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Abstract: The detection of multiple interfering persistent scatterers (PSs) using Synthetic Aperture
Radar (SAR) tomography is an efficient tool for generating point clouds of urban areas. In this
context, detection methods based upon the polarization information of SAR data are effective at
increasing the number of PSs and producing high-density point clouds. This paper presents a
comparative study on the effects of the polarization design of a radar antenna on further improving
the probability of detecting persistent scatterers. For this purpose, we introduce an extension of the
existing scattering property-based generalized likelihood ratio test (GLRT) with realistic dependence
on the transmitted/received polarizations. The test is based upon polarization basis optimization by
synthesizing all possible polarimetric responses of a given scatterer from its measurements on a linear
orthonormal basis. Experiments on both simulated and real data show, by means of objective metrics
(probability of detection, false alarm rate, and signal-to-noise ratio), that polarization waveform
optimization can provide a significant performance gain in the detection of multiple scatterers
compared to the existing full-polarization-based detection method. In particular, the increased density
of detected PSs at the studied test sites demonstrates the main contribution of the proposed method.

Keywords: polarimetric Synthetic Aperture Radar; polarization synthesizing; permanent scatterer;
GLRT; TomoSAR

1. Introduction
Synthetic Aperture Radar (SAR) images have been used and studied in interferometric

analyses for decades to map the elevations and displacements of the earth’s surface [1].
The temporal decorrelation of SAR image stacks, acquired over repeated orbits, limits
interferometric analyses to specific pixels, i.e., persistent scatterers (PSs), since the latter
exhibit scattering behaviour that is stable over time. Typically, the selection of valid
pixels and the detection of reliable scatterers in each resolution cell is an intense research
topic, where the goal is to find as many valid scatterers as possible at the best spatial
resolution. With respect to interferometric techniques, SAR Tomography (TomoSAR) has
introduced a different strategy for processing a SAR data stack and has supported the
evolution of interferometry in three-dimensional (3D) [2,3], four-dimensional [4,5], and
five-dimensional [6,7]) applications. In contrast to interferometry, TomoSAR offers the
possibility of identifying multiple permanent scatterers superimposed in a single resolution
cell, thus significantly increasing the density of detected scatterers.

In analogy to time series interferometry, e.g., PS interferometry [8], TomoSAR relies on
the persistence of the scatterers during the observation period. Although the tomographic
model of distributed sources [9] can mitigate the short-term effects of decorrelating sources,
distinguishing between reliable scatterers and false alarms is a daunting task, especially
when dealing with data obtained over a long time interval.
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The key point in TomoSAR PS detection is to identify and increase the number of
detectable stable scatterers in the presence of noise. At the same time, the possibility of
signal misinterpretation, i.e., false alarms [5], needs to be minimized. Currently, efforts are
still underway to develop modern and advanced methods to further increase the detection
probability of persistent scatterers.

In the framework of SAR tomography, the detection of reliable scatterers can be
generally addressed with detection methods that control the false alarm rate (FAR), such
as the generalized likelihood ratio test (GLRT). GLRT has been used extensively, not only
in tomographic PS recognition but also in various target recognition applications [10,11].
Within the GLRT scheme, the detection of individual or single scatterers present in a
resolution cell is straightforward [12,13]. The critical aspect is to distinguish between
multiple scatterers and especially to distinguish between single and double scatterers.
Among the different strategies, there are two successful methods commonly used in the
literature for characterizing multiple scatterers lying in the same range azimuth pixel:
(1) sequential GLRT with cancellation (SGLRTC) [12] and (2) support GLRT [13], which is
based on estimating the support of the unknown signal that best fits the data. SGLRTC
adopts a cancellation strategy that first cancels the dominant scatterer and then evaluates
the presence of the secondary scatterer in the residual signal. Support GLRT is a sequential
test in which the presence of scatterers is detected first, followed by the discrimination of
multiple scatterers. In other words, testing the signal strength in sub-spaces with higher
dimensionality is achieved by sequentially adding a single direction, starting with the
first one. When comparing the two approaches, SGLRTC is more efficient in terms of
computational requirements, while support GLRT has a super-resolution capability that
enables the detection of multiple layovered scatterers at distances below the Rayleigh
resolution. To improve the computational efficiency of support GLRT, ref. [14] proposed a
fast implementation that is able to maintain the super-resolution capability.

