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Abstract: The topic of sustainability of reinforced concrete structures is strictly related with their
durability in aggressive environments. In particular, at equal environmental impact, the higher the
durability of construction materials, the higher the sustainability. The present review deals with
the possible strategies aimed at producing sustainable and durable reinforced concrete structures in
different environments. It focuses on the design methodologies as well as the use of unconventional
corrosion-resistant reinforcements, alternative binders to Portland cement, and innovative or tradi-
tional solutions for reinforced concrete protection and prevention against rebars corrosion such as
corrosion inhibitors, coatings, self-healing techniques, and waterproofing aggregates. Analysis of the
scientific literature highlights that there is no preferential way for the production of “green” concrete
but that the sustainability of the building materials can only be achieved by implementing simulta-
neous multiple strategies aimed at reducing environmental impact and improving both durability
and performances.
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1. Introduction

In the field of construction materials, it is increasingly evident that traditional environ-
mental parameters (such as global warming potential (GWP), and gross energy requirement
(GER)) as well as life cycles analyses are needed—but not sufficient—to define the sus-
tainability of a building material. Simple parameters based on concrete composition, CO2
emissions, and compressive strength such as those proposed by Damineli et al. [1] are no
longer adequate for a holistic treatment of the issue. It is essential to combine information
regarding the material performances and durability with the evaluation of its environmen-
tal impact. In other words, it is not possible to define a construction material as “green”
without a deep investigation of its property evolution in different environments over time.

The phenomena of early degradation, primarily those promoted by carbon dioxide or
chlorides, can greatly reduce the sustainability of cementitious materials, both traditional
and innovative, as widely reported in the scientific literature [2,3]. Therefore, this review
aims to collect the main strategies currently available for obtaining durable and sustainable
reinforced concrete structures, using both traditional and innovative materials.

2. Corrosion Mechanisms in Reinforced Concrete Structures

The protective capacity of reinforced concrete against carbon steel corrosion is one of
the fundamental points that have made it the most used construction material for industrial
and civil structures. Steel reinforcements give tensile strength to cementitious materials,
and concrete offers protective conditions to preserve the steel from corrosion, thus making
production of durable structures possible. The protective action is due to the formation
of hydration products of Portland cement, which increases the alkalinity of the water
inside the pores of the hardened concrete. In fact, the corrosion behavior of carbon steel
is strongly influenced by the pH of the pore solution, and it is assumed that it is passive
when it exceeds 11.5. In these conditions, the corrosion rate of carbon steel reinforcements
becomes negligible due to the formation of a protective passive film, which slows down
the anodic process of metal dissolution. Portland cement is composed by calcium silicates,
which, reacting with water during the hardening process, lead to the formation of calcium
hydroxide. This substance is a strong, slightly soluble hydroxide, which saturates the water
of the pores. At room temperature, a simple saturated solution of this substance has a pH
around 12.5. However, the pH of fresh cement paste is generally higher due to the presence
of small amounts of sodium and potassium hydroxides, determining the increase in the
pH up to 13.5. These alkalinity levels are reached immediately during the mixing, thus
promoting a rapid passivation of the reinforcement [4,5]. The free corrosion potential of
rebars rapidly increases, during the setting and hardening phase, up to potentials typical of
passive conditions [6,7]. Fresh concrete is a suspension of water, solid particles of different
granulometry, and cement dust, where water represents an amount of only about 20%. The
solution in contact with steel reinforcements is limited to the adjacent water film, while the
solid/liquid ratio increases as the degree of hydration increases. The alkali content of this
water thin layer, responsible for the passivity of steel, does not depend only on the content
of the above-mentioned hydroxides or on the possible presence of pozzolanic material, but
also on the consumption of hydroxyl ions for the formation of the passive film itself. The
protectiveness tends to increase over time and it becomes stable only after several months
embedded in the cement matrix, as reported also by Andrade et al. [8].

The protective action by Portland cement concrete, however, is not only due to high
pH values, but it also depends on the presence of chlorides and on the ability of the cement
matrix to decrease the chloride and carbonation penetration through the concrete cover.

