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Abstract Brain activity during rest displays complex, rapidly evolving patterns in space and time.

Structural connections comprising the human connectome are hypothesized to impose constraints

on the dynamics of this activity. Here, we use magnetoencephalography (MEG) to quantify the

extent to which fast neural dynamics in the human brain are constrained by structural connections

inferred from diffusion MRI tractography. We characterize the spatio-temporal unfolding of whole-

brain activity at the millisecond scale from source-reconstructed MEG data, estimating the

probability that any two brain regions will significantly deviate from baseline activity in consecutive

time epochs. We find that the structural connectome relates to, and likely affects, the rapid

spreading of neuronal avalanches, evidenced by a significant association between these transition

probabilities and structural connectivity strengths (r = 0.37, p<0.0001). This finding opens new

avenues to study the relationship between brain structure and neural dynamics.

Introduction
The structural scaffolding of the human connectome (Sporns et al., 2005) constrains the unfolding

of large-scale coordinated neural activity towards a restricted functional repertoire (Deco et al.,

2011). While functional magnetic resonance imaging (fMRI) can elucidate this phenomenon at rela-

tively slow timescales (Honey et al., 2007; Goñi et al., 2014; Zalesky et al., 2014), brain activity

shows rich dynamic behaviour across multiple time scales, with faster activity nested within slower

scales. Here, in healthy young adults, we exploit the high temporal resolution of resting-state mag-

netoencephalography (MEG) data to study the spatial spread of perturbations of local activations

representative of neuronal avalanches. We aim to establish whether the structural connectome con-

strains the spread of avalanches among regions (Beggs and Plenz, 2004; Shriki et al., 2013). We

find that avalanche spread is significantly more likely between pairs of grey matter regions that are

structurally connected, as inferred from diffusion MRI tractography. This result provides cross-modal

empirical evidence suggesting that connectome topology constrains fast-scale transmission of neural

information, linking brain structure to brain dynamics.

Results
Structural connectomes were mapped for 58 healthy adults (26 females, mean age ± SD: 30.72 ±

11.58) using diffusion MRI tractography and regions defined based on the Automated Anatomical
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Labeling (AAL) and the Desikan–Killiany–Tourville (DKT) atlases. Interregional streamline counts

derived from whole-brain deterministic tractography quantified the strength of structural connectiv-

ity between pairs of regions. Streamline counts were normalized by regional volume. Group-level

connectomes were computed by averaging connectivity matrices across participants.

MEG signals were pre-processed and source reconstructed for both the AAL and DKT atlases. All

analyses were conducted on source-reconstructed signal amplitudes. Each signal amplitude was

z-scored and binarized such that, at any time point, a z-score exceeding a given threshold was set to

1 (active); all other time points were set to 0 (inactive). An avalanche was defined as starting when

any region exceeded this threshold, and finished when no region was active. An avalanche-specific

transition matrix (TM) was calculated, where element (i, j) represented the probability that region j

was active at time t + d, given that region i was active at time t, where d~3 ms. The TMs were aver-

aged per participant, and then per group, and finally symmetrized. Figure 1 provides an overview of

the pipeline.

We found striking evidence of an association between avalanche transition probabilities and

structural connectivity strengths (Figure 2), suggesting that regional propagation of fast-scale neural

avalanches is partly shaped by the axonal fibres forming the structural connectome (r = 0.40,

p<0.0001). Specifically, the association was evident for different activation thresholds and both the

AAL and DKT connectomes (AAL atlas: for threshold z = 2.5, r = 0.41; for threshold z = 3.0, r = 0.40;

for threshold z = 3.5, r = 0.39; DKT atlas: for threshold z = 2.5, r = 0.38; for threshold z = 3.0,

r = 0.37; for threshold z = 3.5, r = 0.35; in all cases, p<0.0001), as well as for individual- and group-

level connectomes, although associations were stronger for group-level analyses (see Figure 2A).

We also investigated this phenomenon within specific frequency bands. Associations were evident

in all the classical frequency bands: delta (0.5–4 Hz; r = 0.39), theta (4–8 Hz; r = 0.29), alpha (8–13

Hz; r = 0.32), beta (13–30 Hz; r = 0.32), and gamma (30–48 Hz; r = 0.32), with p<0.0001 for all bands

(see Supplementary file 1). Supplementary analyses suggested that these results could not be

attributable to volume conduction confounds (see section Field spread analysis).