Spatial averaging or multi-looking operations, through the estimation of a second-
order data covariance matrix, represent a solid and significant strategy for improving
the detection capability of typical GLRT-based methods over the scene and, in particular,
over regions characterized by a low signal-to-noise ratio (SNR) [15,16]. The use of the
covariance matrix of the data can improve the detection probability at the cost of a small
reduction in spatial resolution. Indeed, by trading off spatial resolution, undeniable
improvements have been reported in the context of SAR tomography for the detection of
multiple permanent scatterers. In addition, the potential of polarimetric SAR (PolSAR)
data is expected to further improve detection performance. The authors of [17,18] have
shown that increasing the length of the observation vector as input to support GLRT [13]
using dual polarization data can mitigate the problem of a reduced number of available
baselines. To take full advantage of PolSAR data, however, a method has been developed
in [19] (denoted as scattering property-based support GLRT) that incorporates polarimetric
information into the detection test. The aim is not only to improve detection performance
but also to allow the test to identify PS backscattering mechanisms. Indeed, this method
can be considered as a first attempt at the classification of PSs besides the detection and the
extraction of their parameters related to the elevation, displacement, or thermal dilation in
3D, 4D, and 5D applications.

This paper presents a comparative study to answer the question of which polarization
design for a radar antenna provides the best detection probability. To this end, we intro-
duce an extension of the scattering support GLRT [19] that takes the dependence on the
polarization basis into account. The analysis is based upon the evaluation of the detection
performance in all synthesized polarizations obtained from polarimetric measurements on
a linear orthonormal basis. The main consequence of the analysis is the complete charac-
terization of the studied scatterers. This allows the selection of the optimal polarization,
i.e., the polarization that provides the highest detection probability. The identification of
the best polarization basis is, in fact, the main contribution of the proposed method, which
consequently leads to an increase in the density of the detected permanent scatterers and
provides a better possibility of modeling the three-dimensional structures of the sensed
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objects and their possible slow deformation and thermal dilation. Additionally, the pro-
posed method paves the way for comprehending the detection performance in TomoSAR
data in terms of the transmitted and received polarizations used, thus complementing
polarimetric-based PS detection studies.

The paper is organized as follows. Section 2 begins with the basic principles of SAR
polarimetry, while an overview of existing scattering support GLRT is given in Section 3.
After these introductory descriptions, the proposed method is presented in Section 4.
Experimental results using simulated and real data sets from the Experimental SAR System
(ESAR) of the German Aerospace Center and Uninhabited Aerial Vehicle SAR (UAVSAR)
are presented in Section 5. The discussion and conclusions regarding the reported results
are provided in Sections 6 and 7.

2. SAR Polarimetry
The polarization information in SAR images is related to both the geometrical structure

and the orientation of the observed objects [20]. The characteristic information of any target
sensed by a full polarimetric radar sensor can be represented in a 2 ⇥ 2 scattering matrix S.

S =


xhh xhv

xvh xvv

�
, (1)

where the complex scattering coefficient xhv represents the electromagnetic wave emitted
through the polarization channel v and received on channel h. In the case of interchang-
ing the role of the transmitting and receiving antennas, i.e., with the reciprocity theorem,
the scattering matrix is symmetric, i.e., xhv = xvh. Once the scattering matrix in (1) is
known, a key point is that radar cross-sections can be synthesized for any arbitrary com-
bination of transmit and receive polarizations [21]. In this study, we will consider this
point to determine the optimal transmit and receive polarizations that offer the best PS
detection performance.

Let us now consider the geometry of the multi-baseline, multi-temporal polarimetric
SAR imaging system that operates at wavelength l and range distance r. In this geometry,
referring to a resolution cell, the stack data vector x, which collects the information from N

polarimetric sensors, can be represented as Equation (2) [22,23]. The data stack is acquired
under interferometric conditions and co-registered with respect to a given master image
and compensated for atmospheric effects and possible small-scale nonlinear deformations.
Each polarimetric sensor is assumed to acquire images in three linear polarization channels
(hh, hv, vv) with reciprocal condition. The multi-baseline imaging geometry thus yields 3N

image channels or x 2 C3N⇥1, where C3N⇥1 represents the set of 3N ⇥ 1 complex vectors.

x(l) = A(QM, KM)sM(l) + n(l) (2)

In (2), sM(l) 2 CM⇥1 is the lth realization, i.e., look, of the complex reflectivity vector of
M superimposed scatterers into the resolution cell, which is invariant with respect to the dif-
ferent polarizations. Moreover, the matrix A(QM, KM) equals to [a(q1, k1) . . . a(qM, kM)] 2
C3N⇥M with a(qm, km) = km ⌦ a(qm), where a(qm) represents the steering vector of the mth
superimposed scatterer, where m 2 {1, 2, . . . , M}, and qm is the parameter vector represent-
ing the mth scatterer position in the elevation direction in the 3D case, or the position and
mean deformation velocity in the 4D case, or the position, mean deformation velocity, and
thermal dilation coefficient in the 5D case:

a(qm) = exp(i 4p
l

b
rsin(b) zm) (in 3D case)

a(qm) = exp(i 4p
l

b
rsin(b) zm + i

4p
l tvm) (in 4D case)

a(qm) = exp(i 4p
l

b
rsin(b) zm + i

4p
l tvm + i

4pT
l gm). (in 5D case)

(3)

In (3), zm, vm, and gm denote the elevation, velocity, and thermal dilation, respectively,
of the mth scatterer, and the vectors b, t, and T indicate the spatial, temporal, and thermal
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baselines in multi-baseline multi-temporal acquisition mode. Moreover, b is the incident
angle, exp is the exponential operator, and i is the standard imaginary unit. Additionally,
the operator ⌦ indicates the Kronecker product, and km 2 C3⇥1 is the unitary polarimetric
target vector representing the polarimetric backscattering pattern of the mth scatterer.

