
algorithms

Article

Adaptive Quick Reduct for Feature Drift Detection

Alessio Ferone * and Antonio Maratea

����������
�������

Citation: Ferone, A.; Maratea, A.

Adaptive Quick Reduct for Feature

Drift Detection. Algorithms 2021, 14,

58. https://doi.org/10.3390/

a14020058

Academic Editor: Antonello Rizzi

Received: 6 January 2021

Accepted: 8 February 2021

Published: 11 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Science and Technologies, University of Naples “Parthenope”, Centro Direzionale Napoli,
Isola C4, I-80143 Napoli, Italy; antonio.maratea@uniparthenope.it
* Correspondence: alessio.ferone@uniparthenope.it; Tel.: +39-081-547-6671

Abstract: Data streams are ubiquitous and related to the proliferation of low-cost mobile devices,
sensors, wireless networks and the Internet of Things. While it is well known that complex phenom-
ena are not stationary and exhibit a concept drift when observed for a sufficiently long time, relatively
few studies have addressed the related problem of feature drift. In this paper, a variation of the
QuickReduct algorithm suitable to process data streams is proposed and tested: it builds an evolving
reduct that dynamically selects the relevant features in the stream, removing the redundant ones and
adding the newly relevant ones as soon as they become such. Tests on five publicly available datasets
with an artificially injected drift have confirmed the effectiveness of the proposed method.

Keywords: rough set theory; feature drift; concept drift; granulation; feature selection; QuickReduct

1. Introduction

The analysis of data streams is challenging in many ways: being the data a continuous
flux of information, only a small fraction of it can be processed; older data lose significance
and newer data can change their behavior suddenly; answers are required almost in real
time and computational resources are an issue, even when the data are buffered (please
see [1] for a general review and [2] for a more specific focus on Machine Learning). Both
clustering and classification require efficient evolving strategies in order to cope with these
issues, and Feature Selection (FS from now on) is a key component in order to reduce the
dimensionality, to lower the computational burden and hence to increase the effectiveness
of the chosen classification or clustering algorithms.

The data stream typically comes from multiple sensors that produce numerical data.
The incoming sources can be seen as the realization of a multivariate random variable
dependent on time X(t) or a collection of univariate random variables X(t), Y(t), . . . , Z(t)
with different distributions, each of which can be called dimension or feature. Without loss
of generality, for a fixed number of sources, the stream can be seen as a non-finite sequence
of vectors of size r, where r is the number of sources (or variables or dimensions or features):

x0, x1, x2, . . . , xi−1, xi, xi+1, . . . , xn n→ +∞, i, n ∈ N, x ∈ Rr (1)

1.1. Windowing

As streaming data are discrete but by definition infinite, it is common to use a window
model to analyze them, as a compromise between real-time and full batch processing.
Memory and time constraints obviously limit the width of the window, for which four
common models exist: sliding, damped, landmark and tilted (please see [1] for a review).

• Sliding windows are the classic model where the most recent d observations are
considered, with a fixed overlap of o observations between a window and the next;

• Damped windows are a model where data receive a decreasing weight through a decay
function (usually exponential) as they age, reducing progressively their relevance;

• Landmark windows are consecutive windows separated by special observation called
landmarks, with no overlap between a window and the next;

Algorithms 2021, 14, 58. https://doi.org/10.3390/a14020058 https://www.mdpi.com/journal/algorithms

https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-4883-0164
https://orcid.org/0000-0001-7997-0613
https://doi.org/10.3390/a14020058
https://doi.org/10.3390/a14020058
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/a14020058
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/1999-4893/14/2/58?type=check_update&version=2

Algorithms 2021, 14, 58 2 of 13

• Tilted windows are windows whose width increases with the age of the observations,
following the principle that newer observations require a finer level of detail.