Chlorides break the passive film and promotes localized corrosion initiation of rein-
forcements. This is the main form of corrosion responsible for damaging concrete exposed
in the marine environment or bridge decks and civil buildings exposed to de-icing salts.
Localized corrosion initiation occurs once chloride concentration (by percentage to the
weight of cement) exceeds a critical concentration threshold at the steel surface. In structures
exposed to the atmosphere, where the embedded steel rebars are characterized by a high
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corrosion potential, this critical threshold in Portland cement concrete is usually between 0.4
and 1% [9]. Higher values are found in water-saturated concrete, in which the steel corrosion
potential is lower. The alkalinity and characteristics of the concrete/reinforcement interface
are the main factors influencing the critical chloride concentration threshold [10–19]. It in-
creases with the pH and it can be described in terms of chloride to hydroxyl critical molar
ratio, which is commonly considered equal to 0.6. According to this ratio, the alkalinity of
Portland cement concrete therefore makes possible localized corrosion initiation only when
chlorides penetrate from the environment. The value can be even higher in concrete, due to the
buffering effect produced by calcium hydroxide formed during hydration of cement [12,20].
The presence of this phase on the metal surface represents a “reserve of alkalinity”, which
contrasts, at the metal/cement paste interface, the pH variations involved in the initiation
mechanism of localized corrosion. Only a fraction of the total chlorides already present
in concrete contributes to the initiation of localized corrosion. Free chlorides, dissolved
in the solution contained in the pores, are active, while a significant part is bound by the
constituents of the cement [21] and does not influence the corrosion phenomenon. The two
main bonding mechanisms of chlorides are by adsorption, especially on hydrated calcium
silicate (C-S-H) [22], and by chemical substitution, in monosulfate calcium aluminate (phase
AFm) [23–25], with the formation of Friedel’s salt. In addition to these phases, chlorides
can also adsorb on portlandite (CH), ettringite (AFt), and other salts [25–28].

The durability of reinforced concrete structures is strictly related to the two main
processes governing the corrosion of steel reinforcements, such as chlorides penetration
and carbonation. Both processes affect the protective ability of concrete against steel rebar
corrosion. The chloride and carbon dioxide penetration rates are mainly dependent upon
the porosity of the concrete matrix, the size and distribution of the pores. It is well known,
in fact, that the durability of concrete mainly depends on the mix design, placing and curing.
In this view, the concrete cover thickness can be considered as the key determining factor
which defines the time required for aggressive substances to reach the reinforcements.

The low corrosion rate of the reinforcements is determined mainly by passivity. Oxy-
gen is normally present and reaches the surface of the reinforcement in amounts that
promote the corrosion process. Once the passivation layer is broken, however, very dif-
ferent corrosion conditions can occur, in relation to the water saturation of pores. Only in
water-saturated concrete, the reduced supply of oxygen, due to the slow diffusion through
the pores occluded by the aqueous phase, can limit the corrosion process. This can be
observed in permanently immersed concrete, in which even the possible loss of passivity
would not lead to any significant corrosion [29]. However, the concrete is not typically
saturated with water and the access of oxygen is such as not to constitute a limiting factor,
due to the rapid diffusion through the air contained in the pores, only partially filled with
water. In this case, the corrosion rate is determined by the availability of water, necessary
to promote the corrosion process.

In very humid, but not saturated, concretes, the corrosion process can take place with
significant rates mainly in the presence of significant chloride contamination. In these
concretes, the amount of water is enough to guarantee a low electrical resistivity of the
cementitious matrix, thus favoring the galvanic couple action, which controls the localized
corrosion mechanism.

In carbonated concrete—without chlorides—the corrosion rate is much lower and
general corrosion occurs. The corrosion rate assumes relatively low values, especially
in concretes exposed to low humidity levels. The amount of electrolyte is very low, and
consequently the corrosion rate is also low. In addition, the corrosion products tend
to reduce the small volume of electrolyte, thus promoting the formation of patinas on
reinforcements, which further decrease the anodic oxidation process of the metal. A
situation of pseudo-passivity arises, with relatively high corrosion potentials, but with
negligible corrosion rates. The propagation period becomes the main process in the service
life of carbonated structures.
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In addition, the presence of cracks and defects could represent a preferential access
point for corrosive agents in concrete. However, Portland cement concrete has “smart”
properties that hinder this effect, making it much less important than might be expected.
The interaction between concrete and the environment leads to the precipitation of sub-
stances that tend to seal the cracks, thus making them much less critical. This is what
happens, for example, in the marine environment or in contact with water that contains
bicarbonate ions, calcium ions and magnesium ions, in the form of dissolved salts. In
contact with the alkalinity of the concrete walls, calcium and magnesium carbonates limit
the ingress of water, and they can seal relatively large cracks (below 300 µm) [30]. The
barrier properties of concrete are somehow restored, thus prolonging the initiation of the
corrosion phenomena. The effect is significant only for small-sized cracks and depends on
the characteristics of the water and the properties of the concrete [31,32]. In the presence of
major defects, however, this effect cannot be considered, and corrosion rate mechanisms are
that of atmospheric corrosion rather than that of corrosion of carbon steel reinforcements
in concrete.

3. Corrosion Inhibitors and Surface Treatments

Additional protection methods are necessary for reinforced concrete structures operat-
ing in severe field conditions or when very long service life is required: corrosion-resistant
reinforcements, cathodic prevention, corrosion inhibitors, and surface treatments represent
suitable “tools” to prevent corrosion in very aggressive environments [33].