From a statistical point of view, the data vector x in (2) is typically modeled as a
zero-mean complex circular Gaussian random vector, with covariance matrix:

R = E{xx†
} = A(QM, KM)diag{|sM|

2
}A(QM, KM)† + s2

nI3N , (4)

where sn is the standard deviation of the additive noise n in (2), I3N is a 3N ⇥ 3N identity
matrix, and diag{.} is a diagonal operator. Moreover, † and E are Hermitian and expec-
tation operators, respectively. Multi-look SAR tomography is generally concerned with
reconstructing the backscattering distribution (g = |sM|) for each resolution cell using the
covariance matrix estimated by a set of L independent and homogeneous looks. Here, the
multi-look operation is used, since estimating the covariance matrix of the data with a
single look gives a poor estimate.

The estimation of g can be approached in the framework of spectral estimation theory [24],
and beamforming is the simple method that recovers the backscattering distribution from a
given scatterer while limiting the other interfering spectral components. Therefore, the recovered
power of the filtered signal from the mth scatterer is given by [25]:

g(qm) = max
km

a(qm, km)
†Ra(qm, km). (5)

Since different realizations of an image are usually not available, the actual covariance
matrix R is unknown. It is straightforward, however, to approximate R by the sample
covariance matrix bR by spatially averaging L similar pixels in the images that share statisti-
cal similarity.

bR =
ÂL

l=1 w(l)x(l)x†(l)

ÂL

l=1 w(l)
, (6)

where w(l) indicates the relative importance of the lth pixel during averaging. Currently,
the developed tomographic reconstruction methods are affected by decorrelating sources
and the temporal decoherence of the multi-temporal data. This indeed leads to defocusing
and blurring effects in the reconstruction. In such a situation, it is important to distinguish
the reliable scatterers and false alarms, e.g., using detection methods such as GLRT. The next
section gives an overview of the scattering-based support GLRT.

3. Overview of Scattering-Based Support GLRT
To solve the problem of detecting reliable and genuine scatterers, scattering support

GLRT is among the most competitive techniques that allow for the identification of scat-
terers by controlling the false alarm rate [13,19]. According to the signal model in (2),
the multiple hypothesis tests are given as [19]:

H0 : x(l) = n(l)
H1 : x(l) = A(Q1, K1)s1(l) + n(l)
H2 : x(l) = A(Q2, K2)s2(l) + n(l)

...
Hm : x(l) = A(Qm, Km)sm(l) + n(l)

(7)

where the hypothesis H0 assumes the absence of a scatterer, i.e., the observed data x(l) are
a circularly symmetric Gaussian random vector with zero mean and covariance matrix
s2

nI, while Hm assumes the presence of m scatterers whose parameters are in the un-
known matrix Qm = [q1 . . . qm], while sm contains the reflectivity of the m scatterers and
Km = [k1 . . . km]. Moreover, A(Qm) is formed by their m corresponding steering vectors.
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If H0 is rejected in favor of Hm, then the observed data can be assumed to follow
a circularly symmetric Gaussian random vector with zero mean and covariance matrix
R given in (4). Here, we assume the presence of up to two scatterers per resolution cell,
i.e., m = 2. Although the identification of m scatterers is generally and theoretically possible,
detection of up to two scatterers is challenging in practice due to the limited number and
distribution of baselines and may not be feasible, especially when dealing with areas
with short buildings and no skyscrapers, such as our study area. With this assumption,
the likelihood ratio for the binary test (H0, H0) equals:

max
s2

n

f (x(1), . . . , x(l), s2
n |H0)

max
Q2K2,s2,s2

n

f (x(1), . . . , x(l), Q2, K2, s2, s2
n |H0)

H0
?
H0

th, (8)

where f is the joint probability density function of the looks x(l), e.g., a Gaussian zero-mean
model. In (8), H0 means that the hypothesis of the absence of the scatterer (H0) is rejected
and the data stack consists of either one (H1) or two (H2) scatterers. By substituting the
maximum likelihood estimation (MLE) of the unknowns (s2, s2

n) into (8), the first stage of
the scattering property-based support GLRT [19], which serves as a decision rule for the
presence or absence of scatterers, can be written as follows:

max
Q2,K2

trace{D†(Q2, K2)bRD(Q2, K2}

trace{bR}

H0
?
H0

th, (9)

where D(Q2, K2) = A(Q2, K2)Vd, in which the matrix Vd is satisfying the equality VdV†
d
=

(A†(Q2, K2)A(Q2, K2))�1, and obtained by Cholesky decomposition. The threshold th in
the above equations can be defined using the FAR approach [13]. It can be shown that
the solution of the maximization in (9) with respect to K2 is equivalent to the maximum
eigenvalue of the following matrix:

lmax(B†(Q2)bRB(Q2))

trace{bR}

H0
?
H0

th, (10)

where lmax(X) and trace(X) are, respectively, the maximum eigenvalue and trace of matrix
X, B(Q2) = [I3 ⌦ a(q1) I3 ⌦ a(q2)]Vb = UbVb, and VbV†

b
= (U†

b
Ub)

�1, and I3 is a 3 ⇥ 3
identity matrix.