Next, we sought to test whether the associations were weaker for randomized TMs computed

after randomizing the times of each avalanche while keeping the spatial structure unchanged. Ran-

domized TMs resulted in markedly weaker associations with structural connectivity compared to the

actual TMs (AAL atlas, z-score = 3: mean r = 0.26, observed r = 0.40, p<0.001). Note that the mean

correlation coefficient was greater than zeros for the randomized data because the randomization

process preserved basic spatial attributes in the data. We also found that the findings remained sig-

nificant after excluding subcortical regions (with lower signal-to-noise ratios). Finally, we replicated

these findings for a group-level connectome derived using diffusion MRI acquired from 200 healthy

adults in the Human Connectome Project (r = 0.11, p<0.001, z-score = 3; see

Materials and methods). Our results were thus robust to multiple connectome mapping pipelines

and parcellation atlases, significant for both group-averaged and individual connectomes, and could

not be explained by chance transitions and/or volume conduction effects. Collectively, these results

suggest that connectome organization significantly shapes the propagation of neural activity.

Discussion
Our results provide new insight into the propagation of fast-evolving brain activity in the human con-

nectome. We show that the spatial unfolding of neural dynamics at the millisecond scale relates to

the network of large-scale axonal projections comprising the connectome, likely constraining the

exploration of the brain’s putative functional repertoire. The short time scale of several milliseconds

biases the constraint to direct connections, which is the focus of this paper. Longer delays may

impose constraints upon larger-scale motifs of the network and further characterize the sub-spaces,

in which brain dynamics unfold.

Previous functional MRI studies provide evidence of coupling between structural connectivity and

slow activations (Honey et al., 2007; Honey et al., 2010; Honey et al., 2009). However, intrinsic

neural dynamics evolve quickly and are nested within slow activity (Saggio et al., 2017). Our findings

suggest that long-term structure-function coupling occurs against a backdrop of faster fluctuations,

which are also constrained by the connectome and may enable individuals to rapidly respond to

changing environments and new cognitive demands (McIntosh and Jirsa, 2019).

Sorrentino et al. eLife 2021;10:e67400. DOI: https://doi.org/10.7554/eLife.67400 2 of 11

Short report Computational and Systems Biology

https://doi.org/10.7554/eLife.67400


Figure 1. Overview of the pipeline. (A) Rendering of streamlines reconstructed using diffusion magnetic resonance imaging and tractography for an

individual. (B) Structural connectivity matrix. Row/columns represent regions comprising a brain atlas. Matrix entries store the number of streamlines

interconnecting each pair of regions. (C) Source-reconstructed magnetoencephalography series. Each blue line represents the z-scored activity of a

region, and the red lines denote the threshold (z-score = ±3). The inset represents a magnified version of a time series exceeding the threshold. (D)

Figure 1 continued on next page
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Consistent with our findings, two recent M/EEG studies showed that functional connectivity, as

estimated using amplitude-envelope coupling (AEC), relates to structural connectivity (Glomb et al.,

2020; Tewarie et al., 2019). However, in contrast to AEC, we conducted time-resolved analyses,

characterizing avalanche dynamics at high temporal resolution. Further work is needed to determine

the extent to which structure-function coupling is dynamic. To this regard, our results suggest that

coupling is strongest during avalanche events, consistent with established theories (Dehaene et al.,

1998). Finally, our results might explain how the large-scale activity unfolding in time might lead to

the previous observation that average resting-state functional connectivity displays topological fea-

tures that mirror those of the structural connectome (Bullmore and Sporns, 2009). Our proposed

framework links the large-scale spreading of aperiodic, locally generated perturbations to the struc-

tural connectome and might be further exploited to investigate polysynaptic models of network

communication, which aim to describe patterns of signalling between anatomically unconnected

regions (Seguin et al., 2018; Seguin et al., 2019). In fact, our results show that transitions of activa-

tions are observed across regions that do not appear to be directly linked in the structural connec-

tome. This provides evidence for polysynaptic communication.

