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a b s t r a c t 

Brain connectome fingerprinting is rapidly rising as a novel influential field in brain network analysis. Yet, it 

is still unclear whether connectivity fingerprints could be effectively used for mapping and predicting disease 

progression from human brain data. We hypothesize that dysregulation of brain activity in disease would re- 

flect in worse subject identification. We propose a novel framework, Clinical Connectome Fingerprinting , to detect 

individual connectome features from clinical populations. We show that “clinical fingerprints ” can map indi- 

vidual variations between elderly healthy subjects and patients with mild cognitive impairment in functional 

connectomes extracted from magnetoencephalography data. We find that identifiability is reduced in patients 

as compared to controls, and show that these connectivity features are predictive of the individual Mini-Mental 

State Examination (MMSE) score in patients. We hope that the proposed methodology can help in bridging the 

gap between connectivity features and biomarkers of brain dysfunction in large-scale brain networks. 
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. Introduction 

Alzheimer’s disease (AD) is the most common form of dementia

orldwide. It is well known that the pathophysiological processes

tart years, and possibly decades, before the clinical onset ( Braak and

raak, 1991 ). Consequently, the identification of subjects carrying a

igh risk of developing the disease is necessary to study the early stage

f AD pathophysiology and to adopt new and more successful therapeu-

ic approaches. This led to the definition of the clinical construct of mild

ognitive impairment (MCI) ( Petersen et al., 1999 ). According to the first

onceptualization, MCI has been regarded as a clinical condition char-

cterized by an objective memory impairment not yet encompassing the

efinition of dementia, but with a higher risk of developing severe cogni-

ive decline ( Petersen et al., 1999 ). Currently, MCI patients are classified

ccording to type and number of affected cognitive domains. This clini-
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al classification is particularly relevant because each subtype is linked

o a presumed etiology, in fact the amnestic subtypes (aMCI) seems to

epresent the prodromal form of AD ( Petersen et al., 1999 ). 

Typically, the main symptom in aMCI is memory impairment. How-

ver, when this condition progresses toward the overt dementia phase,

everal cognitive functions become compromised, such as comprehen-

ion, communication, problem-solving, abstraction, imagining, plan-

ing, logic reasoning and abstract thought. To date, it has not been pos-

ible to link such functions to the malfunctioning of any specific area.

his could be due to the fact that such complex abilities might not stem

rom a single dysfunctional area, but rather from the coordinated ac-

ivity of multiple brain regions, which can be represented as a brain

etwork or connectome ( Bullmore and Sporns, 2009 ). 

In brain networks, nodes correspond to gray-matter regions (based

n brain atlases or parcellations), while links or edges correspond to
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n  
onnections (either structural or functional) among them ( Fornito et al.,

016 ). Recent advances in functional neuroimaging have provided new

ools to measure these connections, by exploiting the statistical depen-

encies between brain signals, giving rise to the field of functional con-

ectivity or functional brain connectomics ( Friston, 2011 ). Examining

unctional connectivity in the human brain offers unique insights on

ow integration and segregation of information relates to human be-

avior and how this organization may be altered in diseases ( Fornito

t al., 2015 ). Indeed, considerable evidence has confirmed that anoma-

ies in either the co-activations, the synchronization and/or the topology

f the brain network are likely occurring in MCI ( Contreras et al., 2017 ;

acini et al., 2018 ). 

Despite the progress made in this direction, two main problems have

risen when using brain network models as a way to detect functional

onnectivity alterations in AD and/or MCI. Firstly, the clinical inter-

retation became more challenging, and behavioral correlates neces-

ary to interpret the findings. Secondly, lack of replicability hindered

he generalization of the results ( Botvinik-Nezer et al., 2020 ). Hence,

espite considerable efforts from the community, reliably linking func-

ional alterations to the MCI condition in a methodologically reliable

nd clinically valid way has been proven elusive ( Engels et al., 2017 ).

owever, recent work on fMRI and EEG data showed that the in-

ividual connectivity does allow reliable single-subject identification

n the healthy ( Amico and Goñi, 2018 ; Finn et al., 2015 ; Miranda-

ominguez et al., 2014 ), given that good enough test-to-test reliabil-

ty is provided ( Noble et al., 2019 ). Nevertheless, the relationship be-

ween reliability ( “connectivity fingerprinting ”) and validity (associa-

ions with disease-related biomarkers) still lacks definitive answers. In

ther words, how does connectivity fingerprinting relate to alterations

n the diseased connectomes? 

Here, we introduce a methodology to test for the reliability/validity

elations in clinical populations, that we named Clinical Connectome

ingerprinting (CCF) . The key distinction between CCF and “standard ”

onnectome fingerprinting is that, in the CCF framework, we compare

he similarity of the connectomes across test-retest sessions in patients

gainst controls, obtaining individual similarity scores for each patient.

e use these similarity scores as biomarkers for the prediction of clini-

al scores associated with the disease at hand. This idea is based on the

onsideration that the individual similarity scores obtained from CCF

ight provide a summary of large-scale dysregulation taking place in

iseased brains. Starting from this assumption, we further hypothesised

hat individual alterations in the connectivity profiles, as summarized

y CCF, might be associated with clinical outcomes of widespread cog-

itive decline, such as the Mini-Mental State Examination (MMSE). 

We applied the CCF technique to source-reconstructed magnetoen-

ephalographic (MEG) data in aMCI subjects and matched healthy sub-

ects (HS). We started with comparing the identification performance

f a variety of connectivity/synchronization metrics that are commonly

sed to derive functional connectomes from MEG data. We selected the

est performing one for further analysis, namely the phase linearity mea-

urement (PLM) ( Baselice et al., 2019 ). We observed a consistent drop

n connectome fingerprinting when transitioning from healthy to aMCI.

hen, in order to test reliability/validity relationships in our dataset,

e used intra-class correlation coefficient (ICC) to rank the edges ac-

ording to their reliability in connectome fingerprinting. That is, we

dentified the edges that are more stable across test-retest sessions in

ontrols, since the fingerprinting is mostly reliant on such edges. This

nalysis was carried out for different frequency bands separately, likely

inpointing specific circuitry ( Jacini et al., 2018 ). We hypothesized that

he same links responsible for the lack of identifiability in the MCI co-

ort would also be related to the symptomatology. Hence, we show that

he most reliable links in the healthy (and whose reliability drops in the

CI population, as said) are indeed the ones predicting individual global

ognitive impairment in patients, as measured by the Mini Mental State

xamination (MMSE) scores. 
v  

2 
. Materials and methods 

.1. Participants 

For this study, eighty-six patients referring to the Center for Cog-

itive and Memory Disorders of the Hermitage Capodimonte Clinic in

aples were consecutively recruited. All subjects, aged 53 to 81, were

ight handed (none of them had any left-handed relatives) and native

talian speakers. Thirty-four age- gender- body mass index (BMI)- and

ducation- matched subjects among patients spouses or friends were en-

olled as control group (HSs). Exclusion criteria were the presence of

eurological or systemic illness that could affect the cognitive status,

nd contraindications to MRI or MEG recording. 