Surface treatments to apply on the surface of reinforced concrete elements are efficient
protective methods at a relatively low cost. The European Standard EN 1504-2 identifies:

(a) Hydrophobic treatments, based on silanes, siloxanes and silicones;
(b) Treatments able to seal the capillary pores, based on sodium silicate or magnesium

fluorosilicates;
(c) Organic coatings forming a continuous film, with a thickness between 0.1–0.3 mm,

thermoplastic (acrylic, vinyl) or thermosetting (epoxy, polyurethane);
(d) Cementitious mortars containing acrylic or vinyl polymers with polymer/cement ratio

in the range of 0.3–0.6 and thickness between 1 and 5 mm.

The effect of these treatments is for two reasons: they reduce the transport of aggressive
agents in concrete (oxygen, carbon dioxide, and chlorides), delaying corrosion initiation;
they decrease the concrete water content, reducing the corrosion rate.

Many laboratory tests have been carried out to study their effectiveness, even if they
are mainly short-term tests on water absorption, vapor permeability, adhesion, and acceler-
ated chloride corrosion [34–37]. Hydrophobic treatment and polymer modified mortars
showed the best efficiency on corrosion prevention. A long-term chloride corrosion test,
lasting 17 years, showed that polymer modified coatings both delay the initiation of chlo-
ride corrosion, thanks to a strong decrease in the chloride penetration, and reduce corrosion
rate [38,39]. The higher the polymer/cement ratio, the higher the coating effectiveness.
However, few field-tests are available to predict the durability of surface treatments beyond
a period of more than 10 years under different conditions of exposure [33].

Corrosion inhibitors can be used to both prevent and stop chloride induced corrosion
and as a remedial for structures exposed to carbonation. They can be divided in two groups:
admixed inhibitors (mass inhibitors), directly added as a constituent to fresh concrete, and
as preventive techniques; migrating inhibitors, applied on the concrete surface which can
penetrate into the hardened cement matrix, usually adopted in rehabilitation [40–44]. Among
the mass inhibitors, inorganic ones were firstly studied since the 1950s and efficient commercial
products are available. Migrating commercial corrosion inhibitors were proposed in the last
30 years, due to the growing interest in the recovery and restoration of existing buildings.

Nitrite-based inhibitors [40,45], acting as anodic passivating agents, are the most
effective ones, provided a chloride/nitrite molar ratio lower than 1 is maintained. In the
maximum dosage (30 L/m3) they guarantee an increase in the critical chloride content up
to 3% by cement mass. They also have an effect on carbonation corrosion if dosed at 3%
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by cement mass. In particular, nitrites were found effective in accelerating the passivation
process of active galvanized steel in fresh concrete, which is a significant aspect to consider
for these types of reinforcements [46]. Concerns are with its harmfulness, solubility, and
possible increase in corrosion rate in the case of low dosage.

Organic commercial inhibitors (amines, alkanolamines, and carboxylates) [40,47,48]
act by adsorption on the metal surface, forming an organic monolayer. Laboratory tests,
both in solution and in concrete, showed a slight increase in the critical chloride content
(up to 1.2–1.5% by cement mass) for inhibitor dosages ranging from 1.5 to 10 L/m3. Few
data are available on long-term efficiency; in any case, they are not as efficient as nitrite.
Migrating organic inhibitors, based on similar compounds, in most cases do not reduce
corrosion rate after initiation, they only delay the initiation of corrosion due to a pore
blocking effect [40,49].

In the last 20 years there has been a growing interest in the study of new compounds,
and to understand the mechanism of inhibition: both inorganic (zinc oxide, molybdates,
borates) and organic compounds (benzoate derivatives, carboxylated ions, and amine-based
substances) have been tested [13,50,51].

4. Self-Healing Strategies for High Durability Concrete

Concrete is a low-tensile strength and fragile material that is very susceptible to crack-
ing mainly due to shrinkage, tensile stress, and freezing and thawing cycles. Generally,
microcracks do not significantly jeopardize the elastomechanical performance of concrete
but promote an easier penetration of external matters such as water and other chemical
agents (i.e., sulfates, chloride, and acids) resulting in cement matrix degradation followed
by a corrosion of steel rebars [52–54]. In other words, the microcrack formation is generally
responsible for a reduction in a service life of concrete structures without affecting their
strength [55]. For this reason, the development of techniques aiming at increasing the lifes-
pan or reducing the maintenance costs of buildings are essential, especially in a sustainable
perspective of concrete structures [56,57]. In the last years, starting from the autogenous
self-healing phenomena described by Hyde and Smith [58] and Glanville [59], researchers
investigated several self-healing approaches able to improve the natural capability of
concrete to fill cracks.