1.2. Concept Drift

The concept drift happens when the distribution underlying the data stream is non-
stationary. It is a broad term that may refer to four different situations according to the
related Literature (please see [3] for a comprehensive review):

• Sudden drift (also called concept shift), it is the case when in a very short period of
time a new concept replaces the previous one, that is the probability distribution
changes abruptly;

• Gradual drift, that happens when in a moderately long period of time the occurrences
of the new concept contaminate gradually the old one, until they replace the old
concept completely and the new probability distribution prevails;

• Incremental drift (or morphing), that happens when there is a smooth, gradual transi-
tion from the old concept to the new one, that is the instances gradually and continu-
ously move from the old concept to the new one;

• Reoccurring drift, that happens when an old concept reappears after a shift, with un-
known periodicity. It may become a reoccurring shift if the transition is abrupt.

1.3. Feature Drift

Analogously, and relatedly, feature drift is defined as the change of relevance of a
feature over time. It comes into play when a feature selection algorithm is used on a data
stream, where the non-stationarity of the phenomenon produces a variable subset of best
features for classification as times passes. Compared to concept drift, feature drift has
emerged only recently and few techniques have been developed so far (please see [4] for
a review). It must be stressed that feature drift can be captured with dynamic feature
selection methods, as proposed in this paper, but that it is different from Online Feature
Selection or Streaming Feature Selection methods: the latter involve learning on a stream of
features, not instances (please see [5,6] for further details and an example of techniques
based on Rough Sets).

The relevance of a feature f in a Feature Selection problem can be expressed by a
function, that in the simplest cases has a binary codomain:

R(f) : X → Y, Y ∈ {0, 1} (2)

the relevance function, can also have a continuous codomain in more sophisticated cases:

S(f) : X → Y, Y ∈ [0, 1] (3)

where ultimately a threshold function T is often used to establish which feature should be
finally included in the reduced set.

T =

{
0, i f x ≤ θ

1, i f x > θ
(4)

R(f) = T ◦ S(f) (5)

So without loss of generality R(f) can be used for both cases. The relevance of a feature is
related to its prediction power with respect to the target classes.

The redundancy of a feature f in a Feature Selection problem can be expressed by
a function, that in the simplest cases may be a simple linear correlation coefficient with
other features. A feature is considered redundant if its prediction power is absorbed by
the feature already in the best set, in other terms if the prediction power of the best set of
feature does not change removing this feature from it.

Algorithms 2021, 14, 58 3 of 13

Again, four types of drift can be observed, but using windows instead of single
instances as references for time and in the context of a classification problem:

• Sudden drift (also called feature shift), it is the case when in in two consecutive time
windows a feature becomes irrelevant or redundant (and should be excluded from the
best set of features) or relevant (and should be added to the best set of features) for
classification, remaining in that state for a certain number of consecutive windows;

• Gradual drift, that happens when considering a number of consecutive time windows
the frequency of a feature resulting relevant (irrelevant) increases (decreases) over
time: it is a situation when a feature at first appears and disappears intermittently
from the set of relevant features—it is on the edge of relevance—and then stabilizes
itself;

• Incremental drift (or morphing), that happens when the relevance of a feature between
a number of consecutive time windows is expressed by a continuous number in [0, 1]
that increases (or decreases) monotonically;

• Reoccurring drift, that happens when a feature that has become irrelevant turns back
to be relevant and vice versa, with unknown periodicity. It may become a reoccurring
shift if the transition is abrupt.

Furthermore, for feature drift, as for concept drift, it holds the stability-plasticity
dilemma: the shorter the time windows are, the more flexible the model is, the most
sensitive to noise and the fastest adaptation to drift—eventually spurious—it shows; the
longer the time windows are, the more stable the model is, the less sensitive to noise and
the slowest adaptation to the—eventually actual—drift it shows. Reoccuring drift/shift can
be included in the other three cases given enough plasticity of the model, while gradual
and incremental drift may easily coexist in longer time windows.

An adaptation of QuickReduct to streaming data, able to recognize feature shift and
to remove redundant features at the same time is proposed in the following.

2. Materials and Methods

The required background notions on Rough Sets, Feature Selection and QuickReduct
are outlined hereafter, followed by the detailed description of the proposed Adaptive-
QuickReduct algorithm and its limitations.