Both patients and HS underwent the following screening: neurologi-

al examination, extensive neuropsychological assessment (see Table 1 ),

RI scan (including hippocampal volume evaluation) and MEG record-

ng. MCI diagnosis was formulated according to the National Institute

n Aging-Alzheimer Association (NIA-AA) criteria ( Albert et al., 2011 ),

hich include: (i) cognitive concern reported by patient or informant or

linician, (ii) objective evidence of impairment in one or more cognitive

omains, typically including memory, (iii) preservation of independence

n functional abilities, (iv) not demented. Reduced hippocampal volume

etected by structural MRI gives our aMCI cohort an intermediate like-

ihood of being due to AD ( Albert et al., 2011 ). 

Screened subjects with either MRI alterations (traumatic brain in-

ury, meningioma, lacunar infarction), diagnosis of depression, demen-

ia or non-amnestic MCI were excluded from further analysis. The sub-

ects included in the study were 35 patients affected by aMCI (mean ± SD

ge 71.20 ± 6.67 years; 18 men and 17 women) compared to 34 age,

ducational level and gender matched healthy subjects (mean ± SD age

9.88 ± 5.56 years; 19 men and 15 women). 

The study was approved by the Local Ethics Committee “Comitato

tico Campania Centro ” (Prot.n.93C.E./Reg. n.14–17OSS), and all sub-

ects gave written informed consent. All methods included in the proto-

ol were carried out in accordance with the Declaration of Helsinki. 

.2. Magnetic resonance imaging acquisition 

For 24 HS and 32 MCI patients, MR images were acquired us-

ng a 3T Biograph mMR tomograph (Siemens Healthcare, Erlangen,

ermany) equipped with a 12 channels head coil. The scan was per-

ormed after the MEG registration or at least 21 days before (within

 month). The MR registration protocol was: (i) three-dimensional T1-

eighted Magnetization-Prepared Rapid Acquisition Gradient-Echo se-

uence (MPRAGE, 240 sagittal planes, 214 × 21 mm2 Field of View,

oxel size 1 × 1 × 1 mm3, TR/TE/TI 2400/2.5/1000 ms, flip angle

°); (ii) Three-dimensional T2-weighted Sampling Perfection with Ap-

lication optimized. Contrasts using different flip angle Evolution se-

uence (SPACE, 240 sagittal planes, 214 × 214 mm2 Field of View,

oxel size 1 × 1 × 1 mm3, TR/TE 3370/563); (iii) Two-dimensional

2- weighted turbo spin echo Fluid Attenuated Inversion Recovery se-

uence (FLAIR, 44 axial planes, 230 × 230 mm2 Field of View, voxel

ize 0.9 × 0.9 × 0.9 mm3, TR/TE/TI 9000/95/25,00, flip angle 150°). 

The volumetric analysis was performed using the Freesurfer soft-

are (version 6.0) ( FreeSurfer, 2012 ), specifically the normalization

f the volumes was made by the estimated total intracranial volume

eTIV) while the Fazekas scale was used to evaluate the vascular bur-

en ( Fazekas et al., 1987 ). For the remaining participants who refused

r did not complete the MR scan we used a standard MRI model. 

.3. MEG acquisition and preprocessing 

The data were acquired using a MEG system equipped by 163 mag-

etometers SQUID (Superconducting Quantum Interference Device), de-

eloped by the National Research Council of Italy at the Institute of Ap-
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Table 1 

Neuropsychological evaluation. 

Test Explored function 

MMSE Global cognitive status 

FAB Frontal efficiency 

BDI Depression 

MDB 

Rey’s 15 word immediate recall Short and long-term verbal episodic memory 

Rey’s 15 word delayed recall 

Word fluency Ability to access lexical-semantic memory store 

Phrase construction Language 

Raven’s 47 progressive matrices Conceptual reasoning 

Immediate visual memory Short-term visuoperceptual recognition memory 

Freehand copying of drawings Constructive apraxia 

Copying drawings with landmarks 

FCSRT 

FCSRT immediate free recall “Hippocampal ” episodic memory 

FCSRT immediate total recall 

FCSRT delayed free recall 

FCSRT delayed total recall 

FCSRT index of sensitivity of cueing 

MMSE: Mini Mental State Examination ( Folstein et al., 1975 ); FAB: Frontal Assessment Battery 

( Ronga et al., 2004 );; BDI: Beck Depression Inventory ( Sica and Ghisi, 2007 ); MDB: Mental 

Deterioration Battery ( Carlesimo et al., 1996 ); FCSRT: Free and Cued Selective Reminding Test 

( Frasson et al., 2011 ). 
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b  

f  
lied Sciences and Intelligent Systems ( Rucco et al., 2020 ; Rombetto

t al., 2014 ). 154 SQUIDs are placed as close as possible to the head of

he subjects, the remaining ones are organized into three triplets, posi-

ioned further away from the helmet as to measure the environmental

oise. 

MEG data were acquired during two eyes-closed resting state seg-

ents, each 3.5 min long, with a minute distance between them. Dur-

ng the acquisition, subjects were seated inside a magnetically shielded

oom (AtB Biomag, Ulm, Germany) in order to reduce the external noise.

sing Fastrak (Polhemus®) we digitalized the position of four anatom-

cal landmarks (nasion, right and left pre-auricular points and vertex

f the head) and the position of four reference coils (attached to the

ead of the subject), in order to define the positions of the head under

he helmet. The coils were activated and the position of the head was

hecked before each segment of registration. During the acquisition, we

ecorded also the cardiac activity and the eyes movements in order to re-

ove physiological artefacts. After an anti-aliasing filter, the data were

ampled at 1024 Hz. 