The second stage of the scattering support GLRT, instead, operates the decision ac-
cording to the rule of the presence of single or double scatterers (H1,H2) [19]:

1 � lmax(B†(Q2)bRB(Q2))
trace{bR}

1 � lmax(B†(Q1)bRB(Q1))
trace{bR}

H1
?
H2

th. (11)

In analogy to the first stage of scattering support GLRT, Equation (11) is derived by
substituting the unknown parameters into the likelihood ratio of the binary test (H1,H2).
The parameters Q1 = [q1] and Q2 = [q1 q2] can be obtained by the MLE approach, and the
fast implementation allows decoupled MLEs as:

bq1 = max
q1

lmax(B†(q1)bRB(q1))

bq2 = max
q2

lmax(B†(bq1, q2)bRB(bq1, q2)).
(12)

In [19], it is shown that the scattering support GLRT (10) and (11) outperforms the
conventional support GLRT [18] in the detection of both single and double scatterers. The at-
tempt of the current work is to further improve the detection performance by introducing
an extension to the scattering support GLRT method.
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4. The Proposed Method
Polarimetric radar systems typically measure complex backscattering of any target

on a linear horizontal and vertical orthogonal polarization basis {h, v}. This is commonly
equivalent to the acquisition of images in the polarization channels hh, hv, vh, and vv.
Therefore, in the case of multi-baseline polarimetric data, the response of a reciprocal
medium can be represented by the vector in Equation (2) x = [xhh xhv xvv]T 2 C3N⇥1 that
has 3N unique elements, where xhv 2 CN⇥1 is the complex backscattering vector from the
vertical polarized transmitted signal and the horizontal polarized return in all baselines.

Since any orthogonal set of elliptically polarized states can form a polarization basis,
the polarimetric response vector can be represented in any arbitrary orthogonal elliptic basis
{p, q}, where q is the orthogonal complement of p. In this way, a complete characterization
of the backscattering of targets can be obtained using the polarization synthesis theorem [21].
Thus, the multi-baseline polarimetric response vector in Equation (2) can be transformed
from the linear basis {h, v} (or polarization channels {hh, hv, vv}) to a desired {p, q} basis
(or polarization channels {pp, pq, qq}) as [26]:

x(l){p,q} = [xpp xpq xqq]
T = WA(Qm, Km)sm(l) + n(l), (13)

where

W =
1

1 + rr†

2

4
1

p
2r r2

�
p

2r† 1 � rr†
p

2r
r†2

�
p

2r† 1

3

5⌦ IN . (14)

In (14), r is a complex polarization ratio that represents the polarization state of an
electromagnetic wave with a specific orientation (c) and ellipticity (t) as:

r =
cos(2c)sin(2t) + isin(2c)

1 + cos(2c)cos(2t)
. (15)

Accordingly, the first stage of the scattering support GLRT in (10), for any specific
polarization basis, can be revised as follows:

lmax(B†(Q2)WbRW†B(Q2))

trace{WbRW†
}

H0
?
H0

th, (16)

while the second stage of the test is re-written as:

1 � lmax(B†(Q2)WbRW†B(Q2))
trace{WbRW†

}

1 � lmax(B†(Q1)WbRW†B(Q1))
trace{WbRW†

}

H1
?
H2

th. (17)

In analogy to the scattering-based support GLRT, the threshold th in the proposed
method can be calculated using the FAR approach (see [13]). Note that the sample co-
variance matrix bR is still computed on the basis ({h, v}) of the original data set, while the
matrix W is in charge of changing the polarization basis of the original data to any arbitrary
transmitted/received wave by radar antenna. The detection tests in (16) and (17) are a
function of Q and the geometrical parameters c and t. Therefore, q1 and q2 are estimated
with (12), while the MLEs of c and t are represented as:

bc, bt = max
c,t

lmax(B†(bQ)WbRW†B(bQ)). (18)