2.1. QuickReduct for Feature Selection

Let U be the universe of discourse and A be a finite set of attributes; let I = (U, A) be
an information system: an equivalence relation IND(P) in I is the set of objects belonging to
U that are not discernible by attributes in P, defined as follows:

IND(P) = {(x, y) ∈ U ×U|∀a ∈ P, a(x) = a(y).} (6)

It can represent any P ⊆ A, where each attribute A has values in Va, such that a : U → Va,
∀a ∈ A.

Every equivalence relation defines a partition set of U, called U/IND(P), that splits
U in equivalence classes called [x]P [7]. According to [8], equivalence classes correspond to
information granules and can be used to approximate any subset X ⊆ U through a pair: its
lower approximation (Equation (7)) and its upper approximation (Equation (8)).

PX = {x|[x]P ⊆ X} (7)

PX = {x|[x]P
⋂

X 6= ∅} (8)

The positive region—given two equivalence relations called C and D over U—is de-
fined as:

POSC(D) =
⋃

X∈U/D

CX (9)

Algorithms 2021, 14, 58 4 of 13

and represents the union of the lower approximations of all the equivalence classes defined
by X ∈ U/D. From the definition of the positive region it is possible to derive the degree of
dependency of a set of attributes D on a set of attributes C, called γC(D) ∈ [0, 1]:

γC(D) =
|POSC(D)|
|U| . (10)

A reduct R ⊆ C is the subset of minimal cardinality of the set of conditional attribute
C such that its degree of dependency remains unchanged:

γR(D) = γC(D) (11)

where D ⊆ A is the set of decision features and C ⊆ A is the set of conditional attributes.
A reduct is minimal, meaning that no attribute can be removed from the reduct itself

without lowering its dependency degree with the full set of conditional attributes. Most of
the feature selection algorithms used in Rough Set theory are based on the definition of
reduct and on the efficient construction of the optimal reduct [9–12].

The QuickReduct [13] (please see Algorithm 1, called QR from now on) builds the
reduct concatenating the attributes with the greatest increase in the dependency degree,
up to its maximum in the considered dataset. Being the exploration of all possible feature
combinations computationally unfeasible, QR uses a greedy choice: it adds one at a time to
the empty set the attributes resulting in the greatest increase in the Rough Set dependency
degree until no other attribute can be added. In this way, it is not guaranteed to find the
optimal minimum number of features, however it derives a subset sufficiently close to
optimal in a reasonable time, resulting in general a good compromise between time and
performance to reduce the dataset dimensionality in many real world scenarios [14].

Algorithm 1 QuickReduct

1: procedure QUICKREDUCT(C,D)
2: C ← the set of all conditional features
3: D ← the set of decision features
4: R← ∅
5: repeat
6: T ← R
7: for f ∈ (C− R) do
8: if γR∪{ f }(D) > γT(D) then
9: T ← R

⋃{ f }
10: R← T
11: until γR(D) == γC(D)
12: return R

2.2. Adaptive QuickReduct

In order to exploit the idea underlying QuickReduct in an evolving scenario, it is
necessary both to detect feature drifts and to change the selected features accordingly. The
ideal algorithm should not only add new features that increase the dependency degree
of the selected reduct as new data are processed, but also remove the previously selected
features whose contribution is no longer relevant.

A typical approach to analyze data streams consists in choosing a windowing model and
processing data in each windows, with a moderate overlap between consecutive windows.

Assuming that a reduct Ri−1 is available at time ti in the window Wi−1, the goal is to
evaluate whether the features f ∈ Ri−1 remain those with the highest dependency degree
with respect to CWi at time ti and in the window Wi, i.e., if γRi−1(DWi) = γCWi

(D)) or if
there is a new better subset Ri ⊆ C.