The autogenous self-healing is defined as the natural recovery process of concretes
not specifically designed for self-healing [60] and it occurs due to physical, chemical, and
mechanical phenomena. The physical cause is due to swelling of hydrated cement paste
next to the cracks, whereas the chemical processes are related to the continued hydration of
cement and the formation of calcium carbonate crystals on the crack’s faces. Minor effects
are due to mechanical causes such as the presence of fine particles that partially fill the
cracks. However, the effectiveness of autogenous self-healing is rather limited and affects
only the small cracks with width lower than 300 µm [61,62].

When concrete is manufactured with engineered additions able to improve the self-
healing capability of mixtures, it is called autonomic self-healing or activated repairing.
Several techniques have been proposed in this field, as reported in Figure 1.

The use of bacteria (also called bacterial concreting) has been shown to be effective in
repairing cracks in concrete, promoting both a reduction in water penetration and chloride
ion permeability with small recovery in mechanical strength [63,64]. In particular, the
microbially induced calcium carbonate precipitation can occur by adding bacteria in porous
aggregates [65–67], diatomaceous earth [68], rubber particles [69], plastic microcapsules
[70–72], or hydrogel [73]. In any case, the effectiveness of long-term self-healing capability
remains to be assessed.
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A technique similar to the bacterial concreting involves the use of polymeric-based re-
pairing agents (such as epoxy resin, methyl-methacrylate, ethyl-cyanoacrylate, or
polyurethane) stored in hollow glass fibers [74], ceramic tubes [75], porous plastic fibers [76],
or micro-/macrocapsules [77,78]. The healing ability is related to the microcapsule damage
around the cracks that releases the healing agent. Inorganic agents (sodium and potassium
silicate) were also successfully investigated in [79,80]. Nevertheless, issues related to rhe-
ology, dispersion of microcapsules, and mechanical strength loss must be solved before a
widespread use of these systems [60].

Crack healing capability of concrete can be also be enhanced by adding in the mixture
cross-linked polymers (also called superabsorbent polymers) that have the ability to absorb
huge amount of water from the environment and to retain the liquid within their struc-
ture without dissolving. When cracks occur, these materials are exposed to the external
environment and the subsequent contact with water or moisture promotes the swelling of
polymers and the formation of a soft gel that prevents the ingress of external agents into
concrete [81,82]. The detailed healing mechanism of superabsorbent polymers has been
reported by Lee et al. [83].

The most promising technique for autonomic self-healing is the addition of expansive
agents, mineral additives (also called supplementary cementitious materials), admixtures
and fibers as well as their combination during the mixing [84–86]. Several studies evidenced
that the addition of expansive agents (i.e., MgO, CaO, bentonite) and fibers both limits
the shrinkage of concrete and produces compatible expansive hydrated. In this way,
crack bridging capacity (strength recovery), sealing (physical closer of cracks through
crystallization), and durability are improved [87,88]. On the other hand, the use of mineral
additives and carboxylic acid derivatives promotes both the cement recrystallization and
the salt precipitation inside cracks with an initial width up to 500–800 µm without affecting
the properties of concrete at fresh and hardened state [89,90]. More details can be found
in [30].
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5. Corrosion Resistant Reinforcements

When the concrete cover is not able to provide the proper protection against corrosion
of the traditional carbon steel reinforcement, e.g., in highly aggressive environmental
conditions (especially in the presence of chlorides) or when a long service life is required,
it is possible to use additional prevention/protection systems in order to guarantee the
required durability [91]. The use of corrosion resistant reinforcements is one of the main
additional prevention/protection systems and can be a sound choice for new structures
or in repair of existing ones. The corrosion resistance of reinforcements can be obtained
with coatings, both metallic (galvanized steel) or organic (epoxy coated bars), modifying
the chemical composition of the steel (mainly using stainless steels) or using composite
materials (FRP, Fiber Reinforced Polymers) [33,92].

The corrosion resistant reinforcement should fulfil the requirements settled for the
traditional carbon steel bars, such as strength, ductility, weldability, and bond to concrete.
These rebars are characterized by different corrosion behavior and costs. Their related
benefits can be evaluated with performance-based approaches for the design of durabil-
ity [93]. As far as the costs are concerned, although their higher initial costs, their use can
lead to significant costs savings during the service life of the structure, due to a reduction
in maintenance costs (direct and indirect). Moreover, a selective use in the most critical
parts can be considered, thus a reduction in the initial cost can be achieved.

In carbon steel coated rebars the coating thickness and its quality (integrity) are crucial
to guarantee the effectiveness of the protection [94,95]. In galvanized reinforcements, where
a protective zinc-based coating is present, having typically a more or less homogeneous
pure zinc η-phase on the top, the passive film, produced on the rebar surfaces, can be
effective in concrete structures subjected to carbonation induced corrosion or to penetration
of chlorides [96,97]. In carbonated concrete the corrosion rate is about 1–2 µm/year, thus
the corrosion propagation is very slow [98]. A chloride threshold for pitting corrosion
initiation in the range of 1–1.7% by weight of cement has been found, reaching also higher
values than these ones, when the coating is constituted by different zinc alloys, which
can be obtained from different baths in the process of hot-dip galvanizing of carbon steel
reinforcements [99]. Therefore, the chlorides threshold to initiate the pitting corrosion of
galvanized steel reinforcements is significantly higher than that generally considered for
carbon steel rebars (0.4–1%); hence, advantages can be obtained in terms of service life
extension. Furthermore, in the presence of coating discontinuities, owing to bending of
rebars or welding operations, which leave uncoated substrate spots, the zinc-based coating
determines a cathodic protection of the steel in correspondence of these spots [100].