5. Results
5.1. Numerical Examples

This subsection is devoted to evaluating the detection performance of the proposed
method using numerical experiments. Thus, a tomographic data stack is simulated by
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using the system parameters of a dual-baseline N = 3 polarimetric ESAR sensor with
baseline distributions and system parameters that correspond to our real data sets, which
are explained in the next subsection. The data are simulated in the presence of a single
scatterer with parameter vector q1 = [z1, v1, g1]T = [0, 0, 0]T , while the additional scatterer
is given by q2 = [z2, v2, g2]T = [1.5ru, 0, 0]T , where ru is the vertical Rayleigh resolution.
The total signal power is defined by ss = ss1 + ss2 , where ssi

is the polarimetric signal
power of the ith scatterer and ss2 /ss1 = 0.8. The probabilities of detection (PD) and false
alarm (PFA) are evaluated using Monte Carlo techniques over 105 realizations of simulated
data. Furthermore, the parameter spaces q are scanned in a uniformly discretized interval
of [�4ru, 4ru] in all domains, and the geometrical parameters (c and t) are respectively
scanned in uniformly discretized intervals of [0 180] and [�45 45] with increments of
1 degree. Note that the detectors are applied with L = 16, where the number of looks forms
a 4 ⇥ 4 average window for sample covariance matrix estimation. In this way, the relative
importance of all samples is set to be comparable, i.e., w(l) = 1, l = 1, 2, . . . , L. In the
following, the detection performance of the proposed approach (Equations (16) and (17)) is
compared with scattering support GLRT [19] (Equations (10) and (11)). The comparison is
made using the evaluation of the probability of scatterer detection when the data stack is
simulated with different signal-to-noise ratios.

In the first experiment shown in Figure 1, the detection performance of the proposed
method is evaluated for both single and double scatterers with simulated data. The per-
formance of the proposed tests in (16) and (17) is compared with the existing scattering
support GLRT given by (10) and (11). Two action lines are followed below to evaluate the
results in Figure 1.

(a) (b)

(c) (d)
Figure 1. Performance assessment of the proposed method (red curves) and the existing scattering
support GLRT [19] (blue curves). (a,b) are ROC and PD for the first stages of the tests in (16) and
(10). (c,d) are ROC and PD for the second stages of the tests in (17) and (11).

5.1.1. Performance of the First Stage of the Tests
The probabilities of detection and false alarm, as the measures of the performance

assessment, indicate the probability of deciding for the specific hypothesis when it is true
or it is false, respectively [5]. In order to evaluate the capability of the first step of the
proposed test in the hypothesis (H0,H2), the Receiver Operating Characteristic (ROC)
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curve of PD and PFA, as well as the plot of PD versus SNR, are computed. In Figure 1a,
two ROC curves, both for the same data set with a fixed SNR = 1 dB, are given. As can be
seen, the red curves correspond to the proposed approach and outperform the blue curves
corresponding to existing scattering support GLRT. For more experiments, the simulations
are extended by varying the SNR up to 16 dB, and the probability of scatterer detection
using (16) and (10) are computed and plotted in Figure 1b. Again, the superiority of the
proposed detection approach over the scattering support GLRT is evident for different
signal to noise powers.

5.1.2. Performance of the Second Stage of the Tests
The performance of the second stage of the tests in (17) and (11) is evaluated in the

same way as with PD and PFA. The ROC curves in Figure 1c (when data SNR = 1 dB) show
the superior capability of the proposed detector compared to scattering support GLRT in
discriminating the two superimposed scatterers. Moreover, the extensive experiments are
reported by giving the PD of the detectors with respect to different SNR values in Figure 1d.
As expected, by increasing the SNR, the probability of detection is improved for both
detectors. Thus, in this case as well, the proposed detector (17) significantly outperforms
the scattering support GLRT (11).

5.2. Real Polarimetric Data

5.2.1. Experiment Using the ESAR Data Set
Next, the performance of our proposed method is assessed using dual-baseline full-

polarimetric L-band real data acquired by the DLR ESAR sensor over the city of Dresden
in Germany, on 1 August 2000. The image has a spatial resolution equal to 3 ⇥ 2.2 m in
azimuth and range directions, respectively (see Table 1 for further information about the
polarimetric data set). A subset of data with a size of 1600⇥ 455 pixels was selected, with the
corresponding Pauli image of the polarimetric master data shown in Figure 2a. To give the
reader more information about the study area, the location and the optical image of the test
area are also shown in Figure 2b. Note that the optical image is only presented as additional
information and is not used at all in the experiments. The overall temporal baseline is
less than one hour, and the spatial baseline configuration is non-uniform, spanning from
10 m to about 40 m with a mid-range incidence angle and a range distance of 40� and
4486 m, respectively, resulting in a Fourier height resolution of 15 m in the mid-range.
The dual-baseline polarimetric sample covariance matrix bR of the data set was estimated
by L = 25 looks, obtained by a 5 ⇥ 5 moving average window, and the reconstruction
processes were performed in 3D space.

Table 1. Characteristics of the data set used.