Two steps are needed: first the removal of the redundant features in Ri−1 and then
the addition of new features that increase the dependency degree for Ri. The proposed

Algorithms 2021, 14, 58 5 of 13

algorithm, called AdaptiveQuickReduct (AQR from now on) implements exactly this
strategy: given a reduct Ri−1 calculated in the time window Wi−1, the first step iteratively
removes all the features f ∈ Ri−1 such that γRi−1\{ f }(DWi) >= γCWi

(DWi). The output of
this step is a new reduct Ri to be eventually expanded with new features. In particular,
let F = { f |γRi−1\{ f }(DWi) >= γCWi

(DWi)} be the set of features removed from Ri−1,
the second step consists in trying to add new features f ∈ CWi \ F to Ri following the
QuickReduct schema. Pseudocode for AQR is reported in Algorithm 2, while Algorithm 3
reports a driver program that acts as a detector and shows how AQR can be called with
a sliding window, in which parameter W represents the window size (batch) that moves
forward by O instances at each iteration.

Algorithm 2 AdaptiveQuickReduct

1: procedure ADAPTIVEQUICKREDUCT(C,D,R)
2: C ← the set of all conditional features
3: D ← the set of decision features
4: R← Reduct computed at the previous iteration
5: repeat
6: T ← R
7: for f ∈ (R) do
8: if γR\{ f }(D) > γT(D) then
9: T ← R \ { f }

10: F ← { f }
11: R← T
12: until γR(D) == γC(D)
13: C ← C \ F
14: repeat
15: T ← R
16: for f ∈ (C \ R) do
17: if γR∪{ f }(D) > γT(D) then
18: T ← R

⋃{ f }
19: R← T
20: until γR(D) == γC(D)
21: return R

Algorithm 3 FeatureDriftDetection

1: procedure FEATUREDRIFTDETECTION(SC ,SD ,W,O)
2: SC ← the stream of conditional features
3: SD ← the stream of decision features
4: W ← window size
5: O← number of overlapping instances
6: C ← readWinstances f romSC
7: D ← readWinstances f romSD
8: R← ∅
9: repeat

10: R← AdaptiveQuickReduct(C, D, R)
11: remove O oldest instances from C
12: remove O oldest instances from D
13: add O new instances to C
14: add O new instances to D
15: until end of stream

Although it is possible to detect gradual or incremental drift considering a thresh-
olding function T, the definition of a continuous relevance score S(f) would be required,
which is not explicitly available in QR as it does not give a weight to the features to be

Algorithms 2021, 14, 58 6 of 13

selected. On the contrary, the sudden change that occurs at a precise moment—feature
shift—is easily detectable through a qualitative analysis of the output.

As stated in Section 2.1, a minimal reduct is a subset of the dataset conditional features
that has equal rough dependency degree as the full set of features and such that no strict
subset of this reduct exists that has a greater dependency degree. It must be stressed that
the variation in dependency degree given by the addition or deletion of a single feature,
even though effective, does not guarantee to predict the optimal reduct, but in general a
super-reduct (a subsets that has maximal dependency but not the smallest cardinality).
This limitation is in common with QR and it is due to their greedy nature, consequence of
the unfeasibility of exhaustive search for the optimal reduct [15]. Nonetheless, as proven
by the successful application of QR in countless domains, even the sub–optimal reduct is a
sufficiently good approximation in most real world application (see for example [16]).

Other approaches to Feature Drift detection are Dynamic Feature Weighting (DRW,
see [17]), where the weight of each feature is increased or diminished according to its
relevance obtained through entropy or symmetrical uncertainty on sliding windows; or
methods based on Hoeffding Trees (see [18]), that is Decision Trees that use the Hoeffding
bound to compute an arbitrarily close to optimal Decision Trees on the base of a limited
amount of streaming data (see [19–21]). Even ensembles have been proposed to extend
methods based on Hoeffding Trees, at the cost of an higher computational burden [22].
To the best of our knowledge, none of these exploits fuzziness or roughness in detect-
ing drifts.

3. Results

The experimental framework and the performances obtained by the proposed algo-
rithm in detecting feature shift are reported hereafter. Publicly available datasets have
been chosen and modified artificially inserting shifts in predefined positions for testing
purposes. For each test plots of the selected features at each iteration are shown at the end
of the section.

3.1. Data

The datasets used in the experiments are all publicly available from the UCI Machine
Learning repository [23]. Their names and main characteristics are summarized in Table 1.
To emulate a stream, data are processed in a First-In First-Out (FIFO) order considering
their record number as the key of a sorted file.