In epoxy coated rebars, the epoxy resin can provide a barrier protection. This kind of
resin is suitable for use in concrete (good resistance to alkaline solution, good mechanical
properties, good adhesion to steel and concrete). In the presence of defects, when concrete is
carbonated or in the presence of chlorides with a content higher than the chloride threshold,
corrosion can occur. In carbonated concrete the attacks are, generally, limited to the area of
the defects, thus also the consequences are limited [101]. In chloride contaminated concrete
no advantage in pitting corrosion initiation can be achieved in the presence of defects [102].
Moreover, with these bars, the use of electrochemical techniques to assess the corrosion
behavior of the reinforcements is not possible due to the presence of the electrical insulating
coating. After cutting or welding, or in the presence of defects in the coating, the areas
without protection have to be repaired with a paint.

In stainless steel reinforcement the corrosion resistance is given by their chemical com-
position (alloy elements: mainly chromium, molybdenum, nickel, nitrogen). These rebars, if
properly selected, can guarantee also long service lives in harsh environmental conditions
without maintenance thanks to their high resistance to corrosion. These steels do not suffer
corrosion in carbonated concrete and can resist to chloride induced corrosion also in the
presence of very high chloride content (also higher than 5% by cement weight) [103–106]. For
this reason, their use is generally considered in chloride-rich environments with high aggres-
siveness. To select the most suitable type of stainless steel in terms of corrosion resistance and
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cost, among the different types available, the chloride threshold for pitting corrosion initiation
must be known. In order to limit the costs, stainless steel reinforcement is often used in the
most critical parts of the structure (or in a repaired area) and connected with the carbon steel
rebars. This coupling does not lead to risk of galvanic corrosion [107].

The use of FRP reinforcement, generally GFRP (Glass Fiber Reinforced Polymers),
is still to be considered in the experimental phase. Long-term data on their behavior
under different exposure conditions are not available. Despite the fact they do not suffer
electrochemical corrosion as steel does, they are subjected to other deterioration phenomena,
e.g., due to concrete alkalinity, temperature, and humidity [108].

6. Durability Design

Worldwide, corrosion of embedded steel is the main form of premature damage
of reinforced concrete structures, hence there is the need to prevent it since the design
stage [33,109–114]. At this aim several approaches are available that are characterized by
different levels of approximation. As introduced for the structural design in the “Model
Code for Concrete Structures” issued by the International Federation for Structural Concrete
(fib) in 2010, a level of approximation is a design strategy where the accuracy of the prevision
can be, if necessary, progressively refined through a better estimation of the parameters
related to the considered phenomenon [115]. A low level of approximation should be
reserved for structures where high accuracy is not required or for a pre-design; conversely
higher levels of approximation can be used in cases where higher accuracy is required and
it is expected that the solution is closer to the actual behavior.

Dealing with durability, a low level of approximation can correspond to the prescrip-
tive approach, that needs the fulfillments of minimum requirements, whilst through a
performance-based approach, which consists of a real durability design, the accuracy of the
prevision can be increased.

The prescriptive approach is based on the definition of an exposure class, that describes
the aggressiveness of the environment to which concrete will be exposed during its service
life, and the subsequent prescriptions regarding the maximum water/cement (w/c) ratio and
the minimum cement content, according to the EN 206 [116]. These should be associated
with minimum values of the concrete cover thickness (related to protection of rebars from
corrosion), according to the Eurocode 2 [117]. These simple recommendations apply to
any type of cement of the EN 197-1 standard [118] and refer to an intended service life
of about 50 years. The prescribed values revealed to be inadequate in some parts of
the structures, as those highly exposed to chlorides, e.g., the joints or the splash zone in
marine structures [113]. Moreover, it is implicitly assumed that durability performances
of concretes made with different types of cement are comparable, whilst it is well known
that they behave even significantly different in relation to the resistance to aggressive
agents [119–125]. Finally, this kind of approach does not allow to take into account the
advantages of additional protections.