Neuronal avalanches have been previously observed in MEG data (Shriki et al., 2013), and their

statistical properties, such as a size distribution that obeys a power-law with an exponent of �3/2,

reported. These features are compatible with those that would be predicted starting from a process

Figure 1 continued

Raster plot of an avalanche. For each region, the moments in time when the activity is above threshold are represented in black, while the other

moments are indicated in white. The particular avalanche that is represented involved three regions. (E) Estimation of the transition matrix of a toy

avalanche. Region i is active three times during the avalanche. In two instances, denoted by the green arrows, region j was active after region i. In one

instance, denoted by the red arrow, region i is active but region j does not activate at the following time step. This situation would result, in the

transition matrix, as a 2/3 probability. (F) Average structural matrix and average transition matrix (log scale).

Figure 2. Main results. (A) Distribution of the r’s of the Spearman’s correlation between the subject-specific transition matrices and structural

connectomes. The black diamond represent the r’s of the group-averaged matrices. On the left, the results for the Automated Anatomical

Labeling (AAL) atlas; on the right, the results for the Desikan–Killiany–Tourville (DKT) atlas. Green, purple, and orange dots represent results obtained

with a z-score threshold of 2.5, 3, and 3.5, respectively. (B, C) Data referring to the AAL atlas in (B) and DKT atlas in (C). On the top left, the average

structural matrix; on the bottom left, the average transition matrix. The scatterplot shows the correlation between the values of the structural edges and

the transition probabilities for the corresponding edge. The black line represents the best fit line in the least-square sense. On the right, the

distribution shows the r’s derived from the null distribution. The dotted blue line represents the observed r. Please note that, for visualization purposes,

the connectivity weights and the transition probabilities were resampled to normal distributions. Figure 2—figure supplement 1 shows the

comparison between the structural connectome and the transition matrix computed by taking into account longer delays. In Supplementary file 1, we

report a table with an overview of the results of the frequency-specific analysis.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. This source data file contains the code to generate the transition matrices starting from neuronal avalanches and to compare them to

null surrogates.

Figure supplement 1. On the left, the average structural matrix.
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operating at criticality with a branching ratio equal to 1. While beyond the scope of this paper, our

framework might contribute to elucidating the role of the structural scaffolding (and its topological

properties) to the emergence of the observed large-scale, scale-free critical dynamics. In turn, this

might be exploited to predict the effects of structural lesions on behaviour and/or clinical

phenotypes.

While our findings were replicated across multiple frequency bands, structural connectivity can

potentially impose frequency-dependent constraints on avalanche spread. Future work should inves-

tigate frequency-specific data to understand what leads to the emergence of avalanches and, most

importantly, to the specific spatio-temporal patterns of recruited regions that defines individual (or

at least groups of) avalanches in each specific frequency band.

For the present application, we reconstructed the structural connectome using a deterministic

tractography algorithm. While probabilistic algorithms can provide advantages in some applications,

they are prone to reconstruction of spurious connections (false positives), compared to deterministic

methods, reducing connectome specificity (Sarwar et al., 2019; Zalesky et al., 2016). We used

deterministic tractography because previous functional MRI studies report that structure-functional

coupling is greater for connectivity matrices inferred from deterministic tractography compared to

probabilistic methods (Abeyasinghe et al., 2021). Nonetheless, additional studies are needed to

clarify if and to what extent the present results are influenced by the structural connectome recon-

struction method. While we replicated our findings using alternative datasets (i.e., Human Connec-

tome Project [HCP]) and parcellations, further replication using alternative connectome mapping

pipelines is warranted.

In conclusion, using MEG to study fast neuronal dynamics and diffusion MRI tractography to map

connectomes, we found that the connectome significantly constrains the spatial spread of neuronal

avalanches to axonal connections. Our results suggest that large-scale structure-function coupling is

dynamic and peaks during avalanche events.

Materials and methods

Participants
We recruited 58 young adults (males 32/females 26, mean age ± SD was 30.72 ± 11.58) from the

general community. All participants were right-handed and native Italian speakers. The inclusion cri-

teria were (1) no major internal, neurological, or psychiatric illnesses; and (2) no use of drugs or med-

ication that could interfere with MEG/MRI signals. The study complied with the Declaration of

Helsinki and was approved by the local Ethics Committee. All participants gave written informed

consent.