The MEG data were filtered in the 0.5–48 Hz band using a 4th-

rder Butterworth IIR band-pass filter, implemented offline using Mat-

ab scripts within the Fieldtrip toolbox ( Oostenveld et al., 2011 ). As

escribed previously ( Lardone et al., 2018 ), Principal Component Anal-

sis was applied to reference SQUID signals to remove the environ-

ent noise ( Sadasivan, 1996 ). Specifically, the filter orthogonalized the

eference signals and projected the brain sensors on the basis of the

oise, to clean the data ( de Cheveigné and Simon, 2007 ). We adopted

he PCA filtering implementation available within the Fieldtrip Toolbox

 Oostenveld et al., 2011 ). Subsequently, noisy channels and bad seg-

ents of acquisition were identified and removed through visual inspec-

ion by an experienced rater. Finally, we decomposed the signal in its

ndependent components using Independent Component analysis, iden-

ified physiological artifacts, such as eye blinking and heart activity, by

isual inspection, and removed them. In particular, we found that one

sometimes two) ECG and zero (very rarely one) EOG components were

resent. 5 MCI patients and 4 HS were excluded by an expert evaluator

ue to excessive noise in their recordings. 

.4. Source reconstruction 

Firstly, to reconstruct time series related to the centroids of 116

egions-of-interest (ROIs), derived from the Automated Anatomical La-

eling (AAL) atlas ( Tzourio-Mazoyer et al., 2002 ), we used the volume

onduction model described in ( Nolte, 2003 ) and the Linearly Con-
3 
trained Minimum Variance (LCMV) beamformer algorithm ( Van Veen

t al., 1997 ) (for details see ( Rucco et al., 2019 )), based on the native

RIs. The solutions were computed for the centroid of each ROIs, as

n ( Hillebrand et al., 2016 ). Singular value decomposition was applied

o obtain a scalar value. Then, we filtered the time series in the five

lassical frequency bands (delta (0.5–4.0 Hz), theta (4.0–8.0 Hz), alpha

8.0–13.0 Hz), beta (13.0–30.0 Hz) and gamma (30.0–48.0 Hz)). Fig. 1

hows the data analysis pipeline. 

.5. Functional connectivity measurements 

As connectivity measurements we used three amplitude-based and

hree phase-based metrics. Specifically, as amplitude-based metrics we

sed i) the classical functional connectivity based on the Pearson’s cor-

elation between brain signals (FCr); ii) Amplitude envelope correlation

AEC) ( Brookes et al., 2011 ) which computes the amplitude envelope by

eans of the Hilbert transform and then determines functional connec-

ivity between brain signals through the Pearson correlation coefficient;

ii) the orthogonalized Amplitude Envelope Correlations (AECc) with

ignal leakage correction ( Brookes et al., 2012 ). 

As phase-based metrics we considered i) the Phase Lag Index (PLI)

hich estimates the asymmetry of the distribution of the phase differ-

nces between the brain signals ( Stam et al., 2007 ); ii) the weighted

hase Lag Index (wPLI) which weights the PLI by the magnitude of the

maginary component of the cross-spectrum ( Vinck et al., 2011 ); iii)

he Phase Linearity Measurement (PLM) which measures the synchro-

ization between brain regions by monitoring their phase differences in

ime ( Baselice et al., 2019 ). Please note that FCr and AEC do not cor-

ect for volume conduction, while AECc, PLI, wPLI and PLM do. The

hase linearity measurement is a phase-based synchronization measure

anging from 0 (no synchronization) to 1 (synchronization), insensitive

o volume conduction. It captures similar information as metrics such

s the PLV or the PLI, but requires less data to give a reliable estimate

 Baselice et al., 2019 ). Unlike these metrics, the PLM is based on the

pectrum of the interferometric signal between any pair of brain regions.

n conclusion, for each subject and each metric, we obtained two test-

etest connectomes. 

.6. Towards clinical connectome fingerprinting 

The methodology for clinical connectome fingerprinting is inspired

y recent work on maximization of connectivity fingerprints in human

unctional connectomes in health ( Amico and Goñi, 2018 ) and disease
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Fig. 1. Data analysis pipeline. (A) Raw MEG signals recorded by 154 sensors (a subset displayed here). (B-C-D) Respectively noisy channel, cardiac artifact, blinking 

artifact, removed during preprocessing phase. (E) MEG signals after noise cleaning and artifact removal. (F) Co-registration between MEG signals and MRI. (G) Source 

reconstruction (beamforming). 

Fig. 2. Clinical connectome fingerprinting scheme. A) The Identifiability matrix ( Amico and Goñi, 2018 ) is computed for each group, using the test-retest individual 

connectomes; in case of two or more groups (see also Svaldi et al., 2018 ), the resulting block matrix is composed of “standard ” identification matrices (red and blue 

blocks), plus the off-block elements which encode the individual similarity between subjects from different groups and sessions (gray blocks). Starting from this new 

concept one can define the “Clinical Identifiability ” or I clinical for a patient k as the average similarity of the individual connectome of a patient with respect to the 

healthy control population (green row and column). Note that I clinical can be computed either from full individual connectomes, but also from specific targeted 

subnetworks (or submatrices) of interest (e.g. connectivity within visual area, etc.). B) One can then evaluate the association of Clinical Identifiability scores extracted 

from the patients’ individual connectomes with clinical scores of interest for the specific disease, using for instance a multi-linear model that accounts for several 

nuisance variables and predictors. C) Finally, the prediction and generalization power of the model can be tested by checking the performance in a k-fold cross 

validation fashion. 
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t  
 Svaldi et al., 2018 ). Briefly, it starts from defining the mathematical

bject known as “Identifiability ” or “Identification ” matrix ( Amico and

oñi, 2018 ) see also Fig. 2 A). In this context, the similarity is defined as

he Pearson’s correlation between the connectomes at hand. The iden-

ifiability matrix has subjects as rows and columns, and encodes the

nformation about the self similarity (I self, main diagonal elements) of

ach subject with herself/himself, across the test/retest sessions, and

he similarity of each subject with the others (or I others, off diagonal

lements ) ( Amico and Goñi, 2018 ). The difference between the average

 self and the average I others (denominated “Differential Identifiability ” or

Differential Identification ” - I diff ( Amico and Goñi, 2018 )) provides a ro-

ust score of the fingerprinting level of a specific dataset ( Amico and

oñi, 2018 ). 