The performance-based approach allows to specifically design each structural element
in a way that it can withstand the actual local conditions of exposure during the required
service life. Among the models proposed in the recent years, the fib “Model Code for
Service Life Design”, published in 2006 [126], is one of the most used. This includes a
probabilistic performance-based approach that, modelling the environmental effects on
the structure, allows the evaluation of the probability that a pre-defined limit state, which
corresponds to an undesired event (e.g., initiation of corrosion, cracking or spalling of
concrete cover), occurs. Through these models, different design combinations, together
with their reliability, can be compared, as well as the benefits connected with the use of
preventative techniques [93,127]. As an example, Figure 2 shows the durability design,
carried out through the fib Model Code, of a RC element exposed to the splash zone,
considering a service life of 100 years and different design options, in term of types of
concrete and reinforcement and concrete cover thickness. Their widespread use, however,
is still limited, since indications on same input design parameters are lacking and their
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estimation is entrusted to the experience of the designer. Moreover, since these models are
quite young compared to the length of usual service lives of RC structures and feedback
data are not available yet, the reliability of their output is still under investigation [128,129].
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Figure 2. Average value of the concrete cover thickness as a function of the type of concrete
(OPC = Portland cement; GGBS = ground granulated blast furnace slag; water/binder = 0.45) and the
type of bar that guarantees a service life of 100 years in the splash zone, assuming a target probability
of failure of 10%.

7. Waterproofing Recycled Aggregates

Cement composites can be considered unsaturated porous materials that, when in direct
contact with water, are permeated through various transport mechanisms (capillary rise,
permeation, diffusion). These processes dramatically affect the durability of the concrete
structures since they: (a) expose them to freeze and thaw deterioration, (b) alter cement paste
composition/microstructure by dissolution and removal of its ionic compounds, (c) promote
the ingress of aggressive ionic agents such as sulfates and/or chlorides.

An important characteristic of a porous material is the capillary water absorption
expressed with the absorption coefficient S (kg/(m2·s0.5):

S = δ

√(
σ cosϑ r

2µ

)
(1)

where r is the mean radius of the capillary pore, σ the surface tension of the liquid, ϑ the
water contact angle. Thus S is higher as the pore size increases and as the contact angle
decreases, so when dealing with porous and hydrophilic materials [130]. The cementitious
matrix is made of hydrated products (mainly composed by Ca, Si, Fe) and the aggregates
(65–75% of the total volume) are generally natural siliceous or limestone sand and gravel.
All of these constituents contribute to the pronounced hydrophilic character of the whole
cement composite which is characterized also by a peculiar porosity [131]. On the contrary,
polymeric materials are intrinsically hydrophobic as they are rich in low energy groups,
e.g., the -CHx ones [132,133]. For these reasons, hydrophobic cementitious materials can
be easily obtained by using polymeric aggregates as a partial substitution for natural
stones [134].

Replacing natural sand in cementitious mortars with grains of end-of-life tyre rubber,
containing isoprene/butadiene chains, strongly reduces the penetration of water drops
both in sound and cracked materials. In fact, the hydrophobic character of the aggregates
is dispersed in the whole mass of the composite and exerts its effect both on the surface
and in the bulk [135]. Fast water absorption, instead, has been detected when inorganic
(siliceous) recycled aggregates, such as porous waste glass, have been tested [136].

However, the different surface energy of polymeric aggregates with respect to tra-
ditional concrete constituents determines a reduction in aggregate-cement bond, thus
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increasing both the porosity of the material and the parameter r reported in Equation (1).
Nevertheless, the effectiveness of these aggregates in hindering the water ingress has
been proved in terms of both water absorption rate of microliter water drops [135] and
water capillary rise in partially immersed samples [137]. The first method allows a highly
space resolved wetting analysis, the latter allows a quick and overall evaluation of the
absorption coefficient S (Equation (1)). From Figure 3 it is evident that the absorption
coefficient (calculated from the slopes of the linear fit) of rubberized mortars is less than
a half of those made with natural sand [136]. Furthermore, when exposed to accelerated
chloride penetration, a lower corrosion degree of steel reinforcement has been measured in
rubberized concrete with respect to ordinary concrete, indirectly confirming the high water
resistance of mixtures containing end-of-life tire aggregates [138].
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8. Durability of Special Mixtures
8.1. Fly Ash-Based Geopolymers

A new class of materials known as geopolymers, which are part of the broad class of
inorganic matrices named alkali-activated materials (AAM) has rapidly grown in interest in
the last two decades in order to reduce the CO2 emissions for cement and ceramic materials
productions. This new class of materials is based on alkali activation of low calcium
aluminosilicate precursors able to consolidate at room or slightly higher temperatures.
One of the main advantages of AAM and geopolymers is the possibility to use waste-
based powders as for example coal fly ashes derived from coal fired power stations, thus
promoting a circular economy approach. Many aspects of geopolymers have been studied,
from the synthesis and optimization of aluminosilicate precursors to the properties of the
developed products (physical, mechanical, and microstructural performances) [139–146].