MRI acquisition
3D T1-weighted brain volumes were acquired at 1.5 Tesla (Signa, GE Healthcare) using a 3D Magne-

tization-Prepared Gradient-Echo BRAVO sequence (TR/TE/TI 8.2/3.1/450 ms, voxel 1 � 1 � 1 mm3,

50% partition overlap, 324 sagittal slices covering the whole brain), and diffusion MRI data for indi-

vidual connectome reconstruction were obtained using the following parameters: Echo-Planar Imag-

ing, TR/TE 12,000/95.5 ms, voxel 0.94 � 0.94 � 2.5 mm3, 32 diffusion-sensitizing directions (5 B0

volumes). The MRI scan was performed after the MEG recording. Pre-processing of the diffusion

MRI data was carried out using the software modules provided in the FMRIB Software Library (FSL,

http://fsl.fmrib.ox.ac.uk/fsl). All diffusion MRI datasets were corrected for head movements and

eddy currents distortions using the ‘eddy_correct’ routine, rotating diffusion sensitizing gradient

directions accordingly, and a brain mask was obtained from the B0 images using the Brain Extraction

Tool routine. A diffusion-tensor model was fitted at each voxel, and streamlines were generated

over the whole brain by deterministic tractography using Diffusion Toolkit (FACT propagation algo-

rithm, angle threshold 45˚, spline-filtered, masking by the Fractional Anisotropy (FA) maps thresh-

olded at 0.2). For tractographic analysis, the regions of interest (ROIs) of the AAL atlas and of an

MNI space-defined volumetric version of the DKT ROI atlas were used, both masked by

the gray matter (GM) tissue probability map available in Statistical Parametric Mapping Software -

SPM (thresholded at 0.2). To this end, for each participant, FA volumes were normalized to the MNI

space using the FA template provided by FSL, using the spatial normalization routine available in
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SPM12, and the resulting normalization matrices were inverted and applied to the ROIs, to apply

them onto each subject. The quality of the normalization was assessed visually. From each subject’s

whole-brain tractography and corresponding GM ROI set, the number of streamlines connecting

each couple of GM ROIs and the corresponding mean tract length was calculated using an in-house

software written in Interactive Data Language (IDL, Harris Geospatial Solutions, Inc, Broomfield,

CO).

Connectomes in the replication dataset were constructed using an alternative mapping pipeline

and diffusion MRI data from the HCP. Deterministic tractography was performed using MRtrix3

(Tournier et al., 2019) under the following parameters: FACT algorithm, 5 million streamlines, 0.5

mm propagation step size, 400 mm maximum propagation length, and 0.1 FA threshold for the ter-

mination of streamlines (Seguin et al., 2019). The number of streamlines connecting any couple of

regions was normalized by the combined volume of the two regions. Structural matrices were con-

structed for 200 HCP participants using the AAL atlas and averaged to derive a group-level

connectome.

MEG pre-processing
MEG pre-processing and source reconstruction were performed as in Sorrentino et al., 2021. The

MEG system was equipped with 163 magnetometers and was developed by the National Research

Council of Italy at the Institute of Applied Sciences and Intelligent Systems (ISASI). All technical

details regarding the MEG device are reported in Rombetto et al., 2014. In short, the MEG regis-

tration was divided into two eyes-closed segments of 3:30 min each. To identify the position of the

head, four anatomical points and four position coils were digitized. Electrocardiogram (ECG) and

electro-oculogram (EOG) signals were also recorded. The MEG signals, after an anti-aliasing filter,

were acquired at 1024 Hz, then a fourth-order Butterworth IIR band-pass filter in the 0.5–48 Hz band

was applied. To remove environmental noise, measured by reference magnetometers, we used prin-

cipal component analysis. We adopted supervised independent component analysis to clean the

data from physiological artefacts, such as eye blinking (if present) and heart activity (generally one

component). Noisy channels were identified and removed manually by an expert rater (136 ± 4 sen-

sors were kept). 47 subjects were selected for further analysis.

Source reconstruction
The time series of neuronal activity were reconstructed in 116 ROIs based on the AAL atlas (Tzourio-

Mazoyer et al., 2002; Hillebrand et al., 2016); and in 84 regions of interest based on the DKT atlas.