ESAR UAVSAR

Number of acquisitions 3 9
Acquisition dates 1 August 2000 6 March 2016

Study area Dresden, Germany L’Amitie stadium in Mondah, Gabon
Coordinates of the center of SAR images (51�02025.2100 N, 13�46052.5300 E) (0�31019.7200 N, 9�23035.1500 E)

Mid-range incidence angle 40� 45�
Range resolution 2.2 m 1.67 m

Azimuth resolution 3 m 0.60 m
Wavelength 23 cm 23 cm

Polarization channels HH, HV, VV HH, HV, VV

Figure 3a,b show the maps of the detected single scatterers using the existing scattering
support GLRT (10) and the proposed method (16), respectively. Moreover, the proposed
detector (17) and scattering support GLRT (11) tailored to detect the double scatterers were
also applied to the dual-baseline ESAR images. The elevation maps of the detected double
scatterers are shown in Figure 3c,d.
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(a)

(b)

Figure 2. Information about the data set and the study area in Dresden, Germany. (a) The Pauli color
composite of the polarimetric ESAR master image provided by the German Aerospace Center (DLR).
(b) Location of the study area on the map of Germany (left) and the georeferenced optical image of
the test area (right) (courtesy of Google Earth).

From the detected single scatterers shown in the first row of Figure 3, and as expected
from the simulated experiments, the proposed method is superior to the scattering support
GLRT in terms of detection performance. As can be noticed in Figure 3a,b, the number of
detected single scatterers is increased from 265,231 with the scattering support GLRT to
339,840 with the proposed method. This corresponds to an increase in the average density
of detected single scatterers from 2379 to 3056 points per square kilometer with the existing
and proposed methods, respectively. From the maps, most of the scatterers detected by
both approaches belong to the non-vegetation areas. This is due to the fact that a hard
threshold was set for both approaches, which was achieved by fixing a very low probability
of false alarms.
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(a) (b)

(c) (d)

Figure 3. Performance assessment of the employed methods using the ESAR real data set. (a,b) de-
tected single scatterers using the existing scattering-based support GLRT (10) and the proposed
detection (16). (c,d) detected double scatterers using the scattering-based support GLRT (11) and
the proposed detection (17). The colors of the scatterers show their elevations when the standard JET
colormap is set to the range of [0.1 cm–35 m].

The second row of the figure shows the double scatterers detected by both approaches.
As can be seen from the results of both methods, particularly in the upper right part of
the images, mainly the ground scatterers are detected as double scatterers (Figure 3c,d),
while the roofs of the residential buildings are detected as single scatterers (see Figure 3a,b).
In agreement with the results of the numerical experiments, the comparison of the detected
double scatterers given in Figure 3c,d confirms the superior performance of the proposed
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approach over the existing scattering support GLRT. In particular, the proposed method
detects a larger number of double scatterers, which are mainly found on vertically extending
structures, while the existing scattering support GLRT failed to detect them. The number
of detected double scatterers is 41,556 with the scattering support GLRT, and it increases to
45,294 with the proposed method.

In addition, two representative pixels are selected for detailed analysis with locations
shown as green circles in Figure 2. These cells were chosen to observe how Equation (18)
finds the parameters of optimal polarization for detecting PS. Figure 4 shows a three-
dimensional plot of Lr = lmax(B†(bQ)WbRW†B(bQ)) over the geometrical parameters c and
t. The optimal polarization basis shows up with highest power in the plots. The plots show
the estimated values of Lr on all polarization bases derived by changing the orientation
and the ellipticity angles in their interval ranges. From the 3D power plot of pixel A in
Figure 4a, it can be seen that the most optimal polarization basis is given when c = 24� and
t = �4�. For pixel B, on the other hand, and according to Figure 4b, the best polarization
basis is represented by c = 179� and t = �21�. In general, the shape of the 3D plots and
the amount of the power Lr on different bases depend on the characteristics of the sensed
target. It is important, however, to show that optimization of the polarization basis with
the proposed method can identify the presence of additional weaker scatterers that cannot
be detected with the conventional polarization basis (c = 0� and t = 0�). This strategy
obviously increases the number of detectable scatterers, which leads to an increase in the
density of PSs, as confirmed by the results in Figure 3.

(a) (b)
Figure 4. The 3D plots of Lr over the different polarization bases were made with variations of the
geometrical parameters c and t. Plots (a,b) refer to resolution cell A and B as shown in Figure 2,
respectively.

To evaluate the results represented in Figure 3 and to identify the optimal polarization
bases for detecting permanent scatterers in the tomographic frame, the histograms of the
polarizations characterized in (18) are plotted with respect to the geometrical parameters,
orientation, and ellipticity angles, as seen in Figure 5. The histograms provide detailed
insight into the discovered polarization bases, which increase the probability of PS detection.
Considering the mean value of the geometric parameters in the histograms, the polarization
bases with parameters of (c = 20� and t = 0�) and (c = 110� and t = 0�) are recognized
as the optimal polarization bases for detecting the permanent scatterers in the study area.
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(a) (b)
Figure 5. Histogram of characterized polarizations in the ESAR data set for the detection of single
and double scatterers using the proposed method. (a) orientation angle, (b) ellipticity.