Table 1. Summary of the tested datasets.

Dataset #Instances #Features #Classes

Australian 690 15 2
WDBC 569 32 2

Waveform + Noise 5000 41 3

3.2. Drift Injection

Each reduct represents the set of selected features in its time window. To benchmark
the ability of AQR to detect the feature shift and redefine the reduct accordingly, the exact
moment in which the shift occurs in each dataset shall be known in advance.

To this end, the distributions of some features in a predefined position of the dataset
have been modified swapping their values. The feature to be swapped are chosen so that
one is among the most relevant and the other is among the least relevant according to QR
executed in full batch mode. Table 2 reports the drift insert points on the selected datasets.

Algorithms 2021, 14, 58 7 of 13

Table 2. Number of the swapped features and positions of instances where the injected drifts start
and end.

Dataset Features #Start #End

Australian 5<->14 300 Last
Australian 5<->14 300 400

WDBC 9<->23 300 Last
Waveform+Noise 26<->35 3000 Last

3.3. Tests

Four different tests have been performed to evaluate the effectiveness of AQR in
different conditions of shift and feature dependence and a fifth test has been performed to
evaluate its effectiveness in improving classification.

3.3.1. Test 1. Simple Shift

The first test aims to evaluate the ability of AQR to actually recognize a feature shift:
features 5 and 14 are swapped starting from observation 300 to the end of the file. The
window is fixed at 100 observations and the overlap between a window and the next is
95 observations. With these parameters the drift occurs at the 40th iteration. Figure 1
shows the graphs of the selected features at each iteration without drift (a) and with drift
highlighted in red (b).

(a)

(b)

Figure 1. Test 1. Selected features at each iteration: (a) without drift (b) with drift. y axis represents
the iteration number; x axis the number of the feature.

Algorithms 2021, 14, 58 8 of 13

Regarding feature five, the detection occurs at iteration 53 with a delay of 13 iterations
(65 observations) while the drift detection on feature 14 occurs at iteration 49 with a delay
of only 9 iterations (45 observations). From the comparison with the selected features
without drift, it is possible to appreciate the stability of the proposed algorithm.

3.3.2. Test 2. Reoccurring Shift

The the second test aims to evaluate the ability of AQR to recognize reoccurring shift.
To this purpose, features 5 and 14 have been swapped only from observation 300 to 400.
The window is fixed at 100 observations and the overlap is 95 observations. With these
parameters the drift occurs from the 40th to the 60th iteration. Figure 2 shows the plots of
the selected features at each iteration without drift (a) and with drift highlighted in red (b).

(a)

(b)

Figure 2. Test 2. Selected features at each iteration: (a) without drift (b) with drift. y axis represents
the iteration number; x axis the number of the feature.

Algorithms 2021, 14, 58 9 of 13

As for feature 5, the initial detection occurs at iteration 53 with a delay of 13 iterations
(65 observations) while the final detection occurs at iteration 72 with a delay of 12 iterations
(60 observations), therefore the algorithm shows a response-time equal to circa half of the
window to detect the drift (temporarily removing feature 5). As for feature 14, the initial
detection occurs at iteration 49 with a delay of only nine iterations (45 observations) while
the final detection occurs at iteration 85 with a delay of 25 iterations (125 observations).

3.3.3. Test 3. Shift with Partially Dependent Features

The dataset used in the third test has a larger number of features. The specificity of
this dataset with respect to QR is that the degree of dependence of the complete set of
features never reaches unity and in many cases is less than 0.8 (Figure 3).

Figure 3. Dependency degree of the full set of features (red) and the selected features (blue). y axis
represents the dependency degree; x axis the number of the iteration.

Furthermore, the low fraction of selected features indicates that many of them are
redundant, non-discriminative and actually worsen performances. In this test, features 9
and 13 were swapped from observation 300 to the end of the dataset. The window is fixed
to 100 observations and the overlap is of 95 observations, so the drift occurs at the 40th
iteration. Figure 4 shows the plots of the selected features at each iteration without drift (a)
and with drift highlighted in red (b).

