4% 50,1% 39,4% -12,2 58,9
OBE16 366 79 F Rottweiler N 8 5  dry diet post-2010/ wet diet post-2010 Pedigree dry 0,59 28,4% 45,4% 31,4% -6,9 53,0
OBE17 119 41 M Newfoundland I 6 4  dry diet post-2010 Gilpa and JWB dry 0,60 10,1% 36,0% 21,9% 13,2 71,8
OBE18 116 105 F Cavalier King Charles Spaniel N 9 6  dry diet post-2010 JW Light dry 1,27 21,1% NO DEXA NO DEXA NO DEXA 62,2
OBE19 112 80 F Bichon Frise N 7 4  dry diet post-2010 Butchers Lean and Tasty tinned wet 1,18 23,6% 37,5% 24,3% -6,2 63,3
OBE20 378 135 F Border Collie N 9 7  dry diet post-2010 Morrisons dry 0,49 22,0% 44,3% 40,2% -20,7 61,8

MEAN (SD) 
or MEDIAN 

(RANGE)

330.9 
(SD 

203.4)
69.4 (SD 32.3) 10F/10 M N/A 18N/2I 8 (6-9) 5 (4-7) N/A N/A

0.68 (SD 
0.29)

25.7% (SD 
8.6%)

44.8% (SD 
5.0%)

30.4% (SD 
6.5%)

-6.5 (SD 
8.5)

60.8 (SD 5.5)

OBESE DOGS (completed the study)

#SAMPLEID 
Days on 
diet (T1)

Days on 
diet (T2)

Age in 
months 

(T0)
Sex Breed

Neutered 
status

BCS (T0) BCS (T1) Subgroup
Weight loss diet 

(Satiety Royal Canin)
Diet before weight loss diet 

(Satiety Royal Canin)

Body weight 
loss rate per 
week (T2)

Percentage weight 
loss of starting 

body weight (T1)

Percentage weight 
loss of starting 

body weight (T2)

Percentage 
starting body 

fat (T0)

Percentage 
ending body 

fat (T2)

Change in 
lean tissue 

mass

Energy intake during 
weight loss of ideal body 
weight (kcal per kg0.75)

OBE21 15 659 102 F Rough Collie N 8 8 OBESE  dry diet post-2010 Royal Canin Obesity dry 0,10 1,6% 9,9% 47,5% NO DEXA NO DEXA 54,0
OBE22 37 414 85 F Border Collie N 8 8 OBESE  dry diet post-2010 Harringtons dry and Mero wet 0,39 0,0% 21.3% 44,0% NO DEXA NO DEXA 60,9
OBE23 14 414 68 M Pug N 9 9 OBESE  dry diet post-2010 Royal Canin Pug dry 0,11 4,8% 6,7% NO DEXA NO DEXA NO DEXA 58,0
OBE24 14 414 33 F Pug N 9 9 OBESE  dry diet post-2010 Royal Canin Pug dry -0,06 2,7% -3,6% 44,4% NO DEXA NO DEXA 54,0
OBE25 25 781 87 M Labrador N 8 8 OBESE  dry diet post-2010 Burns Weight Control dry 0,10 3,3% 10,8% 44,9% NO DEXA NO DEXA 51,8

MEAN (SD) 
or MEDIAN 

(RANGE)

15 (14-
37)

414 (414-
781)

85 (33-
102)

3F/2M N/A 5N 8 (8-9) 8 (8-9) 5OB N/A N/A
0.10 (-0.06-

0.39)
2.7% (0.0%-4.8%) 9.9% (-3.6%-21.3%)

44.7% (44.0%-
47.5%)

N/A N/A 54.0% (51.8%-60.9%)

*MEAN 
(SD) or 

MEDIAN 
(RANGE)

N/A N/A 70.5 (SD 
30.8) 13F/12M N/A 23N/2I 8 (6-9) N/A 18OB/7OW N/A N/A N/A N/A N/A 44.9% (SD 

4.6%) N/A N/A 59.8 (SD 5.5)