This framework can easily be extended in scenarios where multi-

le clinical groups are present [39] see also Fig. 2 A). In this case, the

dentifiability matrix becomes a block matrix, where the number of

locks equals the number of groups (i.e. two in the case of this work,

ig. 2 A). The within-group blocks (blue and red blocks in Fig. 2 A) rep-

esent the Identifiability matrix within a specific clinical group (i.e. MCI

r healthy controls). The between blocks (groups) elements (i.e. the two

ray blocks in Fig. 2 A) encode the similarity (or distance) between the
4 
est-retest connectomes of subjects belonging to different groups. In par-

icular, the top right block contains the similarities between the connec-

omes from patients during the test session with the connectomes of the

ontrols during the retest session, while the bottom-left block contains

he opposite case (i.e. the similarities between the connectomes of the

atients during the re-test session with the connectomes of the controls

uring the test session). Let C be the set of the healthy volunteers. Sim-

larly, let G define the patient group. Also, let I be the Identifiability

atrix depicted in Fig. 2 A. Hence, we can define I clinical (test) and I

linical (retest), for a specific patient k , as: 

cli nica 𝑙 𝑘 ( test ) = 

1 
𝑁 𝐶 

∑

𝑖 

𝐼 ik ; Icli nica 𝑙 𝑘 ( rete st ) = 

1 
𝑁 𝐶 

∑

𝑖 

𝐼 ki , ∀𝑖 ∈ 𝐶 

To summarize, Iclinical(test), for each patient k, represents the average

imilarity of the connectome of that patient in the test session with the

onnectomes of every control in the retest session, and I clinical (retest)

epresents the average similarity of the connectome of a patient in the

etest session with the connectomes of every control in the test session.

aking advantage of the new piece of information provided by the be-

ween groups blocks, we define the “Clinical Identification ” or “Clinical
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I  
dentifiability ” (I clinical), for patient k, as: 

𝑐 𝑙𝑖𝑛𝑖𝑐 𝑎 𝑙 𝑘 = 

1 
2 
(
𝐼𝑐 𝑙𝑖𝑛𝑖𝑐 𝑎 𝑙 𝑘 ( 𝑡𝑒𝑠𝑡 ) + 𝐼𝑐 𝑙𝑖𝑛𝑖𝑐 𝑎 𝑙 𝑘 ( 𝑟𝑒𝑡𝑒𝑠𝑡 ) 

)
, ∀𝑘 ∈ 𝐺 

Essentially, for each patient k , I clinical provides the (average) score

f how similar is their connectome with respect to the control subjects

n the population, across the test-retest sessions. 

.7. From clinical connectome fingerprinting to prediction of clinical scores 

Edgewise Intraclass correlation. For each group (HS and MCI) we quan-

ified the edgewise reliability of individual connectomes using intraclass

orrelation (ICC, ( Koch, 2014 ), similarly to previous work ( Amico and

oñi, 2018 ). ICC is a widely used measure in statistics, normally to as-

ess the percent of agreement between units of different groups. It de-

cribes how strongly units in the same group resemble each other. The

tronger the agreement, the higher its ICC value. We used ICC to quan-

ify to which extent the connectivity value of each edge (functional con-

ectivity value between two brain regions) could separate within and

etween subjects. In other words, the higher the ICC of an edge, the

ore stable that edge’s connectivity across the test-retest session and,

n turn, the higher the edge’s “fingerprint ” (i.e. that particular edge is

elevant to identify individual connectomes). We then go on and test if

he edge’s identifiability diminishes in patients, and if such reduction is

redictive of individual clinical disability. 

Multilinear model specification. To test for the hypothesis that clini-

al connectome identification is associated with clinical scores, we per-

ormed a multi-linear regression analysis to predict the MMSE scores

ased on I clinical and two other predictors. Specifically, a categorical

ariable encoding diagnosis (amnestic MCI and multi domain MCI), and

he Fazekas index which quantifies the amount of white matter T2 hy-

erintense lesions (i.e. vascular burden). Five nuisance variables were

lso included to account for any potential effects of age, sex, education,

ifferent day of MEG scans, and different number of epochs. 

Edge selection and prediction of clinical scores. The Clinical Identifica-

ion scores defined earlier ( Fig. 2 A) can be computed from full individ-

al connectomes, but also from a subset of the individual connectomes

i.e. by computing Patient/Controls similarity only on a subset of edges).

urthermore, if the reduction of identifiability is related to the patho-

ogical processes, we expect that the individual level of fingerprinting

ould be predictive of the individual clinical impairment, and maxi-

ally so when based on the subset of most reliable edges. Therefore, we

ested the specificity of the prediction, as well as the generalization ca-

acity of our model, by using a k-fold cross validation ( k = 5) approach.

he approach detailed below has some similarities with the Connectome

redictive Modeling methodology (CPM, ( Shen et al., 2017 )), with two

ajor key differences. 

Firstly, we selected the connectome edges to be included in the fin-

erprinting based on the edgewise ICC value computed on the control

roup. That is, edges were ranked in descending order according to

he ICC value, and only a subset was included in the fingerprint anal-

sis (similarly to ( Amico and Goñi, 2018 )). Note that, in order to im-

rove the signal-to-noise ratio and avoid source reconstruction artefacts,

dges entirely within the cerebellum were not included in the analy-

is. The k-fold validation was then performed iteratively by adding 100

dges at the time, starting from the most reliable edges (as measured

y ICC), and ending with the least robust ones, until eventually taking

nto consideration the full individual connectomes. Secondly, as afore-

entioned, at each iteration the individual I clinical scores, based on the

teration-specific subset of edges, were used to predict the individual

MSE scores. As said, depending on the number of edges included,

he I clinical represents the similarity with (or distance from) the con-

rol group relative to the specific connectome subcircuit spanned by the

ncluded edges. Finally, the prediction scores between the multi-linear

ML) model with I clinical and MMSE clinical scores were evaluated for

ach of the five frequency bands studied. 
5 
Null models for prediction. In order to make sure that the edge se-

ection based on the ICC scores is clinically meaningful, we implement

wo different null models. In the first one (named Null-Edges ), we built a

istribution of the prediction scores based on randomly selected edges.

ence, at each step of the k-fold model we shuffled the ICC mask 1000

imes, and recomputed the prediction scores between the Iclinical multi-

inear model and MMSE. In other words, we build a “null distribution ”

f prediction rates, entirely based on a randomized edge selection, how-

ver starting from the empirical functional connectomes. In the second

ull model (named Null-MMSE ), we are accounting for the sample size

ffect when performing k-fold validation. To this end, we performed per-

utation testing on the MMSE scores, by randomly shuffling them 1000

imes, and by computing the corresponding confidence intervals related

o the obtained null distribution. Prediction scores outside of the 95

ercentile of the Null-MMSE distribution were considered as significant

redictions for our model. We chose to use the k-fold validation since it

as been shown – both theoretically and empirically – to improve pre-

iction estimates in small neuroimaging datasets, as compared to leave-

ne-out cross validation (LOOCV) ( Varoquaux, 2018 ; Varoquaux et al.,

017 ). However, the LOOCV validation was also carried out, and in this

ataset LOOCV showed similar results, as shown in the SI Figure S5. 