To do this, we used the volume conduction model proposed by Nolte, 2003 applying the linearly

constrained minimum variance (LCMV) beamformer algorithm (Van Veen et al., 1997) based on the

native structural MRIs. Sources were reconstructed for the centroid of each ROI. Finally, we consid-

ered a total of 90 ROIs for the AAL atlas since we have excluded 26 ROIs corresponding to the cere-

bellum because of their low reliability in MEG (Lardone et al., 2018). All the pre-processing steps

and the source reconstruction were made using the Fieldtrip toolbox (Oostenveld et al., 2011).

Neuronal avalanches and branching parameter
To study the dynamics of brain activity, we estimated ‘neuronal avalanches’. Firstly, the time series

of each ROI was discretized calculating the z-score, then positive and negative excursions beyond a

threshold were identified. The value of the threshold was set to three standard deviations (|z| = 3),

but we tested the robustness of the results changing this threshold from 2.5 to 3.5. A neuronal ava-

lanche begins when, in a sequence of contiguous time bins, at least one ROI is active (|z| >3) and

ends when all ROIs are inactive (Beggs and Plenz, 2003; Shriki et al., 2013). The total number of

active ROIs in an avalanche corresponds to its size.

These analyses require the time series to be binned. This is done to ensure that one is capturing

critical dynamics, if present. To estimate the suitable time bin length, for each subject, each neuronal

avalanches, and each time bin duration, the branching parameter s was estimated (Haldeman and

Beggs, 2005; Harris, 1964). In fact, systems operating at criticality typically display a branching ratio

~1. The branching ratio is calculated as the geometrically averaged (over all the time bins) ratio of

the number of events (activations) between the subsequent time bin (descendants) and that in the
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current time bin (ancestors) and then averaging it over all the avalanches (Bak et al., 1987). More

specifically:

si ¼
1

Nbin� 1

Y

Nbin�1

j¼1

nevents jþ 1ð Þ

nevents jð Þ

� � 1

Nbin�1

(1)

s¼
1

Naval

Y

Naval

i¼1

sið Þ
1

Naval (2)

where si is the branching parameter of the ith avalanche in the dataset, Nbin is the total amount of

bins in the ith avalanche, nevents jð Þ is the total number of events active in the jth bin, and Naval is the

total number of avalanche in the dataset. We tested bins from 1 to 5, and picked 3 for further analy-

ses, given that the branching ratio was 1 for bin = 3. However, results are unchanged for other bin

durations, and the branching ratio remains equal to 1 or differences were minimal (range: 0.999–

1.010 – data not shown). Bins of longer duration would violate the Nyquist criterion and were thus

not considered. The results shown are derived when taking into account avalanches longer than 10

time bins. However, we repeated the analysis taking into account avalanches longer than 30 time

bins, as well as taking all avalanches into account, and the results were unchanged.

Transition matrices
The amplitude of each binned, z-scored source-reconstructed signal was binarized, such that, at any

time bin, a z-score exceeding ±3 was set to 1 (active); all other time bins were set to 0 (inactive).

Alternative z-score thresholds (i.e., 2.5 and 3.5) were tested. An avalanche was defined as starting

when any region is above threshold and finishing when no region is active, as in Sorrentino et al.,

2021. Avalanches shorter than 10 time bins (~30 ms) were excluded. However, the analyses were

repeated including only avalanches longer than 30 time bins (~90 ms) to focus on rarer events (sizes

of the neuronal avalanches have a fat-tailed distribution) that are highly unlikely to be noise, and

including all avalanches, and the results were unchanged. An avalanche-specific TM was calculated,

where element (i, j) represented the probability that region j was active at time t + d, given that

region i was active at time t, where d~3 ms. The TMs were averaged per participant, and then per

group, and finally symmetrized. The introduction of a time lag makes it unlikely that our results can

be explained trivially by volume conduction (i.e., the fact that multiple sources are detected simulta-

neously by multiple sensors, generating spurious zero lag correlations in the recorded signals). For

instance, for a binning of 3, as the avalanches proceed in time, the successive regions that are

recruited do so after roughly 3 ms (and 5 ms for the binning of 5). Hence, activations occurring simul-

taneously do not contribute to the estimate of the TM. See below for further analyses addressing

the volume conduction issue. Finally, we explored TMs estimated using frequency-specific signals.