5.2.2. Experiment Using the UAVSAR Data Set
Additionally, the experiments are extended to a UAVSAR data set over l’Amitie

stadium in Mondah, Gabon. The data set was acquired by the National Aeronautics
and Space Administration (NASA), during the mission of the AfriSAR, on 6 March 2016.
The data include a stack of 9 polarimetric L-band SAR images with a spatial resolution
equal to 0.6 ⇥ 1.67 m in azimuth and slant range directions, respectively (See Table 1 for
further information). In contrast to the ESAR data set, the spatial baseline distribution is
uniform, and the flight lines were in a vertical plane, with fixed offsets of 20 m with respect
to the reference flight line. The incidence angle changes from 25 degrees at near range to
65 degrees at far range. The subset of the data with a size of 970 ⇥ 620 pixels covering
l’Amitie stadium was selected, and the corresponding Pauli image of the master data is
shown in Figure 6a. For better visual inspection of the study area, the location of the test
site and the corresponding optical image are also shown in Figure 6b.

The elevation maps of the detected single and double scatterers using the existing
scattering-based support GLRT and the proposed method on the UAVSAR data set are
shown in Figure 7. The comparison of the detected single scatterers shows that the proposed
method provides denser and more valid PS points in analogy with the simulated and real
ESAR data experiments. In particular, 115,850 points are detected as single scatterers
with the scattering-based support GLRT in Figure 7a, while the proposed method was
able to detect 41,340 additional scatterers and increase the number of single scatterers to
157,190 points in Figure 7b. The second line of Figure 7 belongs to the double scatterers
detected by both methods. As can be seen from the results, the detected double scatterers
mainly belong to buildings and the stadium. The results show that the double scatterers
are due to either the ground–wall interaction of the SAR signal or the direct backscattering
from the upper layers of the buildings and roofs. From the comparison of the results, it
is also seen that the proposed method is able to increase the number of double scatterers
from 5180 points with the scattering-based support GLRT (Figure 7c) to 6987 PS points
(Figure 7d). The comparison using the UAVSAR data set, thus, reconfirms the performance
of the proposed method over the existing scattering-based support GLRT. In general, it can
be observed that the proposed method detects a larger number of additional scatterers that
the existing method could not identify.
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(a)

(b)
Figure 6. Information about the data set and the study area in Mondah, Gabon. (a) The Pauli color
composite of the polarimetric UAVSAR master image provided by NASA Jet Propulsion Laboratory
(JPL), accessible via (https://uavsar.jpl.nasa.gov, accessed on 13 December 2021). (b) Location of
the study area on the map of Gabon (right) and the georeferenced optical image of the test area (left)
(courtesy of Google Earth).

Further evaluation and assessment of the results yielded by the proposed method are
reported in Figure 8. The figure shows the histograms of the identified optimal polarization
bases using Equation (18) in the detection process. In analogy with the experiments from
the ESAR data set (Figure 5), the discovered optimal polarization bases in Figure 8, when
plotted as a function of the geometrical parameters (orientation and ellipticity angles),
show that the polarization bases with parameters of (c = 40� and t = 0�) and (c = 140�

and t = 0�) are mainly identified as the optimal polarization bases for the detection of the
permanent scatterers over the selected test site in Mondah, Gabon.

https://uavsar.jpl.nasa.gov
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(a) (b)

(c) (d)

Figure 7. Performance assessment of the employed methods using the UAVSAR real data set. (a,b)
detected single scatterers using the existing scattering-based support GLRT (10) and the proposed
detection (16). (c,d) detected double scatterers using the scattering-based support GLRT (11) and
proposed detection (17). The colors of the scatterers show their elevations when the standard JET
colormap is set to the range of [0–45 m].
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(a) (b)
Figure 8. Histogram of characterized polarizations in the UAVSAR data set for the detection of single
and double scatterers using the proposed method. (a) orientation angle, (b) ellipticity.

6. Discussion
The results and analyses presented in the previous section are discussed here. Based

upon the numerical experiments, the proposed method increases the probability of de-
tection of both single and double scatterers compared to the existing scattering support
GLRT under the same conditions. The improvement in detection at both stages of the test
is mainly related to the optimization of the polarization bases by the proposed method.
The detection tests, in general, depend indirectly on the polarization basis of the data stack
via the covariance matrix. Our method uses the best combination of transmit and receive
polarizations to achieve the best detection performance at a constant false alarm rate.