. Results 

We tested the Clinical Connectome Fingerprinting (CCF, Fig. 2 )

ramework on a resting-state MEG dataset acquired from an elderly co-

ort of 69 subjects, 34 healthy controls and 35 affected by amnestic Mild

ognitive Impairment. The test-retest sessions were acquired during the

ame day, with a ~1-minute break from each other. From the initial

opulation of 69 subjects we excluded those who: 1) were affected by

oise or 2) did not have two test-retest sessions. This left us with 30

ubjects per group, a total of 60 subjects. 

Clinical connectome fingerprinting builds upon recent work on max-

mization of connectivity fingerprints in human functional connectomes

FCs) in health ( Amico and Goñi, 2018 ) and disease ( Svaldi et al., 2018 ).

s explained, the first step of CCF is to construct the “Identifiability’’

atrix ( Amico and Goñi, 2018 ), see also Fig. 2 A and Methods), for the

combined ” clinical and healthy population. In this case, the Identifia-

ility matrix becomes a block matrix, where the number of blocks equals

he number of groups (i.e. two in the case of this work, Fig. 2 A and Meth-

ds). On one hand, each block represents the identification within a spe-

ific clinical group (blue and red blocks in Fig. 2 A). On the other hand,

he between blocks (groups) elements (i.e. in the case of this paper, the

wo gray blocks in Fig. 2 A) encode the similarity (or distance) between

onnectomes of subjects belonging to different groups (i.e., I clinical , see

ethods for details), for both the test and retest session. Essentially, for

ach patient, I clinical provides the (average) score of how similar their

onnectome is with respect to the control subjects in the population, as

ell as across test-retest sessions ( Fig. 2 A). The major hypothesis behind

his work is that the I clinical scores can be representative of the connec-

ome degeneration associated with the disease, and therefore associated

ith the behavioral/clinical scores at hand ( Fig. 2 B). 

In order to test for that, the first step was to select the best metric

or fingerprinting the MEG functional connectomes. We therefore evalu-

ted the fingerprinting capacity of six popular network metrics for MEG

onnectomics. Three of these were amplitude-based (Amplitude based

orrelation (AEC, ( Brookes et al., 2011 )); AEC corrected for spatial leak-

ge (AECc, ( Brookes et al., 2012 )); Pearson correlation), and three were

hase-based measurements (Phase Lag Index (PLI, ( Stam et al., 2007 ));

eighted PLI (wPLI, ( Vinck et al., 2011 )); Phase Linearity Measurement

PLM, ( Baselice et al., 2019 )), Fig. 3 and S1). In this regard, differential

dentifiability (I diff, ( Amico and Goñi, 2018 ), see also Methods) provides

 good score to test the robustness and reliability of each connectivity

easurement across sessions. 

Fig. 3 shows the results of the fingerprinting test: the PLM-based

self scores appear to be the most reliable with respect to the other met-
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Fig. 3. Data-driven selection of the most re- 

liable connectivity metric for clinical connec- 

tome fingerprinting. A) Identifiability matrices 

for the HS and MCI group, for each of the 

six connectivity metrics tested: Phase Lag In- 

dex (PLI), weighted PLI (wPLI), Phase Linearity 

Measurement (PLM), Amplitude Envelope Cor- 

relation (AEC), AEC corrected for spatial leak- 

age (AECc), Pearson’s correlation (FC r ). Here 

only the alpha band is shown (the other bands 

are reported in Fig. S1). The differential identi- 

fication score ( Amico and Goñi, 2018 ) is used 

to select the best metric for clinical connectome 

fingerprinting in this MEG dataset. B) The I diff

scores across bands and connectivity metrics 

are summarized for the two groups; note how 

PLM outperforms all the other methods in all 

the frequency bands evaluated. We hence se- 

lected PLM connectomes for the fingerprinting 

analyses that follow. 
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ics (paired t -test p < 0.05 in both Control and MCI groups, Bonferroni

orrected across frequency bands and metrics tested, see also Fig. 3 B.;

lease see Fig. S2 for a comparison between PLM and PLI). For an anal-

sis of the identification rates, that yields similar results, please refer to

ig. S3. Interestingly, there is also a consistent drop in I diff scores when

omparing the MCI group with the HS ( Fig. 3 A). We therefore selected

he PLM as the most robust method for the connectivity fingerprinting

n this MEG dataset. 

We then explored the local specificity of MEG fingerprinting in PLM-

ased individual connectomes, by using intraclass correlation (ICC) on

he functional connectome edges (see Amico and Goñi, 2018 or Meth-

ds for details), across frequency bands. Note that, in order to ease the

isualization of the results, hereafter we will only show results from the

hree frequency bands, namely theta, alpha, and beta. The results for the

ther two (delta and gamma) are reported in SI (Fig. S4). The analysis

n the spatial specificity of the connectome fingerprinting is depicted in

ig. 4 . Note the consistent drop in ICC values when comparing the ICC

dgewise patterns of the HS group to the MCI group ( Fig. 4 ). 

The results reported in Fig. 4 made us speculate that a decrease in

ngerprinting might be also associated with cognitive decline in the MCI

opulation. Specifically, we sought to test the hypothesis that the indi-

idual patient’s connectome similarity/distance scores from the healthy

onnectomes (i.e. I clinical , see Methods), particularly when restricted

etween subsets of highly reliable edges, could be used as biomarkers

f cognitive decline. 