OBESE DOGS (did not complete the study) 
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* Mean (SD) or median (range) calculated for all obese dogs at baseline, including the ones that completed the study and lost weight and the ones that did not complete the 
study  
T0; time point zero, before weight loss program  
T1; time point one, interim follow-up only available for the group of obese dogs that stopped the weight loss program 
T2; time point two, when the group of obese dogs that completed the study reached target body weight and the group of dogs that did not complete the study dropped out 
the weight loss program 
BCS; Body Condition Score (0-9 scale) 
DEXA; Dual-energy X-ray absorptiometry  
F female 
M male 
N neutered 
I intact   
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Supplementary data 2.2  Median percentage of relative abundance of the different bacterial 
populations detected in fecal samples of obese dogs before and after weight loss 

 

 

 

 

1 

Obese dogs before weight loss vs. obese dogs after weight loss

Median Range Median Range P value Q value

Actinobacteria 2,9 0-9.2 3 0.2-18.5 0,729 0,729
Bacteroidetes 1,4 0.2-16.7 10,1 0.5-37.8 <0,001 0,002
Firmicutes 92,3 58.4-99.1 78,2 46.4-96.5 <0,001 0,001
Fusobacteria 1,6 0-20.8 6,2 0.3-18.9 0,024 0,040
Proteobacteria 0,5 0-6.3 0,7 0.1-17.3 0,294 0,368

LEVEL: 2 Phylum
Obese dogs after weight 

loss
Obese dogs before weight 

loss

Obese dogs before 
weight loss vs. obese 
dogs after weight loss

Median Range Median Range P value Q value

Actinobacteria 0,1 0-1.6 0,1 0-1.5 0,375 0,469
Coriobacteriia 2,6 0-9.2 2,4 0.2-18.5 0,522 0,580
Bacteroidia 1,4 0.2-16.7 10,1 0.4-37.8 0,001 0,010
Bacilli 1,4 0-31 0,9 0.2-10.7 0,105 0,298
Clostridia 68,9 45.6-97.1 64,1 41-87.7 0,133 0,298
Erysipelotrichi 9,4 1.1-30.8 7,4 1.4-17.7 0,165 0,298
Fusobacteriia 1,6 0-20.8 6,2 0.3-18.9 0,024 0,120
Betaproteobacteria 0,1 0-1.9 0,1 0-3.8 0,179 0,298
Epsilonproteobacteria 0 0-0.2 0 0-0.5 0,223 0,318
Gammaproteobacteria 0,2 0-6.3 0,2 0-17.2 0,644 0,644

LEVEL 3: Class
Obese dogs after weight 

loss
Obese dogs before weight 

loss

Obese dogs before 
weight loss vs. obese 
dogs after weight loss

Median Range Median Range P value Q value

Actinomycetales 0 0-1 0,1 0-1.1 0,731 0,731
Coriobacteriales 2,6 0-9.2 2,4 0.2-18.5 0,522 0,574
Bacteroidales 1,4 0.2-16.7 10,1 0.4-37.8 0,001 0,011
Lactobacillales 0,6 0-31 0,3 0-5.9 0,165 0,327
Turicibacterales 0,4 0-20.2 0,3 0-9.6 0,404 0,494
Clostridiales 68,9 45.6-97.1 64,1 41-87.7 0,133 0,327
Erysipelotrichales 9,4 1.1-30.8 7,4 1.4-17.7 0,165 0,327
Fusobacteriales 1,6 0-20.8 6,2 0.3-18.9 0,024 0,132
Burkholderiales 0,1 0-1.9 0,1 0-3.8 0,179 0,327
Campylobacterales 0 0-0.2 0 0-0.5 0,223 0,350
Enterobacteriales 0,2 0-6.3 0,1 0-17.2 0,298 0,500

LEVEL 4: Order
Obese dogs after weight 

loss
Obese dogs before weight 

loss

Obese dogs before 
weight loss vs. obese 
dogs after weight loss
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Median Range Median Range P value Q value