In analogy with the simulated experiments, the results with real data presented in
Figure 3 confirm the performance of the proposed method over the existing scattering
support GLRT. The validity and reliability of the GLRT-based techniques, especially the
support GLRT and the scattering support GLRT, have been extensively evaluated and
confirmed in the literature [7,13–19]. According to the results, and in the context of the
multi-look detection process with polarimetric data, it could be more efficient to design
the detection test based upon polarization basis optimization rather than relying on the
use of the conventional horizontal and vertical transmit and receive polarizations in the
radar data. The efficiency of such an optimization is that it provides a higher density of
detected PSs. The proposed method provides the possibility of revealing the presence of
weaker scatterers by using the optimal polarization basis; these scatterers could not be
detected using the detection tests relying only on the use of the conventional horizontal and
vertical polarization basis. This is in line with the point that detection performance depends
upon the polarization basis used, as shown in Figure (4) for two sample resolution cells.
Typically, the best polarization basis for the detection process will vary from pixel to pixel,
and the optimal basis depends mainly upon the sensed target. The statistics of the optimal
polarization over different detected PSs, however, can provide important information about
the effects of the polarization design of a radar antenna on the probability of scatterer
identification. The analysis of the reported histograms using the ESAR data set in Figure 5
provides an important indication: the linear polarization basis (t ⇡ 0) with orientation
angles of c ⇡ 20� and c ⇡ 110� is the optimal polarization for detecting permanent
scatterers in the Dresden test area. Similarly, the histograms obtained from the UAVSAR
data set in Figure 8 confirm the capability of the linear polarization basis (t ⇡ 0) in the PS
detection process. At the Mondah test site, however, linear polarization with orientation
angles of c ⇡ 40� and c ⇡ 140� is identified as the most optimal polarization basis. Recall
that the change in optimal polarization from pixel to pixel and from study area to study
area is due to the fact that the optimal polarization basis is a function of the backscattering
mechanism of the sensed targets. Therefore, each study area may have a different optimal
polarization, depending on the targets presented.
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Generally, the use of such polarization bases in both test sites made it possible to detect
the presence of additional weaker scatterers that were not detectable with the conventional
horizontal-vertical polarization basis.

The efficiency of the implemented methods for processing our real data stack in
Figure 3 is given in terms of processing time. The experiments were performed in the
MATLAB environment on a desktop system with a configuration of Intel(R) Core(TM)
i7-4510U CPU @ 2.00 GHz and 12 GB RAM. The total runtime for the existing scattering
support GLRT is about 7.6 h, while the runtime for the proposed method increases to
16.4 h. Although this increase in runtime may limit the application of the proposed
framework in the tomographic processing of large data sets, some tips can be considered
to reduce the processing time. For example, the geometrical parameters (c and t) can be
scanned at widely discretized intervals. In addition, the use of Matlab Mex files or parallel
computing and Graphics Progressing Units (GPUs) can also significantly reduce running
times. Although online processing is an interesting strategy to extend the application of the
proposed method, the requirement of the method for large amounts of data to be uploaded
as input may limit online processing tools.

Although not examined in this study, the proposed method, like other existing to-
mographic GLRT-based methods, is expected to be applicable to detecting permanent
scatterers in built-up regions with high-rise structures and also for mapping elevations and
displacements of the earth’s surface in non-urban regions by detecting PSs from coherent
points such as rocks, etc. The performance of the method in such scenarios has yet to
be evaluated. In addition, the detection of PSs from single and double scatterers can be
extended to additional scatterers (e.g., triple and quadruple scatterers). This calls for the
extension of testing to multiple stages. Testing and evaluating the effectiveness of the
proposed method with multiple stages in a study area with high-rise skyscrapers will be a
future line of research after this study.

7. Conclusions
This paper presented a new method for detecting permanent scatterers using to-

mographic polarimetric data sets. The proposed method extends the existing scattering
support GLRT method and takes advantage of multi-look and polarimetric data to enhance
the performance of the detection scheme. The main insight of the paper lies in a polarization
synthesis theorem that allows the full characterization of scatterers in any desired polariza-
tion basis. The proposed method optimizes the detection performance with respect to the
polarization basis. Experiments on one simulated and two different real data sets showed
that the proposed method outperforms the existing scattering support GLRT method for
single and double scatterer detection. The results showed that linear polarizations with non-
zero orientation angles commonly provide the possibility of detecting additional weaker
scatterers compared to the use of the conventional horizontal-vertical polarization basis.
Improvement in detection performance is achieved at the cost of higher computational
processing requirements. The existing GLRT-based tests are based upon optimization with
respect to the target parameters (Q), while the proposed method performs optimization
with respect to both the target parameters and the polarization basis, resulting in a higher
computational cost. However, strategies such as those listed in the previous section can
improve the proposed method in terms of computational cost.

In conclusion, the outcomes of the proposed PS detection method are particularly
useful for optimal data selection for PS detection-based applications and for the design of
new spaceborne/airborne missions based on repeat-pass processing. Municipalities and
city managers, in particular, will benefit from the high density PS extracted by this study,
either to update their digital surface models or to accurately model and inspect the urban
environment at a fine level of detail so that they can better predict risk situations when the
detection process is extended to 4D and 5D cases.
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