To this end, we filtered the source-reconstructed signal in the classical frequency bands (delta, 0.5–4

Hz; theta 4–8 Hz; alpha 8–13 Hz; beta 13–30 Hz; gamma 30–48 Hz), before computing neuronal ava-

lanches and the TM, by applying a fourth-order Butterworth pass-band filter to the source-recon-

structed data, before proceeding to the further analysis as previously described. The results

remained significant in all the explored frequency bands. This analysis was carried out for the DKT

atlas, binning = 3, z-score threshold = ± 3.

Field spread analysis
Volume conduction alone is an unlikely explanation of our results, given that simultaneous activations

do not contribute to the TM, due to the time lags introduced. To confirm that volume conduction

effects were negligible, the TMs were re-computed using longer delays. In short, we identified the

regions that were recruited in an avalanche after the first perturbation (i.e., the initial time bin of an

avalanche). Since we did not scroll through the avalanche in time, as previously described, we con-

sidered time delays as long as the avalanche itself, while minimizing the influence of short delays.

This means that the avalanche-specific TM is now binary, and the ijth element is equal to 1 if region i

started the avalanche (i.e., it was active at the first time bin) and region j was recruited in the ava-

lanche at any subsequent time point, and 0 otherwise. This alternative procedure for the estimation

of the TMs was carried out for the AAL atlas, in the case of binning = 3, z-score threshold = ± 3. In
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this case, a significant association remained between transition probabilities and structural connec-

tivity (r = 0.36; p<0.0001). Figure 2—figure supplement 1 provides further details.

To further rule out the possibility that field spread might introduce spurious correlations that

might drive the relationship between the TM and the structural connectivity matrix, we conducted

further analyses involving surrogate data. We generated n white Gaussian processes, with n = 66,

that is, the number of cortical regions, and we smoothed them using a zero-phase polynomial filter.

Then, we added 100 perturbations, where each perturbation was assigned to a randomly chosen

regions and random time point, subject to the following constraints. Perturbations were separated

by at least 200 samples (no overlap was allowed, i.e., the perturbations could only occur in one

region at a time), their length was randomly selected among 5, 10, or 100 samples, their amplitude

between 50 and 400. This procedure was carried out 47 times to obtain an independent surrogate

dataset for each one of the 47 participants, which will be referred to as the ‘uncoupled’ dataset. The

uncoupled dataset was then transformed using the subject-specific leadfield matrix, yielding new

surrogate sensor-level time series, where each sensor is a weighted sum of all the sources, according

to the same leadfield matrix that was used to reconstruct the real data. Noise, correlated as 1/dis-

tance among sensors, was then added to the sensor-level time series, with an SNR = 4. Then, new

source-reconstructed time series were computed for each subject. Based on these new time series,

we performed the same procedure to compute the TM as described above. Specifically, we z-scored

the time series, thresholded them (threshold z = ±3), retrieved the avalanche-specific TMs, averaged

these within each subject and then across the group, and finally symmetrized the matrix. We then

investigated the extent of the correlation between the new TM and the structural connectivity

matrix. We repeated the entire procedure reported above 100 times and show that is unlikely that

linear mixing alone can explain the significant association between transition probabilities and struc-

tural connectivity (p<0.001).

Statistical analysis
The Spearman rank correlation coefficient was used to assess the association between transition

probabilities and structural connectivity. A correlation coefficient was computed separately for each

individual across all pairs of regions. TMs were symmetrized before this computation. Randomized

TMs were generated to ensure that associations between transition probabilities and structural con-

nectivity could not be attributed to chance. Avalanches were randomized across time, without

changing the order of active regions at each time step. We generated a total of 1000 randomized

TMs and the Spearman rank correlation coefficient was computed between each randomized matrix

and structural connectivity. This yielded a distribution of correlation coefficients under randomiza-

tion. The proportion of correlation coefficients that were greater than, or equal to, the observed cor-

relation coefficient provided a p-value for the null hypothesis that structure-function coupling was

attributable to random transition events.
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