Coriobacteriaceae 2,6 0-9.2 2,4 0.2-18.5 0,522 0,554
Bacteroidaceae 0,7 0.2-16.7 7,9 0.3-31.6 0,001 0,010
Prevotellaceae 0,1 0-5.4 0,1 0-2.7 0,954 0,954
Paraprevotellaceae 0 0-2.4 0,1 0-3.9 0,006 0,036
Streptococcaceae 0,3 0-30.9 0,3 0-5.9 0,468 0,531
Turicibacteraceae 0,4 0-20.2 0,3 0-9.6 0,404 0,490
Unknown family of order Clostridiales 0,3 0-4.4 0 0-1.5 0,117 0,251
Unknown family of order Clostridiales 0,1 0-1.4 0,5 0-3 0,012 0,051
Clostridiaceae 37,3 7.7-82.5 24,6 3.5-74.9 0,024 0,068
Lachnospiraceae 27,6 6.6-45 31,9 4.8-66.6 0,330 0,468
Peptostreptococcaceae 0,8 0-9.7 0,4 0-13.4 0,121 0,251
Ruminococcaceae 0,6 0.1-5.5 1,2 0-17.1 0,133 0,251
Veillonellaceae 0,3 0-3.8 0 0-1.1 0,001 0,010
Erysipelotrichaceae 9,4 1.1-30.8 7,4 1.4-17.7 0,165 0,281
Fusobacteriaceae 1,6 0-20.8 6,2 0.3-18.9 0,024 0,068
Alcaligenaceae 0,1 0-1.9 0,1 0-3.8 0,369 0,483
Enterobacteriaceae 0,2 0-6.3 0,1 0-17.2 0,298 0,460

LEVEL 5: Family 
Obese dogs after weight 

loss
Obese dogs before weight 

loss

Obese dogs before 
weight loss vs. obese 
dogs after weight loss

Median Range Median Range P value Q value

Collinsella 2,4 0-9.1 2 0.2-18.5 0,870 0,901
Slackia 0,1 0-0.6 0,2 0-1.6 0,073 0,226
Bacteroides 0,7 0.2-16.7 7,9 0.3-31.6 0,001 0,017
Prevotella 0,1 0-5.4 0,1 0-2.7 0,954 0,954
Paraprevotella 0 0-2.4 0,1 0-3.7 0,005 0,033
Streptococcus 0,3 0-30.9 0,2 0-5.9 0,229 0,369
Turicibacter 0,4 0-20.2 0,3 0-9.6 0,404 0,509
Unknown genus of order Clostridiales 0,3 0-4.4 0 0-1.5 0,117 0,226
Unknown genus of order Clostridiales 0,1 0-1.4 0,5 0-3 0,012 0,058
Unknown genus of family Clostridiaceae 19,6 3.5-48.6 19,3 2.9-46.4 0,133 0,226
Unknown genus of family Clostridiaceae 4,6 0.9-8.6 3 0-65 0,083 0,226
Clostridium 0,7 0-74.2 0,6 0-26.1 0,033 0,119
Unknown genus of family Lachnospiraceae 9,7 2.2-19.5 11,1 1.4-20 0,133 0,226
Unknown genus of family Lachnospiraceae 1 0-4.2 1,4 0-7.1 0,475 0,551
Blautia 12,5 2.8-37.2 13,7 3.2-36 0,756 0,812
Dorea 0,7 0-2.3 1,1 0-2.7 0,123 0,226
Ruminococcus 2,6 0-7.2 2,9 0.1-6.3 0,349 0,482
Unknown genus of family Peptostreptococcaceae 0,8 0-9.7 0,4 0-13.4 0,121 0,226
Unknown genus of family Ruminococcaceae 0,1 0-2.1 0,4 0-4.9 0,119 0,226
Faecalibacterium 0,2 0-3.4 0,5 0-11.1 0,332 0,482
Megamonas 0,2 0-3.4 0 0-0.8 0,003 0,027
Unknown genus of family Erysipelotrichaceae 1,6 0-12.4 3,6 0.1-12.8 0,123 0,226
Allobaculum 1,4 0.1-11.3 1,9 0-5.4 0,430 0,520
Catenibacterium 2,3 0-21.7 0,5 0-5.6 0,001 0,017
Coprobacillus 0 0-3.2 0,5 0-3.5 0,006 0,033
Eubacterium 0,7 0-16.9 1 0.1-3.1 0,622 0,693
Fusobacterium 1,6 0-20.8 6,2 0.3-18.9 0,024 0,099
Sutterella 0,1 0-1.9 0,1 0-3.8 0,370 0,487
Unknown genus of family Enterobacteriaceae 0,2 0-6.3 0,1 0-17.2 0,298 0,455

LEVEL 6: Genus
Obese dogs after weight 

loss
Obese dogs before weight 

loss

Obese dogs before 
weight loss vs. obese 
dogs after weight loss
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Median Range Median Range P value Q value