As for feature 9, the detection occurs at iteration 60 with a delay of 20 iterations
(100 observations) while the drift detection on feature 23 occurs at iteration 76 with a delay
of 36 iterations (180 observations). From this test it is evident that the detection accuracy is
strongly related to the discriminating power of the features.

Algorithms 2021, 14, 58 10 of 13

(a)

(b)

Figure 4. Test 3. Selected features at each iteration: (a) without drift (b) with drift. y axis represents
the iteration number; x axis the number of the feature.

3.3.4. Test 4. Shift with Highly Dependent Features

To further investigate this aspect, the fourth test was conducted on a dataset with
a larger number of features and observations, where the degree of feature dependency
is very high. Features 26 and 35 were swapped from observation 3000 to the end of the
dataset. The window is fixed at 200 observations and the overlap is 190 observations, so
the drift occurs at the 280th iteration. Figure 5 shows the plots of the selected features at
each iteration without drift (a) and with drift highlighted in red (b).

Algorithms 2021, 14, 58 11 of 13

(a)

(b)

Figure 5. Test 4. Selected features at each iteration: (a) without drift (b) with drift. y axis represents
the iteration number; x axis the number of the feature.

As for feature 26, the detection occurs at iteration 296 with a delay of 16 iterations
(80 observations) while the drift detection on feature 35 occurs at iteration 297 with a delay
of 17 iterations (85 observations). In this case the algorithm was able to adapt to the drift in
less than half of the window.

3.4. Test 5. Classification

In order to further asses the potentialities of AQR, the protocol proposed in [17] and
based on prediction accuracy has been adopted. Because AQR is not a classifier but a
feature selector, it was paired with k-Nearest Neighbor (kNN) to classify the instances
in the current window, obtaining the kNN-AQR combo (very similar results however
have been obtained in combination with the Naive Bayes classifier). The accuracy is
computed accordingly to the Prequential or interleaved-test-then-train scheme [24], where
each instance is first used to test and then to train the model.

Algorithms 2021, 14, 58 12 of 13

The chosen datasets are Electricity [25] and Kaggle’s Give Me Some Credit (GMSC) [26],
whose characteristics are summarized in Table 3.

Table 3. Summary of the datasets used in the classification experiment.

Dataset #Instances #Features

Electricity 45,312 9
GMSC 150,000 12

The proposed algorithm is compared with the following competitors: kNN, Naive
Bayes, kNN with feature weighting (kNN-FW) [17], Naive Bayes with feature weigh-
ing (NB-FW) [17], Very Fast Decision Tree (VFDT) [20] and a Hoeffding Adaptive Tree
(HAT) [21].

In Table 4, comparative performances are reported. On the Electricity dataset, the best
performing algorithm is kNN-FW that however has the drawback of an higher memory
footprint if compared to kNN-AQR (the latter only needs to keep in memory the last
computed reduct). Still, kNN-AQR yields a prequential accuracy slightly inferior to HAT,
that is one of the best performing algorithms for stream classification with feature drifts.
On the other side, on the GMSC dataset, kNN-AQR resulted the best performing algorithm,
proving its stability on the long run.

Table 4. Prequential accuracy (best results are reported in bold).

Dataset kNN kNN-FW NB NB-FW VFDT HAT kNN-AQR

Electricity 54.31 84.08 57.62 73.39 79.23 83.46 80.21
GMSC 92.48 92.67 93.09 93.32 93.25 93.37 93.56

4. Conclusions

Feature drift in data stream is a recent research area that is attracting great interest. In
this paper, an effective feature shift detection algorithm based on QuickReduct has been
proposed, together with an easily reproducible method to inject drift into a dataset for
testing purposes.

The Adaptive QuickReduct has proven to effectively capture the shift artificially in-
jected in three real world datasets under different dependency conditions and to work well
in the classification of real world data streams, with a very low memory footprint. While
not showing always the best absolute performance in classification and not guaranteeing
always the optimal reduct in feature selection, the low memory requirements and the fast
response to the eventual shift make it ideal in those application fields where such shift
are common and the data volume is high: IoT environments, sensor networks and social
media analysis, just to name a few.