As far as geopolymers durability is concerned, interesting results have been obtained
about their resistance to sulfate attack [147] and alkali–silica reactions and about the high
stability in the presence of fire or freeze–thaw cycles, besides a high adhesion to steel
reinforcement [148–153], which suggests their use as binder in mortar and/or concrete, or
for strengthening applications of reinforced concrete structures [144,154–157]. If properly
designed, geopolymers perform better than ordinary Portland cement when exposed to
high temperature. The rapid dehydration of the weakly bound water in the gel does not
cause significant damage to the binding structure, therefore mechanical strength is retained
and considerable dimensional stability at high temperature is verified [158–163]. Recycled
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refractory particles (RRP) have been used to develop AAM and geopolymers with enhanced
performance at high temperatures [164]. RRP do not hinder the alkali activation process,
and they reduce heat-induced cracking, increase the maximum temperature of dimensional
stability of the composites up to 1240 ◦C, and improve the linear dimensional stability
during heating. In addition, the room temperature curing generates a product less prone to
cracking than heat curing when exposed to high temperature [38]. Considering the good
performance of AAM as fire resistant materials [165–167], research has also focused on the
use of lightweight AAM for steel protection (passive fire protection systems) [168–170].
Heat-induced cracking in fly ash-based alkali-activated pastes and lightweight mortars
was analyzed by in situ acoustic emission detection during complete heating–cooling
cycles [171]. Cracking during heating was limited and associated exclusively with the
dehydration of the materials. However, samples heated to temperatures above 600 ◦C
exhibited intense cracking on cooling.

The addition of sodium silicate to sodium hydroxide stimulated network formation in
geopolymers leading to improved mechanical strength, lowering chloride ion mobility and
slightly improving corrosion performances [172,173]. Studies on the corrosion behavior
of steel in different room temperature cured alkali-activated fly ash mortars exposed to
chloride solution showed that the most compact alkali-activated mortars have higher poros-
ity and lower mechanical properties than a cement-based mortar, but the protectiveness
afforded to the rebars is slightly higher than that obtained in traditional mortars [174].

8.2. Alkali Activated Materials

Alkali-activated materials are a recent family of binders. In the last decades, they received
growing attention from academic research institutions as promising candidates in specific civil
applications, such as refractory structures and concrete sewers [165,175–177]. Nevertheless,
related marketplace shows a certain amount of concern on AAM more extensive use due
to the unclear performances in terms of properties and durability, lack of extensive track
record, product standards, and tailored polymer admixtures. The significant numbers of raw
materials and alkaline activators, that can be used to formulate their mix design, deeply affect
fundamental properties, such as shrinkage and cracking behavior, workability, development
of mechanical strength, and risk of efflorescence [147,178–181]. The adopted formulations
also determine their resistance to chemical, physical, and transports attack modes. Moreover,
the level of confidence is also lowered by the evidence that some durability tests, tuned on
Portland based products, fail in predictive ability when applied to AAM [181–183].

Results published by several researchers, even in the presence of a multitude of
evaluation criteria and methods (length and mass changes, residual mechanical properties,
ultrasonic pulse velocity, and elastic modulus) and testing conditions (salt concentration,
temperature, time of immersion, periodical solution replacing, and former curing regime)
clearly corroborate that AAM exhibit a higher resistance to sulfate attack than that of
Portland cement (PC) materials [184–189]. The rate, severity, and mechanism of external
sulfate attack on AAM concrete, that takes place in soil or marine environments, depend
on the permeability of the concrete/mortar, the concentration of sulfates in the waterborne
solution, on the cation accompanying the sulfate ions, on nature of the selected reactive
powders and activator composition. When aluminosilicates are used as reactive powders
(fly ash or metakaolin), geopolymerization leads to a N-A-S-H gel that differs from PC
hydration products, characterized by the absence of high-calcium phases. This condition
prevents the formation, under the sulfate attack, of gypsum or ettringite and results in
a good resistance to sulfate attack [188], that is further increased if Na(OH) instead of
Na2SiO3 is used as activator [185]. When Blast Furnace Slag (BFS) or other high calcium
containing reactive powders are used, the formation of a hydrotalcite-type phase and of
a hydration product, a calcium aluminosilicate hydrate (C-A-S-H) commonly occurs. It
is less crystalline and with a lower CaO/SiO2 molar ratio than calcium silicate hydrate
(C-S-H) produced by PC hydration. When exposed to sulfate attack, its durability strictly
depends on cation accompanying the sulfate ions. Bakharev et al. [184], using ASTM C
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1012, investigated the behavior of AAM cured for 28 days in a fog room and then immersed
in a 50 g/L Na2SiO3 or 50 g/L MgSO4 solution for 12 months. No sign of deterioration was
visible after sodium sulfate attack, whereas matrix degradation with formation of gypsum
was observed under magnesium sulfate attack. Similar trend was found by Ye et al. [186].