Collinsella stercoris 2,4 0-8.9 1,8 0.2-16.9 0,927 0,954

Unknown species of genus Slackia 0,1 0-0.6 0,2 0-1.6 0,073 0,197

Unknown species of genus Bacteroides 0,3 0-7.8 2,1 0-12 0,006 0,033

Unknown species of genus Bacteroides 0,3 0.1-8.7 4 0-19.7 0,001 0,021

Bacteroides plebeius 0 0-1.9 0 0-5.4 0,043 0,149

Prevotella copri 0,1 0-5.4 0,1 0-2.7 0,954 0,954

Unknown species of genus Paraprevotella 0 0-2.4 0,1 0-3.7 0,005 0,033

Unknown species of genus Streptococcus 0,3 0-30.9 0,2 0-5.9 0,229 0,348

Unknown species of genus Turicibacter 0,4 0-20.2 0,3 0-9.6 0,404 0,494

Unknoww species of order Clostridiales 0,3 0-4.4 0 0-1.5 0,117 0,211

Unknoww species of order Clostridiales 0,1 0-1.4 0,5 0-3 0,012 0,053

Unknown species of family Clostridiaceae 19,6 3.5-48.6 19,3 3-46.4 0,133 0,211

Unknown species of family Clostridiaceae 4,6 0.9-8.6 3 0-65 0,083 0,207

Unknown species of genus Clostridium 0,6 0-61.8 0,4 0-20.5 0,049 0,157

Unknonw species of family Lachnospiraceae 9,7 2.2-19.5 11,1 1.4-20 0,133 0,211

Unknonw species of family Lachnospiraceae 1 0-4.2 1,4 0-7.1 0,475 0,536

Unknown species of genus Blautia 4,9 0.6-34.5 6,5 0.8-25.7 0,729 0,797

Blautia producta 4,9 2.2-10.8 6,3 2.4-14.9 0,409 0,494

Unknown species of genus Dorea 0,7 0-2.3 1,1 0-2.7 0,123 0,211

Unknonw species of genus Ruminococcus 0 0-1.5 0,4 0-3.5 0,068 0,197

Unknonw species of genus Ruminococcus 0,3 0-1 0,4 0-1.7 0,13 0,211

Ruminococcus gnavus 1,6 0-7.2 1,6 0-4.4 0,841 0,892

Unknown species of family Peptostreptococcaceae 0,8 0-9.7 0,4 0-13.4 0,121 0,211

Unknown species of family Ruminococcaceae 0,1 0-2.1 0,4 0-4.9 0,119 0,211

Faecalibacterium prausnitzii 0,2 0-3.4 0,5 0-11.1 0,332 0,465

Unknown species of genus Megamonas 0,2 0-3.4 0 0-0.8 0,003 0,032

Unknown species of family Erysipelotrichaceae 1,6 0-12.4 3,6 0.1-12.8 0,123 0,211

Unknonw species of genus Allobaculum 1,4 0.1-11.3 1,9 0-5.4 0,430 0,502

Unknown species of genus Catenibacterium 2,3 0-21.7 0,5 0-5.6 0,001 0,021

Unknown species of genus Coprobacillus 0 0-3.2 0,5 0-3.5 0,006 0,033

Eubacterium biforme 0,4 0-16.9 0,3 0-3.1 0,347 0,467

Eubacterium dolichum 0,1 0-0.8 0,1 0-2.4 0,011 0,053

Unknown species of genus Fusobacterium 1,6 0-20.8 6,2 0.3-18.9 0,024 0,093

Unknonw species of genus Sutterella 0,1 0-1.9 0,1 0-3.8 0,369 0,479

Unknown species of family Enterobacteriaceae 0,2 0-6.3 0,1 0-17.2 0,298 0,434

LEVEL 7: Species
Obese dogs after weight 

loss
Obese dogs before weight 

loss

Obese dogs before 
weight loss vs. obese 
dogs after weight loss



   

 88 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

 89 

“Dans les champs de l'observation le hasard ne favorise que les esprits préparés” 

Louis Pasteur 

GENERAL DISCUSSION AND FUTURE 
PERSPECTIVES 

 

 

The overall goal of the study was to provide information about the role of gut microbiota 

in the etiology of obesity, focusing on the mechanisms linking gut microbiota and obese-related 

conditions. A description of current knowledge on gut microbiota alterations in obese dogs has 

also been included. In addition, valuable data on fecal microbiota in obese dogs before and after 

weight loss has been reported based on experimental analysis. 