Future work will follow two directions: the first is extending the proposed algorithm to
deal with gradual and incremental drifts; the second is to hybridize it with leading feature
drift frameworks, like VFDT and HAT, in order to further improve their classification
performances. Work on a publicly available tool to inject feature drift into a dataset for
testing purposes is ongoing.

Author Contributions: Authors contributed equally to the paper. Both authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Algorithms 2021, 14, 58 13 of 13

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found here: http://archive.ics.uci.edu/ml and https://www.kaggle.com/datasets (accessed on
27 December 2020).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Nguyen, H.-L.; Woon, Y.-K.; Ng, W.K. A Survey on Data Stream Clustering and Classification. Knowl. Inf. Syst. 2015, 45, 535–569.

[CrossRef]
2. Gomes, H.M.; Read, J.; Bifet, A.; Barddal, J.P.; Gama, J. Machine learning for streaming data: State of the art, challenges, and

opportunities. SIGKDD Explor. Newsl. 2019, 21, 6–22. [CrossRef]
3. Lu, J.; Liu, A.; Dong, F.; Gu, F.; Gama, J.; Zhang, G. Learning under Concept Drift: A Review. IEEE Trans. Knowl. Data Eng. 2019,

31, 2346–2363. [CrossRef]
4. Barddal, J.P.; Gomes, H.M.; Enembreck, F.; Pfahringer, B. A survey on feature drift adaptation: Definition, benchmark, challenges

and future directions. J. Syst. Softw. 2017, 127, 278–294. [CrossRef]
5. Sadegh, E.; Javidi, M.M. Online streaming feature selection using rough sets. Int. J. Approx. Reason. 2015, 69, 35–57.
6. Zhou, P.; Hu, X.; Li, P.; Wu, X. Online streaming feature selection using adapted Neighborhood Rough Set. Inf. Sci. 2019, 481,

258–279. [CrossRef]
7. Pawlak, Z. Granularity of knowledge, indiscernibility and rough sets. In Proceedings of the IEEE International Conference on

Fuzzy Systems, Anchorage, AK, USA, 4–9 May 1998; pp. 106–110.
8. Pawlak, Z. Rough sets. Int. J. Comput. Inf. Sci. 1982, 11, 341–356. [CrossRef]
9. Ferone, A. Feature selection based on composition of rough sets induced by feature granulation. Int. J. Approx. Reason. 2018, 101,

276–292. [CrossRef]
10. Ferone, A.; Petrosino, A. A rough fuzzy perspective to dimensionality reduction. In Revised Selected Papers of the First International

Workshop on Clustering High—Dimensional Data; Springer: New York, NY, USA, 2015; Volume 7627, pp. 134–147.
11. Jensen, R.; Tuson, A.; Shen, Q. Finding rough and fuzzy-rough set reducts with SAT. Inf. Sci. 2014, 255, 100–120. [CrossRef]
12. Petrosino, A.; Ferone, A. Feature Discovery through Hierarchies of Rough Fuzzy Sets. In Granular Computing and Intelligent

Systems: Design with Information Granules of Higher Order and Higher Type; Witold, P., Chen, S.-M., Eds.; Springer: Berlin/Heidelberg,
Germany, 2011; pp. 57–73.

13. Yao, Y.; Zhao, Y.; Wang, J. On reduct construction algorithms. In Rough Sets and Knowledge Technology; Wang, G.Y., Peters, J.F.,
Skowron, A., Yao, Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 297–304.

14. Ferone, A.; Tsvetozar, G.; Maratea, A. Test-Cost-Sensitive Quick Reduct. In Fuzzy Logic and Applications; Springer International
Publishing: New York, NY, USA, 2019; pp. 29–42.

15. Susmaga, R. Computation of minimal cost reducts. In Foundations of Intelligent Systems; Raś, Z.W., Skowron, A., Eds.; Springer:
Berlin/Heidelberg, Germany, 1999; pp. 448–456.