We therefore tested the clinical connectome fingerprinting frame-

ork on the individual PLM matrices computed for the two groups,

cross all frequency bands. Briefly, we tried to predict MMSE scores

rom the I clinical similarity scores obtained from comparing connectiv-

ty subsets of most reliable edges (in an iteratively increasing fashion,

rom 50 to the entire functional connectomes, adding 50 edges at each

teration, analogously to ( Amico and Goñi, 2018 )) between each MCI

atient and the HS population. These I clinical scores were added into

n additive multi-linear model to account for the possible confounds

nd nuisances in the dataset ( Fig. 5 B). To test for the generalization of

he prediction, k-fold cross validation ( k = 5) was performed at each
6 
teration, and the prediction score (Spearman’s 𝝆 between predicted vs.

bserved MMSE, Fig. 5 ) was tested against the prediction score derived

rom two different null models: one obtained by randomly permuting

he edge subset at each iteration 1000 times; the other by randomly

ermuting the MMSE scores 1000 times, also called permutation test-

ng in the machine learning community (see also Methods for details).

he 95% upper limit of the confidence interval obtained from permut-

ng the MMSE labels is represented by the dashed black lines in Fig. 5 A.

e found that the I clinical -based linear model significantly predicts the

MSE in the alpha band, with a peak in prediction when using the

op 300 most reliable edges ( Fig. 5 A). I clinical scores in the training set

re significantly associated with the MMSE scores ( p = 0.0005,R 

2 ≃0.6,

ig. 5 B), with positive beta coefficients. That is, the higher the Iclinical

core of the MCI patient (i.e. the more similar to the HS cohort their

elected subnetwork is), the higher their MMSE score. Interestingly, de-

pite the use of a simple linear model, both the k-fold validation and the

OOCV results show good generalization and prediction capacity of the

MSE from connectome features, both at peak (300 edges, Spearman’s

= 0.55, p < 0.05 Bonferroni corrected across bands), or when includ-

ng more edges in the selected subnetwork (e.g. 700 edges, 𝝆 = 0.51, p <

.05 Bonferroni corrected, Fig. 5 C, see also S5, S6). The brain regions in-

olved in the maximal prediction spread over the entire brain network:

rom frontolateral cortices, to occipital, to even cerebellar connections

 Fig. 5 C). Notably, prediction at alpha is significantly different from the

ull model based on edge permutation, as well as from the null model

btained by shuffling the MMSE scores, since the maximal prediction

ound is well above the confidence interval (despite the relatively small

ample size, Fig. 5 A). 

. Discussion 

In the current manuscript, we aimed to test the hypothesis that the

egulation of the pattern of large-scale brain interactions is weakened in

mnestic mild cognitive impairment (aMCI). Hence, we reasoned that, if

he features of the functional connectome are less efficiently regulated in

CI, then the connectomes might be less easily recognizable or “identifi-
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Fig. 4. Spatial specificity of MEG connectivity fingerprints. Left: Reliability analysis of MEG connectivity fingerprints as measured via edgewise intra-class correlation 

(ICC), across all frequency bands (here only three are shown: theta, alpha, beta; delta and gamma are reported in Fig. S4). Right: brain renders show ICC Nodal 

strength of most reliable edges (greater than 75 percentile of ICC group distribution; colorbar is saturated within the [5,95] percentile range). Note the drop in the 

ICC distribution values when comparing the healthy control group to the MCI one. 
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ble ”. We therefore defined a novel framework, namely Clinical Connec-

ome Fingerprinting ( Fig. 2 ), to extract individual features from diseased

onnectomes (or relevant subnetworks), and use them as biomarkers for

rediction of mild cognitive impairment in a MEG dataset of an aMCI

opulation. 

Firstly, we compared the identification performance of a number of

ommonly used MEG connectivity metrics in both the healthy and aMCI

ohort. Specifically, the metrics chosen were the phase lag index (PLI)

 Stam et al., 2007 ), the weighted phase lag index (wPLI), the ampli-

ude envelope correlation (AEC) ( Brookes et al., 2011 ), the orthogo-

alized amplitude envelope correlation (AECc) ( Brookes et al., 2012 ),

he Pearson correlation directly computed on the time series (FC r ), and

he phase linearity measurement (PLM) ( Baselice et al., 2019 ). Of these

etrics, the FC r , AEC and AECc are amplitude-based, while the PLI,

PLI and PLM are phase-based. Furthermore, FCr and AEC do not cor-

ect for volume conduction, while AECc, PLI, wPLI and PLM do (al-

hough AECc uses a different approach to do so – i.e. orthogonalization

 Brookes et al., 2012 )). We used source-reconstructed, resting-state MEG

ignals, and compared the fingerprinting capacity of the aforementioned

etrics ( Fig. 3 ). The PLM performs significantly better than the other

etrics (paired t -test p < 0.05 in both Control and MCI groups, Bonfer-

oni corrected across frequency bands and metrics tested, Fig. 3 B; see

lso S3 for an analysis of the identification rates, which show similar

esults). As previously known, amplitude-based metrics tend to outper-

orm phase-metrics in terms of noise-resiliency ( Colclough et al., 2016 ),

nd metrics that do not correct for volume conduction outperform those

ho do in terms of identifiability ( Demuru et al., 2017 ), perhaps be-

ause they include information that is subject-specific though unrelated
7 
o genuine brain activity. However, PLM seems to be an exception to

hese trends, being a purely phase-based metric that corrects for vol-

me conduction, possibly because PLM is more robust to noise and can

ive reliable connectomes with shorter MEG acquisitions ( Baselice et al.,

019 ). Notably, among the connectivity metrics correcting for spatial

eakage, PLM is also the one that achieves the best identification rates,

n both the control and MCI groups (Fig. S3). These features might be

ore related to genuine neural activity and less influenced by the ge-

metry of the head ( Colclough et al., 2016 ). Importantly, the analysis of

ngerprints based on MEG data allows to exploit the temporal richness

f neuronal interactions (as measured through phase synchronization),

nriching the insights provided by the broader fMRI-based fingerprint-

ng literature. 

Once we spotted the best connectivity metric, inspired by recent

ork on connectome fingerprinting ( Amico and Goñi, 2018 ; Svaldi et al.,

018 ), we tested if subject identification would be harder to perform

n the MCI group as compared to controls. As shown ( Fig. 4 , Fig.

1), the identifiability of the patients drops drastically as compared

o controls. Previous evidence showed that the large-scale activity in

he healthy brain is fine-tuned to achieve both efficient communication

nd functional reconfiguration, which underpins complex, adaptable be-

avioural responses ( Deco et al., 2009 ; Sorrentino et al., 2019 ). There-

ore, this finding might be framed within the dysregulation of large-scale

ctivity due to the pathological processes. Less regulated activity might

mply less stable or reliable activity, which might induce lower similar-

ty between test-retest connectomes of MCI subjects. In turn, this might

mply the reduced edgewise identifiability that we observed ( Fig. 4 , Fig.