When Na2SO4, KOH, and NaOH were used as activators traces of ettringite, a little
expansion of the samples was visible and traces of ettringite as well as a reduction in the
intensity peak of C-A-S-H gel were detected by XRD diffractometry. This behavior was
related to limited gel decalcification and dealkalization, whereas, when Na2CO3 was used,
the presence of CO3

2− suppressed ettringite formation. Under magnesium sulfate attack
a more sever degradation process was observed with mechanisms that depend on the
activators’ type. When NaOH or sodium silicate were used, firstly brucite was formed.
It acted as a protective surface layer by delaying external ion migration, but lowered the
pH of the pores solution to 10.5 thus promoting C-A-S-H gel decalcification, but not its
dealumination, and gypsum production. The further migration of Mg2+ and SO4

2− and
their reaction with decalcified C-A-S-H produced a magnesium-aluminosilicate-hydrate
(M-A-S-H) and/or silica gels. The absence of ettringite was ascribed to the unfavorable
pH and limited amount leached aluminum. The AAM obtained using Na2SO4 showed the
weakest resistance against MgSO4 attack, due to lack of brucite protective layer due to the
absence of hydroxide ions.

Ismail et al. [189] also investigated the resistance to sulfate attack of blended AAM,
obtained using BFS and fly ash. Again, a key role is provided by the nature of the cation
accompanying the sulfate, with negligible degradation after immersion in Na2SO4 solu-
tion and a more severe damage in MgSO4 solution, with matrix degradation and loss of
samples integrity.

8.3. Calcium Sulfoaluminate Cements

Calcium sulfoaluminate (CSA) cements are special hydraulic binders generally pro-
duced from limestone, bauxite, and gypsum and they represent an important alternative
to Portland cement (PC). Compared to PC, CSA cements exhibit more pronounced envi-
ronmentally friendly features mainly thanks to lower synthesis temperatures (~1350 ◦C)
and reduced limestone content (~40%) both determining a strong decrease of kiln thermal
input and CO2 emissions. Furthermore, CSA clinker, which can be produced also by using
industrial wastes often difficult to reuse, is more friable than PC clinker and is blended
with relatively high amounts of calcium sulfates to produce CSA cements [190–193].

CSA cements contain C4A3$ (ye’elimite, the main component), calcium sulfates and
a variety of calcium aluminates and silicoaluminates. The most important properties of
these binders are regulated by ettringite (C6A$3H32), generated upon hydration of C4A3$
together with calcium sulfates. Depending on the conditions of C6A$3H32 formation,
several technical properties can be attained (e.g., rapid-hardening, good dimensional
stability, low permeability and solution alkalinity, or shrinkage compensation/self-stressing
behavior) [194–198].

Compared to PC, there are relatively few durability studies on CSA-based cements.
These mixtures have proved to be highly resistant to freeze–thaw and chemical attacks
promoted by sulfates, chlorides, magnesium, and ammonium salts [193,199–203]. These
features are mainly related to the lower porosity developed by CSA cements if compared
with PC binders. In fact, porosity measurements on hydrated CSA cements, carried out with
mercury intrusion porosimetry, have revealed the presence of pores with threshold radius
below 25 nm [204] and only a minor content of larger pores forming an interconnected pore
network [193,204], leading to low permeability [201].

As far as the carbonation is concerned, it has been found that it is due to ettringite
decomposition into calcite, gypsum, and aluminum hydroxide. By now, the results obtained
from carbonation tests are contradictory. In fact, a few studies state that CSA cements
carbonate faster than PC [205–207]; other papers report that both CSA cements and PC
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display the same carbonation rate [208] and finally, according to other findings, CSA
cements perform better than PC [209].

The behavior of CSA-based binders in relation to the durability of reinforced concrete
structures is still not clear. Nevertheless, recent studies have shown that steel bars in
CSA reinforced concretes, when put in chloride-free environments, seem to be protected
from corrosion, despite that their alkalinity (pH = 11.5–12.0) is lower than that of PC
(pH = 12.5–13.5) but sufficient to promote the passivation of embedded steel [210]. More-
over, corrosion tests on carbonated CSA concrete showed negligible corrosion rate of steel
in environments up to 95% relative humidity at 20 ◦C temperature. Furthermore, the low
alkalinity is surely favorable towards the alkali aggregate reaction [200,202,203].

9. Conclusions

This paper highlights the possible strategies for obtaining sustainable and durable
concretes. In particular, it is shown how it is possible to realize durable reinforced concrete
structures in different aggressive environments through an appropriate design that starts
from a proper concrete composition (binders type and dosage, water content, aggregates,
admixtures), passes through the choice of reinforcements (traditional carbon steel, galva-
nized steel, stainless steel, composite materials or coated reinforcements), and ends with
the selection of additional solutions such as inhibitors, coating, self-healing techniques or
waterproofing aggregates.
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