16. Jothi, G.; Hannah Inbarani, H. Hybrid Tolerance Rough Set—Firefly based supervised feature selection for MRI brain tumor
image classification. Appl. Soft Comput. 2016, 46, 639–651.

17. Barddal, J.P.; Gomes, H.M.; Enembreck, F.; Pfahringer, B.; Bifet, A. On Dynamic Feature Weighting for Feature Drifting Data
Streams. In Machine Learning and Knowledge Discovery in Databases; Springer: Cham, Switzerland, 2016; pp. 129–144.

18. Pfahringer, B.; Holmes, G.; Kirkby, R. New Options for Hoeffding Trees. In Proceedings of the AI 2007: Advances in Artificial
Intelligence, Gold Coast, Australia, 2–6 December 2007; Orgun, M.A., Thornton, J., Eds.; Springer: Berlin/Heidelberg, Germany,
2007; Volume 4830, pp. 90–99.

19. Bifet, A.; Gavaldà, R. Adaptive Learning from Evolving Data Streams. In Proceedings of the Advances in Intelligent Data
Analysis VIII, Lyon, France, 31 August–2 September 2009; Adams, N.M., Robardet, C., Siebes, A., Boulicaut, J.F., Eds.; Springer:
Berlin/Heidelberg, Germany, 2009; Volume 5772, pp. 249–260.

20. Domingos, P.; Hulten, G. Mining high-speed data streams. In Proceedings of the Sixth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, Boston, MA, USA, 20–23 August 2000; pp. 71–80.

21. Hulten, G.; Spencer, L.; Domingos, P. Mining time-changing data streams. In Proceedings of the Seventh ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 26–29 August 2001; pp. 97–106.

22. Nguyen, H.-L.; Woon, Y.-K.; Ng, W.-K.; Wan, L. Heterogeneous ensemble for feature drifts in data streams. In Advances in
Knowledge Discovery and Data Mining; Tan, P.-N., Chawla, S., Ho, C.K., Bailey, J., Eds.; Springer: Berlin/Heidelberg, Germany,
2012; pp. 1–12.

23. Lichman, M. UCI Machine Learning Repository. 2013. Available online: http://archive.ics.uci.edu/ml (accessed on 27 December 2020).
24. Gama, J.; Sebastião, R.; Rodrigues, P.P. Issues in Evaluation of Stream Learning Algorithms. In Proceedings of the 15th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, France, 28 June–1 July 2009; pp. 329–338.
25. Rodrigues, P.P.; Gama, J.; Pedroso, J. Hierarchical Clustering of Time-Series Data Streams. IEEE Trans. Knowl. Data Eng. 2008, 20,

615–627. [CrossRef]
26. Katakis, I.; Tsoumakas, G.; Vlahavas, I. Dynamic Feature Space and Incremental Feature Selection for the Classification of Textual

Data Streams. In Proceedings of the ECML/PKDD-2006 International Workshop on Knowledge Discovery from Data Stream,
Berlin, Germany, 18–22 September 2006.

https://www.kaggle.com/datasets
http://doi.org/10.1007/s10115-014-0808-1
http://dx.doi.org/10.1145/3373464.3373470
http://dx.doi.org/10.1109/TKDE.2018.2876857
http://dx.doi.org/10.1016/j.jss.2016.07.005
http://dx.doi.org/10.1016/j.ins.2018.12.074
http://dx.doi.org/10.1007/BF01001956
http://dx.doi.org/10.1016/j.ijar.2018.07.011
http://dx.doi.org/10.1016/j.ins.2013.07.033
http://archive.ics.uci.edu/ml
http://dx.doi.org/10.1109/TKDE.2007.190727

	Introduction
	Windowing
	Concept Drift
	Feature Drift

	Materials and Methods
	QuickReduct for Feature Selection
	Adaptive QuickReduct

	Results
	Data
	Drift Injection
	Tests
	Test 1. Simple Shift
	Test 2. Reoccurring Shift
	Test 3. Shift with Partially Dependent Features
	Test 4. Shift with Highly Dependent Features

	Test 5. Classification

	Conclusions
	References