1). 
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Fig. 5. Clinical Connectome Fingerprinting for Mini Mental State Examination (MMSE) prediction. A) Feature selection based on ICC. At each frequency band, 

subset of edges are added iteratively (from 50, 100 to whole-brain, in step of 100) based on their ICC values, from most to least reliable (x-axis), and prediction 

performance (k-fold ( k = 5) cross validation, see Methods) of the multi-Linear model based on Clinical Identifiability (I clinical ) is evaluated (y-axis), and compared 

against two null models: one ( Null-Edges, red line), obtained by randomly choosing the subset edges 1000 times at each step (shaded red line denotes its standard 

deviation); the second ( Null-MMSE, black line), obtained by randomly permuting the MMSE scores 1000 times at each step (shaded gray line indicates standard error; 

dashed black line denotes 95% confidence interval for Null-MMSE ). B) Multi-linear model at peak. The performance of the model training set is shown for the peak 

prediction (300 edges, alpha band). Left: The additive linear model consists of five nuisance variables (Gender, Age, Education, Meg scan, number of Epochs), and 

three predictors (Fazekas index, Diagnosis, I clinical, see also Methods). Significant predictors are indicated by the x ( p < 0.05, Bonferroni corrected across frequency 

bands); 𝛽+ indicates that the beta coefficients for I clinical are positive (i.e. the higher I clinical , the higher the correspondent MMSE score). Center: Scatter plot of the 

Observed MMSE scores versus the MMSE scores predicted by the multi-linear regression model. Right: Scatter plot of the standardized residuals versus the predicted 

MMSE scores for the multi-linear model. Note how the residuals are symmetrically distributed, tending to cluster around 0, and within 2.5 standard deviations of 

zero. C) Nodal degree of most predictive brain regions. Figure shows prediction scatter plot for the k-fold test set, at peak (300 edges, alpha band) and at another 

local maximum (700 edges, alpha bands). The correspondent brain renders represent the nodal degree associated with the selected edge mask at 300 and 700 edges, 

respectively. 
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The ICC nodal strength complements the picture of MCI altered con-

ectivity in terms of regional activity, since not all brain regions con-

ribute equally to subject identification ( Fig. 4 , Fig. S4). Furthermore,

e wish to stress that strongest connectivity, as depicted by the ICC re-

ults in Fig. 4 , does not necessarily relate to strongest reliability (Fig

2). For instance the occipital regions in alpha, which are among the

trongest in terms of PLM connectivity (Fig. S2A), are not the strongest

n terms of the ICC. Therefore, connectivity and fingerprints provide

omplementary, but distinct information. Interestingly, the pattern of

egions that contribute the most to identifiability varies according to

he frequency band. Our results point toward the presence of relevant

nformation in the alpha band, as well as in the occipito–temporal

nd occipito–parietal regions. Previous evidence showed that the al-

ha band carries relevant information to the conversion of MCI, both
8 
n changes in power ( Moretti et al., 2007 ) and in synchronization pat-

erns ( López et al., 2014 ), and that hyperactivations in the dorsal and

entral pathways (i.e. occipito-temporo-parietal areas) characterize MCI

ubjects ( Maestú et al., 2011 ). It is noteworthy that some of these re-

ions overlap consistently with previous findings in fMRI fingerprinting

 Amico and Goñi, 2018 ). However, some other areas, such as associa-

ive visual cortices ( Fig. 4 ), which exhibit high identification power in

his dataset, are not so important for fMRI fingerprinting ( Finn et al.,

015 ). This led us to speculate that connectivity fingerprinting might

lso depend on the modality used to measure it (e.g. MEG as opposed to

MRI), which might also reflect the specific time scale of neuronal inter-

ctions/synchronies. Future studies should deepen the investigation on

he relationships between fingerprinting and neuroimaging modalities,

s well as on exploring other conditions, such as eyes-open. 
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More importantly, the fingerprinting regions highlighted in Fig. 4 en-

ompass associative areas: that is, they integrate multiple information

ources to plan coherent, complex behavioural responses ( Corbetta and

hulman, 2002 ; de Pasquale et al., 2012 ). We then hypothesized that

mpaired regulation of the interaction of such brain regions should lead

o poorer cognitive performance, as well as poorer identification. If this

s the case, the harder it is to identify a subject, the worse its cognitive

erformance should be. It is reasonable to assume that not all edges are

qually important for brain fingerprinting, and that not every edge is

qually affected by the pathological processes occurring in MCI. How-

ver, there might exist an overlap between these two subsets. This was

ndeed our working hypothesis for clinical identification. 

In MCI and Alzheimer’s disease, the Mini Mental State Examination

MMSE) is one of the most widely used bedside assessments of cognitive

unction ( Folstein et al., 1975 ). We use clinical connectome fingerprint-

ng to show that there is a strong correlation between the MMSE score

nd clinical identification in the alpha band ( Fig. 5 A), even when taking

nto account confounders such as age, education, time of the acquisi-

ion, length of the scan, and subject-specific vascular burden ( Fig. 5 B).

urthermore, the linear model based on clinical fingerprinting scores

ignificantly predicts the MMSE scores on the k-fold validation ( Fig. 5 A,

ig. 5 C). Notably, the optimal prediction is achieved when considering

he first 300 most reliable edges (shown in Fig. 5 ). As one can observe,

fter including all the other covariates, the R 

2 of the model drastically

ncreases when Clinical identifiability is taken into account ( Fig. 5 B).

his shows that Clinical Fingerprinting might capture some processes

elated to cognitive performance ( Noble et al., 2019 ) in MCI. Moreover,

ur results on Clinical Fingerprinting are obtained from a phase-based

onnectivity metric (PLM), which might represent specific mechanisms

f communication, i.e. phase synchronization ( Engel et al., 2013 ). Fur-

hermore, the alpha band, where the best prediction occurs ( Fig. 5 , Fig.

3), had been previously shown to be altered in MCI ( Jacini et al., 2018 ;

ngels et al., 2017 ). Furthermore, note that the MMSE prediction failed

hen using standard edgewise connectivity values, as opposed to Iclin-

cal scores (see Fig. S7). 