Chapter I is presented as a literature review, which provides an overview of the 

composition of gut microbiota in mammals, and the importance of gut microbiota to maintain 

host homeostasis. This chapter covers the most recent advances of ongoing studies with 

particular emphasis on obesity, and focuses on elucidating 1) the role of gut microbiota in the 

health status of the host, 2) the association between gut microbiota and the development of 

obesity, 3) the gut microbiota features in dogs with obesity and after weight loss. 

Chapter II consists of an interventional study in which the fecal microbiota composition 

of client-owned dogs with obesity has been evaluated by 16S rRNA sequencing and quantitative 

PCR before and after weight loss. The aim was to elucidate if weight loss in obese dogs with a 

high-protein high-fiber diet modulates the composition of the gut microbiota. The results 

showed that the fecal microbiota of dogs with obesity changed significantly after weight loss. 

The strength of this research is the intervention study with an individual tailored weight 

loss program. The dogs underwent a real weight loss program and were followed until their 
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ideal body weight was achieved. In addition, as discussed in chapter II, the present study 

supports previous results in dogs and humans, in which a decrease of the phyla Firmicutes and 

an increase of Bacteroidetes was reached after weight loss. In addition, an increase in alpha 

diversity, and a shift in beta diversity was also observed.  

Seeking a hypothesis to explain the results obtained in Chapter II, in which a change in 

gut microbiota after weight loss is shown, special attention was focused on diet. As previously 

discussed, it is well known that gut microbiota composition can be affected by diet. Despite 

this, no significant differences in gut microbiota were observed in the group of dogs under the 

same weight loss diet which did not lose weight. However, these results must be taken 

cautiously when evaluating only the effect of diet on gut microbiota composition, as the study 

included a small number of dogs under a weight loss diet over a reasonably short time period.  

Another hypothesis to explain the observed changes in fecal microbiota, is its attribution 

to energy restriction. It has been observed that caloric restriction apart from influencing weight 

loss, reducing fat mass, and producing changes in the host metabolism, can also influence the 

composition of the gut microbiota in obese (Santacruz et al. 2009; Zheng, Wang, and Jia 2018) 

and non-obese individuals (Zou et al. 2020). In addition, similar results to those obtained in 

chapter II were described in an in vivo study in which mice fed a calorie restricted diet for 3-6 

weeks showed an increase in Bacteroidetes and a reduction in the abundance of Firmicutes 

(Fabbiano et al. 2018).  

The study carried out by Le Roy and colleagues aimed to elucidate the role of gut 

microbiota in visceral fat mass in mice with different microbiota enterotypes. Their results 

concluded that gut microbiota may have a greater contribution to shaping host fat than diet 

alone (Le Roy et al. 2019). Considering all of the above, a plausible explanation of the changes 

observed in fecal microbiota would be that a high-fiber, high-protein diet together with energy 
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restriction modulates the gut microbiota towards a “lean microbiota phenotype”, mainly 

characterized by a greater amount of Bacteroidetes and a reduction of Firmicutes. As a 

consequence of these three factors, weight loss is achieved, with consequent reduction of fat 

mass.  

Further studies are necessary to unravel the causes of the change in the composition of 

the fecal microbiota after weight loss with a high-fiber high-protein diet in obese dogs. 

However, healthy dogs with ideal body weight did not show changes in their body weight after 

21 days consuming the same high-fiber high-protein diet that the dogs enrolled in this study. 

No significant difference in fecal microbiota composition was observed when compared to the 

dogs on the other different diets evaluated. However, the fecal microbiota was not evaluated at 

baseline, making it not possible to evaluate changes in fecal microbiota associated with weight 

loss diet (Mori et al. 2019). 

Nevertheless, according to the material reviewed in chapter I, it is expected that a 

combination of events influences the changes observed in the fecal microbiota composition. 

For example, a greater content in fiber and protein in the diet has been demonstrated to improve 

satiety in healthy dogs (Weber et al. 2007), which could be mediated by a higher SCFAs 

production due to an increase of SCFAs-producing bacteria. Supporting this theory, an increase 

in the fiber content in the diet led into an increase in butyrate and SCFAs-producing bacteria in 

healthy dogs (Swanson et al. 2002). Moreover, SCFAs are proposed as a ligand to several 

receptors involved in many host metabolic functions, such as lipogenesis, bile acid metabolism 

and glucose homeostasis. Therefore, analysis of fecal SCFAs would be useful to observe if 

changes in its concentration are consistent with the results obtained from the fecal microbiota 

analysis. However, limitations of the data extracted from fecal SCFAs analysis must be also 

considered, which include the absorption of SCFAs by the host and cross-feeding between the 

gut bacteria.  
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As previously mentioned, a greater level of plasma LPS was found in mice fed a high 

fat diet, which was associated with a reduction of the expression of genes that encode for tight 

junctions and a subsequent increase of gut permeability (Cani et al. 2007; Cani et al. 2008). 

Thus, the analysis of LPS in the serum samples of obese dogs before and after weight loss 

would be interesting to evaluate the possible effect of a weight loss intervention in dogs with a 

high-fiber and high-protein diet on intestinal permeability. In addition, LPS serum levels can 

also be associated with the relative abundance of gram-negative bacteria found in fecal samples, 

since the percentage of gram-negative bacteria can be estimated with the study presented in 

chapter II. 

Taxonomic analysis is the first step towards understanding if the microbiota has a 

possible role in the pathology of obesity in dogs, however, further work would be necessary to 

evaluate the functions of these microorganisms. Considering this, to complete the 

characterization of the fecal microbiota in obese dogs and after weight loss, HPLC-MS 

untargeted fecal metabolome analysis is an ongoing study which aims to support the results 

obtained from the fecal microbiota analysis.  

Apart from this untargeted fecal metabolome study, subsequent studies including meta-

genomics and meta-transcriptomics analyses could be useful in providing information about 

what metabolic functions the bacteria are able to carry out in the intestine. Just as the host 

environment and external factors can contribute to a change in the fecal microbiota 

composition, a shift in the population of intestinal bacteria may modulate the crosstalk with the 

host, exposing the importance of evaluating functionality of the gut bacteria after weight loss. 

When considering the role of gut microbiota in the regulation of the health host status, 

the discovery of new tools that can modulate the composition of the gut microbiota presents 

great potential for research. Recent studies have been focused on evaluating the metabolic 
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consequences of supplementation with probiotics, prebiotics as well as fecal microbiota 

transplantation (FMT) in weight loss interventions. 

As detailed in chapter I, studies that aim to evaluate the effect of probiotic and prebiotic 

supplementation in obese individuals suggest that the mechanisms in which probiotics and 

prebiotic might have a positive effect on weight loss are through an increasing of satiety, 

decrease of low-grade inflammation and improvement of plasma lipid profiles as well as 

glucose tolerance (Cerdó et al. 2019). However, no effects were observed in a considerable 

number of clinical studies in overweight and obese individuals when prebiotics or probiotics 

were administrated (Wang et al. 2019). Interestingly, better outcomes were reported in obese 

and overweight children and adolescents. Moreover, weight reduction was increased when 

physical activity or diet was accompanied with a supplementation of a mix of probiotics and 

prebiotics (Wiciński et al. 2020). 

Considering the initial studies in mice in which the obese phenotype of the donor was 

conferred to the recipient germ-free mice (Ridaura et al. 2013), gut microbiota transplantation 

has been proposed as a possible alternative to help weight loss or to maintain an ideal body 

weight. Consistently, recent studies have been carried out on this topic. Although fecal 

microbiota changes towards the fecal microbiota composition of the lean donors were observed 

after FMT with oral capsules in obese patients, no differences in body weight were reported 

(Allegretti et al. 2020). In contrast, in other study with overweight sedentary adults, autologous 

FMT (aFMT) with fecal capsules of the weight loss period with a green-Mediterranean diet 

induced a change in the gut microbiota, and showed a significantly attenuated weight re-gain 

post-weight loss diet period (Rinott et al. 2020). However, these results were not observed with 

other type of diets, suggesting that gut microbiota modulation must be considered from an 

individualized point of view and taken into account possible influential factors, such as, diet, 

lifestyles and history of antibiotic intake. 
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Despite the existing evidence of the role of gut microbiota in obesity, its associated 

mechanisms are still under discussion and this area merits further investigation. Nevertheless, 

it is an interesting research topic that provides promising alternative approaches in the field of 

therapy directed to improve metabolic and gastrointestinal diseases. 
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