The result that the most reliable edges (high ICC ( Noble et al., 2019 ))

re also predictive of an MCI-related cognitive outcome (MMSE, Fig. 5 )

s an interesting one. Keep in mind that, with our data-driven method-

logy purely based on ICC, one cannot have control over the kind of

eatures that are being selected for the subsequent prediction of clini-

al outcomes ( Hartoyo et al., 2019 ). In fact, one can see that adding a

ew edges – despite them being the most reliable ones, as edges are be-

ng added sequentially according to their ICC – does not guarantee the

est prediction. Notably however, once a sufficient number of edges has

een added, one reaches the best prediction ( Fig. 5 A). Presumably, this

rediction includes a set of edges that underpin the mild cognitive im-

airment tested with MMSE. Similarly, adding more edges does not im-

rove the prediction further, but rather makes it slowly decline ( Fig. 5 A).

ence, adding more (less identifiable) edges means to be adding irrel-

vant information for the prediction of the behavioral outcome under

tudy. Again, our results in this MCI cohort show that the most reliable

dges are also the most predictive ones, clinically. If these edges were

ot specifically related to the cognitive output, then a randomly selected

ubset of edges should perform similarly in terms of predictive power on

he MMSE score. This does not seem to be the case, as the null model re-

ults show ( Fig. 5 A, red shaded line). In fact, when considering random

dge selections, the quality of the prediction drops drastically, showing

hat the ICC selects those edges that are informative with respect to cog-

itive performance, as tested through MMSE ( Fig. 5 A, red shaded line).

he reduction in identifiability between connectomes in both the MCI

nd control groups does not appear to be driven by head movement, as

easured by distance in the squid positions between the beginning of

he first and second acquisition (double-sided t -test between groups non

ignificant). Furthermore, there is no correlation between I self and the

forementioned motion scores (see also Fig. S8). Hence, it seems that

ifferences in movements are unlikely to justify the differences between
9 
he two groups. However, it is important to note that continuous head

racking was not available in this study, and this should be considered as

 major limitation in assessing motion differences between groups. Fi-

ally, the fingerprinting results reported here do not appear to be driven

y simple differences in power between groups or changes to the slope

f 1/f aperiodic neural activity (Fig. S9, Kolmogorov-Smirnov test be-

ween groups non significant). 

The findings of this study make it essential to lay out several method-

logical considerations. The first one relates to the reliability/validity

dichotomy ” ( Noble et al., 2019 ). Here we show that edges that are

ost reliable possess a strong clinical validity for cognitive impairment

rediction ( Fig. 4 ). However, the reader should keep in mind that ro-

ust edges in MEG data can be associated with several factors, not all

f them necessarily neuronal-related: motion artifacts, gray matter at-

ophy, individual source reconstruction parameters, epochs length, and

o on. Despite our efforts in controlling for all these (as detailed in the

ethods and shown in Fig. 5 B), further studies should dig into the fin-

erprinting “causes’’ and properties of MEG data. The same applies to

he clinical validity part of our findings: the link found between relia-

ility/validity might be dataset and/or disease dependent, and should

e explored in different populations and clinical conditions. Also, here

e use a data-driven method to select the best edge features for clini-

al prediction, as they turn out to be significantly better than random

elected features ( Fig. 5 A). Nevertheless, we encourage further work to

xplore edge selection based on a-priori hypothesis for the disease at

and, which might outperform the proposed data-driven feature selec-

ion for clinical connectome fingerprinting. Future studies should also

xplore the effect of denoising techniques to maximize fingerprints from

rain data onto the I clinical scores ( 11 ). 

Another important caveat of this study is that, in MEG source-

econstructed data, the signal-to-noise ratio is heavily dependent on the

istance between the source and the sensor, and hence is not homoge-

eous for all the sources. However, recent evidence showed that signals

econstructed from the basal ganglia contain reliable information about

rain activity ( Müller et al., 2019 ; Pizzo et al., 2019 ) as well as those

rom the cerebellum ( Andersen et al., 2020 ). On the one hand, MEG

ignals derived from the cerebellum are 30–60% weaker as compared

o the cortical surface ( Samuelsson et al., 2020 ). On the other hand,

he cerebellum is an important structure in both motor and cognitive

rocesses, and hence excluding it all along is likely discarding some

nformation ( Ito, 2006 ). In this work we tried to account for this by ex-

luding entirely within-cerebellar links from ICC edge selection, while

eeping edges that are incident but not contained within the cerebellum

see Methods for details). However, we observed that our predictions

re maintained when including within-cerebellar links, while they dras-

ically drop when excluding the cerebellum altogether from the indi-

idual connectomes (MMSE maximal prediction 𝝆 = 0.3, Fig. S10). One

hould keep in mind that our predictions involve a clinical outcome. The

act that cortical-cerebellar links are needed to improve MMSE predic-

ion, after controlling for all nuisance factors and after benchmarking it

gainst an appropriate null-model for edge selection, implies that they

ontain relevant information associated with the individual cognitive

tate that should not be discarded. We encourage further research to

void the underestimation of cerebellar connectivity in MCI and AD,

nd explore further the role of these cortico-cerebellar pathways. In

his work, we have opted to use resting-state data to test our clinical

ngerprinting framework. Future work should explore Iclinical scores

n task-based paradigms, which could help in maximizing detectability

f the "fingerprints of cognitive decline ” ( Finn and Bandettini, 2021 ).

inally, whilst we have used a k = 5 cross validation approach to al-

eviate potential over-fitting issues, as recommended in previous works

 Varoquaux, 2018 ), we recommend future studies to explore the clinical

ngerprinting framework on larger datasets (i.e. more than 30 partic-

pants in each group), whenever possible. Future work should also ex-

lore the proposed CCF approach in combination with other neuroimag-

ng/behavioral data, for prediction purposes ( Engemann et al., 2020 ) 
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In conclusion, we have defined Clinical Connectome Fingerprinting , a

ovel approach to extract individual connectivity features from diseased

unctional connectomes. We applied this framework for clinical identifi-

ation of MEG connectomes extracted from an elderly population of sub-

ects with mild cognitive impairment (i.e., amnestic MCI). We showed

hat the most identifiable edges are also the most predictive of individual

ognitive impairment, as measured by the Mini-Mental State Examina-

ion score. We hope that future studies will exploit further the potential

f Clinical Connectome Fingerprinting as a preclinical diagnostic tool,

s well as a way to empirically link, in a data-driven fashion, specific

ub-networks to given cognitive functions or brain states. 
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